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1 | INTRODUCTION

Henri Orland? |

Marc Delarue®

Abstract

Coarse-grained normal mode analyses of protein dynamics rely on the idea that the
geometry of a protein structure contains enough information for computing its fluc-
tuations around its equilibrium conformation. This geometry is captured in the form
of an elastic network (EN), namely a network of edges between its residues. The nor-
mal modes of a protein are then identified with the normal modes of its
EN. Different approaches have been proposed to construct ENs, focusing on the
choice of the edges that they are comprised of, and on their parameterizations by the
force constants associated with those edges. Here we propose new tools to guide
choices on these two facets of EN. We study first different geometric models for
ENs. We compare cutoff-based ENs, whose edges have lengths that are smaller than
a cutoff distance, with Delaunay-based ENs and find that the latter provide better
representations of the geometry of protein structures. We then derive an analytical
method for the parameterization of the EN such that its dynamics leads to atomic
fluctuations that agree with experimental B-factors. To limit overfitting, we attach a
parameter referred to as flexibility constant to each atom instead of to each edge in
the EN. The parameterization is expressed as a non-linear optimization problem
whose parameters describe both rigid-body and internal motions. We show that this
parameterization leads to improved ENs, whose dynamics mimic MD simulations bet-
ter than ENs with uniform force constants, and reduces the number of normal modes
needed to reproduce functional conformational changes.
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atomistic molecular dynamics simulations are restricted in scope,

both for time-scale (usually micro-seconds) and length-scale (with

The function of a biomolecule derives from the specific dynamics
of its structure. The need to observe and analyze such dynamics
is therefore at the core of many studies in structural molecular
biology. Unfortunately, we currently lack the experimental and
computational tools for a comprehensive representation of the
dynamics from the molecular to supra-molecular levels. Indeed,
only a few experimental techniques can collect time-resolved
structural data, and those that can are usually limited to a narrow

time range. In parallel, current computational methods such as

systems of up to hundred thousand atoms), because of limitations
in computing power. To circumvent such problems, there is a
need to develop simplified, albeit accurate models to study the
dynamics of a molecule on a computer, to inform those models
based on available experimental data, and to assess their rele-
vance, correctness and usefulness. In this paper, we address some
of these issues in the context of coarse-grained normal mode
analyses (NMA) of biomolecular dynamics based on elastic net-
work models (ENM).
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1.1 | Experimental data on protein dynamics

Proteins are not static objects and occupy instead ensemble of con-
formations. Dynamics is the study of the kinetics of the transitions
between these states. They may occur on a global scale, as observed
in allostery or catalysis, or at a local scale, the so-called local flexibility.
Evidence of such local flexibility is obtained either from NMR spec-
troscopy, by analyzing the spin relaxation of individual atoms and
assigning them an order parameter, or from X-ray crystallography, by
assigning and refining a B-factor, also called the Debye-Waller factor,
to each atom to account for their mobility in the crystal (see
e.g., Reference 1). Both have proved useful for analyzing protein
dynamics (see e.g., Reference 2 for the use of B-factors, and Refer-
ence 3 for the use of order parameters). As such, there have been
many efforts to predict their values from the knowledge of the static

10,11

structure of a protein,*™? from the sequence of the protein, or

from of the dynamics of the proteins, either derived from rigid

13-15 or from

motions,*? from molecular dynamics simulations,
NMA.26-29 |t is worth noting that both the NMR order parameters
and the crystallographic B-factors are not quantities that are directly
observed from an experiment. The NMR order parameter S? is
derived from the so-called model-free approach introduced by Lipari

2122 in which the motion of an atom is described as the

and Szabo,
combination of overall rotational reorientation characterized with a
correlation time z. and internal motions described with an amplitude,
the order parameter. In parallel, a B-factor is a parameter that is intro-
duced to account for atomic displacements during the data collection
as well as conformational differences in the different unit cells of the
crystal after plunging (freezing) it in liquid nitrogen. As such, it is
dependent on the conditions in which those data were collected, if
the crystals were frozen in liquid nitrogen or not, as well as on the
refinement process of these data to derive a structure. As such
B-factors of one crystal structure cannot be directly compared to
those of another. Despite those limitations, as mentioned above, both
NMR order parameters and X-ray B-factors remain important source
of information on the dynamics of proteins. In this paper, we focus on
B-factors.

1.2 | Computational approaches to studying
protein dynamics

Probably the most natural approach to studying protein dynamics on
a computer is to assume that this dynamics follows classical
mechanics and accordingly to solve Newton's equations at the
atomic level: this is the idea behind the now ubiquitous molecular
dynamics simulations. However, such simulations are computation-
ally demanding, and despite progress in hardware, software, and
representations of the molecular system, there is an interest in
developing alternate approaches that would be applicable even on
commodity computers. A promising approach is to infer dynamics
from static structures corresponding to locally stable states,?®

together with reliable coarse-graining approaches to bridge the

time-scale gap.2*?®> Normal Modes, for example, represent a class of
movements around a local energy minimum that have been found in
many instances to be biologically relevant.?4=%° Normal modes
based on traditional force fields can, however, be relatively difficult
to compute, as those forcefields include terms such as the vdW
interactions that are not well approximated with a quadratic term.
The ENM, introduced by Tirion in 1996, offers a particularly simple
and efficient way to circumvent this problem by building a geomet-
ric, quadratic potential with the experimental structure as its mini-
mum, allowing fast access to the collective dynamics of even large
protein complexes.3! Tirion validated her model by showing that its
low frequency modes match well with those computed from tradi-
tional normal modes on G-actin. Her observation has been con-
firmed multiple times since then. Coarse grained NMA based on the
ENM have proved useful to characterize allosteric changes in con-
formation, such as the switch undergone by hemoglobin from its
tense (T) form to its relaxed (R) form,®? to analyze conformational
transitions in DNA-based poymerases,*® to analyze global ribosome

35-38 among

motions,* and to study the dynamics of viral capsids,
others. Such coarse-grained analyses of biomolecular dynamics have
developed as a viable alternative to traditional molecular dynamics
simulations.2>%?=#2 |t should be noted that NMA have proved also
useful in structure refinements based on experimental studies in

which dynamics is considered, such as X-ray crystallography*®44

and cryo-electron microscopy.*>~47

1.3 | The physical model behind ENMs

Two categories of NMA based on ENMs are widely used today,
namely, the Gaussian Network Model*®*? and the anisotropic net-
work model (ANM).27:3%30 Here we follow the latter model, in which
the energy of a molecule is equated with the harmonic energy associ-
ated with springs attached to a set of pairs of atoms. This defines a

quadratic energy on the inter-atomic distances,
1 2
V(X):EZk;j(r;j—r,?) ) (1)
(i.)

when the biomolecule is in conformation X. In this equation, k;; is the
force constant of the “spring” formed by the pair of atoms i and j, and
rj and r,? are the distances between i and j in the conformation X,
and in the reference conformation X°, usually taken to be the crystal
structure. This model is quite simple as it relies on a very small number
of coarse-grained parameters. As such, it allows for easy computations
of coarse-grained normal modes (this will be discussed in the next sec-
tion). There are, however, two important decisions to make when
choosing those parameters that shape the model and consequently
influence its effectiveness. First, the geometry of the elastic network
(EN) needs to be specified. The potential V involves a sum over pairs
of atoms (i, j). These pairs can be selected as those that satisfy a cutoff
criterium, or as the pairs that best describe the geometric structure of

the molecule. Second, values need to be assigned to the force
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constants k;; associated with those pairs of atoms. In this paper, we
study both decisions. They are discussed in the two following

paragraphs.

