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Abstract

We focus on the problem of inducing logic programs that explain models learned by the support vector ma-
chine (SVM) algorithm. The top-down sequential covering inductive logic programming (ILP) algorithms
(e.g., FOIL) apply hill climbing search using heuristics from information theory. A major issue with this
class of algorithms is getting stuck in a local optima. In our new approach however, the data dependent hill-
climbing search is replaced with a model-dependent search where a globally optimal SVM model is trained
first, then the algorithm looks into support vectors as the most influential data points in the model, and
induces a clause that would cover the support vector and points that are most similar to that support vector.
Instead of defining a fixed hypothesis search space, our algorithm makes use of SHAP, an example-specific
interpreter in explainable AI, to determine relevant set of features. This approach yields an algorithm that
captures SVM model’s underlying logic and outperforms other ILP algorithms in terms of the number of
induced clauses and classification evaluation metrics. This paper is under consideration for publication in
the journal of “Theory and practice of logic programming”.

KEYWORDS:Explainable AI, Data Mining, Inductive Logic Programming, Machine Learning

1 Introduction

Dramatic success of machine learning has led to an avalanche of applications of Artificial Intelligence (AI).
However, the effectiveness of these systems is limited by the machines’ current inability to explain their
decisions and actions to human users. That is mainly because the statistical machine learning methods
produce models that are complex algebraic solutions to optimization problems such as risk minimization
or geometric margin maximization. Lack of intuitive descriptions makes it hard for users to understand
and verify the underlying rules that govern the model. Also, these methods cannot produce a justification
for a prediction they arrive at for a new data sample. The problem of explaining (or justifying) a model’s
decision to its human user is referred to as the model interpretability problem. The sub-field is referred to
as Explainable AI.

The ILP learning problem is the problem of searching for a set of logic programming clauses that deduce
the training examples. ILP is a thriving field and a large number of such clause search algorithms have
been devised (Muggleton et al. 2012). The search in these ILP algorithms is performed either top down
or bottom-up. A bottom-up approach builds most-specific clauses from the training examples and searches
the hypothesis space by using generalization. This approach is not applicable to large-scale datasets, nor it
can incorporate negation-as-failure (Baral 2003) into the hypotheses. A survey of bottom-up ILP systems
and their shortcomings can be found at (Sakama 2005). In contrast, top-down approach starts with the most
general clauses and then specializes them. A top-down algorithm guided by heuristics is better suited for
large-scale and/or noisy datasets (Zeng et al. 2014).

The FOIL algorithm by Quinlan (Quinlan 1990) is a popular top-down algorithm. FOIL uses heuristics
from information theory called weighted information gain. The use of a greedy heuristic allows FOIL to
run much faster than bottom-up approaches and scale up much better. However, scalability comes at the
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Fig. 1: Optimal sequential covering with 3 Clauses (Left), Sub-Optimal sequential covering with
4 Clauses (Right)

expense of losing accuracy if the algorithm is stuck in a local optima and/or when the number of examples
is insufficient. The former is an inherent problem in hill climbing search and the latter is due to the shrinking
of examples during clause specialization. Figure 1 demonstrates how the local optima results in discovering
sub-optimal rules that do not necessarily coincide with the real sub-concepts they are supposed to capture.

Unlike top-down ILP algorithms, Support Vector Machine (SVM) (Cortes and Vapnik 1995) is a globally
optimal learning method that generalizes very well and comes with test error upper-bound in terms of the
number of support vectors and size of training input. However, this unique property is overshadowed by the
black-box nature of SVM models. Explaining the behavior of black-box models has motivated a long line
of research in Rule Induction from SVM models. As we argue in more detail in section 5, all proposed Rule
Extraction techniques either treat the model as black-box (Huysmans et al. 2008; Huysmans et al. 2006), or
are limited to certain type of kernels (Fung et al. 2005), or are too complex to interpret (Nuez et al. 2002).
A survey of existing Rule Extraction techniques can be found in (Diederich 2008).

Our new approach is based on the idea that each data sample is measurably similar/dissimilar to each
support vector. Therefore, each support vector represents a subset of data samples. Now, if a set of features
discriminate a support vector well, they would discriminate data samples similar to that support vector too.
In order to measure the similarity and to pick up the support vector that is most similar to each data sample,
we define a quantity based on the kernel value and each support vector’s α parameter. To discover the most
relevant features, our algorithm incorporates the SHAP technique. SHAP (Lundberg and Lee 2017) is an
example specific model interpreter that takes a model and an individual example and returns the contribution
of each feature value in model’s classification decision.

