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ABSTRACT: We present an extension of the Poisson—Boltzmann —TT— —T—

model in which the solute of interest is immersed in an assembly of i
self-orienting Langevin water dipoles, anions, cations, and
hydrophobic molecules, all of variable densities. Interactions

between charges are controlled by electrostatics, while hydro-

phobic interactions are modeled with a Yukawa potential. We

impose steric constraints by assuming that the system is

represented on a cubic lattice. We also assume incompressibility;

i.e., all sites of the lattice are occupied. This model, which we refer —
to as the Hydrophobic Dipolar Poisson—Boltzmann Langevin

(HDPBL) model, leads to a system of two equations whose solutions give the water dipole, salt, and hydrophobic molecule densities,
all of them in the presence of the others in a self-consistent way. We use those to study the organization of the ions, cosolvent, and
solvent molecules around proteins. In particular, peaks of densities are expected to reveal, simultaneously, the presence of compatible
binding sites of different kinds on a protein. We have tested and validated the ability of HDPBL to detect pockets in proteins that
bind to hydrophobic ligands, polar ligands, and charged small probes as well as to characterize the binding sites of lipids for
membrane proteins.

1. INTRODUCTION Geometric methods assume a static structure of the protein; they
identify pockets and clefts within the protein and do not take
into account the geometry and/or stereochemistry of the
putative ligand.”” Energy-based methods combine geometry to
position a putative ligand near the protein of interest with energy

Proteins are unique among biomolecules in that their function is
modulated by a wide variety of small molecules that use different
types of interactions in their binding sites. These binding sites
can bind natural substrates, as observed for example in enzyme

active sites, as well as in allosteric regulatory sites. They are also calculations to estimate the likeliness of their interactions. Q-
the target of artificial or nonnatural ligands, developed by the SiteFinder” for example coats the protein surface with a layer of
pharmaceutical industry as drugs that can inhibit or activate methyl probes and calculate van der Waals interaction energies
protein function. The identification and characterization of between the protein and those probes. Probes with favorable
those binding sites are therefore essential steps for under- interaction energies are retained and clusters of these probes are
standing and controlling protein function by structure-based deemed to define putative binding sites. Other methods with
drug design, and as such have been central themes in structural more elaborate energy functions have been developed, such as

biology. Many experimental methods have been developed for GRID,"” MCSS,"" and FTMAP.'>"* Those methods rely on
. 1 2

this purpose, bgsed on NMR," X-ray crystallography,” and now sophisticated sampling procedures (usually based on Fourier

even cryo-EM.” These methods mostly rely on the concept of analysis), and they also include solvent in the computation of the

fragment-based drug discovery (FBDD),* in which, first, small energy. They all follow a concept similar to FBDD as they
chemical fragments are identified as possibly weak binders to the consider small probes that can then be combine 4. These

biological target and then grown or combined to produce a lead
with a higher affinity.” Those techniques, however, are time-
consuming and often expensive. This has led to parallel
developments in computational structural biology with the
same goals of identifying druggable binding sites in proteins (for
reviews, see refs 6—8). The corresponding methods are usually
fast and easy to implement. Their success, however, is often
mitigated by the fact that they rely on drastic simplifications.
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techniques, however, often yield a large number of false-positive
energy minima. A successful computational technique for
identifying drug-binding sites requires adequate and efficient
sampling of the conformation of the ligand, of the protein, and of
the environment within the putative binding site, including the
presence of ordered water molecules and salt. Molecular
dynamics (MD) simulations provide a rigorous framework to
implement such sampling.””~"® Of particular interest, the
incorporation of cosolvents to mimic the ligand in such
simulations improves the sampling and the identification of
binding sites."”™** Molecular dynamics, however, is time-
consuming as proper sampling requires long simulation times.
In this paper, we propose a complementary technique based on
statistical mechanics for identifying simultaneously one or
several binding sites of different kinds in a given protein.

In an MD simulation interactions between atoms are usually
described by semiempirical “force fields”, with different levels of
approximations (for recent reviews, see refs 25—28). Applica-
tions of these force fields imply that the positions of all atoms be
known. While this seems to be a simple requirement, it is
unfortunately difficult to meet when modeling solvated large
biomolecular systems. This is mostly due to the inherent
difficulties in accounting for the mobile solvent molecules and
ions that surrounds the solute and of the size of the system that
increases significantly when one includes solvent and ions in the
simulation. To circumvent these difficulties, there have been
continuous efforts to develop simplified models that remain
physically accurate. Many of these models consider the solvent
implicitly, reducing the solute—solvent interactions to their
mean field characteristics. In such models, the solvent is treated
as a dielectric continuum; they are referred to as continuum
dielectric models. The Poisson—Boltzmann (PB) theory is one
such model, unquestionably the most popular, which provides a
framework for calculating the electrostatics solvation free energy
of a solute in such a dielectric continuum. The corresponding PB
equation (PBE) is not however the remedy to all problems
associated with characterizing the electrostatics interactions for
a biomolecule: it remains a mean field approximation, with
known limitations. Many improvements have been proposed to
the PB equation. The novel technique proposed in this paper is
one such extension. We first review the current theoretical
developments around the PB model and their relationships with
our new model.

PBE is only a mean-field approximation to the multibody
problem of solvent—solute electrostatics interactions. It is based
on several approximations that have proved to be limitations in
some cases. For example, PBE does not include effects due to ion
size or ion—ion correlations in its treatment (for review, see
Grochowski and Trylska®”). Solutions have been proposed to
account for at least ion size using either a single size’’ or two
different sizes,”" yielding a size-modified Poisson—Boltzmann
equation (SMPB), which is used to study ion channels’* and
electrolyte solutions.®® Classical PBE handles solvent implicitly,
with a fixed dielectric constant inside the biomolecule (usually
set to 2—4) that abruptly jumps to 80 at the interface between
the biomolecule and the solvent. This approximation leads to
too much importance to the definition of this interface, usually
set to the molecular surface or the vdW surface of the solute.”*
Nicholls and colleagues® proposed to solve this problem by
using a Gaussian representation of the atoms of the solutes.
Their solution, however, does not circumvent an even more
important limitation of the PB equation: because of polarization
effects in the vicinity of charges, a representation of the solvent
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as a homogeneous dielectric medium is bound to be erroneous
close to the interface. We have developed an extension to the PB
equation in which the solvent is described as an assembly of
interacting dipoles on a lattice gas to account for the nonuniform
dielectric property of the solvent.**™*° We referred to the
corresponding equation set as the dipolar Poisson—Boltzmann-
Langevin (DPBL) equations. Here we describe an extension to
DPBL, which we refer to as HDPBL, in which we allow for the
addition of an hydrophobic cosolvent in the environment of the
solute of interest. These cosolvent molecules interact with each
other and with hydrophobic “charges” set on hydrophobic
groups inside the solute (usually CH2 and CH3 groups). Those
interactions are represented with a Yukawa potential. The
electrostatic field and an additional attractive field associated
with the Yukawa potential are found to be solution of a system of
two PB-like partial differential equations (PDE). Those fields are
used to compute the water, ions, and cosolvent densities that are
then used to map the characteristics of pockets in the
neighborhood of the protein of interest.

The HDPBL model proposed in this paper is an alternate
approach to the grid-based drug mapping procedures such as
GRID and FTMap, as well as to the cosolvent-enhanced MD
simulations. Its novelty and possible advantages compared to
these methods are based on

(i) Improved Sampling. The conformational space and
degrees of freedom of solvent, ions, and cosolvent
molecules within and around the target biomolecule are
sampled efficiently and their densities are computed self-
consistently.