14 | The geometry of EN models

Several criteria can be used to define the set of atom pairs that are
used in Equation (1). In standard EN, the criterium is usually a cut-
off distance R, such that atoms separated by less than this cutoff
are included in the EN. There are however no guidelines as to
different
implementations lead to contradicting optimal values. Typical

which values for R, are best and sometimes
values for R. within ANM models are in the range 13-15 A when
the ENM is based on C, only.5! To avoid selecting a cutoff, it has
also been proposed to include all pairs of residues and to assign
length-dependent force constants to their corresponding springs.
For example, Hinsen®? and Kovacs et al.>® used force constants
with exponential distance-dependence, while Yang et al.>* devel-
oped a parameter-free ENM in which the force constants are
inversely scaled by the squared distance of separation. Note that in
all those approaches, even those based on cutoff, a larger number
of interactions are considered. An alternate method is to build a
geometric structure on the sets of positions of the atoms; the
Delaunay complex and its subsequent alpha shape filtrations are

well suited for this purpose.>®

1.5 | Parameterizing the force constants

The choice of the values for the force constants is also important, as
they define the amplitude of the predicted internal motions of the
molecule of interest. In her original EN model, Tirion set the force
constants to be equal for all pairs of atoms in the ENM and selected
this value such that the density of ANM modes matches with the den-
sity of normal modes computed on the same molecule with a tradi-
tional force field.3* Nowadays, the trend is to derive the scale of the
force constants by fitting the predicted thermal displacements of each
atom to the experimental mean square fluctuations, namely the
B-factors in X-ray crystallography. Assuming different force constants
for each interactions in the ENM, and assuming that internal motions
dominate the dynamics detected with B-factors, perfect fits can be
obtained.>>°® There is a danger of overfitting,57 however, as the num-
ber of force constants is significantly larger than the number of exper-
imental values used for the fit. In addition, the implicit assumption of
the dominance of internal motions has been questioned. It is known
that B-factors are also influenced by rigid-body motions taking place
in the crystal.*? In addition, molecules in crystal experience a different
environment than when isolated in solution, and inter-atomic contacts
established in the crystal have also been shown to affect the normal

58,59

modes, although most likely to a lesser extent than rigid body

motions.®°~¢2
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1.6 | Our contribution

QOur goal in this paper is to derive a method that combines the experi-
mental information on the geometry of a protein structure (i.e., its crys-
tallographic structure) with the dynamics information encoded in the
B-factors associated with that structure to build a better ENM for that
protein and therefore to derive a better model of its dynamics. This
approach deviates from standard coarse grained normal mode models
based on EN. Indeed, in our approach we build a specific model for each
protein structure of interest, while standard models are designed with
generic parameters that can be transferred from one protein to another.
In addition, while those standard models are often used to predict B-
factors, our method takes those B-factors as input. While we lose trans-
ferability, we will show that our dynamic-based EN leads to normal
modes that better match with molecular dynamics simulations than nor-
mal modes derived from generic EN models.

Our approach accounts for both elements that define an EN,
namely its geometry and the parameterization of its edges, as dis-
cussed above. Instead of defining the ENM using a cutoff for distance
pairs, we construct the Delaunay complex over the positions of the C,
of the protein of interest. This construction is completely parameter
free. We then assign to each C, a flexibility constant k;, and compute
the force constant of a pair (i, j) in the ENM as the harmonic mean
ki = \/ITkJ of their flexibilities. The flexibility constants are obtained
from a fit to the B-factors that accounts for rigid and internal motions.
The implementation and validation of this approach is a result of the

four following goals that are discussed in detail in the paper:

1. Establish mathematically the fitting procedure,

2. Evaluate the normal modes computed from the fitted force constants
by quantifying their agreement with molecular dynamics simulations,

3. Analyze the amino acid specificity of the flexibility constants, and

4. Characterize the concept of flexibilities in the context of the rigid-

ity theory of proteins.®®%4

The paper is organized as follows. In the next section we provide
background on NMA and describes our fitting procedure for computing
atomic flexibility based on experimental B-factors. In the methods
section we describe the datasets and methods of analyses used in our
numerical experiments that are described in the following section. We
conclude with a general discussion on how to best parameterize coarse-
grained models to compute biologically relevant normal modes.

2 | METHODOLOGY
2.1 | Coarse grained normal mode analysis based
on the Tirion elastic network model

Let B be a protein containing N atoms, with atom i characterized by its
position X; = (Xi1, Xi2, Xi3). The whole molecule is then described by a

3 N position vector X. For two atoms i and j of B, we set r; = |X; — X||
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and r? =|X? —X?| to be the Euclidean distances between them in a
conformation X and in the ground-state conformation X° (which will
be taken to be the X-ray structure), respectively. The elastic potential
V of the biomolecule is given by Equation (1). In the normal mode
framework, this potential is approximated with a second-order Taylor
expansion in the neighborhood of the ground state X°:

V)~V (X°) +VV(X°)T<X—X°) +% (x-xO)TH(X—x"), 2)

where VV and H are the gradient and Hessian of V, respectively. Note
that based on Equation (1), V (X°) = 0 and VV (X°) = 0. The approxi-
mate elastic potential is then simply

V(X)z%(X7XO>TH(X7XO)‘ (3)

For simplicity, we will assume in the following that each atom is
assigned a mass of 1. The procedure can easily be expanded to
account for the exact masses of the different atom types. In Cartesian
coordinates, the equations of motion defined by the potential V are

derived from Newton's equation:

d*X
a2 7H(X - x") 4
dt? @
Writing the solution to this equation as a linear sum of intrinsic
motions (the “normal modes” of the system), the trajectory of atom

i can be written as

3N
Xi(t) = Awacos(axt + &) (5)
k=1

we get a standard eigenvalue problem,

HE =EQ (6)

The eigenfrequencies w are given by the elements of the diagonal
matrix Q, namely wf =Q(k,k). The eigenvectors are the columns of
the matrix E, and the amplitudes and phases, a, and &, are determined
by initial conditions. Because of the invariance of the potential V to
rotations and translations, the first six eigenvalues of the matrix H are
equal to O.

2.2 | Generating the elastic network

The main idea behind the concept of ENM is to define a network of
harmonic springs that capture the geometry and dynamics of the mol-
ecule of interest. In the original ENM defined by Tirion,3! the network
is defined as a set of links, with a link between two residues only if
the distance between their C, atoms is smaller than a given cutoff
value R.. There are however no guidelines as to which value for R, is
best. Recently one of us proposed an alternate approach for filtering

the set of all possible pairs using the concepts of alpha shapes and
Delaunay triangulation.®®> More specifically, it was found that the set
of edges included in the Delaunay triangulation of the atoms of a mol-
ecule forms an ENM that leads to good fit between the dynamics
described by its normal modes and the experimental B-factors.>®> We
briefly describe the procedure for generating the Delaunay triangula-

tion; more details can be found in References 65-67.

221 | Generating the Delaunay complex
Let us define a set P of N points such that P; is positioned at the loca-
tion of the C, atom of residue i in the protein B. We define the square
distance zj(x) between a point x and a point P; to be simply the
square of the Euclidean distance, zi(x) = ||x — P;||°. The Voronoi region
V; of the point P; consists of all points x that are at least as close to P;
as to any other point in P, that is, Vi = {x € R®|m(x) s 7j(x)¥j Z i}. V; is
a convex polyhedron obtained as the common intersection of finitely
many closed half-spaces, one per point P;# P, The union of all
Voronoi regions defines the Voronoi diagram of the set of points; this
union covers the whole space. The Delaunay triangulation DT is the
dual of the Voronoi diagram. It contains all points in P. In addition, we
draw an edge between two points P; and P; if the two corresponding
Voronoi regions share a common face, called a Voronoi plane. Such an
edge is included in the Delaunay triangulation. Furthermore, we draw
a triangle connecting P;, P;, and Py if their respective V;, V;, and Vi
intersect in a common line segment, called a Voronoi edge; similarly
we draw a tetrahedron between four points if their Voronoi regions
meet at a common point, called a Voronoi point. Assuming general
position of the points, there are no other cases to be considered: this
is a central property of the Delaunay triangulation. Note that for the
ENM, we only consider the edges of the Delaunay triangulation.

In the following, we will represent an ENM as N= (), &), where V
and & are the sets of vertices and edges in the network, respectively.
Examples of such networks generated either with a cutoff, or with the

Delaunay construct, are shown in Figure 1.

2.3 | Parameterizing the elastic network

Each edge v;; €V is assigned a force constant kj. The number of such
force constants, that is, | V| can be large, and usually significantly larger
than the number of vertices | V| in the network. As our intent is to
parameterize those force constants using experimental values on the
vertices, we believe that allowing the former to be independent vari-
ables would lead to severe risks of overfitting. Instead, we assign to
each atom (vertex) i a flexibility constant, k;, and define the force con-
stant of an edge v; as

ki =k 7)

that is, the geometry mean of the individual flexibility constants. An
advantage of using the geometric mean is that by construction, the
force constants k;; are positive.
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FIGURE 1

lllustration of a uniform force constant ENM of the adenylate kinase (PDB code 4AKE). (A) Cartoon representation of the protein,

with the C, atoms shown as spheres. Elastic networks (gray bonds) based on a Delaunay construct (B), or a cutoff of 14 A(C), and 20 A(20). Those
networks contain 1478, 3868, and 7863 edges, respectively. ENM, elastic network model

24 | The Hessian and its derivatives
We introduced recently a simplified representation of the Hessian
of the quadratic potential defined in Equation (1).38%® We present
it here briefly, as it is relevant to our procedure for fitting
B-factors.