This paper makes the following novel contribution: it introduces a novel ILP algorithm called SHAP-
FOIL that iteratively learns a single clause for the most influential support vector (i.e., the support vector
that pulls the highest number of similar data samples), then removes the covered examples including the
support vector itself, and repeats this process until all examples/support vectors are covered. Our main
claim is that our novel algorithm (SHAP-FOIL) learns a logic program that captures the underlying logic
of an SVM model. This logic program serves as a human-understandable explanation of the SVM model.
Our experiments using UCI datasets support our claim, as they show that the logic program that SHAP-
FOIL learns is human understandable yet has precision, recall, accuracy and F1-score that is comparable
to the original SVM model. Explaining the model as a logic program leads to greater comprehensibility by
humans as logic programming has a well-defined declarative and operational semantics. This is in contrast
to other rule extraction methods that extract if-then-else rules that tend to have ad hoc semantics.

Our work also shows how ILP can leverage the power of statistical machine learning methods to per-
form the search for induced logic programs significantly better. Our statistical machine learning based ILP
method, SHAP-FOIL, performs significantly better than state-of-the-art ILP systems such as ALEPH (Srini-
vasan 2001). This claim, again, is supported by our experiments done using the UCI datasets, as they show
that the logic programs that are learned by SHAP-FOIL have precision, recall, accuracy, and F1-score that
are significantly better than ALEPH. In addition, a logic program that SHAP-FOIL learns is more concise
than the program learned by the ALEPH system for the same training set. Thus, SHAP-FOIL also improves
comprehensibility (as measured by program conciseness, i.e., program size).
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Rest of the paper is organized as follows. Section 2 gives background on various concepts: explainability,
ILP, the FOIL algorithm, SVM, and the game theory-based SHAP method. Section 3 presents our novel
SHAP-FOIL algorithm. Section 4 presents our experimental results, while Sections 5 discusses related
work. Finally, Section 6 presents our conclusions and planned future work.

2 Background

2.1 Explainable AI

Statistical machine learning techniques learn a model from the training data with high precision and accu-
racy. Once a model is learned, a new, previously unseen input can be given to the model and result obtained.
However, these models turn out to be “black boxes” whose internal workings are not understood since they
provide no clarity as to how the computed results depend on the input data.

Consider an example where one wants to build a machine learning system to automate the process of ap-
proving consumer loans. Training data based on past customers (their income, age, years in job, repayment
history, etc.) and the outcome for each (loan approved or declined) will be collected and a machine learning
algorithm applied to it. The machine learning algorithm will learn a model to which a new, previously un-
seen customer’s data can be input to determine if this new customer’s loan application ought to be approved
or not. The model will compute an output that tells us if a customer’s loan application should be approved
or declined, but it won’t tell us or explain to us why. Being able to explain the model’s decision is a major
problem and its study is referred to as Explainable AI.

We want explainability of the results computed by the model for many reasons some of which we list
here:

• It allows users to understand why a particular result was produced and not something else.
• If the result is justifiable, the user will trust the result more.
• It allows users to abide by the law as in many countries machine generated decisions have to come

with a justification (e.g, European Union’s GDPR).
• It allows a user to judge if the results are correct since if the training data is incorrect or biased,

results produced by the model will also be incorrect or biased.

Aside from explainability, we want to ensure that the rules are comprehensible by humans, show fidelity
and are accurate (Martens et al. 2008):

• Comprehensibility: The extent to which extracted representations are understandable by humans.
• Fidelity: The extent to which the extraction representations model the black box.
• Accuracy: The ability of extracted representations to make accurate predictions on previously un-

seen cases.

Comprehensibility is typically measured by the number of rules produced. The assumption is that the
fewer the rules, the easier it is for humans to understand the set of rules generated. One can also argue that
logic programs are more comprehensible than other formalisms for expressing rules. This is because logic
programming has a very well defined declarative and operational semantics.

Note that precision, recall and F1 score are the typical metrics used to measure fidelity.

2.2 Inductive Logic Programming

Inductive Logic Programming (ILP) (Muggleton 1991) is a subfield of machine learning that learns models
in the form of logic programming rules (Horn Clauses) that are comprehensible to humans. This problem
is formally defined as:
Given

1. a background knowledge theory B, in the form of an extended logic program, i.e., clauses of the
following form:

h← l1, ..., lm, not lm+1, ..., not ln
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where l1, ..., ln are positive literals and not denotes negation-as-failure (NAF) (Baral 2003) and B
has no even cycle (Gelfond and Kahl 2014)

2. two disjoint sets of ground target predicates E+,E− known as positive and negative examples, re-
spectively

3. a hypothesis language of function free predicates L, and a refinement operator ρ under θ -subsumption
(Plotkin 1971) that would disallow even cycles.

