

1 **Internal structure of the Paleoarchean Mt Edgar dome, Pilbara Craton, Western Australia**

2 Nicolas M. Roberts and Basil Tikoff

3

4 **Abstract**

5 The Paleoarchean East Pilbara Terrane of Western Australia is a dome-and-keel terrane that is
6 often highlighted as recording a vertically convective tectonic regime in the early Earth. In this
7 model, termed 'partial convective overturn', granitic domes diapirically rose through a dense,
8 foundering mafic supracrustal sequence. The applicability of partial convective overturn to the
9 East Pilbara Terrane and to other Archean dome-and-keel terranes is widely debated and has
10 significant implications for early Earth geodynamics. A critical data gap in the East Pilbara
11 Terrane is the internal structure of the granitic domes. We present field-based, microstructural,
12 and anisotropy of magnetic susceptibility (AMS) data collected within the Mt Edgar dome to
13 understand its internal structure and assess its compatibility with existing dome formation
14 models. Field and microstructural observations suggest that most fabric development occurred
15 under submagmatic and high-temperature solid-state conditions. The AMS results reveal a
16 coherent, dome-wide structural pattern: 1) Sub-vertical lineations plunge radially inward towards
17 the center of the dome and foliations across much of the dome consistently strike northwest; 2)
18 Shallowly plunging lineations define an arch that extends from the center of the dome to the
19 southwest margin; and 3) Migmatitic gneisses, which represent the oldest granitic component of
20 the dome, are folded and flattened against the margin of the dome in two distinct lobes. The
21 structural relationships between rocks of different ages indicate that units of different
22 crystallization ages deformed synchronously during the last major pulse of granitic magmatism.

23 These data are broadly consistent with a vertical tectonics model, and we synthesize our
24 structural results to propose a three-stage diapiric evolution of the Mt Edgar dome. The critical
25 stage of dome development was between 3.3 and 3.2 Ga, when widespread, melt-assisted flow of
26 the deep crust led to the formation of a steep-walled, composite dome. These data suggest that
27 diapiric processes were important for the formation of dome-and-keel terranes in the
28 Paleoarchean.

29

30 **Keywords**

31 Paleoarchean, Structural Geology, Gneiss Dome, Anisotropy of Magnetic Susceptibility

32

33 **Introduction**

34 Many early continents are dominated by the presence of gneiss dome systems, termed ‘dome-
35 and-keel’ terranes (e.g., Collins, 1989; Ramsay, 1989; Bouhallier et al., 1995; Kisters and
36 Anhaeusser, 1995; Chardon et al., 1998; Bédard, 2006; Van Kranendonk, 2011; Polat et al.,
37 2015; Liu and Wei, 2018; Webb et al., 2020; Zibra et al., 2020). Throughout Earth history,
38 gneiss domes have played a critical role in stabilizing continental crust by advecting heat to the
39 surface (Whitney et al., 2004; Whitney et al., 2013). Given the ubiquity of dome-and-keel
40 terranes in the Archean, heat advection through doming is interpreted to have been important in
41 early continental crustal processes. Gneiss domes may have been particularly important because
42 of a high geothermal gradient and the potential absence of plate tectonics (Moore and Webb,
43 2013; Piper, 2013; Thébaud and Rey, 2013; Bédard, 2018; Piper, 2018). The protocontinents
44 formed by dome-and-keel terranes often form the oldest core of Archean cratons, leading some

45 to suggest that their formation enabled a transition towards steady-state cold-slab plate tectonics
46 (e.g., Van Kranendonk et al., 2007).

47 The nature of gneiss dome construction in Archean dome-and-keel terranes is debated in the
48 literature. Gneiss domes are interpreted to represent crustal convection driven by buoyancy
49 instabilities and/or plume magmatism (e.g., Chardon et al., 1998; Collins et al., 1998; Bédard,
50 2003; Van Kranendonk, 2011; Wiemer et al., 2018; Webb et al., 2020; Zibra et al., 2020), alpine-
51 style thrusting and core complex formation associated with orogenic collapse or extension (e.g.,
52 Zegers et al., 2001; Lana et al., 2010; Polat et al., 2016), or crustal scale buckling (Blewett, 2002;
53 Harris et al., 2012). Not all dome-and-keel terranes necessarily formed by identical processes;
54 different terranes may represent several parts of the early Earth tectonic system (Van
55 Kranendonk, 2010; Nutman et al., 2015; Smithies et al., 2018) or may represent changing modes
56 of crustal evolution throughout the Archean (Van Kranendonk et al., 2007). Regardless, each
57 model for dome-and-keel development predict significantly different structures within gneiss
58 domes and the mantling metamorphic sequence (Whitney et al., 2004; Yin, 2004). Since these
59 models imply different crustal processes and tectonic regimes, structural investigation is an
60 important approach for understanding the evolution of dome-and-keel terranes.

61 The Paleoarchean East Pilbara Terrane is a well exposed dome-and-keel terrane on the northern
62 coast of Western Australia (e.g., Hickman, 1984; Collins, 1989, 1993; Zegers et al., 1996;
63 Collins et al., 1998; Collins and Van Kranendonk, 1999; Zegers et al., 1999; Kloppenburg et al.,
64 2001; Zegers and van Keken, 2001; Pawley et al., 2004; Van Kranendonk et al., 2004; Smithies
65 et al., 2005; Hickman and Van Kranendonk, 2012; Thébaud and Rey, 2013; François et al., 2014;
66 Wiemer et al., 2016; Gardiner et al., 2017; Johnson et al., 2017; Nijman et al., 2017; Wiemer et
67 al., 2018). Although a consensus has emerged in the literature that the East Pilbara Terrane

68 formed by buoyancy-driven crustal inversion operating in the early Earth (e.g., François et al.,
69 2014; Wiemer et al., 2018), other models have also been proposed, including dome formation
70 through core complex development and fold interference (Van Haaften and White, 1998;
71 Kloppenburg et al., 2001; Zegers and van Keken, 2001; Blewett, 2002).

72 Because they have experienced little to no solid-state deformation since the Mesoarchean
73 (Zegers et al., 1999), the gneiss domes of the East Pilbara Terrane provide a unique window into
74 structures associated with Paleoarchean doming processes. The complexly deformed supracrustal
75 belts ('greenstones') between domes and the sheared granitic margins of the East Pilbara gneiss
76 domes have been well-studied, but disagreements exist over their structural evolution. Several
77 studies have documented structures such as large-scale, refolded recumbent folds, multiple
78 generations of foliation development and zones of vertical L-tectonites at dome triple junctions
79 (Collins, 1989; Collins et al., 1998; Pawley et al., 2004), all structures consistent with the
80 diapiric rise of the granitic domes (Mareschal and West, 1980; Whitney et al., 2004; Zibra et al.,
81 2020). Other studies have documented unidirectional kinematics along dome margins,
82 interpreted as early thrust stacks and extensional structures (Zegers et al., 1996; Van Haaften and
83 White, 1998; Kloppenburg et al., 2001) that are more typical of alpine-style thrusting followed
84 by core complex development (Whitney et al., 2013).

85 The interior structures of the East Pilbara domes should be able to distinguish between these two
86 end member models. However, investigating these structures present a challenge; granitic dome
87 rocks commonly appear massive and with only faint fabrics in the field. Studies that do
88 document internal dome structures (Collins, 1989; Kloppenburg et al., 2001; Pawley et al., 2004;
89 Van Kranendonk et al., 2004) focus on discrete areas within domes that are more strongly

90 deformed. To date there is no quantitative documentation of three-dimensional foliation and
91 lineation data within an entire dome in the East Pilbara terrane.

92 This study characterizes the internal structure of the Mt Edgar dome (Fig. 1) in the East Pilbara
93 Terrane using anisotropy of magnetic susceptibility (AMS), field observations, and
94 microstructural analysis. By using AMS as a fabric proxy, these data document the dome-wide
95 structure and conditions of fabric development. Building upon existing datasets, a dome history
96 of diapirism is interpreted.

97

98 **Geologic Setting**

99 *The East Pilbara Terrane of Western Australia*

100 The 3.53 - 2.83 Ga East Pilbara terrane is a classic granite-greenstone terrane. The prominent
101 structure is that of 50-100 km diameter granitic domes with intervening supracrustal greenstone
102 belts, which together comprise a dome-and-keel crustal architecture (Hickman, 1984; Van
103 Kranendonk et al., 2007). Extensive regional geochronology (Nelson, 1999, 2001, 2005) reveals
104 four pulses of granitic magmatism, each of which appear in multiple domes (Fig. 1 legend): The
105 3.47–3.42 Ga Callina and Tambina Supersuites, the 3.32–3.29 Ga Emu Pool Supersuite, the
106 3.45–3.23 Ga Cleland Supersuite, and the 2.89–2.83 Ga Split Rock Supersuite. The Split Rock
107 Supersuite is everywhere undeformed and is thought to represent post-doming plutonism (Van
108 Kranendonk, 2006). Granitic rocks are generally of tonalite-tronjdhemite-granodiorite (TTG)
109 composition, though the composition of younger granitic rocks is more evolved, dominated by
110 monzogranites (Bickle et al., 1992; Collins, 1993; Barley and Pickard, 1999). For the purposes of
111 this structural study, the broad term *granitic* is used. On the basis of major and trace element

112 trends as well as U-Pb and Hf isotope data from zircons, geochemical studies have suggested that
113 younger granitic rocks of the East Pilbara terrane may have resulted from the recycling of the
114 older granitic rocks (Collins, 1993; Barley and Pickard, 1999; Green et al., 2000; Smithies et al.,
115 2003; Gardiner et al., 2017).

116 The supracrustal lithostratigraphy is age-correlative to the granitic supersuites, indicating a
117 relationship between granitic magmatism and volcanism (Williams and Collins, 1990; Van
118 Kranendonk, 2006). The total thickness of the supracrustal lithostratigraphy is 20 km, but it is
119 estimated that in no single place did the thickness exceed 13 km (Van Kranendonk et al., 2007).
120 The lithostratigraphy is organized into tight synformal belts between closely spaced domes and
121 open synformal basins away from domes.

122

123 *The Mt Edgar Dome*

124 The Mt Edgar dome is located in the core of the East Pilbara terrane, with a nearly circular
125 exposure of approximately 50 km in diameter (Fig. 1). The Mt Edgar dome includes granitic
126 rocks belonging to each of the four Paleoarchean supersuites defined in the East Pilbara terrane,
127 with volumetrically major components of Tambina, Emu Pool, and Cleland Supersuites. Rocks
128 of the Tambina Supersuite formations are distributed along the southern, southwest, and western
129 margin. Emu Pool rocks are distributed along the margins on the northern half of the dome and
130 comprise much of the southern half of the dome. Cleland Supersuite rocks, thought to be the
131 youngest rocks related to dome formation (Hickman, 2012), outcrop in the core of the dome. A
132 recent active-source seismic profile shows that the Mt Edgar dome granitic rocks extend to a
133 depth of ~15 km (Doublier et al., 2020).

134 Compositional boundaries were used to identify distinct granitic formations within the Mt Edgar
135 dome. Boundaries were defined by integrating field mapping (Collins, 1989; Williams and
136 Collins, 1990; Kloppenburg et al., 2001; Hickman, 2016) with flyover gamma-ray spectrometry
137 (Minty et al., 2009). These remote sensing data, structures mapped by Collins (1989), and
138 geochronology (Williams and Collins, 1990; Nelson, 1999, 2001, 2005b) provide the first-order
139 constraints of the internal structure of the Mt Edgar dome.

140 Two lobes of mixed high and low potassium rocks mapped as Tambina Supersuite are seen in the
141 potassium content map in Figure 1B. In the western lobe, the bands of high- and low-potassium
142 rocks that trend northeast correlate to large scale upright folds and an associated shallowly to
143 steeply dipping axial planar gneissic foliation (D3 in Collins, 1989). The lower potassium bands
144 within the lobe are high grade gneisses that commonly have migmatitic components. These rocks
145 have U-Pb zircon isotopic ages of 3430 ± 4 Ma (Geochronology dataset 148 in Nelson, 2001). In
146 contrast, the higher potassium bands are tonalitic gneisses that do not display evidence for
147 migmatization and have U-Pb zircon isotopic ages of 3313 ± 2 Ma (Geochronology dataset 561
148 in Nelson, 2005) and 3315 ± 5 Ma with younger discordant population yielding younger $3294 \pm$
149 5 Ma and 3271 ± 4 Ma ages (Geochronology dataset 288 in Nelson, 1999). The southern lobe of
150 the Tambina Supersuite appears to be one large-scale isoclinal fold (Fig. 1B).

151 Emu Pool rocks along the southern and eastern margins of the Mt Edgar dome are low-potassium
152 TTGs (Collins, 1993; Minty et al., 2009). Along these margins, macroscopic solid-state
153 foliations are parallel to the granite-greenstone contact (Collins, 1989; Kloppenburg et al., 2001).
154 The Joorina Granodiorite Formation, the most central Emu Pool Supersuite formation, has higher
155 potassium content than other Emu Pool Supersuite formations due to abundance of alkali
156 feldspar. The contact between the Joorina Granodiorite and other Emu Pool Supersuite

157 formations is sharp, whereas the northern contact with the Cleland Supersuite age Bishop Creek
158 Monzogranite Formation to the north is diffuse (Fig. 1A). The northernmost formations of the
159 Emu Pool Supersuite within the Mt Edgar truncate the lithostratigraphy, indicating an intrusive
160 relationship. Emu Pool Supersuite rocks have U-Pb zircon isotopic ages that range from 3321
161 Ma to 3299 Ma (Nelson, 2005).

162 Cleland Supersuite rocks have high potassium content and have a faint internal structure, the
163 trace of which trends northwest approximately parallel the long axis of the mapped Cleland
164 Supersuite exposure within the Mt Edgar dome. Macroscopic foliations strike approximately
165 parallel to this long axis where visible (Collins, 1989). U-Pb zircon analyses within the Bishop
166 Creek Monzogranite consistently yield isotopic ages of 3245-3233 Ma, often with a population
167 of older ~3300 Ma zircons interpreted to be xenocrystic (e.g., Geochronology datasets 286 and
168 684 in Nelson, 2005).