Let us rewrite the quadratic potential for the EN as:

V<X>:%%vi,-<><>, ®)

where the summation extends to all pairs of atoms (i, j) that satisfy the
cutoff criterium (see above). We compute the derivatives and Hessian
of this potential in vector form.

We first introduce some notations. We write the inner and outer
products of two vectors u and v as (u, v) and u ® v, respectively. We
define the vector Uy such that U; = (0,..,0,%.%,0,..,0,%.%,0,...0),

rj [

namely Uj is zero everywhere, except at positions i and j where it is
equal to the normalized difference vector between the positions of
iandj.

Let us first analyze the pairwise potential Vj(X). Its gradient in R3N

at a position X is given by:
TV;(X) = ki (ry =19 Uy, 9)
and its Hessian at the same position X is given by:

HU(X) :kij (rﬁfr3>57)éj+k;ju,'j®u;j. (10)

Note that both terms in the expression of the Hessian are matri-
ces of size 3 N x 3 N. For normal mode analyzes, the gradient and
Hessian are evaluated at X°:

Wi (XO) =0 (11)

and

Hy (X°) =k;Uy2U;. (12)
The total Hessian of the elastic potential is then given by:

H=H(X?) = > k;U;2U;. (13)
(i.j)

In this equation, the vectors U only depend on the ground state
conformation of the molecule, and not on the force constants k. The
derivatives of the Hessian with respect to any of those k; are then
trivially given by

dH
dak; U;®U;. (14)

Using the chain rule, the derivatives of the Hessian with respect

to the flexibility constants k; are then,

dH ki
& > 2k VY7 (15)
i@ ey

where the summation extends over all edges that include i. Note
that we have assumed that k;; is non-zero, that is, that an edge is
included in the ENM if and only if it actually contributes to the
dynamics.

Expressing the Hessian as a (weighted) sum of tensor products
(Equation (13)) has the additional advantages of reducing the amount
of memory required to store the Hessian, and to provide for simpler

computations of Hessian-vector multiplications.®®
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2.5 | Calibration of the force constants using the
experimental B-factors

251 | Experimental fluctuations

In X-ray crystallography, the B-factor, or Debye-Waller factor,
describes the attenuation of x-ray scattering caused by thermal

motion. The isotropic B-factor of an atom i is related to its positional
fluctuation <\AX,~|2> by

872
By == (jax), (16)

where the brackets indicate time averages.

Complete fit

Equation (16) gives us a way to relate the experimental B-factor to
fluctuations observed in dynamics simulation. We assume first that
the atomic thermal displacements are the combination of internal and

rigid body motions,®’

AX; = AXTEY 4 AXI (17)

=t+ox X+ axt
where x indicate cross product, t is a translation vector and o repre-
sents a rotation. We assume also that rigid-body motions and internal

motions are independent of each other,
rigid int
(axi?) = (1ax? )™ + (Jaxi?)", (18)

or, expressed as B-factors,
Bicalc _ B[rigid + B;ntA (19>

As the same rotation and translation apply to all atoms, all the
Birigid depend on 10 parameters (see below), while the B depend on
the flexibility constants associated with each atom. Calibrating the
ENM therefore amounts to finding the values of those 10 parameters
and of the flexibility constants that minimize
23 (e e’ (20)
i=1

I

in the following, we look in more details at the contributions of rigid body
and internal motions, that is, their explicit contributions to ;(2, as well as

the gradients of the latter with respect to the corresponding parameters.

2.5.2 | Rigid body motions

The contribution of rigid body motion is

d,69'70

relatively

straightforwar

.. 872 rigid
Bingld:T<\AXi|2>

872 1)
:T(<\t\2>+2(X?,(txm)) +<((o><X?,u)><X?)>).

There are 10 parameters in this equation associated with t and o,

which we can write as A = (ao,d1,...,d9),

B — ag + a1 X§ + aoX% + asX3 + aaXO XS + asX XS +asX3 X3
+a7X%X% +agXSXS +agX3XS.
(22)

The derivatives of Birigid and therefore of B2 and 2 with respect
to the 10 parameters associated with rigid motions are straightfor-

ward from this equation.

2.53 | Internal motions

The calculation of the mean-squared displacements in Equation (16)
necessitates to compute the inverse of the Hessian of that potential.
In the case of the potential specified in Equation (1), the Hessian is
singular; indeed, the quadratic potential V only depends on inter-
atomic distances and is therefore invariant with respect to translations
and rotations. The null space of the Hessian H is then of dimension at
least six, making H non invertible. The covariance matrix can still be
calculated as the Moore-Penrose pseudo-inverse of H, which we note
as H. The computed B-factor associated with the internal motions
predicted by ANM, B, is then

8

B::nt _ 3

tr(H), (23)

where Hj is the 3 x 3 submatrix of H at position HY(3i —2: 3j, 3i — 3:
3i) in MATLAB notation.

We need expressions for the derivatives of B with respect to
the flexibility constants k;. We note first that

dB™
r
dk;

g dBf"
,2k; dk; ®

= (24)
il

Second, from Equation (23) we see that all the B™ are defined
from the diagonal of the matrix H', and as the derivatives of the diag-
onal of a matrix is the diagonal of the derivatives of that matrix, the
derivatives of BM will be fully characterized from the derivatives of
HT with respect to the force constants ki In Equation (14), we
expressed the derivatives of H with respect to k;. The following prop-
osition shows that the derivatives of H and of H' are directly related,

Proposition 1. If all the force constants k;; are strictly positive,

dH"  dH
WU_——H %H (25)
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Proof. See Appendix.

Replacing Equation (14) into Equation (25), we get
dH'
= —(HTU,']')®(HTUU) (26)

o

Let N, be the multiplicity of the zero eigenvalue of H. Then,

3N N
HU= > (eki’—u”)ek 27)
k=Nc+1 7k

where e and 1 are the eigenvectors and eigenvalues of H, respectively.

2.54 | Optimization

The two previous subsections provide the full framework for comput-
ing the contributions of rigid motions and internal motions to the
atomic position fluctuations, as well as the derivatives of those fluctu-
ations with respect to the parameters of the contributions, namely the
10 parameters ay for the rigid motions and the N parameters k; for
the internal motions. It is then possible to optimize those parameters
so that the computed fluctuations match with the experimental B-
factors by minimizing the ;(2 given in Equation (20). As the derivatives
are known explicitly, we can use the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm, a quasi-Newton method to perform this
optimization. We use the L-BFGS-B variant of this algorithm,”? as it
requires limited amount of memory and enables simple bound con-
straints on the variables that are optimized. This is important as we
can then enforce positivity for the flexibility constraints and for ag

that is expected to be positive.

3 | METHODS

3.1 | Datasets

To test the parameterization procedure described above, we used the
dataset of proteins originally used by Xia et al.> for a similar studies
of fitting B-factors using NMA. This dataset contains 70 non-
redundant proteins (see supplement S4 of Xia et al.,>®) whose struc-
ture has been solved by X-ray crystallography, with resolution better
than 2.7 A. These proteins vary in size from 40 amino acids to
298 amino acids.

Nine proteins were considered for comparing atomic position
fluctuations observed in MD simulations and in the parameterized
normal modes, three a proteins, 1AH7, 1LRV, 153L, three g proteins,
1AQB, 1AG6, 1JPC, and three a + p proteins, 1A2P, 1AHQ, and
1PLR. These proteins vary in size from 100 to 259 residues. The MD

trajectories were downloaded from the Molecular Dynamics Extended

CHEMISTRY

Library MODEL resource,”? available at http://mmb.pcb.ub.es/
MoDEL/. All the MD simulations were performed using AMBER8.0,”*
with param99 molecular force field and tip3P water model.”* These
simulations were performed on the monomeric protein, over 10 ns.
More details on the simulations can be found at the MODEL
web page.