Find a set of clauses H such that:

• ∀e ∈ E+, B∪H |= e
• ∀e ∈ E−, B∪H 6|= e
• B∧H is consistent.

While we allow normal logic programs in our definition, we only learn logic programs with no negated
literals in our current work (any negated calls in these learned logic program arise due to propositionalisation
or one-hot encoding and can be executed using negation as failure as supported in Prolog). Even cycle
refers to programs where a recursive call occurs in the scope of even number of negation, for example, the
following program has an even cycle.

p :- not q.
q :- not p.

θ -subsumption (Plotkin 1971) is defined as follows: A clause c theta-subsumes another clause d if and
only if there exists a variable substitution θ such that cθ ⊆ d. θ -subsumption determines a partial order
of the clause space. Top element of this partial order is the most general clause p(X1, ...,Xn)← true.. A
refinement operator ρ which moves down this partial order, takes a hypothesis clause c and gives back a set
of all syntactically modified version c′ of c. In other words, each clause c′ is a θ -subsumed specialization
of c. For instance, the refinement operator ρ in Algorithm 1 specializes the clause h← b1, ...bn. by adding
a new literal l to the clause yielding h← b1, ...bn, l.

A large number of ILP algorithms have been devised (Muggleton et al. 2012). FOIL (Quinlan 1990) is
one such illustrative algorithm for ILP that is well known. FOIL is a top-down ILP algorithm which follows
a sequential covering scheme to induce a hypothesis. The FOIL algorithm is summarized in Algorithm
1. This algorithm repeatedly searches for clauses that score best with respect to a subset of positive and
negative examples, a current hypothesis and a heuristic called information gain (IG).

Algorithm 1 Summarizing the FOIL algorithm

Input: target,B,E+,E−

Output: Initialize H← /0
1: while (|E+|> 0) do
2: c← (target :- true.)
3: while (|E−|> 0∧ c.length < max length) do
4: for all c′ ∈ ρ(c) do
5: compute score(E+,E−,H ∪{c′},B)
6: end for
7: let ĉ be the c′ ∈ ρ(c) with the best score
8: E−← covers(ĉ,E−)
9: end while

10: add ĉ to H
11: E+← E+ \ covers(ĉ,E+)

12: end while
13: return H

Starting from the most general clause (i.e., p(X1, ...,Xn)← true. where the predicate p/n is the predicate
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being learned and each Xi is a variable), the inner loop searches for a clause with the highest information
gain using a general-to-specific hill-climbing search. To find the “best” clause, first, a refinement operator
ρ specializes the current clause h← b1, ...bn. by adding a new literal l to the clause yielding h← b1, ...bn, l.
The “best” choice for literal l is decided by a heuristic based search that employs information gain. In FOIL,
information gain for a given clause is calculated as follows:

IG(L,R) = t
(

log2
p1

p1 +n1
− log2

p0

p0 +n0

)
(1)

where L is the candidate literal to add to rule R, p0 (n0) is the number of positive (negative) examples cov-
ered by R respectively, p1 (n1) is the number of positive (negative) examples covered by R+L respectively,
and t is the number of positive examples that are covered by R and R+ L together. The function covers
in lines 8 and 11, takes a clause c and a set of examples E, and returns another (possibly empty) set of
examples that are logically implied by c.

2.3 Support Vector Machines

Given a training dataset of m data points~xi ∈ IRn and m corresponding labels yi ∈ {1,−1}, the linear support
vector machine is defined as the following optimization problem:

min
~w,b,ξi≥0

1
2
‖~w‖2

2 +C
m

∑
i=1

ξi (2)

such that: yi(~w.~xi−b)+ξi ≥ 1 where ξi is the slack error to potentially allow some points to be misclassi-
fied, ~w is the perpendicular vector to the separating hyper-plane, b is the offset of that hyper-plane, C is a
hyperparameter and determines the degree to which misclassification is allowed to avoid over-fitting.