(i) Multiprobe Exploration. HDPBL enables incorporation of
multiple probe types in the analyses. The output of
HDPBL are the densities of dipoles representing a polar
solvent, anions, cations, and hydrophobic cosolvent
molecules as a function of position, thereby allowing for
the identification of polar, positively charged, negatively
charged, and hydrophobic binding sites simultaneously.

(iii) Efficiency. MD simulations solve Newton’s equations at
the atomic level numerically to construct a picture of the
dynamics of the biomolecule of interest. Those
simulations require significant computing time to provide
adequate sampling. In contrast, HDPBL relies on solving
once a system of coupled second order PDEs. We will
show that this can be performed efficiently using standard
techniques for solving elliptic PDEs.

This paper is organized as follows. The next section provides a
complete overview of the HDPBL model. The following section
describes our implementation of a solver of HDPBL in a
program we refer to as AquaVit. AquaVit is a continuation of
AquaSol;*’ it is heavily based on the package MG developed by
Michael Holst."' The next section provides examples of the
usefulness of HDPBL for detecting and characterizing binding
sites in proteins. We conclude the paper with a discussion on the
limitations of HDPBL, of possible improvements that would
circumvent those limitations, as well as on possible develop-
ments around HDPBL.

2. THE HDPBL MODEL

2.1. The System: Solute, Salt, Solvent, and Cosolvent.
We consider a fixed solute molecule (protein) in a solution
containing water, a z:z salt (e.g., NaCl for which the valence z is
1), and a cosolvent, i.e. neutral hydrophobic molecules. Those
hydrophobic molecules will serve as probes to assess the

https://doi.org/10.1021/acs.jpcb.1c02658
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hydrophobic environment within and around the solute of
interest. Methane, xenon, krypton, or any other small hydro-
phobic molecule may be considered.

We assume that the system comprises N,, water molecules, N,
salt molecules (that is N; cations of charge +ze, and N, anions of
charge —ze, where ¢, is the elementary electronic charge) and N,
inert hydrophobic molecules. Those molecules are only present
in the region outside of the solute, which is characterized by its
molecular surface. The water molecules are modeled as dipoles
with fixed dipole moment p,. The charged ions and the water
dipoles interact through the Coulomb interaction, and all
particles are subject to steric repulsion. To model this steric
repulsion, we assume that the system is represented on a cubic
lattice gas of lattice spacing a and that at each site of the lattice
there is either no particle, or one ion or one water molecule or
one hydrophobic molecule. Each mobile particle is thus
modeled as a hard sphere with radius a/2. We denote
respectively by n,(r), n_(r), n,(r), and n,(r), the occupation
numbers of site r by a cation, an anion, a water or a hydrophobic
molecule, where each of these numbers are 1 or 0 depending
whether the corresponding particle is present or absent. Note
that r represents one of the cuboids of the cubic lattice. the steric
constraint imposes that there is at most one particle at any site r

(1)

If the system is incompressible, the above sum is strictly equal to
1, meaning that there is exactly one particle at each site. The
relationships between the occupation numbers of all species and
their number of molecules are given by the additional
constraints

E n+(r) = I\’s

r

Yu)=N

r

Y n(r) =N,

r

Zn(r):N
r h f 2

The corresponding particle densities are given by

n(r)

n(r) + n_(r) + n,(r) + n,(r) =0orl

p(r) = =
(o) = 40
ph(l‘) = n;;(:) (3)

We emphasize that all the occupation numbers of mobile
particles are zero inside the solute, since we assume that mobile
particles cannot penetrate the solute. Let ¢, c,,, and ¢, be the bulk
concentrations of salt, water, and hydrophobic probes,
respectively. We introduce the volume fraction @ for each
type of particle

Q= 2csa3
¢, = ¢,
3
q)h = Chll (4)
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In addition, we consider a volume fraction for vacancies:

C=1-(D+0+d) (s)

@, should be understood as follows. If the system is
incompressible, ®, = 0 and the concentrations of salt, water,
and hydrophobic probes are necessarily dependent. Otherwise,
D, is positive, and vacancies are possible in the environment of
the solute. In this case, ¢, c,, and ¢, are independent, although
they still need to satisfy @, + @, + @, = 2c.a® + ¢,.a° + a° < 1.
1

We denote by v(r) = pr
the dielectric permittivity of the vacuum and r = Irl.

The hydrophobic interactions between the hydrophobic
molecules are captured by an attractive Yukawa potential

the Coulomb potential, where & is

—Ki
wye

w(r) = —

(6)

where k = 1/1, defines the range of the hydrophobic interaction,
and w, > 0 defines its strength. The negative sign in eq 6 denotes
the attractive nature of the interaction.

2.2. An Effective Free Energy for the System. The
canonical partition function of the system on the lattice can be

written as
X X X

{nu(r)=0,1} {n,(1)=0,1} {m(r)=0,1}

[Z n(x) - N}é[Z n_(x) - N]

X 5[2 n,(x) — Nw]é[z n,(x) — Nh]
x [T1 de,) 86,20 - ,2)

4 r

Zc(I\Is; N, Nh) = o

exp —g Y p@)v(x = )p(x)

- g 3 o ©ule - £)p, ()
™)

where f = 1/kgT with T being the temperature and kg the
Boltzmann constant. The notation Z{nt(r)=0,l} denotes a sum

over all possible combinations of values of the occupation
numbers (0 or 1) at all lattice sites. The total charge density p, in
(7) is the sum of the charge densities of the ions, of the point-like
water dipoles, and of the charges of the solute

2(6) = 2e(p,(6) = () — B,OVRE) + 50
where p/(r) is the charge density of the fixed charges of the solute

at point r and p,,(r) is the dipole moment of the water molecule
at the same point. These dipole moments have a fixed magnitude
po but can take all possible orientations. This is accounted for by
the integral over all dipole orientations in (7).

Finally, py(r) is the sum of the density p,(r) of mobile
hydrophobic particles and of the density pp(r) of the
hydrophobic sites of the fixed solute

Pu(®) = p, () + p,(x) ©)

Going to the grand canonical ensemble and introducing the
chemical potentials 4 and fugacities A of the various species

https://doi.org/10.1021/acs.jpcb.1c02658
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2 = el
S

1 = Ph
j’h - eﬂﬂh

the grand partition function can be written as

e2/3/tsI\L+/wa1Vw+/3ﬂhNh
————Z2(N,N,, N,)
(NS N N,!N,!

(10)

where the canonical partition function Z, is given in (7).

Following the formalism introduced in*~%

we perform two
Hubbard—Stratonovich transforms within eq 10 and integrate
over the dipole moments. After a few standard manipulations,
the partition function can be written in an exact manner as an
integral over two fields, ¢(r) and (r), corresponding to the

electrostatic and the Yukawa interactions, respectively:

== [ Dy Dy(r)

e—(/}/z /drdr/(f)(r)v_‘(r—r/)(/J(r/)+ﬂ/2 /drdr/y/(r)w_l(r—r/)q/(r/))
x exp(=ip [ar g @ - p [drpon)

sinh(ip0ﬁ|V(p(r)|)

<11 [a + 24, coshlibzep (@) + A0 s

r(r)
+ lhe_ﬂvl(r)]

(11)

where we have introduced a pseudofugacity for vacancies 4,
such that A4, = 0 if the system is incompressible and 4, = 1
otherwise, and y(r) is the indicator function for the points
available to the mobile particles: namely, y(r) = 1 outside the

solute, and y(r) = 0 inside.
The operator w™'(r) is the inverse of the Yukawa interaction

(6), and is given by

- 1
wlir—r1)=——(-V* + «»)é(r — 1)
Wo
To simplify the notations and the equations, we take the
continuous limit a = 0 in the lattice product above, and we treat
the fields ¢(r) and y(r) as defined in the whole space. The sums
are replaced by integrals according to
1
2= f dr
e 9 (12)
where the integral on the right side is over the whole 3D space,

and we obtain
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== [ Do)y ()