3.2 | Metrics for comparing experimental and
computed B-factors

We use both correlation coefficients (CC) and root-mean square
deviations (RMSD) as metrics for comparing B-factors. The CC are

computed as Pearson's correlation coefficients,

<Bie><p _ B/e7p) <Bicalc _ B/c\alc>
cC=—r=2

’ Z (ngp _ B/éx\p)z % (B_calc _ ‘;a\lc>2
i=1 ' i=1 '

where B and BS are the experimental and computed B-factors for
atom i, respectively, and B®® and E;a\'c are the corresponding averages
over the N atoms considered.

The RMSD is defined as

(Biexp _ Bicalc) 2
N

=

5N

RMSD = (29)

Note that the optimization procedure described in the Section 2
is set to minimize this RMSD between experimental and computed B-
factors.

3.3 | Atomic fluctuations from MD simulations
The covariance matrix Cpp of atomic fluctuations during an MD simu-
lation is derived from the snapshots along the trajectory as a sample

statistic,

CMD:ﬁzM:(Xm—)A()e@(Xm—)A(), (30)
=1

where X is the vector of dimension 3 N specifying the coordinates of
the atoms of the molecule, X,, is the value of that vector at the con-
formation m in the trajectory which has been rotated and translated
to minimize its cRMS to the experimental structure, M is the total
number of conformations in the trajectory, and X is the mean confor-
mation over the trajectory

-~ 1M
X:M";Xm. (31)



Journal of

%0 | WILEY—

KOEHL ET AL

CHEMISTRY

3.4 | Comparing MD simulations and NMA

Both NMA and MD capture the dynamics of a molecule. This dynamic
can be represented with atomic fluctuations and the covariance of
those atomic fluctuations, computed as a covariance matrix. To assess
how well ENM and MD match, we assume that the trajectories
distributions. This

assumption is justified for ENM, and only approximate for MD simula-

they generate follow multivariate normal

tions. Referring to those distributions as Denm = A (ugnm» Cenm) and
Dwmp =N (ump,Cmp) for ENM and MD, respectively, where y is the
mean conformation and C the covariance matrix, we use the

Bhattacharyya distance’” to evaluate their similarities,

(HENM _ﬂMD)Tcii(/‘ENM —Hmp)

1 detC

e 32
2 n\/ detCENMdetCMD ( )

Dp(Denm, Dvp) =

+ -

where C:CENMZ*CMD, Note that in this expression of the Bhattacharrya
distance, the first term is related to the Mahalanobis distance, while
the second term is related to the Jensen-Bregman LogDet diver-
gence.”® Computation of the latter term requires caution, as the
covariance matrices are not full rank (due to their invariance with
respect to rigid motions) and therefore their determinants are zero.
We apply the rank normalization introduced by Fuglebakk et al.>”””
to correct for this rank deficiency.

For convenience we will report the similarity as the

Bhattacharyya coefficient (BC),
BC((Dgnm, Dup ) = e~ Do (e Ovo) (33)

This coefficient is between 0 and 1, with O indicating poor similar-
ity, and 1 indicating perfect match, reached when the two distribu-

tions are identical.

3.5 | Overlaps between normal modes and
structure displacements

Let us consider a molecular system S with N atoms for which we have
two conformations, A and B. The conformational change between
those two conformations is captured by a displacement vector, D,
suchthatD =B — A.

Let us now consider a set of k normal modes for S in conformation
A. These normal modes have been computed based on the eigenvalues
A and eigenvectors e of the Hessian of an EN for A. Under the normal
mode model, the dynamics of A can be described as a linear superposi-
tion of the fundamental motions described by those eigenvectors. The
corresponding dynamic that will bring A closer to B is obtained by
assigning the weights W of the modes in this superposition through

projections of the displacement vector onto the eigenvectors:

W=E'D, (34)

where E is the matrix of eigenvectors. The contribution of mode i to
this optimal collective change of conformation can then be measured
as the absolute value of the cosine of the angle between the displace-

ment, and the direction of the mode, given by its eigenvector e;:
|(ei.D)|

O = . 35
"= JlellDI (33)

O, takes values between 0 and 1, with small values indicating that
the mode i contribute little to the conformational change,NwhiIe large
values indicate a significant contribution. We note that ZO,—2 =1, as
the e; z;re normalized to 1 and are orthogonal to each %%:her. Then,
SO :ZO,-2 is a measure of the contribution of the first k normal
modesi:t%) the total overlaps between the normal modes of A and the
displacement between A and B. Note that when k = 3 N, SO, = 1.

3.6 | Packing density
Following Halle,* the local packing density n; of an atom i in a protein
can be computed from the X-ray structure by first defining a radial

distribution function gj(r) as (see equation (6) in Reference 4):
(36)

where o; is the mean-square displacement of atom j, r,g? is the distance
between atom j and atom i in the X-ray structure, and the sum
extends over all non-hydrogen atoms j that are within a distance R, of

i. The contact density n; is then given by:

Rc
nj= J4nr2g,-(r)dr
0

2 2
2
e+ -0 0
val - Re-te2 ﬁk_ul 1 (R5+rij) 1

2
=
e * —e % +—erf +—erf

zj: 2 ﬂr? 2 20‘j 2 20‘]

(37)

4 | RESULTS AND DISCUSSION

Coarse-grained normal mode analysis popularized by Tirion3! are
based on a simple elastic potential that is quadratic, with the crystal
structure at its minimum, and defined over a geometric structure com-
puted over the molecule of interest, the ENM. Here we focus on the
construction of this ENM and its parameterization using experimental
B-factors, as well as on the validity of such parameterization. In all

computer experiments, NMA were performed based on a coarse-
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grained representation of the proteins that only consider the C, atom
of each of its residues. We note that other coarse grained models are
available?®; the CA-only model is the most common model used for
coarse-grained NMA. All NMA computations are performed using our
own program, FitNMA, written in C++. The source code for FitNMA

is available at  https://www.cs.ucdavis.edu/~koehl/Projects/
index.html.
4.1 | Building and parameterizing elastic network

models

We tested three different types of geometric ENMs, one based on
the Delaunay triangulation of the positions of the C, atoms in the pro-
tein of interest, and the two other based on a distance cutoff R.. In
the first ENM, referred to as DEL, a pair of C, atoms is included if it
forms an edge of the Delaunay triangulation, while in the two others,
the same pair is included if the distance between their positions is
smaller than R.. We considered two values for R, that is, 14 A, which
is within the range of values (13-15) usually considered for C,-based
ENMSs,®! and a larger cutoff of 20 A. The corresponding ENM are
referred to as EL14 and EL20, respectively. Each ENM was then
parameterized with respect to the experimental isotropic B-factors of
the C, from the crystal structure, using the procedure described in
Section 2. Briefly, C, i of the protein is assigned a flexibility constant
k;. The link between two C, i and j in the ENM is then assigned a force
constant kj that is the geometric mean of the flexibility constants of
i and j. Normal modes are computed based on the corresponding
ENM, and the corresponding atomic fluctuations are compared to the
experimental B-factors, taking into account possible rigid motions.
The flexibility constants and the parameters associated to the rigid
motions are then adjusted until the experimental and computed
atomic fluctuations match, in the least square sense.

We performed the analysis on a set of 70 high resolution protein

structures (see Section 3). The proteins included in this set are diverse,

CHEMISTRY

with sizes varying from 40 amino acids to 298 amino acids. In Figure 2,
we compare the distributions of correlation coefficients CC and RMSD
between experimental and compute B-factors at convergence of the
fitting procedure, for all three types of ENMs. Overall, the fits are
nearly perfect for all three types of ENM, with the average values for
CC over the set of proteins are 0.999, 0.98, and 0.993 for DEL, EL14,
and EL20, respectively, and the corresponding average RMSD values
are 0.27, 0.70, and 0.30 A?, respectively. There are however a few out-
liers for the two ENMs based on cutoffs, for which the fitting proce-
dure fails. We focus here on the two most significant ones for the
computation based on a cutoff of 14 A namely the apo structure
(i.e., no iron) of a phenylalanine hydrolase of chromobacterium violaceum
(PDB code 1LTU), and a methyltransferase from salmonella typhimurium
(PDB code 1AF7) (see Figure 2). The structures of those two proteins
and the corresponding ENMs are illustrated in Figure 3.