An equivalent yet more efficient form of SVM problem known as dual formulation is defined as follows:

max
αi
−1

2

m

∑
i=1

yiy j~xi~x jαiα j +
m

∑
i=1

αi (3)

such that ∑
m
i=1 αiyi = 0 and 0≤ αi ≤C

The dot product in dual formulation can be replaced with any kernel function (i.e., a function that maps data
into higher dimensions). For non-linearly separable data, kernels map the data into a higher dimensional
feature space where data becomes separable. Equation (3) is a special case for the following general dual
formulation:

max
αi
−1

2

m

∑
i=1

yiy jK(~xi,~x j)αiα j +
m

∑
i=1

αi (4)

such that ∑
m
i=1 αiyi = 0 and 0≤ αi ≤C

After solving the above problem using quadratic programming, the αi and b are used to classify a new data
sample~x as follows:

f (x) = sign
[ m

∑
i=1

αiyiK(~xi,~x)+b
]

(5)

It turns out that α is a sparse vector and only few αi come back with non-zero values from the quadratic
solver package. They are called the support vectors and as Equation (5) suggests, proportionate to their
respective αi value, support vectors are the only influential data points in classification decision of any new
data sample.

While the kernel function is meant to map data points into a higher dimension efficiently, one can also
interpret the kernel value K(~xi,~x j) as a similarity measure between points~xi and~x j. For instance, in case of
the Gaussian radial basis kernel (rbf):

K(~xi,~x j) = e−γ‖~xi−~x j‖2
2 (6)

where γ is a hyper parameter. If ~xi and ~x j are similar, the kernel value would be close to 1. Otherwise, it
would be close to 0. This can be naturally used to quantify similarity. However, it should be noted from
Equation (5) that the magnitude of αi also contributes to the influence and similarity. Therefore, we define
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Fig. 2: Annotating Data Points in a 2D dataset With Most Similar Support Vector

the similarity of data point~x and the ith support vector~xi as follows:

simi(~x) = αiyiK(~xi,~x) (7)

For any new data sample ~x the support vector with highest sim value is the one that contributes most to
the prediction of~x. Figure 2 demonstrates an SVM model with rbf kernel trained on the same dataset from
Figure 1. In this figure, support vectors are the dots located on the dashed lines. They are labeled with an
integer identifier. Every other data point is annotated with the identifier of the most similar support vector
calculated using Equation (7). Since the similarity is measured with respect to the concept being learned,
the most similar support vector does not necessarily accord with the Euclidean distance.

2.4 SHAP

SHAP (Lundberg and Lee 2017) (SHapley Additive exPlanations) is a unified approach with foundations
in game theory to explain the output of any machine learning model in terms of its features’ contributions.
To compute each feature i’s contribution, SHAP requires retraining the model on all feature subsets S⊆ F ,
where F is the set of all features. For any feature i, a model fS∪{i} is trained with the feature i present, and
another model fS is trained with feature i eliminated. Then, the difference between predictions is computed
as follows: fS∪{i}(xS∪{i})− fS(xS), where xS represents sample’s feature values in S. Since the effect of
withholding a feature depends on other features in the model, the above differences are computed for all
possible subsets of S ⊆ F \ {i} and their average taken. The weighted average of all possible differences
(a.k.a Shapley value) is used as feature importance. Equation (8) shows how Shapley value associated with
each feature value is computed:

φi = ∑
S⊆F\{i}

|S|!(|F |− |S|−1)!
|F |!

[
fS∪{i}(xS∪{i})− fS(xS)

]
(8)

Given a dataset and a trained model, SHAP outputs a matrix with the shape (#samples,# f eatures) rep-
resenting the Shapley value of each feature for each data sample. Each row sums to the difference between
the model output for that sample and the expected value of the model output. This difference explains why
the model is inclined on predicting a specific class outcome.

Example 1
The UCI heart dataset contains features such as patient’s blood pressure, chest pain, thallium test results,
number of major vessels blocked, etc. The classification task is to predict whether the subject suffers from
heart disease or not. Figure 3 shows how SHAP would explain a model’s prediction over a data sample.

For this individual, SHAP explains why the model predicts heart disease by returning the top features along
with their Shapley values (importance weight). According to SHAP, the model predicts “heart disease”
because of the values of “thalium test” and “maximum heart rate achieved” which push the prediction from
the base (expected) value of 0.44 towards a positive prediction (heart disease). On the other hand, the feature
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“chest pain” would have pushed the prediction towards negative (healthy), but it is not strong enough to turn
the prediction.

Fig. 3: Shap Values for A UCI Heart Prediction

The categorical features should be binarized before an SVM model can be trained. Binarization (aka
one-hot encoding) is the process of transforming each categorical feature with domain of cardinality n, into
n new binary predicates (features). In Example 1, chest pain level is a categorical feature with 4 different
values in the set {1,2,3,4}. Type 4 chest pain indicates asymptomatic pain and is a serious indication of
a heart condition. In this case, binarization results in 4 different predicates. The “thalium test” is also a
categorical feature with outcomes in the set {3,6,7}. Any outcome other than 3, indicates a defect (6 for
fixed and reversible for 7).