169

170 *Models for Mt Edgar Dome Development*

171 The structures preserved in the greenstone belts that surround the Mt Edgar dome suggest a
172 multiphase deformation history, although emphasis on different structures have led to differing
173 genetic interpretations (Collins, 1989; Collins et al., 1998; Van Haaften and White, 1998; Collins
174 and Van Kranendonk, 1999; Kloppenburg et al., 2001). One model for dome formation is partial
175 convective overturn of the crust (Collins et al., 1998; Collins and Van Kranendonk, 1999;
176 Sandiford et al., 2004; Van Kranendonk et al., 2004; François et al., 2014; Wiemer et al., 2018).
177 Thermal weakening of a sialic lower crust cause dense supracrustal rocks to founder, leading to
178 narrow greenstone keels that sink between broad granitic domes that rise passively. Collins

179 (1989) mapped localities within the greenstone belts to the west and southwest of the Mt Edgar
180 dome as well as the dome interior, and observed two generations of structures that imply an early
181 doming history. Isoclinal folding of the greenstone sequence is associated with the development
182 of pervasive axial planar schistosity parallel to compositional layering (D1, F1, S1). Refolding of
183 these isoclinal folds is associated with a variably developed axial planar crenulation cleavage
184 (D2, F2, S2). The curved map pattern of supracrustal rocks to the west of the Mt Edgar dome
185 (Fig. 1 A) is a structural dome thought to be responsible for D1 and D2 structures (Collins,
186 1989). The minimum age of this early dome structure is constrained by nearly undeformed 3.31
187 Ga plutons that crosscut it on the northern margin of the Mt Edgar granitic rocks. Further,
188 Collins et al. (1998) mapped a triple junction between domes at the western edge of the
189 Warrawoona Greenstone Belt and found a zone of vertical L-tectonites, which they interpreted to
190 be a zone of greenstone foundering. Early structures are crosscut by a ringing shear zone that
191 separates granitic dome rocks from the supracrustal rocks along the western, southern, and
192 eastern margins of the Mt Edgar dome (D4 shear zone of Collins, 1989). Collins (1989)
193 interpreted this shear zone to be the final exhumation event associated with dome formation, and
194 observed that lineations locally plunge radially way from the dome margin.
195 Another model for dome formation is extensional core complex development followed by
196 significant late-stage shortening and strike-slip deformation. In the East Pilbara Terrane, this
197 mechanism was first proposed for the Shaw dome (Zegers, 1996; Zegers et al., 2001). In the Mt
198 Edgar dome, Kloppenburg et al. (2001) found that lineations within the ringing shear zone
199 uniformly trend southwest rather than plunging radially away from the dome margin. This nearly
200 unidirectional lineation was interpreted as the extension direction along a detachment. In the
201 Warrawoona greenstone belt to the southwest of the dome, Kloppenburg et al. (2001) mapped

202 brittle-ductile thrusts that crosscut D1, D2, and D4 structures mapped by Collins (1989) and also
203 observed pervasive dextral shearing within the central spine of the Warrawoona Greenstone Belt.
204 These late structures were interpreted to represent the steepening of core complex dome walls
205 and shuffling of dome blocks into their current configuration.

206

207 **Field Data**

208 Field observations and foliation measurements were collected at 267 locations within the Mt
209 Edgar dome (Figs. 2 and 3). Outcrops are mostly large, low pavements or protruding ridges up to
210 4 m high. Foliations vary in their degree of development from too weak to discern to
211 compositionally banded. Lineations are either too weak to evaluate or difficult to measure due to
212 the pavement outcrop geometry.

213 Rocks of the Cleland Supersuite (Fig. 2 A) vary from homogeneous and nearly isotropic to
214 compositionally banded with a strong foliation. Foliation is commonly defined by aligned
215 plagioclase laths and biotite as well as stretched quartz blebs. Rare zones of leucosomes and
216 melanosomes are observed. Rafts of high grade migmatitic gneisses are common, as are tabular,
217 fine-grained granitic dikes or pegmatites that crosscut and distort foliation in the host rock.
218 Foliations dip steeply and consistently strike northwest, nearly parallel to the long axis of the
219 Bishop Creek Monzogranite (Fig. 3).

220 Rocks of the Emu Pool Supersuite (Fig. 2 B) are predominantly deformed granodiorites. An
221 exception are the northernmost rocks of the dome, which are undeformed and have a very weak
222 foliation defined by alignment of plagioclase. In the southern and southwest regions, the foliation
223 is strongly developed and is defined by aligned mafic minerals and stretched quartz (Fig. 2 B-1).

224 Foliations dip steeply and exhibit highly variable strikes (Fig. 3). There is a slight preferred
225 alignment towards the same northeast-southwest strike observed in the Cleland supersuite. The
226 variability in strike is primarily caused by margin-parallel foliations close to the dome margin.
227 Foliation also deviates from the dominant northwest strike in the Joorina Granodiorite (Fig. 3), in
228 which many foliations strike northeast.

229 Rocks of the Tambina Supersuite (Fig. 2 C) have a gneissic foliation. They vary between banded
230 migmatitic gneisses and more homogeneous tonalitic gneisses. In some localities within the
231 banded gneisses, leucosomes are tightly folded and the gneissic foliation is axial planar to these
232 folds (Fig. 2 C-1). Foliations in the southwest lobe strike northwest and dip steeply (Fig. 3).
233 Foliations in the western lobe strike consistently northeast, but dip moderately to steeply to the
234 northwest or southeast. At the very northern extent of the western lobe, vertical foliations strike
235 northwest, parallel to foliations in the neighboring Cleland Supersuite.

236

237 **Microstructures**

238 Quartz and feldspar microstructures were observed at 83 localities within the Mt Edgar dome
239 (Figs. 4-6). Samples selected for microstructural analysis are a representative subset of AMS
240 stations (see Fig. 7 for locations). In outcrop, samples were collected from homogeneous host
241 rock. Late-stage pegmatites, pockets of leucosome and melanosome, mafic xenoliths, and rafts of
242 older granitic rocks were avoided. For a subset of samples, thin sections were prepared in the
243 standard XZ fabric orientation. Due to sampling limitations, some thin sections were cut from 1-
244 inch core rounds used in the AMS analysis. The orientation of magnetic foliation with respect to
245 the thin section plane is documented in all photomicrographs (Figs. 4-6).

246

247 *Microstructural Classification*

248 Microstructural observations are used to interpret relative temperature conditions across the Mt

249 Edgar dome. See Figures 4–6 for example interpretations. Aligned euhedral feldspar laths

250 surrounded by large anhedral quartz grains with little internal distortion indicate magmatic flow

251 (M) (e.g., Paterson et al., 1989; Rosenberg, 2001). Rare subgrain development in quartz has

252 chessboard extinction morphology, indicating high quartz conditions (Kruhl, 1996).

253 Submagmatic flow, in which solid-state deformation occurs in the presence of melt, is

254 characterized by the dynamic recrystallization of quartz and/or feldspar. The divisions of Zibra et

255 al. (2012) are adopted (“Type II” and “Type III” microstructures). Type II submagmatic

256 microstructures (SM2) are characterized by the recrystallization of quartz into a mosaic of

257 irregular, amoeboidal grains of varying apparent size, indicating the grain boundary migration

258 recrystallization mechanism (Stipp et al., 2002). Quartz domains are aligned with foliation.

259 Relict quartz grains display chessboard extinction, and the neighboring new grains often adopt

260 the square structure of the chessboard extinction, indicating recrystallization at high temperature.

261 Type III submagmatic microstructures (SM3) are characterized by the recrystallization of both

262 quartz and feldspar. Quartz microstructures are similar to those of SM2 microstructures. Feldspar

263 laths have curved boundaries. New recrystallized feldspar at lath margins is similar in size to

264 subgrains, indicating the high temperature subgrain rotation recrystallization mechanism in

265 feldspar (Rosenberg and Stünitz, 2003). In both SM2 and SM3 microstructures, fractures in

266 single feldspar laths are infilled with quartz and feldspar, which suggests the presence of melt

267 during deformation (Bouchez et al., 1992). Thin films of alkali feldspar are also observed,

268 suggestive of the presence of melt (Sawyer, 1999). High-temperature solid state microstructures

269 (HT) are characterized by quartz ribbons separating partially recrystallized feldspar domains.
270 Quartz grains have amoeboidal boundaries, but with a smaller average recrystallized grain size
271 than in submagmatic microstructures.

272

273 *Cleland Supersuite Microstructures*

274 Rocks of the Cleland Supersuite display a diversity of microstructures (Fig. 4). In the eastern
275 region, plagioclase laths vary from ~1 mm to ~5 mm and are euhedral to subhedral. Samples
276 with small plagioclase laths (~1 mm length) appear randomly oriented in a matrix of large
277 poikilitic Alkali feldspar and elongate quartz grains (Fig. 4 A). In rocks with larger plagioclase
278 laths, plagioclase is preferentially oriented parallel to lineation (Fig. 4 B). Alkali feldspar grains
279 have deformation twins at the plagioclase-alkali feldspar boundaries, and myrmekite is common,
280 suggesting a low-strain, high-temperature solid state overprint. Occasional quartz-filled fractures
281 are observed in feldspars (Fig. 4 B). Quartz grains are elongate parallel to magnetic lineation and
282 are internally deformed, often displaying a chessboard extinction pattern (Fig. 4 E). Quartz is
283 locally recrystallized, and recrystallized grains are approximately the size of subgrains. New
284 grains can be observed to be roughly square, with boundaries parallel to chessboard extinction
285 boundaries in neighboring relict grains (Fig. 4 F). Elsewhere, grain boundaries are amoeboidal.
286 In the central-west region of the Cleland Supersuite, recrystallized alkali feldspars with tartan
287 twinning surround feldspar phenocrysts (Fig. 4 C). Phenocrysts are sometimes fractured and
288 infilled with quartz and other minerals (Fig. 4 G) and myrmekite is common at feldspar grain
289 boundaries (Fig. 4 H). Quartz is organized into recrystallized ribbons between feldspar domains.
290 Quartz grain boundaries are highly irregular and amoeboidal, with some deformed relict grains
291 remaining. In the southern region of the Cleland Supersuite, plagioclase, alkali feldspar, and

292 quartz are all recrystallized and mixed to form a homogeneous polyphase aggregate (Fig 4 D).

293 Grains are elongated in the direction of lineation.

294

295 *Emu Pool Supersuite Microstructures*

296 Rocks belonging to the Emu Pool Supersuite (Fig. 5) record a range of microstructures that

297 overlaps with those of the Cleland Supersuite. In the northernmost exposure of the formation

298 (Fig. 5 A), clots of interlocking plagioclase and alkali feldspar are separated by large quartz

299 domains. Quartz grains are large (5-10 mm diameter) and record a chessboard extinction internal

300 structure. Near the contact with Cleland rocks in the dome center, feldspars are aligned parallel

301 to lineation (Fig. 5 B). Feldspars are occasionally fractured and infilled with quartz and other

302 minerals, and are often lined with a thin film of late feldspar growth. Feldspars are locally, but

303 rarely, recrystallized at lath boundaries. Interstitial quartz grains have chessboard extinction and

304 are locally recrystallized (Fig. 5 B). Finely serrated grain boundaries are common, but no

305 substantial fine-grained recrystallization has occurred at these boundaries. Feldspar is locally

306 recrystallized along phenocryst margins. Quartz is organized into well-defined recrystallized

307 ribbons subparallel to foliation. Quartz grain boundaries are amoeboidal and similarly sized to

308 sub grains within larger relict grains. Within the Joorina Granodiorite Formation, plagioclase,

309 alkali feldspar, and quartz are all recrystallized as a polyphase aggregate (Fig. 5 D). Many large

310 grains of all three phases are interpreted as relict grains. Quartz grain boundaries are irregular

311 and amoeboidal. Elsewhere in the Joorina granodiorite, the microstructure contains quartz

312 ribbons wrapping around feldspar porphyroclasts similar to Figure 5 C.

313

314 *Tambina Supersuite Microstructures*

315 Rocks within the Tambina Supersuite (Fig. 6) record a narrower variety of microstructures than
316 those from younger supersuites. Along the southwest margin of the Mt Edgar dome, some
317 samples preserve rounded, aligned plagioclase phenocrysts surrounded by fully recrystallized
318 quartz (Fig 6 A and B). Feldspars are partially recrystallized at their margins, and quartz-filled
319 fractures in relict plagioclase phenocrysts are common. Quartz grain boundaries are amoeboidal.
320 Elsewhere along the southwest margin, feldspars and quartz are both recrystallized into an
321 aggregate (Fig. 6 C) with varying degrees of recrystallization. Along the southeast margin,
322 plagioclase and alkali feldspar with tartan twinning are fully recrystallized along with quartz
323 (Fig. 6 D). Relict quartz grains have faint chessboard extinction.

324

325 *Microstructural Classification Results*

326 Using the classification scheme described above, microstructures within all supersuites of the Mt
327 Edgar dome indicate high-temperature, and in many cases melt-present, deformation conditions
328 (Fig. 7). Submagmatic microstructures (SM2 and SM3) are the most commonly observed and
329 occur throughout the dome, with especially high concentration in the Emu Pool formations. High
330 temperature solid state fabrics (HT) occur along the southwest margin and within the center of
331 the dome, both within the Joorina Granodiorite and the Bishop Creek Monzogranite. The eastern
332 and northern regions of the dome preserve examples of magmatic fabric.

333

334 **Anisotropy of Magnetic Susceptibility (AMS)**

335 *AMS Methodology*

336 The anisotropy of magnetic susceptibility (AMS) is used to quantitatively map the orientation of
337 foliation and lineation as well as fabric geometry (i.e., the relative strength of lineation and
338 foliation within a sample). This study includes a total of 1,150 core specimens spread across 137
339 stations throughout the Mt Edgar dome. AMS is a proven tool for studying magmatic and solid-
340 state foliation and lineation in granitic rocks (e.g., Borradaile, 1988; Cogné and Perroud, 1988;
341 Bouchez et al., 1990; Vigneresse and Bouchez, 1997; Benn et al., 1998; Borradaile and Gauthier,
342 2003; Titus et al., 2005; Čečys and Benn, 2007; Kruckenberg et al., 2010). It is sufficiently
343 sensitive to provide robust three-dimensional data for rocks with weak visible anisotropy, which
344 makes it a useful petrophysical technique in situations – such as the Mt Edgar dome – where
345 mesoscopic lineation is difficult to identify in the field due to rounded outcrop geometry and the
346 overall weakness of fabric.