P2 Jax(V () =p/2m, [d((Vy(0))* +x"y(x))

x exp(=ip [ o) - [aruiep o)

X exp[% f dr y(r) In[/lv + 24, cosh(ifizep(r))

+ ﬂhe_ﬁvl(r)]]

The functional integral in eq 13 is evaluated by the Saddle-Point
Approximation. This method, which is also called Mean-Field
Theory, consists of minimizing the exponent in the above
equation with respect to the two fields ¢ and y. The field ¢ is
pure imaginary at the saddle-point, while y is real, and the
exponent above can be written as an effective free energy as

sinh(ipOﬂIVgo(r)l)

ip, IV e(r)] (13)

F=-2 [ (Vow) + i [ Ty
+%2(0) + [dro@p® + [
- kz—z fdl‘ y(r) ln[/lv + 24, cosh(Bzep(r))

sinh(p, AV (r)l)
BBV e(x)l

w

+ }'he—ﬂl//(f)]
(14)

2.3. Optimizing the Free Energy. The mean field
equations are the Euler—Lagrange equations obtained by
minimizing 14 with respect to ¢ and y

2—/1Sze /() sinh(fzep(r))
ad e D(r)
Vo(r) g(poﬂIV(ﬂ(r)l)]

IVe(r)l D(r)

e Vlx) = p,(x) —

+ ﬁglwy(r)v-[
a

e ()

! > > =—-p(r) — ﬂ r
%(—V + () = = p(r) = —5y(x) )

sinh(p, A1V (r)l)

D) =4, + 2, cos(Prep(®)) + A — 50 o

+ Ahe_[}‘ll(r)
(18)

sinh x

g(x) = P

Note that ¢(r) — 0 and w(r) — Y, as r — + o, i.e. in the bulk,
far from the solute. All coefficients in those equations are
computed either from physical constants, or from input
information describing the system, with the exception of the
fugacities and yy, which we derive now.

The fugacities are determined by the equations

https://doi.org/10.1021/acs.jpcb.1c02658
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o(BF) wo @y
—A———= =N, =—-——
o " TS (21)
o(BF) Using the values derived above for the fugacities, in all cases,
—AWT =N, the meanfield equations given in eq 15 can be rewritten as
! (0] sinh(fzep(r))
o(pF —£,V20(r) = p,(r) — —zey(r) ———""
2, éi ) N, . oV n) = py () = —zey(n) D)
h
These equations translate into + &(I) r(r)V- Vo(r) g(}’oﬂN@(l‘)l)
a R Vo)l D)
22
/dr _ cosh(Bzeqp(r)) = aN, (22a)
D(x) 1 N 5 @, e—ﬂ(w(r)—%)
/d A, sinh(gAVe(®)) | ;(—V + k() = —p,(r) — Fy(r)iﬂ ®)
r W =a 0 a
D(r)  ppIVe(r)l N (22b)
X o , where
dr ——e™"" = g°N, )
/ D(r) " (17) sinh (g, AV (x)1)

Assuming that the volume of the solution is large compared to
that of the solute,

)’s 3 q)s
=aqac¢c = —
A+ 24+ A, + Ao )
A
» = =a’,=®,
Ay 4+ 24+ A, + LT
Ao o
h =a3cH=CI)h

A 42+ A, + e (18)

where @, @, and ®,, are the volume fractions defined in eq 4.
Recall that ®, = 1.0 — ®, — @, — D, is the molar fraction of
vacancies. We consider two cases:

(i) Compressible System. In a compressible system, we allow
for vacancies and @, # 0 and 4, = 1. Solving the system in

eq 18, we get:
0]
2, = —
@
¢W
Ay = —
@
O]
lhe_ﬁ% = _h
, (19)

(ii) Incompressible System. In the case of an incompressible
system, there are no vacancies, and ®+®, +D, = 1. The
fugacities are not independent, and it is possible to chose
for example 4,, = 1. The fugacities are then given by

A =1
@
0 = =
q)w
(o}
Ahe_ﬁ% = _h

0]

T =1-2 -, (20)

The bulk value y is given by
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D0 = & + & cosPrepe)) + & — o

+ lIlHe_ﬁW(r) (23)

Note that D,(r) — 1 whenr — + co.

2.4. The HDPBL System of Equations. The meanfield
equations eqs 22a and 22b given above fully describe the system
under study. Equation 22a is a dipolar Poisson—Boltzmann
Langevin (DPBL) equation,%”}’g’40 while eq 22b is a Poisson—
Boltzmann-like equation that relates to the hydrophobic
interactions involving the hydrophobic probes in the solvent
and the hydrophobic charges on the solute. As a consequence,
we refer to this system of equations as the Hydrophobic Dipolar
Poisson—Boltzmann Langevin equations, or HDPBL equations
in short. In the following, we provide modified equations
involving dimensionless potentials that are more amenable to a
numerical solution, and we derive all constants necessary for
those equations.

2.4.1. Revisiting the DPBL-like Equation 22a. The electro-
static potential ¢(r) and the field y(r) are expressed in volts and
Joules in the SI unit system, respectively. It is common to
consider instead the dimensionless potentials u(r) and v(r)

defined as

_ep(r)
() = 0 = et e
() —yy
v(r) = A Ply(r) — w,) (24b)
Equation 22a can then be rewritten as
@ inh
e ule) = i (0) - e’y )
pe’p Vu(r) (p!Vu(®)l)
3 ® V . 3
- a® 7(x) [IVu(r)I D(r)
(23)
where we have defined p, = py/e,, and
inh(p [Vu(r)l
D,(r) = ®, + © cosh(zu(r)) + q)ww
p!IVu(r)l
+ D@ (26)

https://doi.org/10.1021/acs.jpcb.1c02658
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In eq 25, py; is the den51ty of fixed charges expressed as fraction
of electrons, hence the e,” as a coefficient, where the first ¢, comes
from the change to a dlmenswnless potential, and the second €
is factored from the solute charges.

g(x)

Let us introduce the function F(x) = . Note that
cosh(x) sinh(x) sinh(x)
F = =
() = Y
where £L(x) = tan:l h i is the Langevin function and F(x) —

!/, when x — 0.
After a few standard manipulations, taking into account that
Vy(r) = 0, eq 25 can be rewritten as
]Vu(r)]

_V{P_Fﬂﬂc¢%fﬁiﬁﬁﬂB

Dy(r)
sinh(zu(r))
+7(0) CR— = = Cypy(r)
Dy(r) T (28)
where we have introduced the three constants
4rlp’
C, = =
i a® (292)
_ z4nl
S (29b)
Cy = 4nly (29¢)
where I, is the Bjerrum length in vacuum, namely
ﬂecz
lp=——
4re, (30)

As written, eq 28 is a PB-like second order differential
equation, with a relative permittivity £(r, u, v) defined as

F(pIVu(r)!)

e(r,u,v) =1+ y(r)C,®, oY)

(31)

&(r, u, v) is 1 inside the solute, and depends on both the position
r and on the values of the potentials u(r) and v(r) at that
position, for r outside the molecule. Equation 31 gives a self-
consistent representation of the dielectric permittivity of the
system.