It is known that ENMs based on cutoff values are capable of rep-
roducing experimental B-factors well for globular proteins.’! Indeed,
such ENMs capture well their packing densities which play a dominant
role in their dynamics. In contrast, it has been observed that such
cutoff-based ENMs often fail for protein with an irregular shape.>®
We observe the same behavior here with the two proteins 1LTU and
1AF7 (1LTU was already identified as an outlier®®). Both include a long
flexible segment at their N-terminal region. Using a cutoff distance of
14 A or even 20 A, the cutoff-based ENMs only follow locally those
long segments, while the Delaunay-based ENM provides a better con-
nection of those segments with the rest of the proteins, thereby all-
owing for a better representation of their dynamics, as observed
when fitting the B-factors. The same observations apply to the other
outliers (results not shown).

There is another advantage in using a Delaunay-based ENM
rather than a cutoff based ENM, as illustrated in Figure 4. The DEL
ENM contains a significantly smaller number of edges than the EL14
and EL20 ENMs (on average a factor of 3 and 6.2 less, respectively),
while still capturing the geometry of the molecule, as vouched by its

ability to reproduce experimental B-factors (see above). We believe
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FIGURE 2 Boxplots of the correlation coefficients (left) and of the RMSD (right) between the computed B-factors and the experimental
B-factors over the set of 69 proteins in our dataset, for the three types of ENM, based on Delaunay triangulation, based on a cutoff R, = 14 A
and based on a larger cutoff R, = 20 A. While the fits are relatively consistent for all three types of ENM, note the presence of a few outliers for
the ENMs based on cutoffs. The two main outliers, 1LTU and 1AF7 are identified (see text for details). ENM, elastic network model
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(A) ILTU

Delaunay

Cutoff: Rce=20 A

FIGURE 3 The optimized ENMs of a phenylalanine hydrolase (PDB code 1LTU), top, and of a methlytransferase (PDB code 1AF7). These
proteins illustrate differences between the Delaunay-based ENM, and the cutoff-based ENMs, as for both of them the parameterization of the
ENMs based on experimental B-factors failed for the cutoff-based ENMs. From left to right: Cartoon representation of the protein, elastic
network (gray bonds) based on a Delaunay construct, and elastic network (gray bonds) based on a cutoff of 20 A. The Delaunay networks contain
2030 and 1934 edges for 1LTU and 1AF7, respectively, while the corresponding cutoff-based networks with R, = 20 A contain 13,809 and

12,141 edges, respectively. ENM, elastic network model

that this is due to the fact that cutoff-based ENMs contain a lot of
redundant information, while by construction Delaunay edges are
more independent. This was already observed for distance-based sta-
tistical potentials for proteins.”®

The results presented above hint at using the Delaunay-based
ENM to capture correctly the geometry of a protein structure. To
parameterize this Delaunay-based ENM, we have used the procedure
described in Section 2. In this procedure, the computed B-factors, as
well as their derivatives with respect to the atomic flexibility con-
stants are all based on the Moore-Penrose pseudo inverse H' of the
Hessian H of the quadratic potential, see Equations (23) and (27). This
pseudo inverse is computed over all non-zero eigenvalues of H and
their corresponding eigenvectors. Including all those eigenvalues
comes at a computational cost as illustrated in Figure 5.

Our model includes the contributions of rigid motions and inter-
nal motions when computing atomic position fluctuations. It is based
on 10 parameters for the rigid motions and N parameters, the atomic
flexibilities k;, for the internal motions. Those parameters are
optimized such that the computed fluctuations match with the experi-
mental B-factors. This is a non-linear optimization, which we solve

using an iterative BFGS procedure (see Section 2 above). Each

iteration involves computing the Moore-Penrose pseudo inverse of
the Hessian matrix H, which is obtained from the eigen-
decomposition of H, as well as its derivatives with respect to the
atomic flexibilities k;. We used the LAPACK routine dsyev to perform
the eigen-decomposition. Dsyev assumes that the matrix H is dense;
as such, this computation depends on the number of atoms, and not
the size of the EN. The situation is different for the derivatives. From
Proposition 1 and Equation (24), computing those derivatives scales
linearly with the number of edges in the EN. In Figure 5(A), we do
observe the impact of the size of the EN on the computing per itera-
tion of the nonlinear optimization, as Delaunay-based EN that contain
significantly less edges lead to much shorter computing time. The
same effect is observed for the overall computing time (Figure 5(B)),
but with some outliers. Indeed, some parameterizations of large cutoff
based EN can be less demanding in computing time, as those parame-
terizations require less iterations. On average, each optimization
requires 2000 iterations (with convergence defined with the norm of
the derivative vectors is below 10™4).

The overall computing cost of parameterizing the EN of a protein
is large: it takes on average 300 s on an Intel Core i7 processor with
eight cores running at 4.00 GHz for the Delaunay-based EN, and
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2500 s for the cutoff-based EN. A significant fraction of the cost
comes from the full diagonalization of the Hessian matrix at each iter-
ation of the optimization of the parameters. We tested if it is possible
to only include a fraction of the eigenpairs of the Hessian matrix,
those corresponding to the smallest eigenvalues that are related to
the largest collective internal motions.3* Results are shown in
Figure 6, for the Delaunay-based ENM. Similar results are observed
for the cutoff-based ENMs (results not shown). We note however
that using only a fraction of the eigenpairs of the Hessian H when

computing its Moore-Penrose pseudo-inverse H and its derivatives is
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a major approximation that significantly reduce the performance of
the parameterization of the ENM. While the performance increases
(i.e., increased CC and reduced RMSD) as the number of modes
increases, it remains that good parameterization is only observed

when all modes are included.

4.2 | Appraising the parameterized ENMs

Validation of normal mode analysis based on coarse grained ENMs is
usually performed by comparing the atomic fluctuations induced by
those normal modes with the crystallographic B-factors. Such a com-
parison is futile in our setting, as the ENMs have been parameterize
such that they reproduce those experimental B-factors (nearly)
exactly. We rely instead on comparison with MD simulations, as well
as by measuring how well the parameterized normal modes can cap-
ture conformational changes.

Coarse-grained NMA and MD simulations are two techniques
that simulate the dynamics of a molecule computationally. While the
former is based on a simplified geometric model of the protein (the
ENM) and a simplified quadratic potential, the latter are based on usu-
ally detailed, anharmonic potentials that have been parametrized
semi-empirically (note that coarse-grained MD simulations have been
developed, e.g., Levitt”?). As MD simulations are usually more detailed
and often considered to reproduce correctly experimental results,
many have resulted in benchmarking different ENM models for NMA
against MD (see References 57,80-83, among others). We repeat
their analyses here to benchmark our parameterized ENMs.

We used a dataset of nine proteins, three from each structural
class (mainly a, mainly g, and a + f). For all those structures, we use
MD simulations previously published and available at the Molecular
Dynamics Extended Library MODEL resource.”? All those simulations
were performed using AMBER, with the param99 forcefield and the

tip3p water model. Most of those simulations were performed over
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Parameterization of the EN is the result of a non-linear optimization process. We show the mean computing time per iteration in

this optimization (panel A) and the total computing time (panel B) for the three types of ENM considered, that is, based on Delaunay triangulation,
DEL, based on a cutoff R, = 14 A, EL14, and based on a larger cutoff R, = 20 A, EL20, for all proteins in our dataset. All computations were
performed on an Intel Core i7 processor with 8 cores running at 4.00GHz, and 64GB of memory. ENM, elastic network model
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10 ns, with the exception of Lyzozyme (PDB code 153 L), with a total
simulation time of 100 ns, and barnase (PDB code 1A2P), with a simu-
lation time of 13.5 ns. For all simulations, we superimposed all frames
in their trajectory to the PDB structure to remove rigid motions. We
then computed a mean structure, and the covariance of the atomic
fluctuations, as described in the Section 3. For the NMA analyses, we
generated the Delaunay-based ENM and the cutoff-based ENM (with
R. = 20 A) starting from the mean MD structure, and parameterized
those ENMs using the experimental B factors from the PDB structure.
The covariance matrices are then simply the Moore-Penrose pseudo
inverses of the Hessian matrices of the parameterized energy of the
ENM. As both NMA and MD simulations capture dynamics as varia-
tions around the mean MD structure, the Bhattacharyya distance
between their distributions of conformations is reduced to the Jensen
Bregman LogDet divergence that directly measures the similarities
between the covariance matrices of the distributions (see Section 3).
The similarities are reported as Bhattacharyya coefficients BC that
vary between 0 and 1, with O indicating no similarity, and 1 perfect
similarity. Results for the 9 proteins are shown in Table 1.