347 AMS data were collected on an AGICO KLYs-Kappabridge spinning low field magnetometer at
348 the University of Wisconsin - Madison using AGICO Anisoft 4.2. Core specimens (24 mm
349 diameter, 21 mm long) were drilled either in the field (AME16 prefix) or from oriented block
350 samples (AME18 prefix). For field drilled sites, cores were sampled over at least a 2 meter area
351 to account for outcrop heterogeneity. For a subset of block sampled sites, two block samples at
352 least 3 meters apart were cored. AMS data for 4-14 core specimens was collected per station, and
353 a mean ellipsoid at each station is used for analysis. The magnetic mineralogy in the Mt Edgar
354 dome is dominantly titanomagnetite and maghemite for ferromagnetic (high susceptibility)
355 specimens and biotite and chlorite for paramagnetic (low susceptibility) specimens (Roberts,
356 2020 and datasets accompanying this article).

357 An AMS datum is an ellipsoid that represents the directional anisotropy of susceptibility of a
358 small core specimen. Susceptibility anisotropy is largely controlled by the preferred alignment of
359 paramagnetic and/or ferromagnetic minerals, which often are aligned sub-parallel to the
360 macroscopic foliation and lineation (Borradaile, 1988; Hrouda et al., 1997). The long and short
361 axes of the AMS ellipsoid represent the magnetic lineation and pole to the magnetic foliation,
362 respectively. Note that AMS does not necessarily record total finite strain, but does provide
363 strain geometry information.

364 Two important parameters quantify the anisotropy and shape of the AMS ellipsoid. The
365 anisotropy parameter P_j (Jelínek, 1981) describes the deviation from a sphere:

$$366 P_j = e^{\sqrt{2((lna_1 - lna_m)^2 + (lna_2 - lna_m)^2 + (lna_3 - lna_m)^2)}}$$

367 where a_1 , a_2 , and a_3 represent the long, intermediate, and short axis magnitudes, respectively,
368 for the AMS ellipsoid. The quantity a_m is the geometric mean of a_1 , a_2 , and a_3 . A sphere has a
369 $P_j = 1$, and any non-spherical ellipsoid has $P_j > 1$.

370 The shape parameter T (Jelínek, 1981) describes the shape of the ellipsoid, from end-member
371 oblate ($a_1 = a_2 > a_3$) to end-member prolate ($a_1 > a_2 = a_3$):

$$372 T = \frac{2(lna_1) - lna_2 - lna_3}{lna_1 - lna_3}, a_1 \neq a_3$$

373 T values between 0 and -1 are in the prolate field, or lineation-dominated (L>S). T values
374 between 0 and 1 are in the oblate field, or foliation-dominated (S>L). T values close to 0 have an
375 intermediate geometry (in strain terms, “plane strain”).

376

377 *AMS Results: Orientation*

378 The orientation of mean magnetic foliations and lineations for each station define a coherent,
379 dome-wide structural pattern (Fig. 8). Orientations share similarities across all supersuites, with
380 important second order variations, as shown in the small equal area nets at the top of Figure 8.

381 Cleland rocks have the most consistent orientation of foliation and lineation. Foliations are
382 nearly all sub-vertical with a strike that is parallel to the long axis of the Bishop Creek
383 Monzogranite. Lineations plunge moderately to subvertically and trend to the north-northwest. In
384 map view, lineations plunge radially inward towards a central region of vertical lineations in the
385 western region of the Bishop Creek Monzogranite (highlighted in Fig. 8 B).

386 Emu Pool rocks record a similar magnetic foliation and lineation to that of Cleland rocks, but
387 with greater scatter. Two structural features are responsible for this variation. First, Emu Pool
388 foliations within 2-3 km of the dome margin tend towards parallelism with the marginal contact.
389 Margin-adjacent foliations therefore have variable strike and steep dips. Second, AMS lineations
390 within the Joorina granodiorite define an arch structure that extends from near the dome center to
391 the southwest margin (annotated in Fig. 8 B). At the Cleland-Joorina contact, lineations plunge
392 moderately to the north towards the region of vertical lineations in the Cleland unit, and
393 foliations strike northwest-southeast, parallel to adjacent Cleland rocks. Further to the southwest
394 within the Joorina granodiorite, foliations dip shallowly to the northeast and lineations plunge
395 shallowly to the north-northeast. Near the southwest margin – within Emu Pool Supersuite rocks
396 between the two Tambina lobes – foliations strike northeast or east and dip steeply. Lineations
397 plunge shallowly to the southwest.

398 The two lobes of the Tambina Supersuite have distinct structural patterns from one another that
399 are consistent with compositional boundaries observed in the potassium content map (Fig 1 B)
400 and large scale fold structures mapped by Collins (1989). The southwest lobe has orientations
401 that closely resemble Cleland orientations. In map view, foliations dip steeply outward at the
402 dome margin, whereas they dip steeply inward on the northeast half of the lobe. Foliations in
403 neighboring Emu Pool rocks also dip inward towards the dome center, consistent with the large-
404 scale fold outlined in the potassium content map.

405 The western lobe of the Tambina supersuite has foliations that generally strike parallel to the
406 nearest contact with younger supersuites. On the eastern edge of the lobe, foliations strike
407 northeast and dip moderately. Lineations plunge shallowly sub-parallel to foliation strike. At the
408 northern edge of the lobe, subvertical foliations strike northwest, and lineations are subvertical,
409 parallel with the adjacent Cleland AMS foliations and lineations. The relationship between these
410 two fabric orientations within the western Tambina lobe is largely obscured by the 2.83 Ga
411 Moolyella Adamellite of the Split Rock Supersuite. However, a transect of closely spaced
412 stations (annotated in Fig. 8 A) on the western part of the lobe record a gradational change
413 between the two fabric orientations within the western lobe. From south to north, foliation strike
414 changes from northeast to northwest; dip changes from moderate to steep; lineation changes
415 from shallowly southwest plunging to sub-vertical.

416

417 *AMS Results: Ellipsoid Parameters*

418 Results for the three invariant parameters of the AMS ellipsoid – bulk susceptibility Km , shape
419 parameter T , and anisotropy parameter P_j – are summarized in Figure 9. The shape parameter T

420 spans the entire range from oblate ($T = 1$) to prolate ($T = -1$) (Fig. 9 B and C). There is a clear
421 correlation between T and bulk susceptibility. High susceptibility stations exhibit an
422 approximately even distribution in T that spans nearly the entire scale between oblate and prolate
423 (Fig. 9 B). In contrast, low susceptibility measurements tend toward oblateness. In map view
424 (Fig. 9 G), AMS stations near the southern, western, and eastern margins tend towards oblate
425 shape, whereas the central and northern stations tend towards prolate shape.

426 The anisotropy parameter P_j ranges from 1.05 to 1.8, with most values less than 1.4. The mode
427 P_j is 1.1. There is a correlation between P_j and susceptibility (Fig. 9 A); high susceptibility
428 samples exhibit a greater range of P_j than low susceptibility samples. In map view, stations with
429 high P_j are concentrated in the central Cleland Supersuite and Joorina Granodiorite Formation,
430 along with a few scattered stations along the margins. Stations with low P_j are located along the
431 margins with concentrations in the northern Emu Pool Supersuite formations as well as the
432 Tambina Supersuite formations.

433

434 **Discussion**

435 *Interpreting AMS results*

436 The agreement between macroscopic field foliation (Fig. 3), the map patterns of compositional
437 boundaries (Fig. 1 B), and magnetic foliation orientation determined from AMS (Fig. 8 A)
438 suggests that AMS foliations and lineations can be generally interpreted as a reflection of
439 macroscopic fabric orientation. The trace of fabric defined by elongate quartz grains and aligned
440 feldspars in thin section is always consistent with the AMS lineation and foliation (see small

441 equal area nets in Figs. 4–6), further confirming that macroscopic foliation is parallel to magnetic
442 foliation.

443 It is critical to understand any bias of T or P due to magnetic mineralogy before interpreting T as
444 strain geometry or P_j as strain magnitude (Borradaile, 1988). Magnetic mineralogy, which is
445 reflected in bulk susceptibility Km , has been shown to sometimes bias T and/or P_j ; for example,
446 paramagnetic minerals such as biotite have a highly anisotropic crystalline structures that can
447 bias the ellipsoid shape T toward oblate in some situations but not others (Kruckenberg et al.,
448 2010).

449 A spatial comparison of T and mean susceptibility (Fig. 9 G and I) shows that the dependency of
450 T on Km results from real differences in strain geometry across the dome rather than
451 mineralogical bias. The southern half of the Mt Edgar dome is dominated by flattening AMS
452 fabrics in both low and high susceptibility samples. The spatial consistency and systematic
453 distribution of T within the Mt Edgar dome, regardless of mean susceptibility Km , suggests that
454 magnetic mineralogy does not cause a strong bias in T . Instead, the correlation between Km and
455 T results from the fact that lower susceptibility samples occur mostly within the flattening region
456 of the dome. Given this analysis, variation in T is interpreted to indicate variation in the relative
457 dominance of foliation and lineation (i.e., S, SL, L tectonites) among different stations. T is
458 considered to be an approximate reflection of the geometry of finite strain for the last major
459 deformation to occur within the dome.

460 A spatial analysis suggests that the dependency of P_j on Km (Fig. 9 A) reflects a mineralogical
461 bias. In map view, this bias can be seen when comparing adjacent stations of different Km
462 within the southwest lobe of the Tambina Supersuite. Higher susceptibility samples show a

463 higher P_j for rocks that presumably experienced similar deformation. However, comparing P_j
464 within domains of similar susceptibility may contain meaningful information. For example, the
465 zone of high anisotropy within the Cleland Supersuite coincides with the zone of subvertical
466 lineations (Fig. 8 B) and prolate geometry (Fig. 9 G). In this type of local comparison, P_j may
467 relate to relative strain magnitude, but it is difficult to assess the reliability of this measure. At
468 the dome scale, P_j is clearly not a reliable representation of total finite strain magnitude across
469 the dome; strongly foliated rocks on the dome margin tend to have lower P_j values than weakly
470 foliated rocks in the dome center.

471 In summary, the AMS dataset provides robust information about the orientation and geometry of
472 strain, but not strain magnitude. AMS orientations and ellipsoid geometry are interpreted to
473 represent the final major deformation experienced by any given specimen, since AMS data can
474 be reset or overprinted over the course of continuing strain (Benn, 1994).

475

476 *Internal structure of the Mt Edgar dome*

477 Magnetic fabric data derived from AMS reveal a coherent dome-wide structural pattern (Fig.
478 10). The Cleland supersuite, much of the Emu Pool supersuite, and the southwest lobe of the
479 Tambina supersuite have a dominant northwest striking, steeply dipping foliation and sub-
480 vertical lineation. This preferred orientation is most pronounced in the Cleland supersuite;
481 magnetic lineations point radially inward toward a central zone of vertical magnetic lineations
482 and prolate AMS ellipsoids (L>>S). Two large-scale structures on the western and southwestern
483 parts of the dome deviate from this dome-wide preferred orientation: 1) An arch structure in the
484 Emu Pool-aged Joorina Granodiorite extends from the southern contact of Cleland units to the

485 southwest margin (the "Joorina arch"); and 2) Large scale fold structures are present in both
486 lobes of the Tambina supersuite.

487 The Joorina arch is characterized by prolate to plane strain AMS ellipsoids, with magnetic
488 lineations that plunge shallowly inward near the center of the dome and shallowly outward near
489 the dome margin. Foliations dip shallowly to the north-northeast near the dome center, but are
490 parallel to the Tambina contact near the dome margin. The Joorina arch is in structural continuity
491 with the surrounding Cleland and Emu Pool units; foliations and lineations transition gradually
492 into the dominant dome-wide preferred orientation. The Joorina arch structure is interpreted to be
493 a zone of lateral flow emanating from the dome center to the dome margin, dividing Tambina
494 Supersuite rocks into two lobes.

495 The foliations in both lobes of the Tambina Supersuite are consistent with large-scale folding of
496 a pre-existing fabric, as observed by Collins (1989). The southwest lobe is a single isoclinal fold.
497 Foliations dip inward towards the dome center on the northeast limb of the fold and outward on
498 the southwest limb of the fold. This fold pattern continues into adjacent Emu Pool rocks to the
499 northeast. The large-scale structure in the western lobe is a series of upright folds. In the eastern
500 part of the lobe, foliations striking northeast are axial planar to the large-scale folds, and
501 subhorizontal lineations are interpreted to represent hinge-parallel extension.

502 The northwest part of the lobe has a significantly different foliation that strikes northwest and
503 dips subvertically. The intersection of this foliation and the foliation in the rest of the lobe is
504 partially obscured by the 2.83 Ga Moolyella Adamellite, but a transect of AMS stations in the
505 western part of the lobe show a gradational change between them. This change in orientation has
506 previously been interpreted as a strain gradient out of a hypothesized northeast-southwest
507 striking shear zone (The "Beaton Well shear zone" of Kloppenborg et al., 2001). Given the

508 parallelism of these AMS fabrics to adjacent Cleland Supersuite rocks, it is likely that they
509 represent strain at the margin of the Tambina lobe during Cleland-age deformation.

510 The structures within the western lobe Tambina Supersuite are truncated to the south and west by
511 foliations that are subparallel to the dome margin. Margin-parallel foliations exist along the
512 western, southwestern, southeastern, and eastern margins of the dome, consistently deflecting the
513 dome-wide fabric. These data are in agreement with Collins (1989), who interpreted this sheared
514 margin to be the last phase of dome deformation (D4).

