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Abstract 

Using numerical simulations, we probe the fluid flow in an axisymmetric peristaltic vessel 

fitted with elastic bi-leaflet valves. In this biomimetic system that mimics the flow generated in 

lymphatic vessels, we investigate the effects of the valve and vessel properties on pumping 

performance of the valved peristaltic vessel. The results indicate that valves significantly increase 

pumping by reducing backflow. The presence of valves, however, increases the viscous resistance 

therefore requiring greater work compared to valveless vessels. The benefit of the valves is the 

most significant when the fluid is pumped against an adverse pressure gradient and for low vessel 

contraction wave speeds. We identify the optimum vessel and valve parameters leading to the 

maximum pumping efficiency. We show that the optimum valve elasticity maximizes the pumping 

flow rate by allowing the valve to block more effectively the backflow while maintaining low 

resistance during the forward flow. We also examine the pumping in vessels where the vessel 

contraction amplitude is a function of the adverse pressure gradient as found in lymphatic vessels. 

We find that in this case the flow is limited by the work generated by the contracting vessel, 

suggesting that the pumping in lymphatic vessels is constrained by the performance of lymphatic 

muscle. Given the regional heterogeneity of valve morphology observed throughout the lymphatic 

vasculature, these results provide insight into how these variations might facilitate efficient 

lymphatic transport in the vessel’s local physiologic context.  

 

1. Introduction  

 
The lymphatic system is responsible for transportation of interstitial fluid, lipids, and immune 

cells to maintain homeostasis throughout the body. Interstitial fluid and macromolecules collected 
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and circulated by the lymphatic system join the blood circulatory system to maintain tissue fluid 

balance and waste management. Fatty acid is collected in the gut from food, packaged into 

chylomicrons, and transported via the lymphatic system as the primary route of lipid trafficking to 

the peripheral tissues, and transported immune cells and antigens provide a proper immune 

response (Dixon, 2010; Swartz, 2001). Nearly all tissues in the body critically rely on the lymphatic 

system for proper operation, yet this is achieved without a centralized pump and under an adverse 

pressure gradient. Instead, circulation is achieved by a combination of nearby tissues’ skeletal 

muscular movement (extrinsic pump) (Ikomi & Schmid-Schonbein, 1996; McGeown et al., 1988; 

Reddy et al., 1981; Skalak et al., 1984; Webb Jr & Starzl, 1953) and a series of contracting vessels 

and valves throughout the collecting lymphatics known as the intrinsic lymphatic pump (Davis et 

al., 2011; Quick et al., 2007; Zawieja, 2009). The intrinsic lymphatic pump is composed of chains 

of contractile units called lymphangions, defined as a region of lymphatic vessel separated by two 

lymphatic valves. For an efficient transport of lymphatic fluids in the desired direction, lymphatic 

valves play a critical role by reducing backflow and maximizing the net flow, often against a 

gravitational load.  

Dysfunction of lymphatic valves or smooth muscles that drive contractile motion of the 

lymphatic vessels can lead to debilitating conditions of lymphedema, for which there is currently 

no cure (Mortimer & Rockson, 2014). Palliative treatment options such as compression garments 

do exist, but these methods only seek to relieve the symptoms of disease without addressing the 

underlying cause. In some cases like genetic primary lymphedema, lymphatic valve defects have 

been identified as a major source of dysfunction (Brouillard et al., 2014; Davis et al., 2012; 

Eisenhoffer et al., 1995; Lapinski et al., 2017; Petrova et al., 2004; Sabine et al., 2015). While 

many of these studies have identified the molecular mechanism responsible for the morphologic 

valve defect, the structure-function relationship of lymphatic valves and the exact consequence of 

subtle valve defects on the pump performance of the lymphatic network are less understood. In 

addition, the role that factors like the heterogeneity of lymphatic valves play has been studied but 

is still largely unknown.  

To address this limited understanding, computational studies have been providing valuable 

insights in creating a detailed picture of lymphatic operation and has indicated that lymphatic 

valve’s properties affect the pumping performance of the lymphatic system (Bertram et al., 2014b; 

Davis et al., 2011; Wilson et al., 2015). These computational studies range from lumped-parameter 
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models that solve differential equations combined with experimental data (Baish et al., 2016; 

Bertram et al., 2011; Bertram et al., 2014a; Bertram et al., 2014b; Bertram et al., 2016; Jamalian 

et al., 2013; Jamalian et al., 2016; Razavi et al., 2017; Reddy et al., 1977) to multi-dimensional 

studies of fluid and solid components involved in lymph flow (Bertram, 2020; Kunert et al., 2015; 

MacDonald et al., 2008; Rahbar & Moore, 2011; Wilson et al., 2015). However, many of these 

studies employ assumptions or simplifications particularly in regard to valve behavior, providing 

only a limited understanding of the role of lymphatic valve to lymphatic transport performance 

and efficiency. For example, the lumped-parameter model or zeroth-dimensional study utilizes a 

valve resistance curve that is an empirical fit of lymphatic valve behavior based on a single 

experimental data (Bertram et al., 2011). Most of these studies can effectively simulate chains of 

lymphangions, thus revealing large-scale behaviors of lymphangion networks. But because of the 

rarity of measured lymphatic valve properties (Lauweryns & Boussauw, 1973; MacDonald et al., 

2008; Pan et al., 2011; Wilson et al., 2015), the empirical fit that describes the lymphatic valve’s 

flow response is limited in describing lymphatic performance and efficiency under different valve 

properties such as valve length and stiffness.  