2.4.2. Revisiting the PB-like Equation 22b. Using the
dimensionless potentials u(r) and v(r) defined in eq 24, eq
22b becomes

—v(r)
—( V&) (v(x) + ) = —pp,(r) — —7( )~

D(r)
(32)
where
Pwy @y,
VO - /)) 0 = __2_3 (33)
Note that f wy is a length, which we write as Iy, and
LD,
TR (34)

We rewrite eq 32 as
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V(o) + K00 + 1) + 70, — ()
- \r \r v, r r
0 }’ a3 Z)l( ) Ypp
(3s)

2.5. The Densities or Water Dipoles, lons, and
Hydrophobic Probes. Once the dimensionless fields u**(r)
and v™¥(r) have been derived as solutions of the HDPBL system
of equations, the densities of the various molecules are given by

(i) Anions and cations:

1 q)eizuMF(r)
s

p(r) = 5————
% & 2D (x) )
(ii) Salt:
(r) 1 ® cosh(zu(r))
plr) = 5——g=—"—
@ D) (37)
(iii) Water dipoles:
x) 1 @, sinh(pIVu" ()
p,(r) = =
a> DM (x) pIVu(r)l (38)
(iv) Hydrophobic Probes:
1 9, e
p(r) = = e
h (13 D{VIF(I_) (39)
where Df’[F(r) =0 +d cosh(za™¥(x)) + @ sinh(p 1V u™"()1)

YoopIv uME()]

+ @he_vw(')
Equation 38 defines the local densities of water around the

solute. In parallel, we can also compute the polarization density

g(PoﬂlEMF(rl) EMF
D" ()

where E is the unit vector of the electric field E. Using the
expression for the water density, we have

P(r) = p, (1) L, AEM ()NE™ (x) (41)

where L is the usual Langevin function (see above). For small
electric field E, eq 41 becomes the standard linear relation

2,3
RN

w

p(r) = L,
a

(40)

P(r) = E"(r) = aE"(r)

(42)

Note that if we use the expression for the polarization density
P(r), we can rewrite the DPBL-like eq 28 as

V-(&E(r) + P(x)) = p,(x) + p,,(v) (43)

3. NUMERICAL SOLUTIONS TO THE HDPBL SYSTEM
OF EQUATIONS

Let us first recall the system of equations HDPBL:
smh(zu(r))

-V (8(1‘, u, V)V”(r)) + 7( ) 5 %S D( )

= Cfpfd (1‘)
(44a)

https://doi.org/10.1021/acs.jpcb.1c02658
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e—v(r)

—V2u(r) + K(u(r) + 1) + ﬂr)%q’hm

= _lY'Dp(r) (44b)

where D,(r, u, v) and &(r,u,v) are functions of the position, r,
and of the fields u and v:

F(pIVu(r)l)

D(r, u, v)

sinh(p|Vu(r)!)
pIVu(r)l

g(r, u, V) =1+ y(r)Cw¢>w

D(x, u, v) = ®, + Ocosh(zu(r)) + @,

+ (Dhe_v(r)
(45)

The two equations in this system are dependent as they both
involve the two fields u and v. They are PB-like, but they cannot
be solved directly using a PB solver. Equation 44 for example is a
second order elliptic nonlinear PDE, like PB; however, its
response coefficients (the coefficients in the divergence term)
are not constant, as they are nonlinear functions of the two fields
u and v. For eq 44, it is the Helmholtz term that is a nonlinear
function of the two fields u and v. Instead of considering a new
specific solver for each of those equations, we propose to use a
standard inexact Newton method developed for the PB equation
by Hold and Saied™ within a self-consistent algorithm for
solving the HDPBL system, as described in Algorithm 1.

Algorithm 1 AquaVit: Self Consistent Newton method for solving the DPBL equation
Initialize uo(r) = 0 and vo(r) = 0, Vr

for n = 0,... until convergence do

(1) Solve equation 44a for u(r) with v(r) fixed

(1a) Initialize a field ¢(r) = 0,Vr;
Define F(r,9)) = =V - (e(r, 1), v,) Vip(r)) + 7(r)Cs P,
for m =0,... until convergence do
(1b) Set m(r) = &(r, tm, vn)
(1c) Set Dy, (r) = Dy (r, Y, vn)
sinh (21)(r))
Define Hy,(r,v) = 'y(r)(lfb,.w
(1d) Solve the PB-like PDE:
V- (en(r)Vih(r)) + Hn(r,9(r)) = Cypralr)
for 144, using the inexact Newton method of Holst and Saied*?

sinh(z(r))
$ D1 (r¢vn)

= Cypya(r)

(le) Update 1:
Vms1(r) = Msor(r) + (1 = N)th(x),  Vr
F(r,¢m
(1f) Check for convergence: if L, [F(, U‘ £l < TOL, stop
> I, 40) |
end for
(1g) Update uni1(r) = tmsa(r), Vr
(2) Solve equation 44b for v(r) with u(r) fixed
(2a) Initialize a field ¢(r) = 0,Vr;
} ) . —o(r)

(2b) Define G(r,$) = £*(A(r) + vo) + 'y(r)(‘%qy,,m
(2¢) Solve the PB-like PDE:

=V20(r) + G(r,¢(r)) = —lypy(r)

for ¢eo, using the inexact Newton method of Holst and Saied 2
(2d) Update vn41(r) = Asar(r) + (1 — Nvp(r), Vr
(3) Check for convergence: if Z [vp41(r) = va(r)| < TOL, stop

end for i

This algorithm alternatively solves for u (part 1), given v, and
then solves for v (part 2), given u, until convergence, i.e., until
those fields do not change anymore. To solve for u, step 1b sets
the diffusion coeflicient €, independent of the fields u and v.
Similarly, step 1c defines a Helmholtz-like term H,, whose value
at position r only depends on the value of the potential at that
position. The PDE in step 1d is then a PB equation that can be
solved directly with a PB algorithm without modification. The
updates in steps le and 2d follow a typical trick for self-
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consistent methods that removes oscillations in the convergence
behavior. Note that here is no need to solve the PDE in step 1d
exactly. As its solution w(r) is used as an correction for the
solution of the DPBL equation (step le), it is appropriate to use
an approximation: the number of total iterations may then be
higher, but this is compensated for by the fact that the amount of
work per iteration is smaller.

The algorithm described above was implemented in a
software package, AquaVit. AquaVit is written in Fortran and
is designed specifically to solve the HDPBL system of equations.
AquaVit is mostly inspired from AquaSol,*’ and it uses many
routines from the Fortran package MG developed by Michael
Holst.*' More information on the implementation is available in
the paper describing Aquasol in length.*’

4. METHODS

4.1. System Setup. The coordinates of the atoms of the
solute(s) as well as their partial charges are read from a single file
under the PQR format used by APBS. For large biomolecules,
PQR files can be readily generated from the correspondent
PDB™ files using the service PDB 2PQR.** For all examples
described below, we used the PARSE parameter data set” to
assign charges. The PQR file may contain several molecules. The
PQR file was then modified to add hydrophobic charges to
selected subsets of atoms. While those are not charges per se,
they enable interactions between the hydrophobic probes in the
solvent and the solute. Using the nomenclature of CHARMM,
all atoms identified as CT (aliphatic carbon), CH1E (extended
carbon, with one hydrogen), CH2E (extended carbon, with two
hydrogens), CH3E (extended carbon, with three hydrogens),
CRIE (ring carbons, such as those found in the side chains of
Phe, Tyr, and Trp residues), S (sulfur), and SHIE (extended
atom S with one hydrogen) were assigned a nonzero
hydrophobic charge of +2, while all other atoms have no
nonpolar charges. Note that these choices are considered as the
default and can easily be changed.

AquaVit starts by building a regular mesh around the solutes.
The mesh is positioned such that its center matches with the
center of the solute. The user provides the number of points and
the mesh spacing in each directions. AquaVit checks that there is
at least a distance of 213, (I§ being the Bjerrum length in water at
300 K, i.e., approximately 7 A) from any point on the surface of
the solute to the closest edge of the meshy; if this condition is not
met, the mesh size is adjusted accordingly.