515

516 *Assessing the possibility of a Neoarchean overprint*

517 The presence of a strong preferred orientation of foliation within the Mt Edgar dome raises the
518 question: Do foliations and lineations represent a northeast-southwest shortening overprint that is
519 unrelated to dome formation? Previous structural studies have noted the presence of thrust faults
520 in the surrounding greenstone belts that record northeast-southwest shortening (Van Haaften and
521 White, 1998).

522 Several aspects of our data indicate that the field foliations and AMS ellipsoids predominantly
523 reflect the structures associated with Mt Edgar dome formation. First, the northwest striking
524 foliation is best developed in the Cleland Supersuite, and is more scattered or non-existent in
525 other parts of the dome (Figs. 3 and 8). This variation is not consistent with a regional,
526 penetrative foliation overprint. Second, the Cleland unit is itself elongate parallel to the strike of
527 foliation, and lineations plunge radially inward toward a central location. These two observations
528 suggest that the preferred alignment within the Cleland unit resulted primarily from internal flow
529 – and associated syn-doming strain – rather than a planar, externally imposed deformation.

530 Third, foliations and lineations are parallel to Tambina boundaries in the southwest and western
531 regions of the dome. The fact that foliations and lineations deviate from the dome-wide
532 orientation at these contacts is not consistent with a late-stage overprint. Finally, the dominant
533 northwest striking foliation is deflected by strong margin-parallel foliation along the domes
534 southeastern, southwestern, and western boundaries (The D4 of Collins, 1989). This deflection
535 can be most clearly seen in the southeastern region of the dome in the AMS dataset (Fig. 8 A).
536 The dome-wide fabrics predate or are contemporaneous with the marginal foliations. This cross-
537 cutting relationship has been corroborated in the field (Collins et al., 1998).

538

539 *Melt-assisted flow of dome rocks*

540 Microstructural observations suggest that rocks of all supersuite ages deformed at high
541 temperature, near-solidus conditions. In many samples, microfabrics are characteristic of melt-
542 present deformation. Deformation experiments of partially molten rock suggest that small
543 (<0.07) melt fractions can drastically lower rock strength (Rosenberg and Handy, 2005).
544 Evidence of wide-spread melt-present deformation in the Mt Edgar dome therefore implies that
545 dome rocks were significantly thermally weakened and would have flowed readily. The thermal
546 weakening of sialic crust has been a central aspect of the convective overturn model, and partial
547 melting of rocks during dome exhumation is typically included in conceptual models (Collins et
548 al., 1998; Sandiford et al., 2004; Van Kranendonk et al., 2004). In numerical experiments of
549 dome formation by convective overturn, partial melting plays a key role in mobilizing the lower
550 crust (François et al., 2014). The microstructural data presented here are consistent with these
551 models.

552

553 *Timing of Dome Flow*

554 Although microstructural analysis suggests evidence for melt-assisted and high-temperature flow
555 across the Mt Edgar dome, several critical questions concerning timing remains: 1) When did
556 melt-assisted flow happen? and 2) Did melt-assisted flow happen all at once or in stages? Several
557 lines of evidence point towards synchronous, dome-wide flow during Cleland magmatism.

558 First, the dome-wide structural pattern is at least suggestive of a deformation event that affected
559 all but the most northern units of the dome. The dominant northwest-striking foliation exists in
560 rocks of all ages and is most tightly clustered in the Cleland Supersuite, suggesting that
561 deformation/emplacement of the Cleland supersuite is central to the dome-wide structure.

562 Structures are continuous across unit boundaries with the exception of the D4 shear zone at the
563 dome margin. Radial lineations within the Cleland Supersuite become shallower towards the
564 south, and continue into the Joorina arch. This structural continuity implies that the Cleland and
565 Emu Pool supersuites deformed at the same time.

566 Second, rocks of Emu Pool Supersuite and Tambina Supersuite age are interfolded in the western
567 lobe of the Tambina Supersuite and the isoclinal fold structure within the southwest lobe of the
568 Tambina Supersuite continues into Emu Pool rocks to the northeast. Systematic variations in
569 shape parameter T ignore the Tambina-Emu Pool contact on the southwest margin, indicating
570 that significant deformation occurred after emplacement of both. These structures must have
571 formed during or after Emu Pool magmatism.

572 Third, microstructural evidence from the D4 shear zone suggests similar high-temperature
573 conditions to the rest of the dome. The D4 shear zone deflects or crosscuts earlier structures, and

574 should represent the lowest temperature part of the system since it was structurally above the
575 dome rocks and in contact with colder greenstones. The observation that the D4 shearing
576 occurred under near-solidus conditions implies that the entire dome was at near-solidus
577 conditions during this final phase of dome-related deformation.

578 Evidence for significant dome-wide dome flow during Cleland Supersuite magmatism contrasts
579 with previous work, which suggested most deformation occurred during Emu Pool magmatism.
580 Previous mapping efforts found that the D4 shear zone crosscut 3.31 Ga plutons on the southwest
581 margin and was crosscut by the 3.31 Ga Wilina pluton on the southeast margin (Williams and
582 Collins, 1990; Collins et al., 1998), thereby bracketing deformation to Emu Pool Supersuite age.
583 However, subsequent mapping (Hickman, 2016) shows that the Wilina Pluton intruded
584 greenstone rocks just outside the D4 shear zone.

585 François et al. (2014) investigated the timing of dome formation through U-Pb zircon and
586 monazite geochronology paired with metamorphic petrology and thermomechanical models.
587 Metamorphic zircon within two granulite samples from a metasedimentary raft in Emu Pool
588 rocks near the core of the Mt Edgar dome yield U-Pb isotopic ages of 3311.9 ± 4.9 Ma and
589 3314.6 ± 3.3 Ma. They interpret these ages to represent the deepest part of a rapid (~5 m.y.)
590 cycle of burial and exhumation at ca. 3315–3310 Ma. Their thermomechanical models suggest
591 that this rapid exhumation is possible. However, rims on some zircons yielded younger
592 discordant isotopic ages, including one at 3264 ± 2 Ma, suggesting a possible later event of
593 Cleland Supersuite age.

594

595 *Proposed structural development of the Mt Edgar dome*

596 In the context of previous structural work and published U-Pb zircon ages, a model for the
597 structural development of the Mt Edgar dome is proposed (Fig. 11):

- 598 • Tambina Supersuite rocks were emplaced into the crust as either a single body or a series of
599 magmatically related intrusions at 3.47-3.41 Ga.
- 600 • Emu Pool at 3.32–3.29 Ga magmatism was voluminous, sufficient for a buoyancy-driven
601 dome to form in the deep crust. Tambina rocks were reheated and migmatized at this time, in
602 part due to decompression at the roof of domes. Migmatization likely localized deformation
603 along the margins of the Mt Edgar dome that have Tambina rocks, controlling subsequent
604 dome asymmetry. The D4 shear zone of Collins (1989) initiated during this strain localization.
- 605 • Late Emu Pool and Cleland magmas intruded the core of the dome from 3.29 - 3.23 Ga,
606 reheating and remobilizing earlier units. Dome-wide melt-assisted flow resulted towards the
607 end of this magmatism, characterized by vertical ascent into the upper crust and lateral flow to
608 the southwest near the roof of the dome. The duration of this flow remains unconstrained, but
609 it continued as Cleland Supersuite rocks fully crystallized, as indicated by the presence of high
610 temperature solid-state fabrics. During the emplacement of these younger formations, Tambina
611 Supersuite gneisses and Emu Pool Supersuite tonalites were interfolded and flattened against
612 the margin and flowed out of the way. The Joorina arch is interpreted to be a record of this
613 lateral flow from the dome center to the dome margins. Internal flow within the dome caused
614 further dome amplification and continued deformation along the D4 shear zone of (Collins,
615 1989).

616 The data presented in this paper indicate that the Mt Edgar dome rose as an asymmetric diapiric
617 structure through the supracrustal sequence. L>S tectonites with subvertical lineations in the core

618 of the dome, S>L tectonites with margin foliation parallel foliations along the sheared margin,
619 and zones lateral flow between the core and margin are all predictions of a diapiric model
620 (Mareschal and West, 1980). The dome-wide structure and microstructural data are broadly
621 consistent with the convective overturn model of Collins et al. (1998) and the numerical models
622 of François et al. (2014), although the timing of the final dome-forming event appears to be 50
623 m.y. later than previously proposed. The discrepancy in timing of deformation between this
624 study and previous studies should motivate further geochronological and petrological study.

625

626 Conclusion

627 The Mt Edgar dome has a coherent internal structure that resembles an asymmetric diapiric dome
628 with significant internal, melt-assisted flow. Anisotropy of magnetic susceptibility (AMS) data
629 document for the first time the orientation of lineation and the fabric geometry (S>L, SL, L>S)
630 within the dome. Lineations within the dome core plunge radially inward towards a zone of
631 vertical L-tectonites. In the southwest dome region, lineations plunge shallowly to define an arch
632 that extends from the dome center to the southwest margin. Marginal fabrics are dominated by
633 S>L tectonites. The oldest units in the dome are folded against the dome margin. Microstructural
634 observations suggest that all dome rocks deformed under high temperature, near solidus
635 temperatures.

636 Structural relationships and existing geochronology data suggest that melt-assisted dome flow
637 occurred synchronously across the dome during Cleland Supersuite magmatism. This
638 deformation was the last of several dome-forming events that have long been recognized in the
639 East Pilbara Terrane. The data presented in this paper provide empirical evidence that the East

640 Pilbara domes formed under a regime of thermal weakening and bulk upwards rise of granitic
641 material. Models that invoke this process suggest that this thermal weakening would lead to
642 rapid crustal overturn (Sandiford et al., 2004; François et al., 2014), although the duration of
643 doming remains poorly constrained.

644

645 **Acknowledgements**

646 This work was funded by NSF EAR 2020057 and the Wisconsin Alumni Research Foundation
647 (WARF). Thank you to the Structural Geology and Tectonics group at UW-Madison and A.
648 Bauer, H. Sone, J. Davis, L. Goodwin, and V. Chatzaras for providing helpful feedback. B. Hess
649 and D. Rogers prepared thin sections. K. Korman, E. Lahr, R. Salerno, C. Idzikowski, and R.
650 Key assisted in the field. Thank you to the Brooks family for all your logistical help, advice, and
651 good company. Thanks also to Yarrie and Corunna Downs stations for land access. All original
652 data mentioned in this publication, as well as a fully commented R project that reproduces many
653 of the maps and figure elements in this paper can be viewed and downloaded at:
654 https://osf.io/jcqgy/?view_only=4dc3d82192cf41f7b3119ca97b50112d.

655

656 **Bibliography**

657 Barley, M., Pickard, A., 1999. An extensive, crustally-derived, 3325 to 3310 Ma silicic volcanoplutonic
658 suite in the eastern Pilbara Craton: evidence from the Kelly Belt, McPhee Dome and Corunna
659 Downs Batholith. *Precambrian Research* 96, 41–62.

660 Bédard, J.H., 2003. Evidence for Regional-Scale, Pluton-Driven, High-Grade Metamorphism in the
661 Archaean Minto Block, Northern Superior Province, Canada. *The Journal of Geology* 111, 183–
662 205.

663 Bédard, J.H., 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-
664 continental lithospheric mantle. *Geochimica et Cosmochimica Acta* 70, 1188–1214.

665 Bédard, J.H., 2018. Stagnant lids and mantle overturns: Implications for Archaean tectonics,
666 magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. *Geoscience
667 Frontiers* 9, 19–49.

668 Benn, K., 1994. Overprinting of magnetic fabrics in granites by small strains: numerical modelling.
669 *Tectonophysics* 233, 153–162.

670 Benn, K., Ham, N.M., Pignotta, G.S., Bleeker, W., 1998. Emplacement and deformation of granites
671 during transpression: magnetic fabrics of the Archean Sparrow pluton, Slave Province, Canada.
672 *Journal of Structural Geology* 20, 1247–1259.

673 Bickle, M.J., Bettenay, L.F., Chapman, H.J., Groves, D.I., McNaughton, N.J., Campbell, I.H., de Laeter,
674 J.R., 1992. Origin of the 3500–3300 Ma calc-alkaline rocks in the Pilbara Archaean: isotopic and
675 geochemical constraints from the Shaw Batholith. *Precambrian Research* 60, 117–149.

676 Blewett, R.S., 2002. Archaean tectonic processes: a case for horizontal shortening in the North Pilbara
677 Granite-Greenstone Terrane, Western Australia. *Precambrian Research* 113, 87–120.

678 Borradaile, G., Gauthier, D., 2003. Emplacement of an Archean gneiss dome, northern Ontario, Canada:
679 inflation inferred from magnetic fabrics. *Tectonics* 22.

680 Borradaile, G.J., 1988. Magnetic susceptibility, petrofabrics and strain. *Tectonophysics* 156, 1–20.

681 Bouchez, J.L., Delas, C., Gleizes, G.r., Nédélec, A., Cuney, M., 1992. Submagmatic microfractures in
682 granites. *Geology* 20, 35–38.

683 Bouchez, J.L., Gleizes, G., Djouadi, T., Rochette, P., 1990. Microstructure and magnetic susceptibility
684 applied to emplacement kinematics of granites: the example of the Foix pluton (French Pyrenees).
685 *Tectonophysics* 184, 157–171.

686 Bouhallier, H., Chardon, D., Choukroune, P., 1995. Strain patterns in Archaean dome-and-basin
687 structures: the Dharwar craton (Karnataka, South India). *Earth and Planetary Science Letters* 135,
688 57–75.

689 Čečys, A., Benn, K., 2007. Emplacement and deformation of the ca. 1.45 Ga Karlshamn granitoid pluton,
690 southeastern Sweden, during ENE-WSW Danopolonian shortening. *International Journal of Earth
691 Sciences* 96, 397–414.

692 Chardon, D., Choukroune, P., Jayananda, M., 1998. Sinking of the Dharwar Basin (South India):
693 implications for Archaean tectonics. *Precambrian Research* 91, 15–39.

694 Cogné, J.-P., Perroud, H., 1988. Anisotropy of magnetic susceptibility as a strain gauge in the Flamanville
695 granite, NW France. *Physics of the Earth and Planetary Interiors* 51, 264–270.