Higher dimensional models of the lymphatic system can address this limitation by modeling 

the lymphatic valve based on more readily available geometric profile of the valve (Bertram, 2020; 

Wilson et al., 2015), but these models also simplify the physics through assumptions such as a 

steady flow condition (Wilson et al., 2015), exclusion of components that require fluid-structure 

interaction like the lymphatic valves (Rahbar & Moore, 2011), or using externally applied fluid 

flow (Bertram, 2020). We recently conducted three-dimensional simulations using a fully-coupled 

fluid-structure interaction model to probe the behavior of compliant lymphatic valves in a fluid 

flow (Ballard et al., 2018). Valves with different geometries and mechanics were placed in a rigid 

axisymmetric vessel and flow was induced by applying oscillating or unidirectional pressure 

gradients. It was found that shorter valves have a lower flow resistance, however when the valves 

are too short, they are unable to fully occlude the backflow, indicating the existence of an optimal 

valve length. It was also shown that more flexible valves cause a lower resistance to the flow. 

Furthermore, under oscillating flow, valve elasticity leads to a delay in valve response that has 

been reported in experiments (Davis et al., 2011).  

In this paper, we focus on understanding the pumping behavior of a peristaltically contracting 

vessel fitted with compliant valves similar to those found in lymphatic systems (Ohhashi et al., 



4 

 

1980; Zawieja et al., 1993). We consider a periodic vessel that undergoes periodic radial 

contractions leading to a sinusoidal traveling wave (Shapiro et al., 1969; Takabatake et al., 1988). 

We use this model to investigate the effects of elastic valves on pumping performance of 

peristaltically contracting vessels. Specifically, valve and vessel properties such as vessel 

contraction wave speed, vessel contraction amplitude, and valve elasticity are systematically 

probed for the peristaltic pumping under a range of applied adverse pressure gradients. 

Additional complexity in lymphatic systems emerges due the coupling between the contraction 

amplitude of lymphatic vessel and the applied adverse pressure gradient (Davis et al., 2012). 

Experiments show that an increasing adverse pressure gradient results in a decreased contraction 

amplitude diminishing the pumping performance of lymphatic vessel. Such behavior is typically 

associated with the finite force generation by the lymphatic muscle cells driving contractions. 

Other physiological features affecting lymphatic pumping include nonuniformity of vessel 

contraction near the valve (Akl et al., 2011; Davis et al., 2012) and lymph flow-sensitive wall 

contraction via wall shear stress (Gashev et al., 2002; Kornuta et al., 2015). Here, we examine how 

the coupling between the adverse pressure gradient and the vessel contraction amplitude affects 

the pumping performance of peristaltic vessels with elastic valves.  

Without valves, peristaltic pumping generates fluid packets with alternating axial velocity that 

are steady in the moving frame of reference under constant contraction wave speed 𝑐 (Figure 1a). 

These velocity packets lead to a net transport of the fluid in the direction of wave propagation that 

we refer as the positive flow direction. The presence of an adverse pressure gradient can reduce 

the net fluid pumping by peristaltic oscillations and ultimately can result in a negative flow (Figure 

1b). When the adverse pressure gradient is large enough, sections with positive flow velocity 

diminish or entirely disappear, even though the general pattern with repeating velocity packets is 

still maintained (Figure 1c). The peristaltic pumping in a vessel without valves provides a baseline 

that allows us to evaluate the function of valves and to identify their effects on the fluid flow and 

pumping.  



5 

 

 

Figure 1. a) Axial component of flow velocity 𝑈𝑥 in a valve-less peristaltic vessel without an 

imposed pressure gradient yielding a flow rate 𝑄 = 0.15. b) Axial velocity 𝑈𝑥 in a vessel with an 

adverse pressure gradient Δ𝑃 = 140 yielding a flow rate 𝑄 = −0.22. c) Centerline axial velocity 

𝑈𝑥(0) in the moving reference frame 𝑋 − 𝑇. In these simulations, the contraction ratio is 𝜙 = 0.2, 

and the peristaltic Reynolds number is 𝑅𝑒 = 0.2. Note that 𝑋 = 𝑥 𝜆⁄ , 𝑇 = 𝑡 𝜏⁄ , Δ𝑃 = 𝛥𝑝𝜆 𝑟0
2𝜌/

𝜇2  𝑄 = 𝑞 𝜋𝑟0
2𝑐⁄ , 𝜙 =

𝑎

𝑟0
, and 𝑅𝑒 = 𝜌𝑐𝑟0

2/𝜇𝜆 , where 𝛥𝑝𝜆  is the pressure difference across a 

contraction wavelength, 𝑞 is the vessel flow rate, 𝑟0 is the mean radius of the vessel, 𝑥 is the axial 

coordinate, 𝜌 and 𝜇 are the fluid density and dynamic viscosity, and 𝑡 is time. Furthermore, 𝜆, 𝜏, 

𝑐, and 𝑎 are the wavelength, period, speed, and amplitude of vessel contraction. See Video S1 in 

SI. 