The interface between the interior and exterior of the solutes
is modeled based on their molecular surface. The molecular
surface is the lower envelope obtained by rolling a water probe of
radius R, on the vdW surface of the molecule. A full
description of how this surface is computed can be found in ref
40.

Classical treatment of electrostatics assigns a point charge to
each atom, usually located at the center of the sphere
representing this atom. The mesh considered in AquaVit is
Cartesian; as such, the centers of the atoms of the solute(s) will
most likely not coincide with its vertices. We therefore need to
project the atomic charges on the vertices of the mesh; we have
used trilinear interpolation.

4.2. Parameterizing the HDPBL System. The HDPBL
system of equations include 10 parameters: the number of
vertices in the mesh in each dimension, the lattice size a, the
temperature T, the concentrations of water ¢, salt, ¢, and
hydrophobic probes, ¢, the valence z of the anions and cations

https://doi.org/10.1021/acs.jpcb.1c02658
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from the salt, the strength of the water dipole, py, and the
parameters of the Yukawa potential, Iy (=8 w,) and I, (= 1/k).

The mesh was set with 193 vertices in each direction, x, y, and
z. Those vertices are equally spaced, and the distance between
two vertices is computed automatically based on the size of the
solute and the fact that the borders of the mesh are set to be at
least 2[ away from the solute.

Assuming incompressibility, in the presence of pure water, we
expect @, = 1, i.e, that ¢, a® = 1, where ¢, is the concentration of
bulk water, namely 55 M. This leads to a = 3.11. In all the
simulations described in the Results and Discussion, we have
considered monovalent (i.e, z = 1) salt at 0.2 M and
hydrophobic probes at 1 M. This amount of hydrophobic
probes is equivalent to the amount used in ligand mappin%
molecular dynamics programs such as SILCS** and SWISH.”
Again, assuming incompressibility, the concentration of water is
then fixed as we have the relation (see above):

2c5a3 + cwu3 + cha3 =1

Using the prescribed concentrations of salt and hydrophobic
probes, and the lattice size a = 3.11, this gives us an apparent
concentration of water ¢,, = 53.6 M.

The parameter J, defines the range of the Yukawa potential.
We have set it equal to the size of the lattice: i.e., [, = 3.1 A. I is a
characteristic length for the Yukawa potential that directly
relates to its strength. We have set it to Iy = 4 A.

The temperature is set to 300 K.

The experimental dipole moment of water is 1.85D in the gas
phase. We have observed previously that with this value for py,
we could not obtain the correct dielectric permittivity of water in
the DPBL model.>® As HDPBL is based on DPBL, we follow the
recommendation of increasing p,, which we set at 2.8 D.

In Table 1, we give the values of the three constants C,,, C, and
Csand p, for a typical run of AquaVit with T = 300 K and the
values of the different parameters given above.

Table 1. Typical Values for the Constants in eq 28

name expression value” unit
e
Ig — 556.99995 A
4reg
2
C, ‘W# 78.51664 dimensionless
247l 22
C, 3 231.83464 A
G 4rly 6999.46779 A
p. 2 0.58195 A

c

“T = 300K, a = 3.11 A (size of the lattice), pp, = 2.8 D (dipole
moment of water), and z = 1 (valence of salt ions).

4.3. Output Format. The output of AquaVit are the maps
corresponding to the densities of the different species in the
solvent, namely the water dipoles, the anions, the cations, and
the hydrophobic probes. While those maps are initially
expressed as relative densities with respect to the bulk
concentrations of the respective species, we have re-expressed
those maps as Z-maps, using

2e) = p(r) — 4,

%
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where y, and 6, are the mean and standard deviation of the
densities computed over all positions r outside of the solute,
respectively.

The choice of Z-maps instead of raw maps is motivated by the
popular use of such maps when representing electron density
maps in X-ray crystallography. We do note however that our
maps are different. First, we consider four types of coexisting
maps, based on concentrations of hydrophobic probes, anions,
cations, and water, respectively. The bulk values for those
species, which usually correspond to the mean values p, defined
above, differ significantly: from 0.2 M for anions and cations to
55 M for water. The fluctuations around those mean values,
namely the 6,, do differ also significantly. In addition, as we
assume incompressibility, the concentrations and therefore the
Z-values for the different species are not independent. As such,
meaningful values for those maps, ie., values that differ
significantly from bulk, may be found at different o levels. We
have not been able to provide a general framework for defining
those levels, which are then defined through trial and error. This
will be discussed in the next section.

5. RESULTS AND DISCUSSION

HDPBL differs from a standard PB model, as we have included
hydrophobic probes around the solute of interest. Our primary
goal is to use those probes to detect hydrophobic pockets in this
solute. We have therefore tested the ability of HDPBL to detect
pockets that bind to hydrophobic ligands as well as to
characterize the environment of membrane proteins. HDPBL
also provides the densities of anions, cations, and water dipole
around the solute. We have included a test on detecting binding
sites characterized with electrostatics interactions to illustrate
their usefulness. Finally, we will describe limitations of HDBPL
when it comes to detecting cryptic binding sites.

5.1. Detecting Hydrophobic Pockets in Proteins. The
set of proteins used for validation includes four proteins from
different families and functions: a dihydrofolate reductase
(DHFR) from Staphylococcus aureus (PDB code 2W9H™), a
maize lipid-transfer protein (PDB code 1FK2*’), a human
retinol binding protein 1 (PDB code SHBS’), and an insect
Takeout 1 protein (PDB code 3E8W°") . The PDB structures
correspond to those proteins bound to a hydrophobic ligand. All
ligands, ions, and crystallographic water molecules, however,
were removed prior to running AquaVit. In Figures 1 and 2, we
show the resulting hydrophobic probe occupancy maps
superimposed on the PDB structures for all four proteins, with
and without the ligand.

DHER is the enzyme responsible for the NADPH-dependent
reduction of dihydrofolate to tetrahydrofolate, an essential
cofactor in the synthesis of purines, methionine, and other key
metabolites. Because of its importance in a wide range of cellular
functions, DHFR has been the subject of much research
targeting the enzyme for anticancer, antibacterial, and
antimicrobial agents. Clinically used compounds targeting
DHEFR include methotrexate for the treatment of cancer and
trimethoprim (TMP) for the treatment of bacterial infections.
The active site of DHFR is comprised of a large hydrophobic
pocket which serves as the folate-binding site. This pocket was
successfully detected by AquaVit, as illustrated in Figure 1a. This
high density region of hydrophobic probes overlaps well with the
TMP ligand that was cocrystallized with DHFR and bound
within the hydrophobic active site*® (see Figure 1b).