In their evaluations of ENMs using a comparison with MD simula-
tions, Fuglebakk et al.’7 stated that “It is however not clear that
agreement between atomic fluctuations of models imply agreement
between their covariance structures”, to finally reach the conclusion
that “the ENM models that agree best with B-factors model collective
motions less reliably and recommend against using B-factors as a
benchmark.” Here we show in contrast to these findings that parame-
terization of the ENM using the experimental B-factors improve the
similarity of the covariance matrices computed from MD and com-
puted from the ENM. As seen in Table 1, the improvement is often
small but systematic, and can be large, such as the plastocyanin from
spinach (PDB code 1AG6), a compact small g protein. Interestingly,
the improvement is always more significant for the cutoff-based
ENM. The covariance of the parameterized Delaunay-based ENM
remains, however, more similar to the covariance of the MD simula-
tions than the covariance of the cutoff-based ENMs, with one excep-
tion, barnase (PDB code 1A2P).

4.3 | Capturing conformational changes with
normal modes

One of the main applications of coarse-grained NMA based on ENM
is to study functional conformational changes. By studying proteins
for which multiple structures have been resolved in different confor-
mations (such as open and closed states, apo and holo forms with
respect to a ligand), it has been shown that the low frequency normal
modes of the ENMs correlate well with the functional conformational
changes®2°084-86 |t is this somewhat surprising observation (as ENM
computations are only valid for very small deviations around the equi-
librium) that has popularized coarse-grained NMAs based on ENMs.
Here we assess if parameterizing the ENM using the experimental
B-factors help when attempting to capture conformational changes in
proteins using a small number of normal modes. We used a data
set of 31 pairs of protein structures originally designed by Bastolla
and Dehouck.® The list of protein pairs can be found in Table S1
of the supporting information of their paper.8® Each pair corre-
sponds to two distinct structures of the same protein chain, rep-
resenting a conformational change that is relevant for its function.
The coordinate root-mean-square deviation (cRMS) between struc-
tural pairs ranges from 0.35 to 34.4 A. One structure in each pair
is considered as the initial conformation. For each protein, we build
its Delaunay-based ENM and consider two versions of this ENM,
one in which all edges are assigned a force constant of 1, DEL-1,
and one in which the force constants are parameterized using the
experimental B-factors using the procedure described above, DEL-
opt. We then assess how the modes associated with these ENMs
can be used to map the conformational changes of the structures.
We use the overlap between the modes and the conformational
displacement to assess this mapping. The overlap is cumulative
with respect to the number of modes that are considered (see Sec-
tion 3). We then estimate the number of modes N8O that is
needed to reach 80% overlap between the normal modes and the
conformational changes. The numbers N80 obtained for DEL-1 and

DEL-opt are compared in Figure 7.
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TAB LF 1 Bhattacharyya Cf)efflaents Class PDE ID Nres DEL-1?

comparing MD Covariances with

Covariances predicted from NMA with a 1AH7 245 0.87

different ENMs a 1LRV 233 0.61
a 153 L 185 0.89
B 1AQB 175 0.85
p 1AG6 100 0.80
p 1JPC 109 0.84
a+p 1A2P 109 0.87
a+p 1AHQ 134 0.90
a+p 1PLR 259 0.84
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DEL-opt®
0.88
0.74
0.90
0.87
0.90
0.85
0.90
0.91
0.87

_WILEY_L

EL20-1*
0.75
0.46
0.67
0.73
0.77
0.64
0.77
0.66
0.56

EL20-opt®
0.77
0.74
0.88
0.81
0.82
0.83
0.91
0.90
0.86

Note: The highest coefficients are highlighted in bold. Note that the largest the coefficient, the more
similar the covariance matrices from MD and from NMA are.

Abbreviation: ENM, elastic network model.

21 indicates that all the edges of the ENM were assigned the same force constant, 1, while “opt”
indicates instead that the ENM was parameterized using the experimental B-factors.

In most cases, the number of normal modes needed to represent
the conformational changes for the proteins considered is less for the
parameterized ENM than for the constant ENM. This result, while
supporting the rationale for parameterizing ENMs using experimental
information on dynamics, should still be considered with caution at
this stage, as it is provided for illustration here. This analysis should be
repeated on a much larger number of proteins.

44 | Amino acid flexibility constants

The procedure described in this paper performs a parameterization of
the force constants associated with the edges of the ENM describing
the protein. Instead of refining directly those force constants, we
express them as the geometric average of the flexibility constants of
the residues that form those edges. From a computational perspec-
tive, this has the advantage of reducing significantly the number of
degrees of freedom in the optimization process from O(N?) to O(N),
which is of significance as the experimental information used for the
parameterization is of order O(N). Introducing more degrees of free-
dom than constraints would significantly increase the risk of over-
fitting. The question now is to see if there is some meaning to the
actual parameters that are refined, namely the constants k; for resi-
dues i, which we have dubbed as ‘flexibility constants.” To better
understand those parameters, we have analyzed their values for all
residues in our dataset of proteins, with the exception of 1AMM, and
compared them with similar analyses of the corresponding B-factors,
which are much better understood. Note that we have removed the
protein with PDB code 1AMM, that is, the bovine eye lens protein
gamma B Crystallin, as its structure was determined at 150 K; as such,
its B-factors are significantly lower and cannot be compared directly
with those of proteins whose structures were studied at a higher tem-
perature. We have used the values derived from the parameterization
of the Delaunay-based ENMs of those proteins. We also computed
the accessible surface areas (ASA) of all residues in those proteins,

using the procedure introduced by Le Grand and Merz.8” We report
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FIGURE 7 The N8Os, that is, the number of modes needed such
that the overlap between normal modes and conformational changes
reaches 80% are compared for normal modes based on constant force
Delaunay-based ENM (DEL-1) and based on a Delaunay-based ENM
parameterized with experimental B-factors (DEL-opt). The dotted line
represents the first diagonal. Points below the diagonal indicate that
less normal modes computed from the DEL-opt ENM are needed to
represent conformational changes. ENM, elastic network model

the results of those analyses per amino acid type. We use the median
as a statistics, as the underlying distributions are not symmetric (see
e.g., Vihinen et al.®8 for illustrations of the distributions of B-factors).
Note that we did not normalize the values of B-factors, flexibility con-
stants, and ASA, as originally suggested by Karplus and Schulz®?; while
we agree that there might be biases in those values, we are more
interested in qualitative average behaviors. Results of our analyses are
presented in Figure 8.

B-factors as reported in protein crystal structures reflect the fluc-
tuation of an atom about its average position. A large B-factor is usu-
ally indicative of high mobility of the corresponding residue, usually

within its side chain. B-factors have been analyzed to define a



Journal of

5 | WILEY—

KOEHL ET AL

CHEMISTRY

flexibility scale for amino acids,®~7°

which in turn can be used to pre-
dict protein flexibility, as well as disordered regions in proteins.”* Intu-
itively it is expected that residues with high mobility are more
accessible to the solvent.” This is indeed observed in our dataset of
proteins, as illustrated in Figure 8(A). The hydrophobic residues,
whose median accessibilities are low, have low median B-factors. In
contrast, the hydrophilic residues, especially the large charged resi-
dues Lysine and Glutamate, are on average highly accessible and
highly mobile, that is, with large B-factors. Surprisingly, the flexibility
constants exhibit an opposite behavior, as illustrated in Figure 8(B).
For most amino acids, there is a nearly linear relationship between the
k constants and ASAs, but with a negative slope, that is, accessible
residues have lower flexibility constants. The five hydrophobic
residues V, |, L, M, and F, are exceptions to this relationship, as they

have on average low accessibility and low flexibility constants.