696 Collins, W.J., 1989. Polydiapirism of the Archean Mount Edgar Batholith, Pilbara Block, Western
697 Australia. *Precambrian Research* 43, 41–62.

698 Collins, W.J., 1993. Melting of Archaean sialic crust under high aH_2O conditions: genesis of 3300 Ma
699 Na-rich granitoids in the Mount Edgar Batholith, Pilbara Block, Western Australia. *Precambrian
700 Research* 60, 151–174.

701 Collins, W.J., Van Kranendonk, M.J., 1999. Model for the development of kyanite during partial
702 convective overturn of Archean granite-greenstone terranes: The Pilbara Craton, Australia.
703 *Journal of Metamorphic Geology* 17, 145–156.

704 Collins, W.J., Van Kranendonk, M.J., Teyssier, C., 1998. Partial convective overturn of Archaean crust in
705 the east Pilbara Craton, Western Australia: driving mechanisms and tectonic implications. *Journal of Structural Geology* 20, 1405–1424.

706

707 Doublier, M., Johnson, S., Gessner, K., Howard, H., Chopping, R., Smithies, R.H., Martin, D., Kelsey, D., Haines, P., Hickman, A., Czarnota, K., Southby, C., Champion, D., Huston, D., Calvert, A., Kohanpour, F., Moro, P., Costelloe, R., Fomin, T., Sykes, J., 2020. Basement architecture from the Pilbara Craton to the Aileron Province: new insights from deep seismic reflection line 18GA-KB1.

712 François, C., Philippot, P., Rey, P., Rubatto, D., 2014. Burial and exhumation during Archean sagduction
713 in the East Pilbara Granite-Greenstone Terrane. *Earth and Planetary Science Letters* 396, 235–
714 251.

715 Gardiner, N.J., Hickman, A.H., Kirkland, C.L., Lu, Y., Johnson, T., Zhao, J.-X., 2017. Processes of Crust
716 Formation in the Early Earth Imaged through Hf isotopes from the East Pilbara Terrane.
717 *Precambrian Research*.

718 Green, M.G., Sylvester, P.J., Buick, R., 2000. Growth and recycling of early Archaean continental crust:
719 geochemical evidence from the Coonturunah and Warrawoona Groups, Pilbara Craton, Australia.
720 *Tectonophysics* 322, 69–88.

721 Harris, L.B., Godin, L., Yakymchuk, C., 2012. Regional shortening followed by channel flow induced
722 collapse: A new mechanism for “dome and keel” geometries in Neoarchaean granite-greenstone
723 terrains. *Precambrian Research* 212–213, 139–154.

724 Hickman, A.H., 1984. Archaean diapirism in the Pilbara Block, Western Australia, in: Kroner, A.,
725 Greiling, R. (Eds.), *Precambrian Tectonics Illustrated*, pp. 113–127.

726 Hickman, A.H., 2012. Review of the Pilbara Craton and Fortescue Basin, Western Australia: Crustal
727 evolution providing environments for early life. *Island Arc* 21, 1–31.

728 Hickman, A.H., 2016. Interpreted bedrock geology of the east Pilbara Craton. *Geological Survey of
729 Western Australia*.

730 Hickman, A.H., Van Kranendonk, M.J., 2012. Early Earth evolution: evidence from the 3.5–1.8 Ga
731 geological history of the Pilbara region of Western Australia. *Episodes* 35, 283–297.

732 Hrouda, F., Schulmann, K., Suppes, M., Ullemayer, K., De Wall, H., Weber, K., 1997. Quantitive
733 relationship between low-field AMS and phyllosilicate fabric: a review. *Physics and Chemistry of
734 the Earth* 22, 153–156.

735 Jelínek, V., 1981. Characterization of the magnetic fabric of rocks. *Tectonophysics* 79, T63–T67.

736 Johnson, T.E., Brown, M., Gardiner, N.J., Kirkland, C.L., Smithies, R.H., 2017. Earth's first stable
737 continents did not form by subduction. *Nature* 543, 239–242.

738 Kisters, A.F.M., Anhaeusser, C.R., 1995. Emplacement features of Archaean TTG plutons along the
739 southern margin of the Barberton greenstone belt, South Africa. *Precambrian Research* 75, 1–15.

740 Kloppenburg, A., White, S.H., Zegers, T.E., 2001. Structural evolution of the Warrawoona Greenstone
741 Belt and adjoining granitoid complexes, Pilbara Craton, Australia: implications for Archaean
742 tectonic processes. *Precambrian Research* 112, 107–147.

743 Kruckenberg, S.C., Ferré, E.C., Teyssier, C., Vanderhaeghe, O., Whitney, D.L., Seaton, N.C., Skord, J.A.,
744 2010. Viscoplastic flow in migmatites deduced from fabric anisotropy: An example from the
745 Naxos dome, Greece. *Journal of Geophysical Research: Solid Earth* 115.

746 Kruhl, J., 1996. Prism-and basal-plane parallel subgrain boundaries in quartz: A microstructural
747 geothermobarometer. *Journal of metamorphic Geology* 14, 581–589.

748 Lana, C., Tohver, E., Cawood, P., 2010. Quantifying rates of dome-and-keel formation in the Barberton
749 granitoid-greenstone belt, South Africa. *Precambrian Research* 177, 199–211.

750 Liu, T., Wei, C., 2018. Metamorphic evolution of Archean ultrahigh-temperature mafic granulites from
751 the western margin of Qian'an gneiss dome, eastern Hebei Province, North China Craton:
752 Insights into the Archean tectonic regime. *Precambrian Research* 318, 170–187.

753 Mareschal, J.-C., West, G.F., 1980. A model for Archean tectonism. Part 2. Numerical models of vertical
754 tectonism in greenstone belts. *Canadian Journal of Earth Sciences* 17, 60–71.

755 Moore, W.B., Webb, A.A.G., 2013. Heat-pipe Earth. *Nature* 501, 501-505.

756 Nelson, D.R., 1999. Compilation of SHRIMP U-Pb zircon geochronology date, 1998: Western Australia

757 Geological Survey.

758 Nelson, D.R., 2001. Compilation of SHRIMP U-Pb zircon geochronology data, 2000: Western Australia

759 Geological Survey. Record.

760 Nelson, D.R., 2005. Compilation of geochronology data: Western Australia Geological Survey. June.

761 Nijman, W., Kloppenburg, A., de Vries, S.T., 2017. Archaean basin margin geology and crustal

762 evolution: an East Pilbara traverse. *Journal of the Geological Society* 174, 1090–1112.

763 Nutman, A.P., Bennett, V.C., Friend, C.R.L., 2015. Proposal for a continent 'Itsaqia' amalgamated at 3.66

764 Ga and rifted apart from 3.53 Ga: Initiation of a Wilson Cycle near the start of the rock record.

765 *American Journal of Science* 315, 509.

766 Paterson, S.R., Vernon, R.H., Tobisch, O.T., 1989. A review of criteria for the identification of magmatic

767 and tectonic foliations in granitoids. *Journal of structural geology* 11, 349–363.

768 Pawley, M., Van Kranendonk, M., Collins, W., 2004. Interplay between deformation and magmatism

769 during doming of the Archaean Shaw granitoid complex, Pilbara Craton, Western Australia.

770 *Precambrian Research* 131, 213–230.

771 Piper, J., 2018. Dominant Lid Tectonics behaviour of continental lithosphere in Precambrian times:

772 Palaeomagnetism confirms prolonged quasi-integrity and absence of supercontinent cycles.

773 *Geoscience Frontiers* 9, 61–89.

774 Piper, J.D., 2013. A planetary perspective on Earth evolution: lid tectonics before plate tectonics.

775 *Tectonophysics* 589, 44–56.

776 Polat, A., Kokfelt, T., Burke, K.C., Kusky, T.M., Bradley, D.C., Dziggel, A., Kolb, J., 2016. Lithological,

777 structural, and geochemical characteristics of the Mesoarchean T{â}rtoq greenstone belt,

778 southern West Greenland, and the Chugach–Prince William accretionary complex, southern

779 Alaska: evidence for uniformitarian plate-tectonic processes. *Canadian Journal of Earth Sciences*

780 53, 1336–1371.

781 Polat, A., Wang, L., Appel, P.W.U., 2015. A review of structural patterns and melting processes in the

782 Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as

783 opposed to non-uniformitarian models. *Tectonophysics* 662, 67–94.

784 Ramsay, J.G., 1989. Emplacement kinematics of a granite diapir: the Chindamora batholith, Zimbabwe.

785 *Journal of Structural Geology* 11, 191–209.

786 Roberts, N.M., 2020. Internal Fabrics and Marginal Deformation of the Paleoarchean Mt Edgar Dome,

787 East Pilbara Terrane, Western Australia: Structural Constraints on Crustal Flow in the Early

788 Earth. The University of Wisconsin-Madison.

789 Rosenberg, C., Handy, M., 2005. Experimental deformation of partially melted granite revisited:

790 implications for the continental crust. *Journal of metamorphic Geology* 23, 19-28.

791 Rosenberg, C.L., 2001. Deformation of partially molten granite: a review and comparison of experimental

792 and natural case studies. *International Journal of Earth Sciences* 90, 60–76.

793 Rosenberg, C.L., Stünitz, H., 2003. Deformation and recrystallization of plagioclase along a temperature

794 gradient: an example from the Bergell tonalite. *Journal of Structural Geology* 25, 389-408.

795 Sandiford, M., Van Kranendonk, M.J., Bodorkos, S., 2004. Conductive incubation and the origin of

796 dome-and-keel structure in Archean granite-greenstone terrains: A model based on the eastern

797 Pilbara Craton, Western Australia. *Tectonics* 23.

798 Sawyer, E.W., 1999. Criteria for the recognition of partial melting. *Physics and Chemistry of the Earth,*

799 *Part A: Solid Earth and Geodesy* 24, 269-279.

800 Smithies, R.H., Champion, D.C., Cassidy, K.F., 2003. Formation of Earth's early Archaean continental

801 crust. *Precambrian Research* 127, 89–101.

802 Smithies, R.H., Champion, D.C., Van Kranendonk, M.J., Howard, H.M., Hickman, A.H., 2005. Modern-

803 style subduction processes in the Mesoarchaeon: geochemical evidence from the 3.12 Ga

804 Whundo intra-oceanic arc. *Earth and Planetary Science Letters* 231, 221–237.

805 Smithies, R.H., Ivanic, T.J., Lowrey, J.R., Morris, P.A., Barnes, S.J., Wyche, S., Lu, Y.-J., 2018. Two
806 distinct origins for Archean greenstone belts. *Earth and Planetary Science Letters* 487, 106–116.

807 Stipp, M., Stünitz, H., Heilbronner, R., Schmid, S.M., 2002. The eastern Tonale fault zone: a ‘natural
808 laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 C.
809 *Journal of Structural Geology* 24, 1861–1884.

810 Thébaud, N., Rey, P.F., 2013. Archean gravity-driven tectonics on hot and flooded continents: Controls
811 on long-lived mineralised hydrothermal systems away from continental margins. *Precambrian
812 Research* 229, 93–104.

813 Titus, S.J., Clark, R., Tikoff, B., 2005. Geologic and geophysical investigation of two fine-grained
814 granites, Sierra Nevada Batholith, California: Evidence for structural controls on emplacement
815 and volcanism. *Geological Society of America Bulletin* 117, 1256.

816 Van Haaften, W.M., White, S.H., 1998. Evidence for multiphase deformation in the Archean basal
817 Warrawoona Group in the Marble Bar area, east Pilbara, Western Australia. *Precambrian
818 Research* 88, 53–66.

819 Van Kranendonk, M.J., 2006. Revised lithostratigraphy of Archean supracrustal and intrusive rocks in the
820 northern Pilbara Craton, Western Australia. *Geological Survey of Western Australia*.

821 Van Kranendonk, M.J., 2010. Two types of Archean continental crust: Plume and plate tectonics on early
822 earth. *American Journal of Science* 310, 1187–1209.

823 Van Kranendonk, M.J., 2011. Cool greenstone drips and the role of partial convective overturn in
824 Barberton greenstone belt evolution. *Journal of African Earth Sciences* 60, 346–352.

825 Van Kranendonk, M.J., Collins, W.J., Hickman, A., Pawley, M.J., 2004. Critical tests of vertical vs.
826 horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara
827 Craton, Western Australia. *Precambrian Research* 131, 173–211.

828 Van Kranendonk, M.J., Hugh Smithies, R., Hickman, A.H., Champion, D.C., 2007. Review: Secular
829 tectonic evolution of Archean continental crust: interplay between horizontal and vertical
830 processes in the formation of the Pilbara Craton, Australia. *Terra Nova* 19, 1–38.

831 Vigneresse, J.L., Bouchez, J.L., 1997. Successive Granitic Magma Batches During Pluton Emplacement:
832 the Case of Cabeza de Araya (Spain). *Journal of Petrology* 38, 1767–1776.

833 Webb, A.A.G., Müller, T., Zuo, J., Haproff, P.J., Ramírez-Salazar, A., 2020. A non-plate tectonic model
834 for the Eoarchean Isua supracrustal belt. *Lithosphere* 12, 166–179.

835 Whitney, D.L., Teyssier, C., Rey, P., Buck, W.R., 2013. Continental and oceanic core complexes. *GSA
836 Bulletin* 125, 273–298.

837 Whitney, D.L., Teyssier, C., Vanderhaeghe, O., 2004. Gneiss domes and crustal flow. *Gneiss domes in
838 orogeny* 380, 15.

839 Wiemer, D., Schrank, C.E., Murphy, D.T., Hickman, A.H., 2016. Lithostratigraphy and structure of the
840 early Archaean Doolena Gap greenstone belt, East Pilbara Terrane, Western Australia.
841 *Precambrian Research* 282, 121–138.

842 Wiemer, D., Schrank, C.E., Murphy, D.T., Wenham, L., Allen, C.M., 2018. Earth's oldest stable crust in
843 the Pilbara Craton formed by cyclic gravitational overturns. *Nature Geoscience* 11, 357.