 

The paper is organized as follows. In Section 2, we present our computational methodology 

and the model validation. This section also describes the relevant model parameters. The 

simulation results are reported and discussed in Section 3. Section 3.1 compares peristaltic 

pumping in vessels with and without valves to identify the effects of valve on the flow pattern and 

pumping performance. Section 3.2 investigates the effect of vessel contraction speed on flow 

behavior and pumping performance. Section 3.3 studies the effect of an adverse pressure gradient, 

while Section 3.4 examines the effect of valve elasticity on the pumping performance. Section 3.5 

considers the effects of coupling between the adverse pressure gradient and the amplitude of vessel 

contractions on the fluid pumping. Our conclusions are summarized in Section 4. 
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2. Methodology 

 
To model viscous fluid flow within a peristaltic vessel fitted with elastic valves, a fully coupled 

three-dimensional fluid-structure interaction solver (FSI) is used. A lattice Boltzmann model 

(LBM) and a lattice spring model (LSM) are used to simulate the fluid mechanics and solid 

mechanics, respectively. To capture interactions between fluid and solid, the models are coupled 

through the boundary conditions as implemented previously (Alexeev et al., 2005; Alexeev & 

Balazs, 2007).  

LBM efficiently simulates incompressible viscous flows (Ladd & Verberg, 2001; Succi, 2001) 

and is well suited for studies with complex, moving geometries, such as compliant valves and 

contracting vessels. LBM simulates the Navier-Stokes equations at mesoscale by integrating the 

time evolution of the velocity distribution function representing fluid “particles” moving on a fixed 

lattice 𝑓𝑖(𝒓, 𝑡) , where 𝑖 , 𝒓 , and 𝑡  are the velocity direction, the lattice position, and time, 

respectively. The distribution function is integrated over discrete time steps via streaming and 

collision of “particles”, where fluid “particles” travel across the lattice in a given speed and 

direction. In this work, we use BGK collision operator and a D3Q19 grid representing a three-

dimensional system with 19 discrete velocity directions. Hydrodynamic fields such as density, 

momentum, and stresses are evaluated by taking moments of the distribution function.  

Solid components of the system are modelled using LSM (Buxton et al., 2005; Ostoja-

Starzewski, 2002). We represent thin elastic valve material as an infinitely thin elastic plate 

discretized using a network of masses linked by stretching and bending springs. Solid nodes are 

arranged in a regular triangular lattice with nearby nodes connected via a linear stretching spring 

of in-plane stiffness 𝑘𝑠. The bending of the plate is modeled through a series of bending springs 

with bending stiffness 𝑘𝑏, which connect three neighboring LSM nodes. The related macroscopic 

properties, such as Young’s modulus and bending rigidity, are defined using the in-plane and 

bending stiffnesses as 𝑒𝑠 = 2𝑘𝑠 √3⁄  (Ostoja-Starzewski, 2002) and 𝑑𝑏 = 3√3𝑘𝑏 4⁄ , respectively 

(Buxton et al., 2005).  

LBM and LSM interact through a two-way coupling at fluid-solid boundaries with the 

momentum exchange approach. The momentum due to fluid-solid interaction is transferred to fluid 

using interpolated bounce-back rule and distributed through corresponding solid nodes via applied 

forces to ensure momentum conservation (Alexeev et al., 2005; Alexeev et al., 2006; Mao & 
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Alexeev, 2014). This method of coupling has been previously extensively validated with different 

FSI problems (Ballard et al., 2018; Hanasoge et al., 2017; Mao & Alexeev, 2014; Masoud et al., 

2012; Yeh & Alexeev, 2016).  

Initial geometry of the model is composed of a periodic fluid-filled axisymmetric vessel and 

two sets of valves with each valve made up of two compliant leaflets (Figure 2). Each leaflet is 

created from an intersecting plane between an axisymmetric vessel and a plane that cuts through 

the vessel at an angle (Ballard et al., 2018). Thus, the elastic leaflets are initially flat. The leaflet 

edge that overlaps with the vessel wall is firmly attached to the wall and follows the wall motion. 

The free edge of the leaflet has a semicircular cutout mimicking the typical geometry observed for 

lymphatic valves (Watson et al., 2017). The valve geometry combined with the axisymmetric 

vessel deem it necessary to use of a three-dimensional computational model since lower 

dimensional or axisymmetric models are unable to capture the leaflet motion. The leaflet geometry 

is characterized by the aspect ratio that is defined as the ratio between axial length of the leaflet 

and mean diameter of the vessel. In this work, we keep the leaflet aspect ratio equal to 1.75 that is 

in the typical range of experimental values (Ballard et al., 2018). The simulation domain has 301 

by 44 by 44 LBM nodes in x, y, and z-directions, respectively, while the vessel and valves are 

composed of 8272 LSM nodes. The initial distance between two neighboring LSM nodes is about 

twice the distance between neighboring LBM nodes.  