4.5 | Flexibility versus B-factors

In a landmark paper, Halle* proposed that B-factors, or more spe-
cifically atomic mean square displacements (AMSDs), can be
predicted solely on the basis of packing density. Subsequent stud-
ies have shown that the same idea applies to NMR, that is, pack-
ing density is a predictor for NMR order parameters, 82 58 In
Halle's model, referred to as LDM for local density model, each atom
i of a protein is characterized with an AMSD ¢;, which is related to the
B-factor B; according to B; = 8x26i/3. This AMSD is expected to be
related to the local packing of i, defined based on its contact density,
n;, that is, the number of (non-hydrogen) atoms within a spherical

region centered on i. Namely,
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where 1 is a scaling parameter that accounts for temperature. The
atomic density n; (see Equation (37)) is itself a function of the o) of
the atoms k in the neighborhood of i, that is, a spherical region of size
R.. The n; and o; are then computed self-consistently using Equa-
tions (37) and (38), as described by Halle.* At convergence, the com-
puted o; are scaled such that their mean value over a protein is equal
to the mean experimental AMSD over the same protein. Halle showed
that the resulting scaled converged o; reproduce accurately the
corresponding B-factors on a set of 38 proteins. We repeated his cal-
culations on our set of 70 proteins, using R. = 7.32 A as suggested by
Halle, and found similar results (see Table 2, row a), albeit with lower
accuracy. The difference is most likely due to the fact that we did not
account for crystal contacts in our calculations, while Halle did.

Do our atomic flexibility constants also relate to packing density,
or based on Halle's results, do they correlate well with B-factors? Our
results seem to indicate that this is not the case, both for the
Delaunay based EN and for the cutoff based EN at least on our
dataset of 70 proteins (see rows b and e of Table 2, respectively for
the correlations to the B-factors). The corresponding mean correlation
coefficients between packing density, ny, and flexibility constants, ki,
are 0.06 + 0.09 (with a range —0.27 to 0.28) for the Delaunay based
EN, and —0.15 + 0.14 (with a range —0.57 to 0.20), for the EL20
cutoff-based EN, that is, poor correlations in both cases. These obser-
vations allow us to better understand the flexibility constants we have
introduced. Unlike packing density that captures the local environ-
ment of an atom, the atomic flexibility constant is an intrinsic dynamic
property of the atom itself. It is the local network, namely the list of
edges in the EN that connect to an atom k that defines the local envi-
ronment of an atom. To test if this is the case, we have assigned to

each atom i a frequency ©;°2 such that
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FIGURE 8 The median Bfactors (subplot A), and the median flexibility constants (subplot B) for all amino acid types are plotted against their
median accessible surface areas (ASAs). The distributions of B-factors, flexibility constants, and ASA are computed over all 69 proteins of our
dataset. As those distributions are not symmetric, we consider the median instead of the mean
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where the summation extends over all atoms j such that ij is an edge
in the EN considered. We computed Q; for all Ca atoms of all proteins
in our dataset, for the Delaunay based EN and the cutoff based EN,
with constant, or optimized values for the force constants k;. Results
are shown in Table 2 on rows ¢ and d for the Delaunay based EN, and
on rows f and g for the cutoff-based EN. As expected, the inverse of
the frequencies Q correlate well with the B-factor values, indicating
that these frequencies capture the impact of the local environment of
an atom on its dynamics. We note that the frequencies computed
from the optimized force constants show stronger correlations with
the B-factors than the frequencies computed from constant force
constants (rows c vs. d and rows f vs. g). This may not be too surpris-
ing as the optimization is based on the B-factors.

4.6 | Parameterized ENs capture rigidity

The differences between B-factors and flexibility constants suggest
that the latter do not actually characterize residue mobility, as
suggested in the name we gave them. We investigated the connection
between flexibility constants and mobility within the broader frame-
work of rigidity of proteins. Jacobs, Thorpe and collaborators
pioneered the use of rigidity-based methods in protein flexibility anal-
ysis.53%4?3 Their analysis is based on graph theory. They start by
designing a constraint network on the protein of interest, much akin
to the ENMs considered here, but with the significant difference that
the constraint network is designed to capture the energetics of the
protein, rather than its geometry. The constraint network includes all
covalent bonds and strong hydrogen bonds within the protein of
interest. They then run an algorithm, dubbed the 3D Pebble game, to
count the degrees of freedom within this constraint network. From
the listing of degrees freedom, the algorithm identifies “all the rigid
and flexible substructures in the protein, including over-constrained

regions (with more bonds than are needed to rigidify the region) and

TABLE 2 Indicators for predictions of Ca B-factors

Model® Predictor (cc)® Range of CC
LDM Density ny 0.57+0.12 0.22-0.83

b  DEL-opt Flexibility constant  0.53+0.14 0-0.8

c DEL-opt Frequency Q 0.65+0.19 0-09

d DEL-1 Frequency Q 0.14+£0.09 0-048

e EL20-opt Flexibility constant 043 +0.23 —0.34to 0.83

f EL20-opt  Frequency Q 0.77+0.16 0.16-0.97

g EL20-1 Frequency Q 0.54+0.15 0.16-0.82

3LDM is the local density model of Halle.* DEL and EL20 are elastic
networks (EN) based on the Delaunay complex and a 20 A cutoff,
respectively, with 1 indicates that all the edges of the EN were assigned
the same force constant, 1, while “opt™ indicates instead that the EN was
parameterized using the experimental B-factors.

bCorrelation coefficients between the experimental B-factors and the
inverse of the predictor values for all Ca. Results are given as mean value
+ one standard deviation over the set of 70 proteins.
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under-constrained or flexible regions, in which internal motions can
occur", paraphrasing the authors' descriptions of their algorithm.®®
With this underlying definition of flexibility and rigidity, we mapped
the positions of residues with large flexibility constants on the par-
titioning of a protein structure into rigid and flexible regions obtained
with the 3D Pebble game algorithm for two proteins, barnase (PDB
code 1A2P), and a ligand-free HIV protease (PDB code 1HHP). We
use the implementation of the 3D Pebble game from the software
package ProFlex developed by the group of Leslie Kuhn at Michigan
State University, and available at the URL https://kuhnlab.natsci.msu.
edu/software/proflex/. The residues with large flexibility constants
were identified from the parameterized Delaunay-based ENMs for
those two proteins. Results are shown in Figure 9. Clearly, for those
two proteins all residues with large flexibility constants fall within the
regions defined as flexible by ProFlex. From the definition of flexibility
in the theory behind ProFlex, those regions are under-constrained and
then prone to internal motions. The parameterized ENMs implicitly
capture this flexibility by assigning large force constants in those
regions, with those large force constants allowing for concerted
motions as described by the normal modes of the ENMs. It is there-
fore more appropriate to refer to the parameterized constants k; as

flexibility constants for the residues.

5 | CONCLUDING REMARKS

Coarse-grained NMA rely on the idea that the geometry of a protein
structure contains enough information for computing its fluctuations
around its equilibrium conformation. This geometry is captured in
the form of an EN, that is, a network of edges between residues in
the protein structure. A spring is then associated with each of these
edges. The normal modes of the protein of interest are then identi-
fied with the normal modes of the corresponding EN. Constructing
the EN and parameterizing this network remain topics of research
and development in the computational biology community. In this
paper, we advocate for using the edges of the Delaunay triangulation
of the points representing the C, atoms of the protein as the EN,
and for parameterizing this Delaunay-based EN such that its dynam-
ics match with the experimental B-factors of the C, atoms. Both
comes with some sacrifice in simplicity, but with benefits that we
highlight below.

Computing a three dimensional Delaunay triangulation is more
complex and more onerous in computing time than simply selecting
the edges of an EN based on their lengths. A Delaunay-based EN,
however, has several advantages, some of which are highlighted in
Figure 3. First, it is completely parameter-free: there is no need to
define a cutoff value for selecting edges. Second, it leads to a much
smaller EN in terms of number of edges. Finally, it is able to capture
even long range contacts in the protein. The advantages of including
long range interactions has been advocated before.>” Other geometric
constructions could replace the Delaunay triangulation, such as alpha
shapes.®® Such alpha shapes have already been considered for build-

ing ENs.>® Finally, we note that many implementations of Delaunay
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(A) Barnase (1A2P)

-

(B) HIV Aspartyl Protease (IHHP)

FIGURE 9 Rigidity analysis of Barnase (PDB code 1A2P), left, and of the ligand-free aspartyl protease of HIV-1 (PDB code 1HHP), right. The
rigid and flexible regions of the proteins, as identified by the program ProFlex from the Leslie Kuhn group (see text for details) are shown in blue
and pale yellow, respectively. The edges of the parameterized Delaunay-based ENM are shown in red. Residues with large flexibility constants are

highlighted with orange spheres. ENM, elastic network model

triangulation algorithms are available, thereby mitigating the difficul-
ties associated with their complexities.