In case of Example 1, SHAP determines that the feature “thal 7” with outcome of 1 (True), pushes the
prediction towards heart disease. To reflect this fact in our SHAP-FOIL ILP algorithm (described next),
for any person X , the predicate thal(X,7) is introduced. Also, SHAP indicates that the binary feature
“chest pain 4” with value 0 (False), pushes the prediction towards healthy. In our SHAP-FOIL algorithm
this is represented by negation-as-failure (Baral 2003) as not chest pain(X,4). Note that, at present,
negation-as-failure is used only to succinctly represent such one-hot encoded predicates.

3 The SHAP-FOIL Algorithm

In this section we introduce SHAP-FOIL, an algorithm capable of learning logic programs based on the
global behavior of an SVM model.

There are two major issues with the sequential covering algorithms such as FOIL: 1) As number of
examples decreases during specialization loop, probability of introducing an irrelevant predicate that acci-
dentally splits a particular set of examples increases. 2) The greedy nature of hill-climbing search in clause
specialization sometimes results in introduction of wrong predicates that would cover more examples at a
certain moment, but eventually leads to inducing a clause that does not perfectly represent sub-concepts
as shown in Example 1. This is known as Local Optima problem in hill-climbing search. Determining the
sub-concepts requires a global view which could only happen via a global optimization process such as an
SVM model. However, finding the best separating hyperplane in a higher dimension does not explain the
contributing features in any classification decision made by the model.

SHAP is able to quantitatively explain the features that would push the model towards predicting a spe-
cific outcome. In particular, for each support vector, SHAP determines a subset of feature value pairs that
would make the model arrive at a certain decision. It turns out that just by having the Shapley values of
support vectors, our algorithm can learn the global underlying behavior of SVM model. This is mathemat-
ically justified as follows: From Equation (5), every new data sample is interpreted in terms of similarity
to support vectors. The internal points are not relevant (because their corresponding αi parameter is 0).
Among support vectors, only the ones that are closely “similar” to the given point are relevant (because, for
dissimilar support vectors the kernel value of Equation (6) is close to 0).

The intuition behind SHAP-FOIL algorithm is as follows: If a subset of feature-values explains the
decision on a particular support vector, it explains the decision on data points that are “similar” to that
support vector too. Similarity is measured using Equation (7). In the context of sequential covering scheme,
SHAP-FOIL would find the support vector that pulls the greatest number of data points in terms of Equation
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(7). Next, it would specialize a clause by introducing predicates that are determined by SHAP for that
support vector. Then, the algorithm removes the data points that are covered by that rule. It also removes
the support vector. This process is repeated for the remaining data points. Since there are only finite number
of support vectors, the algorithm is guaranteed to terminate.

Unlike most ILP algorithms, SHAP-FOIL does not require discretization of numerical features in ad-
vance. During the specialization of a clause, if a numeric feature happens to have the highest Shapley
number for a support vector, a real arithmetic constraint is introduced by the algorithm. The end-points of
this interval is determined by looking into the respective values of all data points that are most similar to
that support vector.

Algorithm 2 Summarizing the SHAP-FOIL algorithm

Input: D = {(~x1,y1), ...,(~xm,ym)}
Input: SHAP matrix (m,# f eatures),Θ
Input: S = {sv | sv is a support vector and sv is T P}
Output: Hypothesis H = {}

1: function SHAP-FOIL(S,D)
2: while (S 6= /0) do
3: sim map = ANNOTATE SAMPLES(S,D)
4: sv = argmaxs∈S len(sim map[s])
5: c← (target :- true.)
6: ĉ← Specialize c using SHAP[sv]
7: if ĉ’s accuracy on D ≥Θ then
8: H← H ∪{ĉ}
9: D← D−{~xi |~xi ∈ D ∧ ĉ |= yi}

10: end if
11: S← S−{sv}
12: end while
13: return H
14: end function
15:

16: function ANNOTATE SAMPLES(S,D)
17: Let sim map be a map of type : S 7→ List
18: for each sv ∈ S do
19: sim map[sv] = [ ]

20: end for
21: for each~xi ∈ D do
22: sv = argmaxs∈S sim(s,~xi)

23: sim map[sv].append(~xi)