844 Williams, I.S., Collins, W.J., 1990. Granite-greenstone terranes in the Pilbara Block, Australia, as coeval
845 volcano-plutonic complexes; Evidence from U-Pb zircon dating of the Mount Edgar Batholith.
846 *Earth and Planetary Science Letters* 97, 41–53.

847 Yin, A., 2004. Gneiss domes and gneiss dome systems. *Geological Society of America Special Papers*
848 380, 1–14.

849 Zegers, T.E., 1996. Structural, kinematic and metallogenic evolution of selected domains of the Pilbara
850 granitoid-greenstone terrain: implications for mid Archean tectonic regimes. *Utrecht University*.

851 Zegers, T.E., Nelson, D.R., Wijbrans, J.R., White, S.H., 2001. SHRIMP U-Pb zircon dating of Archean
852 core complex formation and pancretic strike-slip deformation in the East Pilbara Granite-
853 Greenstone Terrain. *Tectonics* 20, 883–908.

854 Zegers, T.E., van Keken, P.E., 2001. Middle Archean continent formation by crustal delamination.
855 *Geology* 29, 1083–1086.

856 Zegers, T.E., White, S.H., de Keijzer, M., Dirks, P.H., 1996. Extensional structures during deposition of
857 the 3460 Ma Warrawoona Group in the eastern Pilbara Craton, Western Australia. *Precambrian*
858 *Research* 80, 89–105.

859 Zegers, T.E., Wijbrans, J.R., White, S.H., 1999. $40\text{Ar}/39\text{Ar}$ age constraints on tectonothermal events in
860 the Shaw area of the eastern Pilbara granite–greenstone terrain (W Australia): 700 Ma of Archean
861 tectonic evolution. *Tectonophysics* 311, 45–81.

862 Zibra, I., Kruhl, J.H., Montanini, A., Tribuzio, R., 2012. Shearing of magma along a high-grade shear
863 zone: Evolution of microstructures during the transition from magmatic to solid-state flow.
864 *Journal of Structural Geology* 37, 150–160.

865 Zibra, I., Lu, Y., Clos, F., Weinberg, R., Peternell, M., Wingate, M., Prause, M., Schiller, M., Tilhac, R.,
866 2020. Regional-scale polydiapirism predating the Neoarchean Yilgarn Orogeny. *Tectonophysics*
867 779, 228375.

868

869

870

871

872

873

874

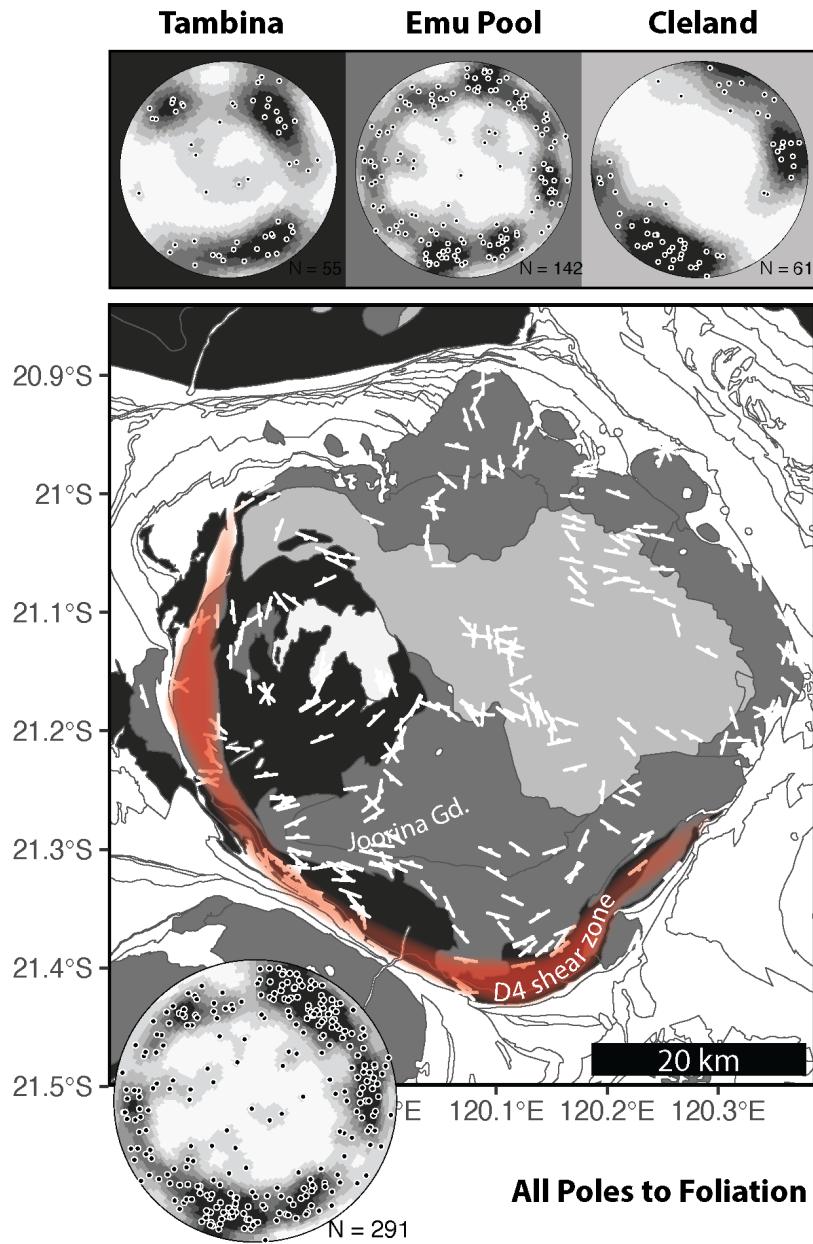


Figure 1. Geologic and Potassium content maps of the Mt Edgar dome. Top diagrams show location in Western Australia of the Mt Edgar dome (modified from Van Kranendonk et al., 2007). A) Interpreted bedrock geology of the Mt Edgar dome (ME) and northern Corunna Downs dome (CD) (modified from Hickman, 2016). A legend for the geologic map is at the bottom of the figure. Labeled white dots are U-Pb zircon SHRIMP ages (Nelson, 1999; 2001; 2005) in billions of years. Joorina Gd: Joorina Granodiorite, an Emu Pool Supersuite Formation. Bishop Creek Mg: Bishop Creek Monzogranite, a Cleland Supersuite Formation B) Potassium content map based on flyover Gamma Ray spectroscopy (Geological Survey of Western Australia). White dots are locations of AMS stations in this study.

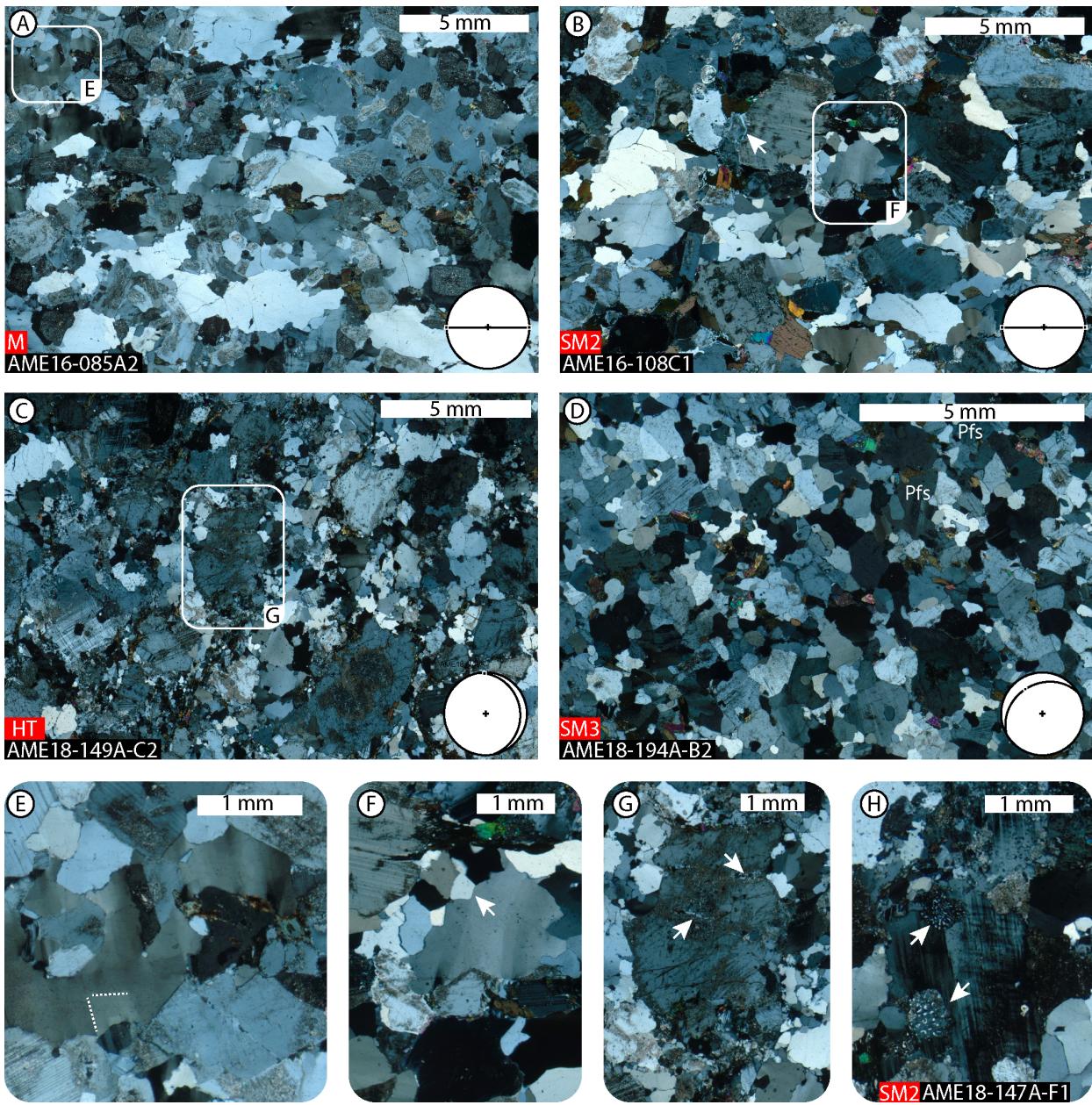

876
877
878

Figure 2. Field photographs from the Mt Edgar dome. A) Cleland Supersuite rocks: A-1) Feldspar megacryst is aligned parallel to foliation. Smaller feldspar phenocryst laths define the foliation. A-2) Schlieren banding is offset by pegmatites (outlined). A-3) Example of a raft of banded gneiss within weakly foliated granite. Contact is sharp (outlined), with some injection of granite into the raft parallel to the gneissic foliation. A-4) Macroscopic fabric defined by rounded aligned feldspars, biotite, and elongate quartz blebs. B) Emu Pool Supersuite rocks: B-1) Gneissic foliation in the Joorina Granodiorite defined by quartz ribbons, elongate feldspar domains, and smeared biotite. B-2) Foliation defined by aligned euhedral amphibole and feldspars. C) Tambina Supersuite rocks: C-1) Migmatitic gneiss. Leucosomes are tightly folded (outlined in white), and gneissic foliation is axial planar to fold. C-2) Gneissic fabric typical of non-migmatized localities, showing incipient mineral banding. C-3) Swirly banded migmatitic gneiss in a pavement outcrop.