The vessel undergoes a prescribed radial motion that leads to a sinusoidal traveling wave 

propagating along the vessel in the axial 𝑥 direction. The periodic motion of the vessel wall is 

given by 𝑟𝑣𝑒𝑠𝑠(𝑥, 𝑡) = 𝑟0 [1 + 𝜙 𝑠𝑖𝑛 (
2𝜋

𝜆
(𝑥 − 𝑐𝑡))], where 𝑟0 is the mean radius of the vessel, 𝜙 

is the normalized contraction amplitude, 𝜆 is the wavelength, and 𝑐 = 𝜆 𝜏⁄  is the wave speed with 

𝜏 being the oscillation period. Note that 𝜙 =
𝑎

𝑟0
 where 𝑎 is the vessel contraction amplitude. We 

set the wavelength equal to the distance between centroids of two consecutive valves. The 

wavelength is kept at a constant value equal to the distance between valves to induce synchronous 

valve deformation, providing a clearer understanding behind fundamental operation of valves in 

contracting vessel. We plan to further explore the effect of contraction wave wavelength in our 

future works. 
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Figure 2. a) Model of a periodic contracting vessel fitted with two valves. b) Shape and dimensions 

of the valve leaflet. The edge on the right side of the leaflet is free, whereas the remaining part of 

the edge is attached to the vessel wall. The aspect ratio of the valve is defined as 𝑙 𝑑 = 1.75⁄ . c) 

Image of a lymphatic vessel segment with a valve. d) Typical valve profiles during different stages 

of valve operation. i: initial valve configuration, ii: valve opening, and iii: valve closure. See Video 

S2 in SI. 

 

Experiments report a wide range of the contraction wavelength 𝜆. Indeed, the weave speed 𝑐 

ranges from zero to 10𝑚𝑚/𝑠  with the frequency between 7 and 21 contractions per minute 

yielding the wavelength between 0 and 81𝑚𝑚 (Akl et al., 2011; MacDonald et al., 2008). Since 

the vessel diameters typically range from 80𝜇𝑚 to 2.8𝑚𝑚 and considering that the larger vessels 

exhibit a longer wavelength, we estimate that the ratio of the wavelength to the vessel radius 𝜆 𝑟0⁄  

is in a wide range between 0 and 60. In our simulations, we set 𝜆 𝑟0⁄ = 15, which falls well in the 

experimental range. Furthermore, considering that inter-valve distance is the same as 𝜆, this puts 

the valve placement within the experimental range where the values of this ratio are up to 20 

(Margaris & Black, 2012; Pan et al., 2010; Pan et al., 2011). To model lymphatic chain, we use a 
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periodic boundary condition in the axial direction, simulating an infinitely long repeating chain of 

valves.  

We vary the following system parameters to investigate the vessel pumping performance: the 

traveling speed of vessel contraction wave 𝑐 that is varied by varying the contraction period 𝜏, the 

normalized contraction ratio 𝜙, the adverse pressure difference over a contraction wavelength 𝛥𝑝𝜆, 

and the in-plane stiffness and the bending stiffness of the valve. The ranges of these system 

parameters are selected based on the available experimental data summarized in Table 1. 

Note that in lymphatic systems, the contraction amplitude depends on the adverse pressure 

difference 𝛥𝑝𝜆 (Davis et al., 2012). Here, we first examine the flow where the two parameters are 

independent to isolate the effect of each parameter on the flow. Then, the two parameters are 

coupled via the experimentally reported relationship and investigated to reveal any difference 

arising from the coupling. 

 

Table 1 Lymphatic system parameters  

Parameters Experiments Reference 

Valve length, 𝑙 (𝜇𝑚) 80~2800 

(est.) 

Akl et al. (2011); Pan et al. (2011); Rahbar and 

Moore (2011); Wilson et al. (2015) 

Average vessel diameter, 𝑑 

(𝜇𝑚) 

80~2800 Akl et al. (2011); MacDonald et al. (2008); 

Pan et al. (2011); Rahbar and Moore (2011); 

Wilson et al. (2015) 

Valve thickness (𝜇𝑚) 0.5~6 Lauweryns and Boussauw (1973) 

Applied adverse pressure 

difference, 𝛥𝑝𝜆 (𝑃𝑎) 

0~2000 Davis et al. (2011); Davis et al. (2012); Scallan 

et al. (2012) 

Contraction wave speed, 𝑐 

(𝑚𝑚/𝑠) 

0~10 Akl et al. (2011)  

Contraction frequency, 1/𝜏 

(𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛/𝑚𝑖𝑛) 

7~21 Akl et al. (2011) 

Dimensionless contraction 

amplitude, (𝜙) 

0~0.45 Davis et al. (2012) 

Viscosity, 𝜇 (𝑚𝑃𝑎 ∙ 𝑠) 0.89~1.36 Kassis et al. (2016); MacDonald et al. (2008); 

Moore and Bertram (2018) 

Fluid density, 𝜌 (𝑘𝑔/𝑚3) 998~1016 Burton-Opitz and Nemser (1917); MacDonald 

et al. (2008); Moore and Bertram (2018) 
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The above mentioned physical parameters can be expressed in terms of the following 

dimensionless parameters relevant to peristaltic pumping (Shapiro et al., 1969; Takabatake et al., 

1988), which are indicated using the uppercase. We use the dimensionless axial coordinate 𝑋 =

𝑥 𝜆⁄ , radial coordinate 𝑅 = 𝑟 𝑟0⁄ , axial component of flow velocity 𝑈𝑥 = 𝑢𝑥 𝑐⁄ , and time 𝑇 = 𝑡 𝜏⁄ . 