24: end for
25: return sim map
26: end function

Algorithm 2 summarizes the SHAP-FOIL algorithm. The algorithm inputs are as follows: 1) Set D of car-
dinality m representing m training data points. 2) SHAP matrix of a trained SVM model on D. 3) A threshold
Θ to determine minimum acceptable accuracy of each induced clause. 4) Set SV that are True Positive (TP)
support vectors (i.e., support vectors with label 1, also predicted 1 by the SVM model). The model out-
puts a hypothesis comprising a set of induced clauses. The While loop in line 2, iterates until all support
vectors are considered. (termination condition). In line 3, by calling the function ANNOTATE SAMPLES,
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all remaining data-points are annotated with a support vector among the remaining support vectors. This
support vector must have the highest similarity value to that data point. In line 4, the algorithm chooses sv,
the support vector which pulled the greatest number of data points from annotation. This allows to discover
the more inclusive rules first. In lines 5 and 6, similar to the FOIL algorithm, specialization from the most
general clause (i.e., target :- true.) is conducted. To specialize a clause, predicates determined by
the Shapley value of sv are added to the body in the order of their Shapley value magnitude. To add nu-
meric features, our algorithm creates an interval by finding the smallest and largest values in the list of data
samples associated with sv. The specialized clause is named ĉ. In line 7, the accuracy of ĉ is tested against
a threshold Θ. If it is higher than Θ, ĉ is added to the current hypothesis H in line 8. In line 9, similar to
FOIL, the set of data points covered by ĉ are removed from D (sequential covering). If ĉ achieves lower
accuracy than Θ, it is discarded. Regardless of the case, in line 11, sv is removed from the set of support
vectors. This serves two purposes: 1) It guarantees the termination. 2) More importantly, if in some iter-
ation, a support vector pulls greatest number of similar points but it does not yield an above Θ accurate
clause, to make progress possible, this support vector will be removed from consideration. We will clarify
this more in Example 3.

Example 2
Figure 1 illustrates the local optima issue of FOIL. In Figure 2, an SVM model is shown for the same
dataset with two features f1 and f2 and two classes of red and blue. The SHAP-FOIL algorithm learns the
following logic program on this dataset for the class red. While there are six support vectors, the set of red
example data points were found most similar to only three support vectors. As a a result, only three rules
were generated for “red” concept, shown below. The ‘blue’ concept can be learned similarly.

red(X):- f1(X,F1), 12.02 =< F1 <= 17.97,
f2(X,F2), 12.25 =< F2 <= 16.1 .

red(X):- f1(X,F1), 5.82 =< F1 <= 8.22,
f2(X,F2), 4.8 =< F2 <= 6.45 .

red(X):- f1(X,F1), 23.62 =< F1 <= 26.72,
f2(X,F2), 4.6 =< F2 <= 6.85 .

To handle numeric features, our algorithm creates an interval by finding the smallest and largest values in
the list of data samples associated with a support vector sv. This approach sometimes results in too coarse-
grained intervals that cover too many False Positives (FP) to tolerate. As explained earlier, to handle this
case, SHAP-FOIL removes sv and tries to break the region into smaller sub-regions. Each smaller region is
then covered by other support vectors. We illustrate this with an example.

Example 3
Consider a dataset of two features on which an SVM model is trained (Figure 4). At iteration 1, after
annotating the data samples, the support vector 3, pulls the majority of data samples. According to SHAP,
both numeric features contribute to the classification decision. However, after creating the intervals for
both features, the clause shown as a green box, ends-up covering significant number of False Positives.
This is shown in Figure 4. Therefore, the clause is discarded and the support vector 3, is removed from
consideration. As shown in Figure 5, on iteration 2, the support vector 8 pulls the highest number of data
samples. It yields an accurate clause. Thus, it is added to the hypothesis. On iteration 3, the support vector
2 pulls the rest of data samples and once again, it results in an accurate clause.

4 Experimental Results

In this section, we present our experiments on UCI standard benchmarks (Dua and Graff 2017). We compare
the performance of the logic program output by SHAP-FOIL with that of the original SVM model and the
ALEPH ILP system (Srinivasan 2001). ALEPH is a state-of-the-art ILP system that has been widely used
in prior work. To find a rule, ALEPH starts by building the most specific clause, which is called the “bottom
clause”, that entails a seed example. Then, it uses a branch-and-bound algorithm to perform a general-to-
specific heuristic search for a subset of literals from the bottom clause to form a more general rule. We set
ALEPH to use the heuristic enumeration strategy, and the maximum number of branch nodes to be explored
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Fig. 4: Iteration #1 of Example 3

Fig. 5: Iteration #2, #3 of Example 3

in a branch-and-bound search to 500K. We use the standard metrics including precision, recall, accuracy
and F1 score to measure the quality of the results.