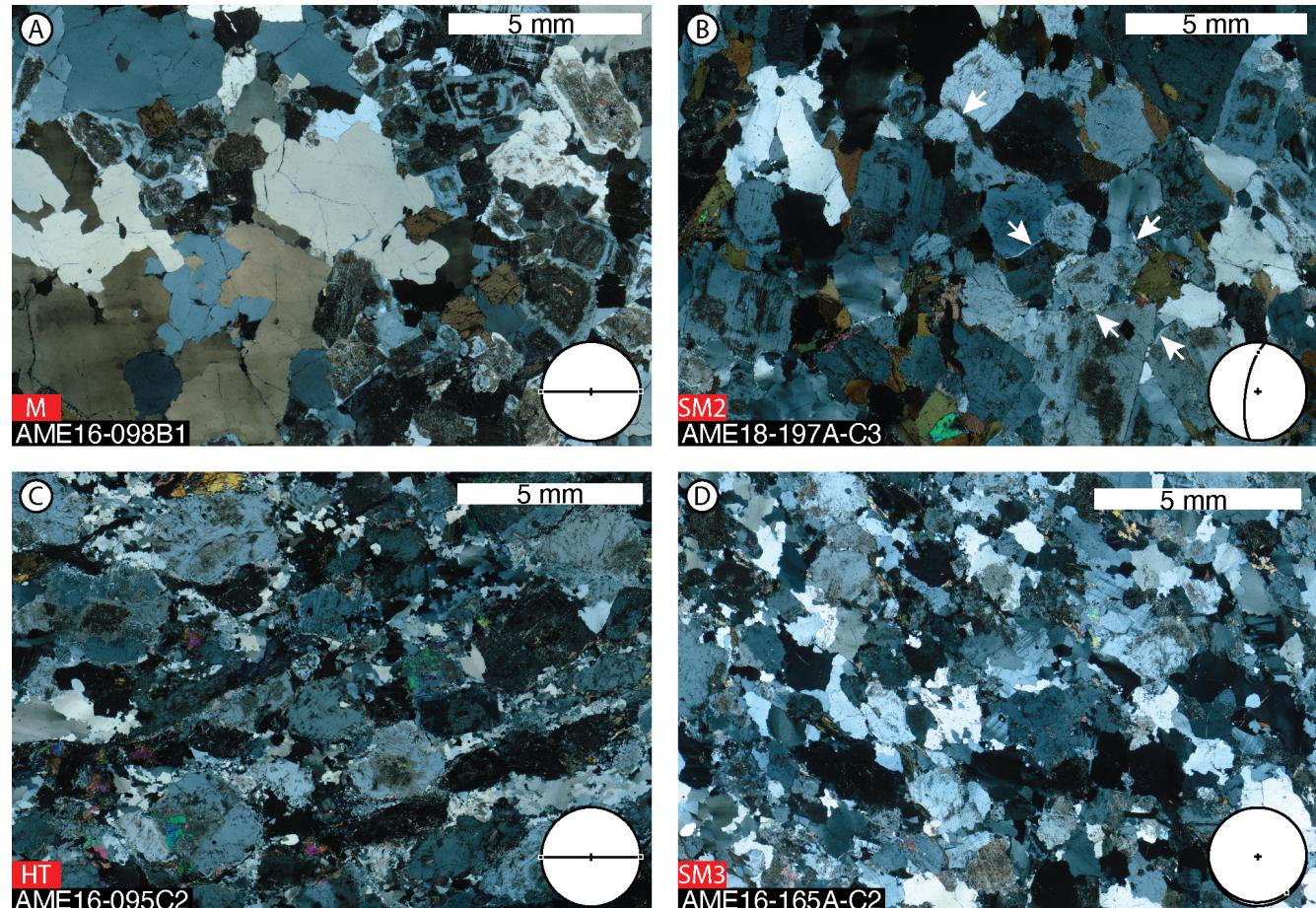
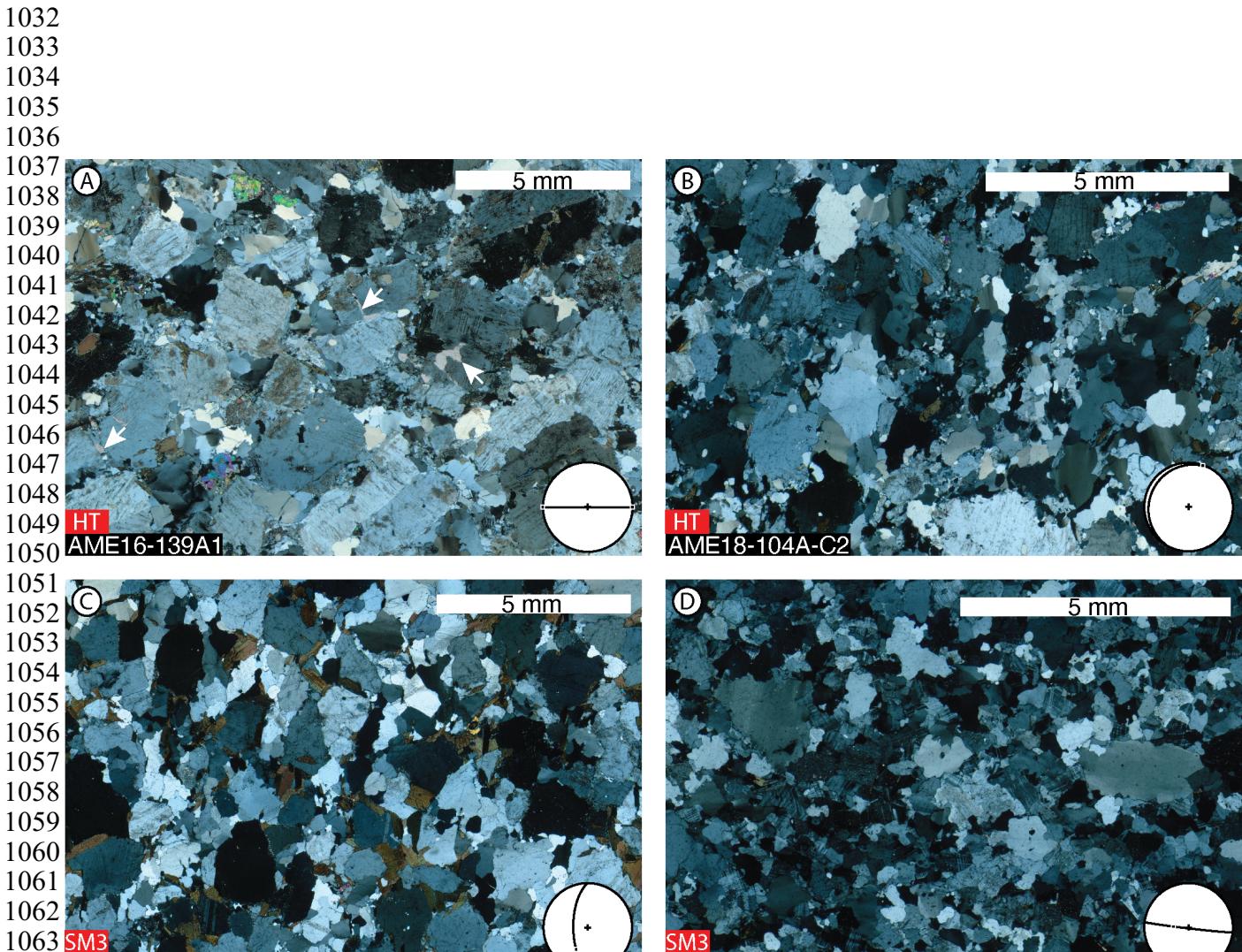
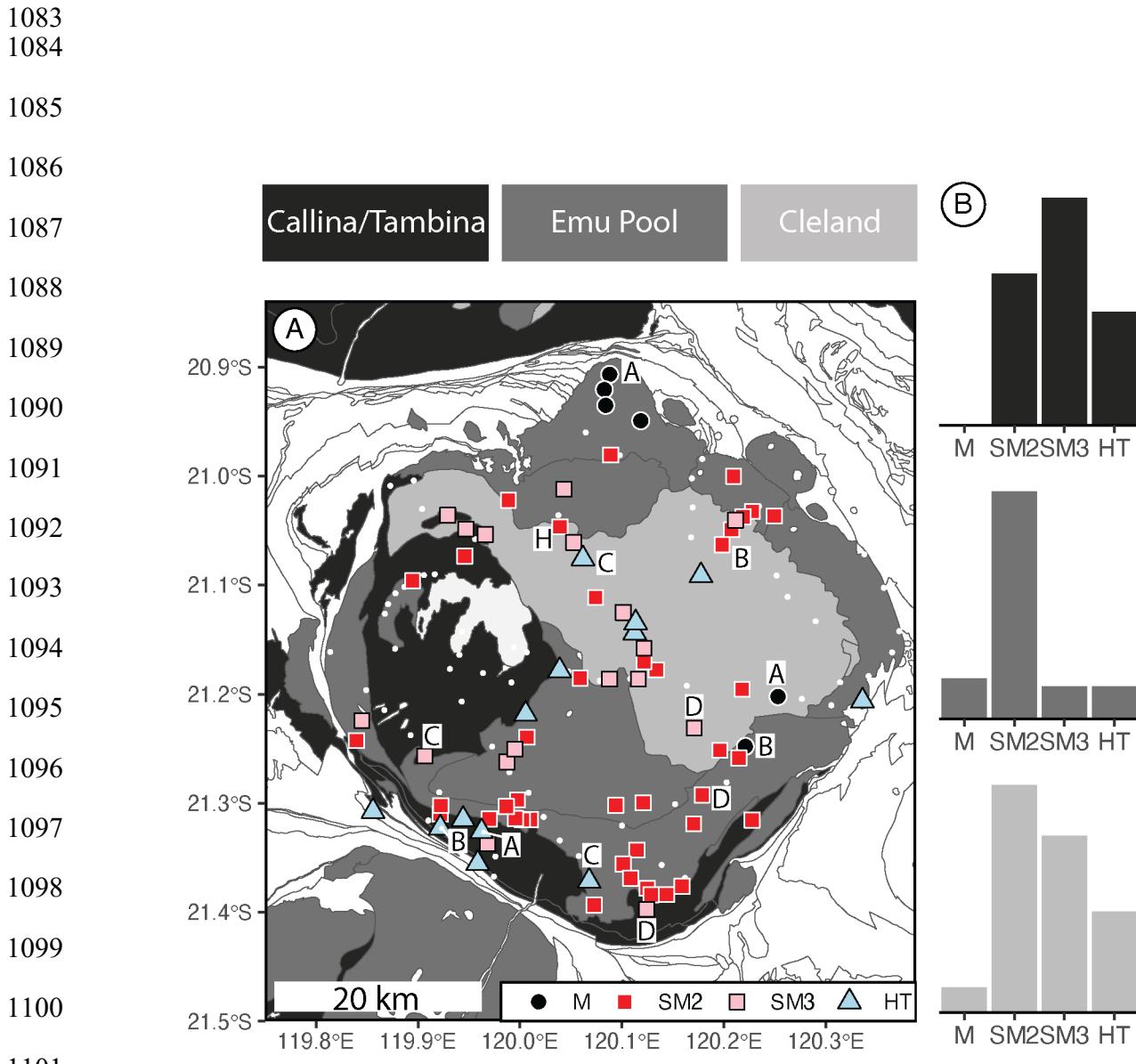


Figure 3. Geologic map and equal area nets with Kamb contours summarizing field measurements of foliations in granitic rocks of the Mt Edgar dome. The D4 shear zone of Collins (1989) is denoted by the red shaded region. Small equal area nets along the top of the figure have been separated out into supersuites, with the background corresponding to the map color. The large equal area net at the bottom right summarizes the entire dataset. Kamb contour intervals are $\sigma = 3, 6, 9, 12, 15, 18$.


Figure 4. Representative microstructures from the rocks of the Bishop Creek Monzogranite Formation of the Cleland Supersuite. The location of each thin section is given on the map in Figure 7. A) An example of Magmatic microfabric. Small plagioclase laths (~ 1 mm length) appear randomly oriented in a matrix of large poikilitic alkali feldspar. Chessboard extinction in quartz is common (E). B) An example of Submagmatic fabric. Plagioclase laths are approximately aligned with foliation and have cuspatelobate boundaries with quartz. Fractures in plagioclase is infilled with quartz (white arrow). A thin film of alkali feldspar rims many plagioclase laths, which is interpreted as evidence for melt presence. Quartz has a chessboard extinction, and in some places new grains have square boundaries that match the chessboard pattern (F). C) An example of a high temperature solid state microfabric. Quartz is more finely recrystallized than in (A) or (B), and feldspar is also finely recrystallized on sides of phenocrysts that are aligned with lineation. Feldspars that have infilled fractures provide evidence for an earlier submagmatic history. D) An example of a near-solidus Submagmatic fabric. Feldspars and quartz are both recrystallized into a polyphase aggregate of large grain size and amoeboidal grain boundaries.


981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

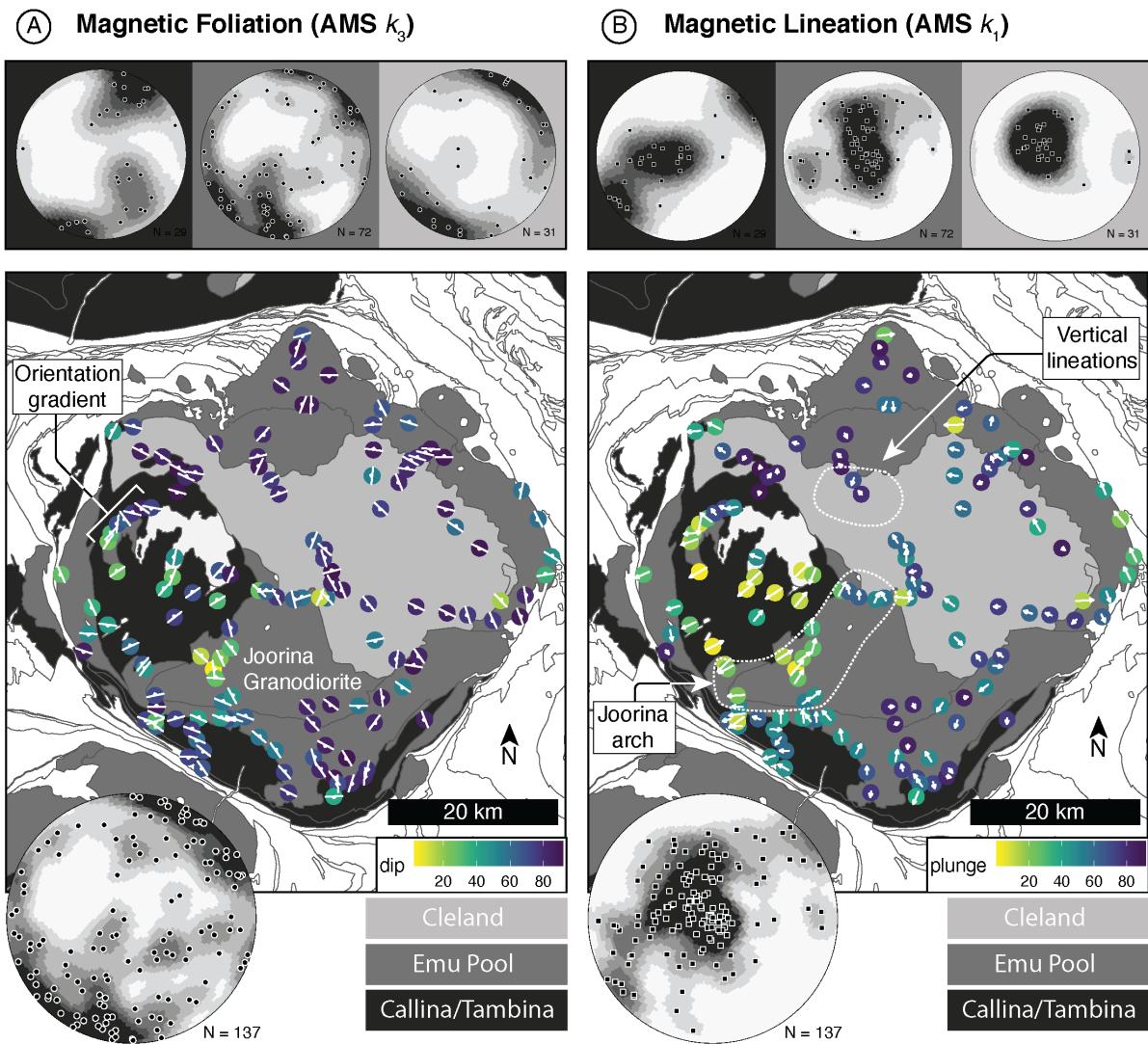

Figure 5. Representative microstructures for rocks belonging to the Emu Pool Supersuite. The location of each thin section is given on the map in Figure 7. A) Magmatic fabric, with randomly oriented Plagioclase, poikilitic microcline, and very large quartz grains exhibiting chessboard extinction. B) Submagmatic fabric, with infilled fractures in plagioclase (upper white arrow), partially recrystallized quartz, and a thin film of alkali feldspar lining many plagioclase laths (lower four white arrows). C) High temperature solid-state fabric defined by recrystallized quartz ribbons and rounded, partially recrystallized feldspars. D) Near-solidus submagmatic fabric defined by a polyphase aggregate of recrystallized quartz and feldspar.