The adverse pressure difference is nondimensionalized as Δ𝑃 = 𝛥𝑝𝜆 𝑟0
2𝜌/𝜇2, which represents 

the ratio between pressure and viscous forces during peristaltic pumping (Böhme & Müller, 2013; 

Hariharan et al., 2008; Rachid & Ouazzani, 2015; Rao & Usha, 1995; Shapiro et al., 1969; Tripathi, 

2013). The Reynolds number for peristaltic pumping is defined as 𝑅𝑒 = 𝜌𝑐𝑟0
2/𝜇𝜆, where 𝜌 is the 

fluid density, and 𝜇 is the dynamic viscosity (Connington et al., 2009; Pozrikidis, 1987; Shapiro 

et al., 1969; Takabatake et al., 1988; Zien & Ostrach, 1970). Because parameters that describe 𝑅𝑒 

are kept constant throughout the work except for 𝑐, a change in peristaltic Reynolds number means 

a corresponding change in contraction wave speed defined by 𝜏. We vary 𝑅𝑒 in the range between 

0.1 and 1.4. The dimensionless valve leaflet in-plane and bending stiffnesses are 𝐾𝑠 =
𝑘𝑠𝜌𝑟0

𝜇2  and 

𝐾𝑏 =
𝑘𝑏𝜌

𝜇2𝑟0
, respectively. These parameters represent the ratios between, respectively, stretching 

and bending forces experienced by the valve and the viscous forces applied on the vessel wall.  

The pumping performance is quantified in terms of the flow rate 𝑞 averaged over a wave period 

𝜏, the average work done by the vessel wall 𝑤𝑎𝑣𝑔, pumping efficiency 𝜂 and pumping economy 𝜀 

that are both evaluated over a wavelength 𝜆 and averaged over a wave period 𝜏. To calculate 𝑤𝑎𝑣𝑔 

the work done by vessel walls is calculated by integrating the hydrodynamic force on the wall over 

the wall displacement and averaging the work over the wavelength 𝜆 and period 𝜏 of the vessel. 

The pumping efficiency is defined as 𝜂 = 𝑞Δ𝑝𝜆𝜏/𝑤𝑎𝑣𝑔   while the pumping economy is defined as 

𝜀 = 𝑞(Δ𝑝𝜆 + Δ𝑝𝑣𝑖𝑠𝑐)𝜏/𝑤𝑎𝑣𝑔, where Δ𝑝𝑣𝑖𝑠𝑐 is pressure loss due to viscous friction for laminar flow 

arising at flow rate 𝑞 in a straight pipe with radius 𝑟0 and length 𝜆. This is expressed as Δ𝑝𝑣𝑖𝑠𝑐 =

𝑞/ (𝜋𝑟0
4 8𝜇𝜆⁄ ). Thus, the pumping efficiency represents the relative amount of work done by the 

vessel that goes into the transporting the fluid against the adverse pressure gradient, whereas the 

flow economy indicates the proportion of the work that is consumed by the fluid transport and 

viscous losses. The flow rate is normalized as 𝑄 = 𝑞 𝑞0⁄ , where 𝑞0 = 𝜋𝑟0
2𝑐 is the flow rate in a 

rigid pipe with radius 𝑟0 and average flow velocity 𝑐. Note that this normalization that has been 

previously used for peristaltic pumping (Shapiro et al., 1969; Takabatake et al., 1988). Work done 

by the vessel wall per wave period is normalized by the corresponding friction loss generated in a 
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rigid pipe with an average flow velocity 𝑐 using Hagen-Poiseuille law (Sutera & Skalak, 1993) 

and is given by 𝑊 = 𝑤𝑎𝑣𝑔 (8𝜇𝜆𝜋𝑐2𝜏)⁄ . To characterize valve opening, we evaluate the cross-

sectional area defined by the free edges of the leaflets 𝑎𝑣𝑎𝑙𝑣𝑒  that is normalized as 𝐴 =

𝑎𝑣𝑎𝑙𝑣𝑒/𝜋𝑟0
2. The maximum valve opening 𝐴𝑚𝑎𝑥 is defined as the maximum value of 𝐴 over a 

vessel cycle. Furthermore, we examine the time that the valve is closed per vessel cycle 𝑇𝑐 = 𝜏𝑐 𝜏⁄ . 

Here, 𝜏𝑐 is the time that valve remains closed during one vessel period. The valve is considered 

closed when 𝐴 < 0.05. The dimensionless parameters are summarized in Table 2.  

 

Table 2 Definitions of the dimensionless parameters 

Dimensionless parameter Expression 

Input parameters 

Peristaltic Reynolds number 𝑅𝑒 = 𝜌𝑐𝑟0
2/𝜇𝜆 

Contraction amplitude 𝜙 = 𝑎 𝑟0⁄  

Pressure difference Δ𝑃 = 𝛥𝑝𝜆 𝑟0
2𝜌/𝜇2 

Bending stiffness 𝐾𝑏 = 𝑘𝑏𝜌 𝜇2𝑟0⁄  

In-plane stiffness  𝐾𝑠 = 𝑘𝑠𝜌𝑟0 𝜇2⁄  

Output parameters 

Flow rate 𝑄 = 𝑞 𝑞0⁄ = 𝑞 (𝜋𝑟0
2𝑐)⁄  

Work done by the vessel 𝑊 = 𝑤𝑎𝑣𝑔 (8𝜇𝜆𝜋𝑐2𝜏)⁄  

Pumping efficiency 𝜂 = 𝑞Δ𝑝𝜆𝜏/𝑤𝑎𝑣𝑔 

Pumping economy 𝜀 = 𝑞(Δ𝑝𝜆 + Δ𝑝𝑣𝑖𝑠𝑐)𝜏/𝑤𝑎𝑣𝑔 

Valve opening cross section 𝐴 = 𝑎𝑣𝑎𝑙𝑣𝑒/𝜋𝑟0
2 

Valve closure time 𝑇𝑐 = 𝜏𝑐 𝜏⁄  

Descriptive parameters 

Axial coordinate 𝑋 = 𝑥 𝜆⁄  

Radial coordinate 𝑅 = 𝑟 𝑟0⁄  

Axial flow velocity  𝑈𝑥 = 𝑢𝑥 𝑐⁄  

Time 𝑇 = 𝑡 𝜏⁄  
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The simulations start with a stagnant fluid and continue for at least 5 contraction periods to 

eliminate the influence of the initial transient. This ensures that the difference in the results 

between consecutive periods does not exceed 1%.  