Table 1 presents the comparison between ALEPH and SHAP-FOIL on classification evaluation of each
UCI dataset. It also shows the results for the SVM method. The best performer is highlighted with boldface
font. With the exception of congressional voting dataset where the SVM performance is lower than ALEPH,
the SHAP-FOIL algorithm always achieves higher score compared to ALEPH. Our experiments illustrate
two important points:

1. A logic program induced by SHAP-FOIL not only explains the black-box SVM model, it performs
well wrt all classification evaluation metrics, thus exhibiting high fidelity (quantitatively measured
by F1-score).

2. Our ILP algorithm in which learning of clauses is guided by a model-dependent search is superior
in performance to traditional ILP algorithms such as ALEPH. This insight can be adopted by other
ILP algorithms to make them better.
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Algorithm
SVM Aleph SHAP-FOIL

Data Set Kernel Prec. Recall Acc. F1 Prec. Recall Acc. F1 Prec. Recall Acc. F1
credit-j rbf 0.84 0.84 0.84 0.84 0.78 0.72 0.78 0.75 0.83 0.76 0.83 0.80
breast-w Poly 0.97 0.96 0.96 0.96 0.92 0.87 0.93 0.89 0.97 0.89 0.95 0.93
ecoli rbf 0.96 0.96 0.96 0.96 0.85 0.75 0.84 0.80 0.86 0.94 0.89 0.90
kidney poly 0.99 0.99 0.99 0.99 0.96 0.92 0.93 0.94 0.97 0.97 0.97 0.97
voting rbf 0.95 0.94 0.94 0.94 0.97 0.94 0.95 0.95 0.92 0.94 0.91 0.93
autism rbf 1.00 1.00 1.00 1.00 0.73 0.43 0.79 0.53 0.94 0.86 0.94 0.88
ionosphere rbf 0.95 0.95 0.94 0.95 0.89 0.87 0.85 0.88 0.92 0.90 0.90 0.91
heart poly 0.81 0.80 0.80 0.80 0.76 0.75 0.78 0.75 0.90 0.86 0.90 0.88

Table 1: Evaluation of SHAP-FOIL on UCI Datasets

The sequential-covering based algorithms—including ALEPH and FOIL—tend to learn too many rules
in presence of noisy data. Both algorithms induce more accurate clauses at the expense of covering fewer
examples by each clause. In our SHAP-FOIL algorithm, specialization is stopped once the purity of a clause
reaches the threshold Θ while the maximum coverage is guaranteed by SHAP because the specialization
is performed in the order of feature’s Shapley number. For instance, while ALEPH discovers 15 clauses
for UCI heart, the following logic program comprised of only 6 clauses is induced by the SHAP-FOIL
algorithm:

(1) heart_disease(X) :- thallium_test(X,7),
chest_pain(X,4),
exercise_induced_angina(X).

(2) heart_disease(X) :- maximum_heart_rate_achieved(X,F1),
106 =< F1, F1 =< 154,
not major_vessels(X,0),
oldpeak(X,F2),
1 =< F2, F2 =< 4.

(3) heart_disease(X) :- not major_vessels(X,0),
thallium_test(X,7),
chest_pain(X,4).

(4) heart_disease(X) :- thallium_test(X,7),
age(X,F1),
35 =< F1, F1 =< 52,
chest_pain(X,4).

(5) heart_disease(X) :- maximum_heart_rate_achieved(X,F1),
120 =< F1, F1 =< 147,
exercise_induced_angina(X),
chest_pain(X,4).

(6) heart_disease(X) :- not major_vessels(X,0),
chest_pain(X,4),
male(X).

The induced program can be understood as follows: In clause (1), thallium test(X,7) indicates
a thallium test with reversible defect, while chest pain(X,4) indicates an asymptomatic type of chest
pain. According to clause (1), these two conditions, conjoined with angina revealed in an exercise test
indicate the existence of heart disease. In clause (2), if maximum heart rate is achieved and during exercise
test it falls in the discovered range 106-154, ST depression induced by exercise relative to rest falls in the
range 1-4, and there are signs of blockage in major vessels (indicated by negation-as-failure), then the
combination means heart disease. The rest of the clauses are read similarly.