An appealing aspect of coarse grained NMAs comes from the sim-
plicity of their implementations. Besides the constructions of the EN
described above, their parameterization is often simple, as a constant
force constant is assigned to each edge, as prescribed by Tirion.3!
Here we advocate for parameterizing instead the EN such that its
dynamic leads to atomic fluctuations that match with experimental
B-factors. Most current models for fitting the EN to the B-factors are
based on the assumption that the atomic displacements captured by
B-factors result from internal motions of the protein structure. How-
ever, B-factors are known to be influenced by rigid-body motions tak-
ing place in the crystal.}? In addition, contacts between molecules in

5894 such are other

the crystal are known to affect atomic fluctuations,
effects like twinning and lattice disorders.”® We have chosen to focus
on and include in our model the contribution of rigid-body motions, as
several studies indicate that their effects are more important than
those resulting from crystal contacts.®°~4? In addition, we were careful
in reducing the risk of overfitting in this process by attaching a vari-
able to each atom, and not to each edges in the network. We have
shown that such a parameterization leads to improved NMAs, as it
defines dynamics that is close to MD simulations (see Table 1), as well
as it reduces the number of normal modes needed to reproduce func-
tional conformational changes (Figure 7). In addition, the atomic con-
stants defined in the parameterization process are found to be related
to the concept of flexibility introduced in the protein rigidity theory
introduced by Thorpe and co-workers (see Figure 9).

The optimized normal mode model we propose is protein-specific,
derived from the geometry of its static structure (in our study the
X-ray structure), as well as from its dynamics as captured by the
B-factors associated with the structure. Those B-factors, however, are
indirect measures of dynamics and are subject to the refinement
methods used to obtain them. There are options to circumvent this

limitation. Diamond®® and Kidera and Go®” for example proposed

independently to express the Debye-Waller factors directly in terms
of normal modes, thereby allowing for atomic motions to be treated
as anisotropic and concerted. In their models, the amplitudes
(Diamond) or the amplitudes and directions (Kidera and Go) of those
normal modes become parameters that are then refined against the
experimental structure factors. Both models are derived from “stan-
dard” normal mode models, that is, derived from a semi-empirical
force-field. This idea was later expanded to the use of EN-based nor-
mal mode models (see e.g., Delarue and Dumas™®). We see a potential
extension of our method in this direction. Instead of parameterizing
the EN based on B-factors, we would use instead directly the experi-
mental structural factors. Conversely, the Debye-Waller factors in the
structure refinement would be written as functions of the force con-
stants of the EN that models the dynamics of the protein, instead of
the amplitudes and directions of their normal modes. We are currently
exploring this extension of our model.

We reckon the increase in computational costs that comes with
our procedure. We have expressed the parameterization of the EN as
a nonlinear optimization problem whose parameters are the variables
associated with rigid motions and the atomic flexibility constants
associated with internal motions. While we are able to find analytical
expressions both for the function that we minimize and for its deriva-
tives, each iteration of the quasi Newton algorithm we use for the
optimization is costly in computing time, as it requires that the Hes-
sian of the quadratic potential of the elastic potential be diagonalized,
and that all eigen pairs be computed. While this process can be para-
llelized, it remains a O(N®) process. We have tried to remove the
requirement of using all eigen pairs, but found that this removal leads
to loss of performance (Figure 6). While the computation cost remains
manageable for most protein structures available in the PDB (i.e., with
up to 1000 residues), it can become an issue for larger protein com-
plexes, such as viral envelopes. We are currently working on strate-
gies for reducing significantly the computational cost of our
procedure.
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APPENDIX A.

Let us first reintroduce some notations. H is the Hessian of the qua-
dratic potential defined in Equation (1). We have shown®® that H can

be written as

H=> kjUjaUj, (A1)
(i.J)

where the

vector Uj is defined as U;=
(0.,0.%:%,0,..,0,%.%.0,..,0). The derivatives of the Hessian with

fij

respect to any of the k;; are given by

dH
d_k;j: U,'j®U,'j. (A2>

As the fluctuations in atomic positions are related to the inverse
H' of the Hessian matrix H (see Equation (23)), we also need the
derivatives of this inverse. In the main text, we have stated the follow-

ing proposition:
Proposition 1. If all the force constants kj; are strictly positive,

dH' fdH

Which we validate here.

Proof. The matrix H can also be written as

3N
H=> kewe, (A4)
k=1

where 1 and e are the eigenvalues and eigenvectors of H, respectively.
Note that that some of the A, may be zero, that is, the null space of
H may not be empty. To account for this possibility, we prove the
proposition separately in the case of an empty null space, and in
the case of a null space with finite dimension.
Case 1: All eigenvalues of H are non-zero
This is the easiest case and the proof of Proposition 1 is simple.
As all the eigenvalues are non-zero, the matrix H is invertible and
its Moore Penrose inverse is its actual inverse. Therefore,

HH' =1, (A5)

where |is the 3 N x 3 N identity matrix. Deriving this equation by

ki, we get,
dH . dH’
dT,»,-H +HdT,»,-70’ (A6)
therefore,
dH’ LdH
L _HIZ_H A7
dk;; dk; (A7)

which concludes the proof of Proposition 1 for this specific case.
Note that this case will not occur if the Hessian is based on Car-
tesian coordinates; it will occur, however, if the potential is com-
puted based on internal degrees of freedom.

Case 2: Some eigenvalues of H are zero

As mentioned above, this is the general case when the potential
and its Hessian are based on Cartesian coordinates. Indeed, as
the potential is only function of interatomic distances, it is invari-
ant with respect to rotations and translations, and therefore its
Hessian will have (at least) 6 zero eigenvalues. For generality, we
will define as N, the multiplicity of the eigenvalue O of H. The

pseudo inverse of H is then given by:

3N 1
H =Y T ek (A8)
k=N+17k

When H is not full rank, Equation (A5) does not hold anymore.
Indeed,

NN
>y - (e (ere)

k=1 1=Ne+1

NN

=3 Fleweee (A9)

k=1/1=Nc+1™

—< % ek®ek>,

k=N +1

HH" =



KOEHL ET AL

Journal of

CHEMISTRY

_WILEY_|L

where the last equality comes from the fact that the eigenvalues

e form an orthonormal base. We rewrite this equation as

Ne
HHf =1— Zek®ek,
k=1

(A10)

where | is the 3 N x 3 N identity matrix. Note that this is a known
result for Moore-Penrose inverses. The proof used in the case of a
matrix H that is full rank then does not apply in the case under consid-
eration. To prove Proposition 1, we use instead a more general rela-
tionship between the derivatives of H and of its Moore-Penrose
inverse originally derived by Golub and Pereyra.”®

dH
(I—HH") deH

dH'  dH . odH
=M a g

(I—HH') + (A11)

This formula is adapted from Golub and Pereyra’® in the specific case
of H and HT real, symmetric. In this equation, the first term on the
right is the term we want. There are two additional terms, which we

note as B and C, with

10 dH
2 _ 7
B=H —dkij(l HH™),
dH
_(1_ F 72
C=(I=HH) - H™.

We need to prove that B = C = 0. As C = B, it is enough to prove
that B = 0.
Let us first notice that

3N 3N
H+2 _
k*Nc+1I*NC+1

= Z —ek®ek,

k=N.+1 k

e®ey) (e®e
/Ik/h( cQey) (ee)

(A12)

as the eigenvectors e are orthonormal. Replacing Equations (A2),
(A10), and (A11) into the definition of B, we get,

Ne
Z Z_Z e@ey) (UjeUy) (eme)
=

k= Nc+1
N
= Z Z (e, Uy) (e, Uj)exey (A13)
KoN1 =1 4
3N N
e, Uj =
= ( Z k ek>®<2(e,,uij)e,>.
k=N+1 i =1
Let e be an eigenvector in the null space of H. Then,
He; =0 (A14)
Using Equation (A1), we get
> ki(UjeUj)e =0 (A15)
(i)
or
> kij(e,Uj)U; =0 (A16)
(i.j)
Taking the inner product with e, we get
> ki(e,Uy)* =0. (A17)

(i.j)

As we have assumed that all the k; are strictly positive, the inner prod-
ucts (e,
in the ENM), and for all | €{1, ...,
in Equation (A13), we find that B = 0, which concludes the proof.

U;) have to be zero, for all pairs (ij) €V (i.e., the set of edges

N¢}. Replacing in the right most term
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