Lipid binding proteins (LBP) facilitate the transfer of lipids
between membranes. We consider a nonspecific LBP from

https://doi.org/10.1021/acs.jpcb.1c02658
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DHFR (PDB code 2W9H)

(b)

&
Lipid transport protein (PDB code 1FK2)

(© (d

Figure 1. Hydrophobic occupancy maps, black mesh, superimposed
onto the PDB structures for DHFR (PDB code 2W9H) and a lipid
binding protein (LBP, PDB code 1FK2). The maps are derived from
the densities of hydrophobic probes computed by AquaVit, and
represented at +20 0. Those maps are derived from the apo structure of
the protein, i.e. in the absence of all crystallographic ligands and water
molecules. In panels a and ¢, we show the hydrophobic maps for DHFR
and LBP superposed to the apo PDB structure, while in panels b and d,
we visualize the hydrophobic ligand (trimethoprim for DHFR and
myristic acid for LBD) in magenta. Note that all images in the figure and
in the subsequent figures were generated using Pymol.>

maize, whose hydrophobic cavity can accommodate various
lipids from C10 to C18. AquaVit was successful in identifying
this cavity, as illustrated in Figure Ic. Interestingly, as we
superimpose the ligand found in the PDB structure, myristic
acid, onto the hydrophobic occupancy map, we find that the
high density region of hydrophobic probes identified by AquaVit
extends beyond this ligand (see Figure 1d). Myristic acid is C14,
while the pocket found by AquaVit indicates that the
hydrophobic cavity of the maize LBP can accommodate larger
ligands.*

The cellular retinol-binding protein 1(CRBP1) is another
example of a protein with a large hydrophobic active site.
CRBP1 is important in regulating the uptake, storage and
metabolism of retinoids (vitamin A and its derivatives). Its
vitamin A binding site is lined with hydrophobic residues that
are well conserved among retinol binding proteins. Those
residues provide the nonpolar interactions that stabilize the
retinoid ligand. This pocket was successfully detected by
AquaVit, as illustrated in Figure 2a. The high density region of
hydrophobic probes overlaps well with the all trans retinol ligand
that was cocrystallized with CRBP1,”” as observed in Figure 2b.

Takeout (To) proteins are found exclusively in insects, in
which they have been prc_);)osed to play important roles in their
physiology and behavior.™ Of particular interest to us, they have
been suggested to bind to hydrophobic ligands. We considered
the To 1 protein from Epiphyas postvittana, a light brown apple
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Retinol Binding Protein (PDB code SHBS)

(©)

()

Figure 2. Hydrophobic occupancy maps, black mesh, superimposed
onto the PDB structures for a retinol binding protein (RBP, PDB code
SHBS) and a TakeOut 1 protein (Tol, PDB code 3E8W). The maps
are derived from the densities of hydrophobic probes computed by
AquaVit, and represented at +20 ¢. Those maps are derived from the
apo structure of the protein, i.e. in the absence of all crystallographic
ligands and water molecules. In panels a and ¢, we show the
hydrophobic maps for RBP and Tol superposed to the apo PDB
structure, while in panels b and d, we visualize the hydrophobic ligand
(trans retinol for RBP and 8-ubiquinone for Tol) in magenta.

moth, whose structure was solved by crystallography at 1.3 A*’
in the presence of ubiquinone-8. The crystal structure revealed a
45 A long hydrophobic internal tunnel that extends to the full
length of the protein. This pocket was successfully detected by
AquaVit, as illustrated in Figure 2c. Note that the same pocket
was originally characterized based on geometry only.>® AquaVit
provides the additional information that this pocket is amenable
to interaction with an hydrophobic ligand. This is confirmed as
the high density region of hydrophobic probes overlaps well with
the hydrophobic ubiquinone ligand; see Figure 2d.

5.1.1. Comparison with FTMAP. FTMAP'*"® is another
computational mapping technique that identifies binding hot
spots in proteins that bears some similarity with the HDPBL
model. It performs a global search of the entire protein surface
for regions that can potentially bind a number of small organic
probe molecules (currently FTMAP considers 16 different small
probes, ethanol, 2-propanol, isobutanol, acetone, acetaldehyde,
dimethyl ether, cyclohexane, ethane, acetonitrile, urea, methyl-
amine, phenol, benzaldehyde, benzene, acetamide, and N,N-
dimethylformamide). The search takes into account global
translational and rotational degrees of freedom for the probe
(i.e., internal degrees of freedom are ignored). Each position is
scored using an energy function based on vdW interactions, a
cavity term to account for the hydrophobic environment, a
statistical potential that indirectly includes solvent effects, and
electrostatics computed using the Poisson—Boltzmann formal-
ism."” Favorable positions are then clustered, and overlapping

https://doi.org/10.1021/acs.jpcb.1c02658
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(a) FTMAP (b) AquaVit

Cluster 7

Figure 3. Predicting the ligand binding side of a lipid binding protein (LBP, PDB codel1FK2). (a) Results of the prediction generated by FTMAP."
The centers of the eight top probe clusters are superimposed onto the structure of LBP. The probes are color-coded to distinguish between the
different clusters. (b) Hydrophobic occupancy maps computed with AquaVit, black mesh, superimposed onto the PDB structure for LBP. The maps
are represented at +20 ¢, +15 6, and +10 o, from left to right. Myristic acid (the ligand found in 1FK2) is shown as sticks with carbon atoms colored
yellow.

(a) B2-adrenergic GPCR (PDB code 2RH1) (b) Porin (PDB code 2POR)

Carazolol

Figure 4. Hydrophobic occupancy maps, black mesh, and water dipole occupancy maps, blue mesh superimposed onto the PDB structures for (a) the
B, adrenergic GPCR (PDB code 2RH1) and (b) a porin (PDB code 2POR). The crystallographic waters are shown as cyan spheres. The maps are
derived from the densities of hydrophobic probes and water dipoles computed by AquaVit, respectively, and represented at +10 o for the hydrophobic
probes and at +0.3 o for the water dipoles. Those maps are derived from the apo structure of the proteins, i.e., in the absence of all crystallographic
ligands and water molecules.

clusters of different probes are then defined as putative binding consider two types of such protein, a member of the G protein
sites. We compared the predictions of FTMAP with those of coupled receptor (GPCR) family, with a transmembrane
AquaVit on the maize lipid-transfer protein considered above, domain that consists of a helical bundle (PDB code 2RH1°*),
with PDB code 1FK2. We used the FTMAP server at https:// and a porin that consist of a f-pleated sheet (PDB code
ftmap.bu.edu/, with default values for all its parameters. Results 2POR). All ligands, ions, and crystallographic water molecules
are presented in Figure 3. were removed prior to running AquaVit on those structures. In
FTMAP predicted eight clusters of hydrophobic probes on Figure 4, we show the resulting hydrophobic probe occupancy
the surface and on the cavity of 1IFK2 (Figure 3a). Clusters 1, 4, maps and water dipole occupancy maps, superimposed on the
6, 8, and to some extent cluster 5 overlap with the position of the PDB structures, including the crystallographic water molecules.
ligand, myristic acid, found in 1FK2. However, clusters 2, 3, and P,-Adrenergic receptors (f},AR) are members of the GPCR
7 are found in the neighborhood of the relatively unstructured family that reside predominantly in smooth muscle. Their
C-terminal region of 1FK2; those clusters can be considered as antagonists are used in particular in the treatment of asthma.”®
being false positive. In contrast, AquaVit identifies one major To study the structure of this membrane protein, Cherezov et al.
hydrophobic region within 1FK2 in which the highest designed studied a chimera consisting of $,AR and the T4
concentrations of hydrophobic probes (identified at the highest lysozyme (T4L).** The crystal structure of this chimera reveals a
o cutoff, + 20) are found in the close vicinity of the ligand fold for ,AR composed of a transmembrane domain with a 7
myristic acid. At cutoffs lower than those shown in Figure 3b), helix bundle, and a standard all-helix fold for the T4L.
the hydrophobic pocket keeps increasing in size and auxiliary Interactions between f,AR and T4L are minimal. AquaVit
pockets appear (results not shown). At this stage, the right cutoff provides a consistent image of the environment of this chimera,
for visualizing those highest densities is found by trial and error. with a mostly hydrophobic environment for the transmembrane
We are working on designing a more automatic method for domain, and a mostly hydrophilic environment for T4L (see
identifying meaningful cutofs. Figure 4a). Interestingly, the water dipole occupancy map
5.2. Environments of Membrane Proteins. The superimposes well with the crystallographic water molecules

subsection above illustrates that AquaVit is able to locate detected in the structure.
hydrophobic pockets in proteins. However, the solution of the Porins are integral membrane proteins that are found in the
HDPBL system of equations is more comprehensive and also outer membrane of Gram-negative bacteria, mitochondria and
provides information on dipolar density in the presence of a chloroplasts. The crystal structure of the porin from Rhodobacter
given salt concentration. Here we assess its ability to characterize capsulatus reveals a 16-stranded p-barrel, with all f-strands
the polar and nonpolar environments of membrane proteins. We antiparallel and connected to their neighbors.”® AquaVit reveals
5061 https://doi.org/10.1021/acs.jpcb.1c02658
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(®)

Figure S. Hydrophobic occupancy map, black mesh, superimposed onto the PDB structure of #,AR (PDB code 2RH1). The map is derived from the
densities of hydrophobic probes computed by AquaVit, and represented at +20 o. In panel a, we show the hydrophobic map superposed to the apo
PDB structure, while in panel b, we visualize the hydrophobic ligand (carazozol) in magenta. The main residues of $,AR contributing to carazolol
binding are shown in stick mode with carbons colored in cyan and are labeled.