We have previously extensively validated our FSI model with application to different flows 

including lymphatic pumping (Ballard et al., 2018; Hanasoge et al., 2017; Mao & Alexeev, 2014; 

Masoud et al., 2012; Yeh & Alexeev, 2016). Here, we perform two additional tests to examine the 

accuracy of the model for simulating flow generated due to moving vessel walls. The first test 

(Figure 3) compares the axial velocity profiles in vessels with radially moving walls with the 

analytical solutions for semi-infinite circular pipe flow with the same wall motion (Uchida & Aoki, 

1977). The normalized radial velocity is defined as 𝛼 =
𝜌𝑣𝑟(𝑡)𝑟(𝑡)

𝜇
, where 𝑣𝑟(𝑡) is the radial speed 

and 𝑟(𝑡) is the radial position. Three different normalized radial speeds were tested for expanding 

and contracting vessels. Normalized axial velocity profiles in Figure 3 indicate that the numerically 

calculated flow velocities are in close agreement with the analytical results for both expanding and 

contracting vessels. 

  

 
Figure 3. Axial flow velocity 𝑢𝑥 in a) expanding and b) contracting vessels for different values of 

radial wall velocity 𝛼. Axial velocity is normalized by the mean axial velocity of the vessel 𝑢𝑚, 

whereas the radial coordinate 𝑟 is normalized by the vessel radius 𝑟𝑝𝑖𝑝𝑒. The lines represent the 

simulated results, whereas the symbols represent the analytical solution (Uchida & Aoki, 1977).  
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The second test compared 𝑄  and 𝑊  obtained using an analytical solution for peristaltic 

oscillation (Shapiro et al., 1969; Takabatake et al., 1988) with simulated results, as shown in Figure 

4. The comparison is made for 𝜙 = 0.2 and 0.25, ∆𝑃 = 0 and 140, and for a range of 𝑅𝑒. It was 

found that the simulations are close to the analytical solution under different system parameters 

relevant to our study. Divergence from the analytical solution growths as 𝑅𝑒 increases. This can 

be expected since the analytical solution assumes 𝑅𝑒 ≪ 1. 

 
Figure 4. a) Flow rate 𝑄 and b) vessel work 𝑊 as a function of peristaltic Reynolds number 𝑅𝑒 

for different contraction amplitude 𝜙 without valves. The solid and dotted lines show the analytical 

and numerical solutions, respectively. The empty and filled symbols represent data for Δ𝑃 = 0 and 

Δ𝑃 = 140, respectively.  

 

3. Results and discussion 

 
3.1 Flow pattern 
 

Figures 5a and 5b present snapshots showing axial velocity magnitude and valve deformation 

for different stages of the vessel contraction cycle, respectively, without and with adverse pressure 

gradient (see Video S3 in SI). Note that figures show one valve since the flow profile and valve 

deformation repeat due to their synchronous motion. Similar to peristaltic pumping without valves 

(Figure 1), the flow is divided into alternating packets of positive and negative axial velocities. 

Regions of the positive axial velocity travel in the expanded region of the vessel, while packets of 

negative axial velocity propagate within the contracted region of the vessel. This indicates that 

velocity packets propagate with the same speed as the contraction wave (Shapiro et al., 1969; 

Takabatake et al., 1988).  

Unlike vessels without valves, velocity packets are disrupted when they pass through the 

elastic valves. Compared to an axisymmetric flow profile in the cases without valves, flow 
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disruption by the valves results in a flow that is no longer axisymmetric even though the pattern 

of alternating positive and negative velocity packets still persists. The valves open when they 

encounter packets of positive axial velocity and close to occlude the flow when packets of negative 

axial velocity pass. Thus, the valves affect the forward and backward flow in different ways. While 

the forward flow is allowed with some viscous loss due to the reduced orifice size, the backflow 

can be significantly suppressed and ultimately stopped by fully closed valves.  

 

Figure 5. a) Axial flow velocity 𝑈𝑥 at different instances of the contraction cycle in a valved vessel 

with no adverse pressure gradient. b) Axial flow velocity 𝑈𝑥 in a valved vessel with Δ𝑃 = 140. 

The flow profiles are shown at the symmetry plane perpendicular to the valve opening. Note that 

due to the valves, flow profile is not axisymmetric. The simulation parameters are 𝜙 = 0.2, 𝑅𝑒 =
0.2, 𝐾𝑏 = 88, and 𝐾𝑠 = 115. See Video S3 in SI. 