Figure 7. Summary of microstructural results. A) Distribution of microstructures in the Mt Edgar dome: M—Magmatic; SM2—Submagmatic Type II; SM3—Submagmatic Type III; HT—High temperature solid state. See text for descriptions. Microstructures were analyzed for more than half of AMS stations; small white dots represent the locations of AMS stations without microstructural characterization. B) Histograms representing the relative proportion of each microstructure type in each of the three main supersuites within the Mt Edgar dome. The grey of each histogram matches the grey of the mapped units.

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

1126 **Figure 8.** Summary of spatial distribution of interpreted foliation (A) and lineation (B) from mean
1127 AMS ellipsoids at each station. Equal area projections of poles to foliation and lineation are plotted
1128 with shaded Kamb contours. Kamb contours are $\sigma = 3, 6, 9, 12, 15, 18$. Two structural features are
1129 annotated on the figure. Three geographic areas referred to in the text are highlighted: A region of
1130 closely spaced AMS data reveal a gradational change in orientation in panel A; Lineations within the
1131 Cleland and Emu Pool supersuites plunge radially inward toward a zone of vertical lineations in panel
1132 B; Lineations define a large scale arch from the center of the dome to the southwestern margin in panel
1133 B, which we refer to as the Joorina arch.
1134

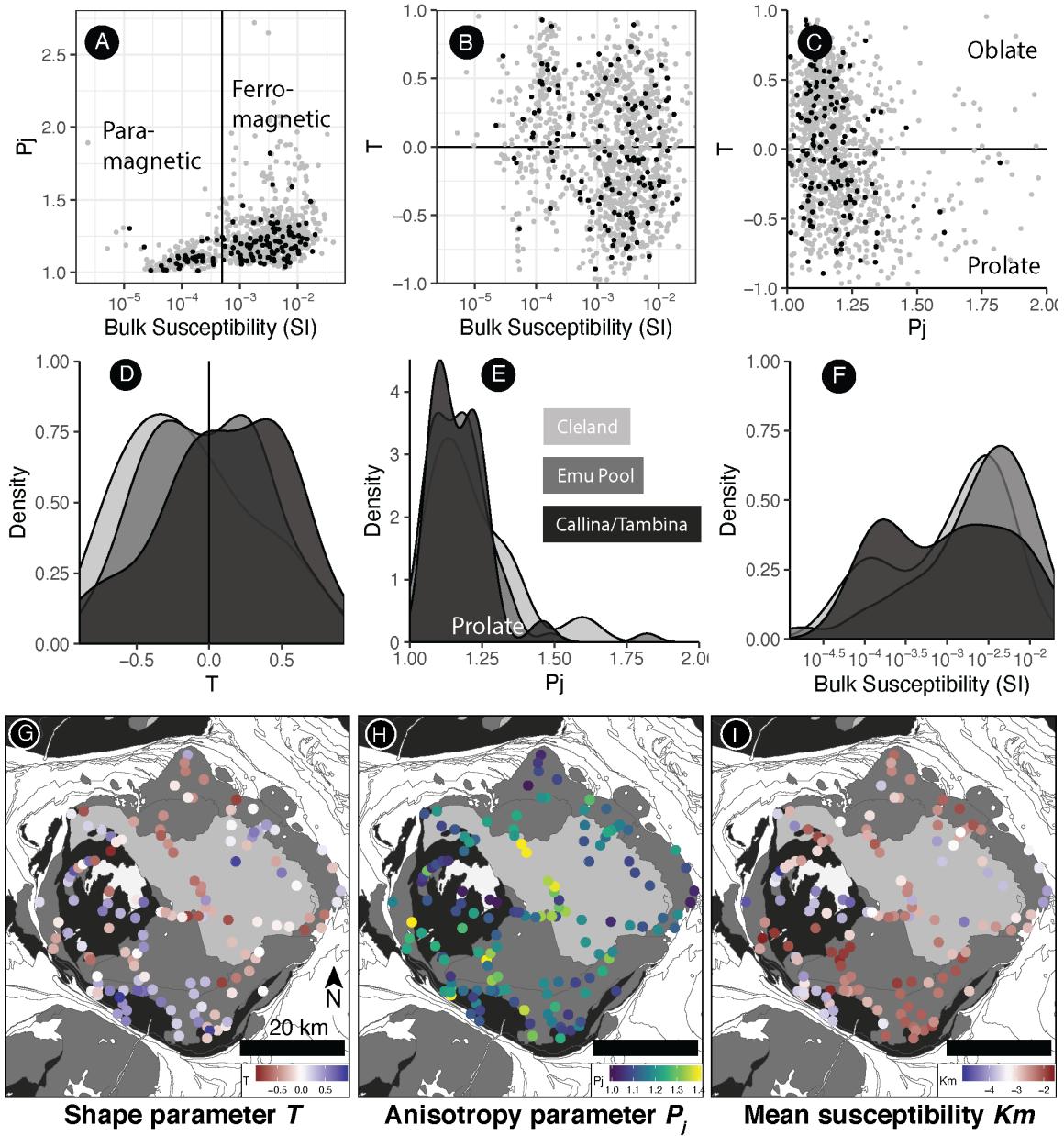
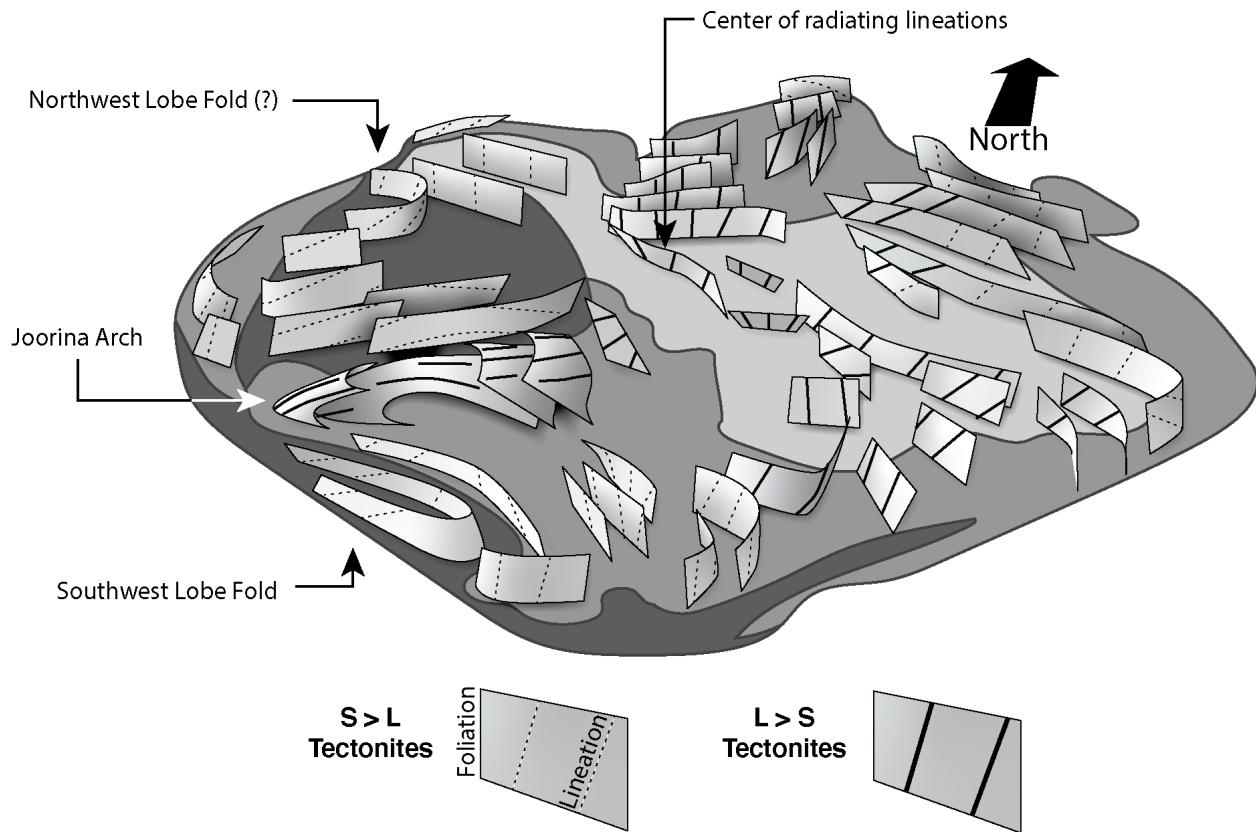
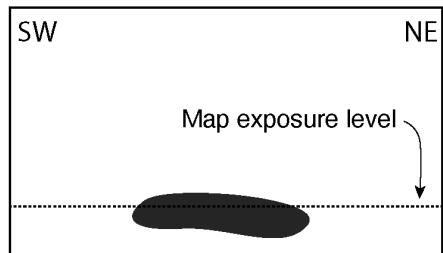
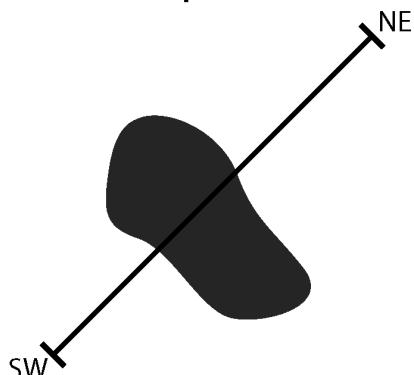



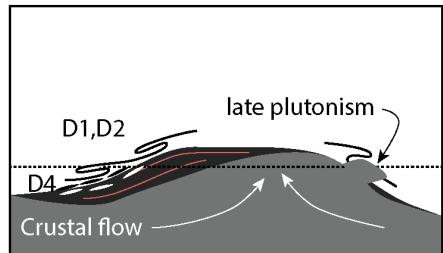
Figure 9. A summary of AMS parameter results. For A-C, grey points are individual core specimens, black points are station means. A) Bulk susceptibility versus anisotropy degree P_j shows that higher susceptibility samples have a wider range of anisotropies. B) Bulk susceptibility versus shape parameter T shows that lower susceptibility samples tend to have oblate shapes. C) Anisotropy degree versus shape parameter T shows that there is no strong dependency of shape on anisotropy degree. D) Probability density function plot of shape anisotropy P_j colored by supersuite. All supersuites have similar maxima, but Cleland supersuite has a larger spread than the other two. E) Probability density function plot of shape parameter T , colored by supersuite. Cleland rocks have a tendency toward prolate shape, Emu Pool rocks tends towards plane strain shape, and Tambina rocks tend towards oblate shape. F) Probability density function plot of bulk susceptibility, colored by supersuite. G) Shape parameter T . Blue colors represent oblate ellipsoids, white represents plane strain ellipsoids, and reds indicate prolate ellipsoids. H) Anisotropy parameter P_j . Blue color represents low anisotropy, yellow color indicates high anisotropy. I) Mean susceptibility. Blue color indicates low susceptibilities in the paramagnetic field, red color indicates high susceptibility in the ferromagnetic field. The scale is $\log(\text{bulk})$.

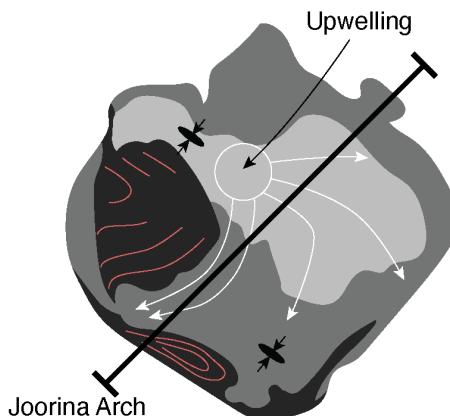
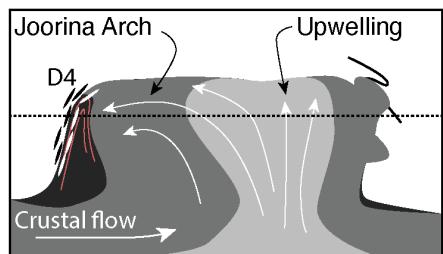

1179 **Figure 10.** Illustration of the internal structure of the Mt Edgar dome, interpreted from AMS foliations
 1180 and lineations. Four important features are: 1) The dome-wide, northwest-southeast striking, subvertical
 1181 foliations with subvertical lineations; 2) Inward radiating lineations in the Cleland supersuite; 3) The
 1182 Joorina arch that separates the two lobes of the Tambina supersuite; and 4) The Tambina is folded
 1183 against the margin of the dome.

1187


Crustal Cross Section

1188
1189
1190
1191
1192
1193


A Tambina Intrusion



Map View

B Emu Pool intrusion, doming, Tambina migmatization

C Cleland Intrusion, dome-wide melt-assisted flow

Figure 11. Three-step structural evolution of the Mt Edgar dome. A) Early Tambina Supersuite rocks intruded into basaltic crust between 3.47 and 3.42 Ga. B) Emu Pool magmatism is widespread, forming a granodioritic lower crust. Crustal flow focuses magmatism into deep crustal domes. Heating by younger units lead to extensive anatexis of Tambina Supersuite formations. Greenstone rocks are isoclinally folded as doming proceeds (D1 and D2 of Collins (1989)). Let in this doming process, Emu Pool plutons intrude the greentone belts to the north, and deformation localizes along Tambina Supersuite migmatites. This localization initializes the D4 shear zone of Collins (1989) C) Late Emu Pool and Cleland magmatism reheats older units and dome rocks rise into the upper crust. Emu Pool rocks fold and pinch Tambina rocks against the