(2)

(©)

(b)

(d)

Figure 6. (a) Overall structure of PcbA, a ferredoxin-dependent bilin reductase (cartoon mode) in the presence of its substrate, biliverdin (BV): PDB
code 2X90.” (b) Superimposition of the occupancy maps of water (+0.3 ¢, blue), hydrophobic probes (+10 6, gray), anion (+20 &, red), and cation
(+20 0, cyan) on the structure of PcbA, in the absence of BV. (c) PcbA structure, the water occupancy map, and the crystallographic water molecules
(shown as blue spheres). (d) Superposition of the occupancy maps of hydrophobic probes (gray), anion (red), and cation (cyan) with the structure of
BV (sticks). We also show the position of residues Asp84 and Asn67 that are known to play an important role in placing the ligand in its binding
pocket.”” Note the presence of anions density overlapping with the carboxyl groups of BV (red arrows) and forming a pocket in front of the N of the
terminal group of Asn67. Note also the presence of cations around the carboxyl group of Asp84 (blue arrow).

a hydrophobic environment on the outside of the fB-pleated
sheet, with the loops between the strands in a more hydrophilic
environment (Figure 4b). This is consistent with the positions of
the crystallographic water molecules that map with the water
dipole density map.

5.2.1. Ligand Binding in ,AR. The crystal structure of f,AR
was solved in the presence of a partial inverse agonist, carazolol,
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which binds in an hydrophobic pocket of the transmembrane
region of the protein.”* In Figure 4, we showed a density of
hydrophobic probes in the surrounding of the transmembrane
region of $,AR, when the density map is represented at +10 o.
When the density map for those hydrophobic probes is

displayed at a higher cutoff (+20 o), we observed one main

https://doi.org/10.1021/acs.jpcb.1c02658
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region of high density within the transmembrane region (Figure 3500 w » , : ,
Sa) that corresponds to the position of carazozol (Figure Sb). igi iﬁ

5.3. Multiprobe Analysis of a Complex Active Site. All 3000H o pEpA 1

examples presented above focused on the identification of
hydrophobic pockets and characterization of the hydrophobic
environment of proteins, based on the analyses of the
hydrophobic occupancy maps generated by AquaVit. However,
much akin to MixMD*” and mLMMD,’® AquaVit can be seen as
a multiprobe analysis of the environment of a protein. It
generates the densities of water dipole, anion, cation, and
hydrophobic molecules surrounding the protein that serve as
probes to identify and characterize pockets in the protein. We
use the ferredoxin oxidoreductase system to illustrate this
functionality of AquaVit.

Ferredoxin-dependent bilin reductases (FBDR) are enzymes
that are involved in the reduction of biliverdin (BV) to form
phycobilins used for light-perception or light harvesting in plants
and cyanobacteria.’’ Several members of this family have been
identified in multiple species.”’ Among those, PebA reduces BV
at its C15—C16 double bond to produce 15—16 dihydrobili-
verdin (DHBV). The structure of PebA from the cyanobacte-
rium Synechococcus sp. WH8020 with its substrate BV was
determined at 1.55 A (PDB code 2X90°?). This structure
consists of a seven-stranded antiparallel $-sheet surrounded by
six & helices (Figure 6a). We used AquaVit to solve the HDPBL
system of equations that characterize the environment of PeBA.
The calculation was performed on the protein structure alone,
i.e,, in the absence of the BV ligand and crystallographic water
molecules. Figure 6b illustrates the densities of water dipoles,
anions, cations, and hydrophobic probes around the structure of
PebA in the form of occupancy maps. The whole protein is
surrounded with water dipoles. This is in agreement with the fact
that many crystallographic water molecules have been identified.
Those molecules superimpose well with the water dipole
occupancy map Figure 6¢. Of significant interest are the anion,
cation, and hydrophobic probe occupancy maps in the active site
of PeBA; those maps are illustrated in Figure 6d. The
superposition of the ligand structure and of the two residues
(Asp84 and Asn67) that define the central polar centering “pin”
of the binding pocket™ on those maps shows that the anion
densities (in red) map well with the two carboxyl groups on BV
(red arrows). We also observe an anion pocket in front of the
nitrogen of the terminal group of Asn67 (black arrow). Note that
the densities are expected to match with the chemical structure
of the ligand, and be complementary to the chemical properties
of the solute. The hydrophobic probe density map superimposes
well with the hydrophobic parts of BV. Finally, we observe a
cation occupancy in the region surrounding the four nitrogen of
the rings of BV, as well as a pocket in from of the carboxyl moiety
of Asp84 (blue arrow). These observations highlight the
advantage of AquaVit to account for the multiple species that
form the environment of a protein.

5.4. Computing Time. In Figure 7 we report the computing
times for solving the HDPBL system of equations using AquaVit
for three systems, DHFR (PDB code 2W9H), GPCR (PDB
code 2RH1), and PEBA (PDB code 2X90) under the standard
conditions defined in the Methods. In addition to the inputs
specific to the system under consideration (structure of the
solute, concentrations of water dipoles, salt, and hydrophobic
probes, dipole moment of the water dipole, and parameters of
the Yukawa potential for hydrophobic interactions), AquaVit
relies on the parameters of Algorithm 1 to solve the HDPBL
system. These parameters include on the size of the Cartesian
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Figure 7. Computing time required to solve the system of equations
HDPBL using AquaVit with a residual error lower than TOL = 107*
(see text for details) is plotted versus the total number of points in the
mesh for the three proteins DHFR (PDB code 2W9H), GPCR (PDB
code 2RH1), and PEBA (PDB code 2X90). All computations were
performed on an Intel Core i7 processor with 8 cores running at 4.00
GHz, and 64GB of memory, although AquaVit was compiled without
parallelization options.

grid used to solve the PDEs, the tolerance TOL that serves as
stopping criteria when solving the system self-consistently, and
the parameter A used to update the fields u and v (see Algorithm
1 presented in section 3). In all calculations presented above,
TOL is set to 10™* and A is set to 0.7 (this number is somewhat
arbitrary and could in fact be optimized for each system
considered). We have also used consistently a grid of size 193°,
but in Figure 7, we report the computing time of AquaVit as a
function of this grid size. We observe a near linear dependence of
the computing times of AquaVit with respect to the total number
of points in the grid, as expected.* These computing time do
not differ significantly between the three proteins, despite the
fact that they are very different in size (157 residues for 2W9H,
237 residues for 2X90, and 465 residues for 2RH1). The
average computing time for a grid of 193° points is 1240 s, i.e.,
approximately 21 min. We note that the computing times
reported are both CPU and clock time; i.e., AquaVit ran on a
single core and does not benefit from parallelization. We
acknowledge that there is much room for improvement in the
implementation of Algorithm 1 in AquaVit.