 

The valves deform differently when encountering fluid packets with positive and negative 

velocities, as shown in Figure 2d and in Video S2. When encountering packets of positive axial 

velocity, the leaflets stretch and deform outwards by a combined action of the flow and the vessel 

expansion. This process increases the opening area of the valve defined by the leaflet free edges, 

thereby enabling fluid flow. When the valve encounters negative velocity packets, the vessel 

contracts. The middle of the leaflets deforms inwards, allowing the free edges to rapidly collapse 
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and block the flow. The valve closure process culminates by creating a coaptation zone expanding 

from the leaflet free edges. 

The effect of valves on backflow reduction is more evident when the flow is subjected to an 

adverse pressure gradient. In this scenario, a peristaltic vessel without a valve has a limited 

capacity to transport fluid in the direction of wave propagation (Figure 1b), whereas addition of 

unidirectional valves yields a positive net flow in the vessel (Figure 5b). Note that without adverse 

pressure gradient, both vessels with and without valves can successfully pump fluid in the positive 

direction (Figure 1a and Figure 5a). This further points to the important role that valves play in 

enabling pumping against adverse pressure gradients. 

 

Figure 6. a) Axial flow velocity difference ∆𝑈𝑥 at different instances of the contraction cycle in a 

valved vessel with no adverse pressure gradient. b) Axial flow velocity difference ∆𝑈𝑥 in a valved 

vessel with Δ𝑃 = 140. The flow profiles are shown at the symmetry plane perpendicular to the 

valve opening. The simulation parameters are 𝜙 = 0.2, 𝑅𝑒 = 0.2, 𝐾𝑏 = 88, and 𝐾𝑠 = 115. The 

flow velocity difference ∆𝑈𝑥 is calculated as the difference between flow velocities in vessels with 

and without valves. See Video S4 in SI. 

 

The effect of valves on pumping is further revealed when considering the difference in axial 

velocity between vessels with and without valves denoted as ∆𝑈𝑥 and shown in Figure 6 (see 

Video S4 in SI). When packets of positive velocity pass through an open valve (see Figure 6 for 
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𝑇 = 0.2 and 0.4), the overall flow velocity pattern is similar to the flow in the valve-less vessel 

with minor flow disturbances around the valves, where the flow accelerates due to the reduced 

opening between the leaflets. In this case, ∆𝑈𝑥 is nearly zero everywhere in the vessel except for 

a small region in the vicinity of the valve. The velocity difference ∆𝑈𝑥 is more significant when 

vessel contraction passes the valve. In this case, negative flow velocity causes the valve to close 

and block the flow. This, in turn, results in a positive ∆𝑈𝑥 in most of the vessel, as shown in Figure 

6 for 𝑇 = 0, 0.6, and 0.8. A significant positive difference in velocity between the cases with and 

without valves when the valves are closed indicates that the valves increase pumping by reducing 

backflow. Furthermore, when comparing Figures 6a and 6b, we find that the backflow reduction 

is more prominent when the pumping is against an adverse pressure gradient. Indeed, the adverse 

pressure gradient causes a significant negative flow when the valve-less vessel contracts (Figure 

1b). The backflow is stopped by the closed valves in the case of the vessel fitted with valves (Figure 

5b).   

 

3.2 Effect of contraction wave speed on pumping 
 

We examine the effect of contraction wave speed on pumping by varying the peristaltic 

Reynolds number that, in turn, is realized by varying the contraction period 𝜏. In Figure 7, we 

show how the centerline flow velocity 𝑈𝑥(0) changes along the vessel without an adverse pressure 

gradient at 𝑅𝑒 = 0.2 and 𝑅𝑒 = 0.6. The velocity is shown as a function of the distance along the 

vessel 𝑋 and in the moving reference frame 𝑋 − 𝑇. In Figures 7a and 7c, which show the velocity 

𝑈𝑥(0) as a function of the distance along the vessel 𝑋, the two vertical dotted lines indicate the 

location of the valve with the leaflet free edge being on the right side. Furthermore, the horizontal 

lines in these figures show the maximum and minimum magnitude of the centerline velocity in a 

vessel without a valve. Figures 7b and 7d show the velocity 𝑈𝑥(0) in the moving reference frame 

𝑋 − 𝑇 in which case the velocity in a valve-less vessel is represented by a single line. Note that 

the velocities in Figures 7a and 7b correspond to the snapshots shown in Figure 5a.  
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Figure 7. a) Centerline axial flow velocity 𝑈𝑥(0) in the stationary reference frame in a vessel with 

no adverse pressure gradient with 𝑅𝑒 = 0.2. The maximum valve opening is 𝐴𝑚𝑎𝑥 = 0.44. b) 

Same as a) but in the moving reference frame, the solid black line indicates the average centerline 

velocity for the valve-less vessel. c) Centerline axial flow velocity 𝑈𝑥(0) in a stationary reference 

frame in a vessel with 𝑅𝑒 = 0.6. The maximum opening is 𝐴𝑚𝑎𝑥 = 0.68. d) Same as c) but in the 

moving reference frame, the solid black line indicates the average centerline velocity for the valve-

less vessel. The horizontal solid lines indicate the maximum and minimum centerline velocities in 

a vessel without valves. The dashed vertical lines indicate the boundaries of valve position. The 

blue and red lines show the velocities when the valves are, respectively, open (𝐴 ≥ 0.05) and 

closed (𝐴 < 0.05). The simulation parameters are Δ𝑃 = 0, 𝜙 = 0.2, 𝐾𝑏 = 88, and 𝐾𝑠 = 115.  