As stated earlier, our SHAP-FOIL algorithm not only does better than ALEPH in classification evalua-
tion measures, it also produces much smaller number of rules. In many cases, our SHAP-FOIL algorithm
produces an order of magnitude fewer rules than the ALEPH system. Obviously, smaller number of rules
are more readily understood by users. They can be manually revised by the user much more easily as well
(to better capture the learned knowledge) based on user’s background knowledge about the problem. Thus,
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logic programs discovered by our SHAP-FOIL algorithm are more comprehensible as they are shorter.
Table 2 shows the size of the program discovered by ALEPH vs. SHAP-FOIL.

Dataset credit-J breast-w ecoli kidney voting autism ionosphere sonar heart
ALEPH 30 20 13 10 7 11 13 10 13

SHAP-FOIL 22 5 8 5 5 6 14 6 6

Table 2: Number of lines in logic programs induced by Aleph and SHAP-FOIL

It should be noted that the comprehensibility of the program generated by SHAP-FOIL is superior to
those generated by various rule-extraction methods

5 Related Works

As noted earlier, all proposed Rule Extraction techniques either treat the model as black-box (Huysmans
et al. 2008; Huysmans et al. 2006), or are limited to certain type of kernels (Fung et al. 2005), or are too
complex to interpret (Nuez et al. 2002). A survey of existing Rule Extraction techniques can be found in
(Diederich 2008). In contrast, our SHAP-FOIL method produces a succinct logic program that has an ele-
gant declarative as well as operational semantics resulting in better comprehensibility. Most rule extraction
methods adopt an ad hoc if-then-else notation for representing the rules they output.

Rule extraction from statistical Machine Learning models has been a long-standing goal of the com-
munity. The rule extraction algorithms from machine learning models are classified into two categories:
1) Pedagogical (i.e., learning symbolic rules from black-box classifiers without opening them) 2) Decom-
positional (i.e., to open the classifier and look into the internals). TREPAN (Craven and Shavlik 1995) is
a successful pedagogical algorithm that learns decision trees from neural networks. Minerva (Huysmans
et al. 2008) and Iter (Huysmans et al. 2006) are pedagogical approaches to extract rules from SVM models.
There is also a broader pedagogical approach to rule extraction where an SVM model is trained first, then
the entire training data is re-labeled using the predictions of the SVM model, and finally a rule learning
method (e.g., C4.5, ID3, CART etc.) is applied. It should be noted that this approach suffers from the very
issue of local optima discussed in Figure 1.

SVM+Prototypes (Nuez et al. 2002) is a decompositional rule extraction algorithm that makes use of
KMeans clustering to extract rules from SVM classifiers by focusing on support vectors. The main draw-
back of this approach is that all extracted rules contain all possible input variables in its conditions, making
the approach too complex to interpret for large input dimensions. Fung (Fung et al. 2005) is another decom-
positional SVM rule extraction technique to extract propositional rules which is limited to linear kernels.
The advantage of our SHAP-FOIL algorithm is that it can handle all kernels and the induced hypotheses
are expressed in terms of the original features.

6 Conclusions and Future Work

In this paper we presented an algorithm to open up the Support Vector Machine (SVM) models and in-
duce logic programs by looking at the support vectors as the most influential points in making classification
decision. We make use of SHAP (Lundberg and Lee 2017) to find the most relevant features that would con-
tribute to the support vector’s prediction. We showed that finding data points “similar” to influential support
vectors allows same feature values to induce a hypothesis that correctly predicts internal data points. The re-
sulting algorithm significantly outperforms state-of-the-art ILP system ALEPH in terms of the classification
evaluation measures while it does not suffer from the local optima issue as explained earlier.

There are number of directions for future work: (i) Equation (7) can measure dissimilarity too. Dissim-
ilarity is usually expressed as negation-as-failure in ILP (Shakerin et al. 2017). We plan to incorporate
dissimilarity to support vectors of the opposite class as a way to reduce the number of induced clauses
as well as increase the accuracy of each clause. In such a case, we will be learning answer set programs
(Gelfond and Kahl 2014). Learning answer set programs has an added advantage of being able to distin-
guish between exceptions and noise (Shakerin et al. 2017; Shakerin and Gupta 2020). (ii) In sparse regions
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of training data, specialization is usually stopped too early. If the algorithm can introduce synthesized data
and have the SVM model label it, the SHAP-FOIL algorithm can continue specialization further and achieve
better test accuracy. (iii) Our work thus far has focused on classification problems. We plan to generalize
and extend our work to induce logic programs from regression models in the future. This will be achieved
by discretization of continuous spaces. It should be noted that we have applied our technique to gradient-
boosting models as well (Shakerin and Gupta 2020) with excellent results.
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