5.5. Limitations of the HDBPL Model: Absence of
Flexibility. We have shown above that the HDPBL model
enables the discovery and characterization of binding sites on
proteins. In addition, HDPBL is fast (see Figure 7) or at least
competitive with respect to computing time compared to the
ligand mapping molecular dynamics simulations. It has one
major limitation, however, as it considers the structure of the
protein to be static. While it was not an issue in the examples
described in the previous sections, we illustrate here a case in
which dynamics matter.

Polo-like kinases (PLKs) are a family of serine/threonine
kinases related to the polo gene product of Drosophila
melanogaster. Most PLKs have multiple functions which map
with their organization in domains. Their C-terminal regions, for
example, contain the polo box domain (PBD), which helps in
their subcellular localization by binding to serine- or threonine-
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(a) (b)

(c) (d)

Figure 8. (a) Superimposition of the occupancy maps of hydrophobic probes (+20 6, black) and anions (+20 o, red) on the structure of the polo
binding domain (PBD) of human polo like kinase 1 (PLK1) (PDB code 1Q4K). The occupancy maps are computed using AquaVit, on the PBD
structure in the absence of the ligand and crystallographic water molecules. (b) Same as in part a, but with the ligand (i.e., the phosphopeptide MetGln
Ser(pThr)ProLeu) shown in magenta, with the phosphorylated Thr colored according to atom type, with green for carbon, yellow for phosphate, and
red for oxygen. Note that the peptide overlaps well with one of the hydrophobic pockets identified by AquaVit, with the phosphorylated group on the
Thr fitting inside a pocket identified from the anion density. (c) Superimposition of the occupancy maps of hydrophobic probes (+20 o, black) and
anions (+20 o, red) on the structure of the polo binding domain (PBD) of human polo like kinase 1 (PLK1) (PDB code 3P37). The occupancy maps
are computed using AquaVit, on the PBD structure in the absence of the ligand and crystallographic water molecules. Note the longer hydrophobic
pocket compared to 1Q4K, as a result of the change of conformation of Tyr417 and Tyr481. (d) Same as in part a, but with the ligand (the
phosphopeptide PheAspProProLeuHisSerp(pThr)Ala) shown in magenta. The ligand overlaps well with the long hydrophobic pocket,with the
phosphorylated group on the Thr fitting inside a pocket identified from the anion density.

phosphorylated sequences on target proteins. Cheng et al. have opening enables PBD to bind longer phosphophopeptides. Sledz
determined the structure of the PBD domain of the human et al.>* for example presented the structure of the complex of
PLK1 in the presence of a phosphopeptide with sequence PBD with the phosphopeptide PheAspProProLeuHisSer-
MetGln Ser(pThr)ProLeu, where pThr indicates that the (pThr)Ala (PDB code 3P37). When we ran AquaVit on a
threonin is phosphorylated (PDB code 1Q4K°?). The single copy of the PBD domain in the absence of the peptide
phosphopeptide was found to bind on the surface of the ligand and of all crystallographic waters in its configuration from
protein, in an hydrophobic pocket. We ran AquaVit on a single the PDB code 3P37, we were able to identify the longer ligand
copy of the PBD domain in the absence of the peptide ligand and binding hydrophobic pocket of PBD which includes the cryptic
of all crystallographic water molecules. We can identify the pocket. The long phosphopeptide PheAspProProLeuHisSer-
ligand binding hydrophobic pocket of PBD from the resulting (pThr)Ala fits well in the hydrophobic density, again with the
hydrophobic probe density map, as illustrated in parts a and b of phosphate group of pThr fitting inside a deep pocket identified

F igu.re 8 Interestingly, t.hé phqsphate group o.prhr is f.ound.to as a region with high concentration of anions by AquaVit. This is
ﬁF within a pock.et that 1s.1dent1ﬁed by AquaVit as a region with illustrated in parts c and d of Figure 8. AquaVit, however, was not
high concentration of anions; see Figure 8b. able to detect the longer hydrophobic pocket from the structure

The bin.ding of MetGlln Ser(pThr)P.roLeu onto PEZD was in PDB code 1Q4K, as residues Tyr417 and Tyr481 were
found to induce very little conformational changes.” Two prohibiting access to the cryptic pocket.

subsequent independent studies,*”®* however, identified a
cryptic hydrophobic binding site that is close to the original
phosphate binding site identified by Cheng et al.>> The opening 6. CONCLUSION

of this cryptic binding site is the result of a change in the We have developed the HDBPL model and implemented it in
conformation of the side chains of Tyr417 and Tyr481. This the program AquaVit as a tool for identifying and characterizing
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binding sites in proteins. A protein of interest is immersed in a
lattice gas containing water dipoles, anions, cations, and
hydrophobic molecules. The charged molecules interact
between themselves and with the solute charges through
electrostatic interactions, while the hydrophobic molecules
(including the nonpolar groups on the solute) interact based on
a Yukawa potential. We impose steric constraints on the lattice,
as well as incompressibility; i.e., all sites of the lattice are
occupied. The system (protein of interest and its environment)
is then characterized with an effective free energy that depends
on two fields ¢(r) and w(r) corresponding to the electrostatics
and hydrophobic interactions, respectively. The Euler—
Lagrange equations obtained by minimizing the free energy
with respect to those two fields form a system of two Poisson—
Boltzmann like PDEs, HDPBL, which we solve using a self-
consistent approach, implemented in the program AquaVit. The
outputs of HDPBL are the densities of the different species, and
peaks of densities are expected to reveal the presence of
compatible binding sites. We have tested and validated the
ability of HDPBL to detect pockets that bind to hydrophobic
ligands (the DHFR, a lipid binding protein, HIV protease, and a
retinol binding protein), polar ligands (biliverdin), as well as to
characterize the environment of membrane proteins such as
GPCR and a porin.

The HDPBL equations form a system of two coupled second
order elliptic nonlinear PDEs. While those equations are akin to
the PB equation, they cannot be solved directly with a PB solver,
mostly because the two equations are strongly dependent. We
have proposed, however, an algorithm that makes use of a
standard PB solver by solving those equations self-consistently.
The same approach was used previously to solve the DBPL
equation,*” as well as the YULP system of equations.”® This
algorithm is relatively simple to implement and can be adapted
to any PB solver, including those based on finite elements
methods, which we did not consider here. We are currently
developing a more versatile solver based on those methods.

In the current implementation of Aquavit, the lattice is
populated with point-like electric charges, dipoles and hydro-
phobic molecules. One could also include finite-size dipoles
made of an electric and an hydrophobic charge, as well as an
electric dipole attached to a hydrophobic charge. In this case,
these entities will react to an hydrophobic field V¥(r), using the
same formalism. This could be well adapted to study the
solvation of proteins in the presence of large and more complex
cosolvents such as acetonitrile or DMSO.

AquaVit, our program for solving the HDPBL system of
equations, is fast, and as such it compares favorably with the
ligand mapping molecular dynamics simulations that have been
designed with the same goal of detecting and characterizing
binding sites in proteins. The latter, however, have the
significant advantage that they account for the dynamics of the
solute. As such, they have been shown to detect cryptic bind sites
in proteins,”******® namely sites that are not accessible unless a
structural change occur in the protein. In its current formulation,
the HDPBL system of equations assumes that the protein is
static; such conformational changes are then inaccessible. As an
extension to HDBPL, one could model the dynamics of the
solute protein with its low frequency normal modes, usin§_ for
example a simple elastic model to compute those modes.”> ™’
Ultimately, we want to develop AquaVit as a tool for structure-
based as well as dynamics-based drug design.
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