 

Outside from the regions around the valve, the centerline velocity follows a sinusoidal wave 

(Figure 7a), which is characteristic for the centerline velocity in peristaltic vessels without valves 

(Figure 1c). The valves introduce a velocity disturbance that is manifested by a velocity maximum 

at the valve orifice located at 𝑋 = 0.6 and is formed by the partially open leaflets at 𝑇 = 0.2 and 

0.4 (Figure 7a). Furthermore, when the valve is closed at 𝑇 = 0, 0.6, and 0.8, the centerline 

velocity between coapted leaflets is nearly zero. Thus, the valve prevents a negative flow at the 

valve orifice.  

To identify the velocity changes induced by the valves with respect to the centerline velocity 

in the valve-less vessel, we use a moving reference frame that is translated with the speed of the 

traveling wave (Figure 7b). We find that the valve can both decrease and increase the centerline 

velocity with respect to the valve-less vessel. The velocity corresponding to the open valve 
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condition is somewhat lower than the valve-less velocity. Thus, the flow resistance in the valves 

on average reduces the flow in the entire vessel. On the other hand, when the valve is closed, the 

centerline velocity in the vessel exceeds the valve-less velocity. For a fully closed valve, the 

velocity within the vessel is defined by the fluid redistribution induced by the peristaltic wave 

propagating along the vessel.  

The overall pumping in the vessel with valves is greater than in a valve-less vessel when the 

backflow reduction due to valve closure outweighs the velocity decrease due to the hydrodynamic 

resistance in the open valve. Thus, the pumping performance is determined by the valve properties 

and is maximized when the valve is able to fully block the backflow with minimal resistance for 

the forward flow.  

Increasing the Reynolds number from 𝑅𝑒 = 0.2  to 𝑅𝑒 = 0.6  does not change the general 

shape of the centerline velocity profile, although the maxima at the valve orifice are less 

pronounced (Figure 7c). During the backflow phase the valve is able to fully close as indicated by 

the near zero velocity at 𝑇 = 0 and 0.8 at the leaflet edge. Compared to the case of 𝑅𝑒 = 0.2, the 

increase in wave speed decreases the deviation of centerline velocity from that of a valve-less 

vessel. We also find that the velocity during the open valve phase matches closer to the valve-less 

velocity with increased Reynolds number, which can be attributed to a reduced hydrodynamic 

resistance of the valve from a greater opening due to the faster fluid flow. Indeed, at 𝑅𝑒 = 0.2 the 

maximum opening of the valve is about 44% of the cross-sectional area under the average vessel 

diameter, whereas the maximum opening increases to 68% when 𝑅𝑒 = 0.6. 

Figure 8 shows centerline velocities for the flow in vessels with 𝑅𝑒 = 0.2 and 𝑅𝑒 = 0.6 that 

experience an adverse pressure difference Δ𝑃 = 140.  The velocities in Figures 8a and 8b 

correspond to the snapshots in Figure 5b. An adverse pressure gradient has a minor effect on the 

shape of the velocity profiles compared to the case of the flow with  Δ𝑃 = 0 (Figure 7) although 

the velocities are shifted towards the negative values. For 𝑅𝑒 = 0.2, the valve-less vessel is unable 

to produce a net positive flow resulting in 𝑄 = −0.22. For the same 𝑅𝑒, the vessel with the valves 

yields a small positive 𝑄 = 0.01, indicating that a sufficiently high Δ𝑃 can stop pumping by such 

vessels. Note that further increase of Δ𝑃 leads to the valve remaining fully closed throughout the 

entire contraction cycle. When compared to the velocity in the valve-less vessel, the velocities at 

the open valve condition are nearly identical to the valve-less velocity (Figure 8b). This can be 

attributed to a reduced flow through the valve at this Δ𝑃 as shown in Figure 8a. 
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Figure 8. a) Centerline axial flow velocity 𝑈𝑥(0) in the stationary reference frame in a vessel with 

𝑅𝑒 = 0.2 with an adverse pressure gradient. The maximum valve opening is 𝐴𝑚𝑎𝑥 = 0.3. b) Same 

as a) but in the moving reference frame, the solid black line indicates the average centerline 

velocity for the valve-less vessel. c) Centerline axial flow velocity 𝑈𝑥(0) in a stationary reference 

frame in a vessel with 𝑅𝑒 = 0.6. The maximum opening is 𝐴𝑚𝑎𝑥 = 0.61. d) Same as c) but in the 

moving reference frame, the solid black line indicates the average centerline velocity for the valve-

less vessel. The horizontal solid lines indicate the maximum and minimum centerline velocities in 

vessels without valves. The dashed vertical lines indicate the boundaries of valve position. The 

blue and red lines show the velocities when the valves are, respectively, open (𝐴 ≥ 0.05) and 

closed (𝐴 < 0.05). The simulation parameters are Δ𝑃 = 140, 𝜙 = 0.2, 𝐾𝑏 = 88, and 𝐾𝑠 = 115.  

 

At a larger 𝑅𝑒 = 0.6 (Figure 8c) both vessels with and without valves are able to generate a 

net positive fluid flow in spite of an adverse pressure gradient. However, valves enable 

significantly greater pumping of 𝑄 = 0.11 compared to 𝑄 = 0.04 without valves. This is again 

due to the ability of valves to stop backflow. The velocity during the open valve phase is slightly 

lower than the valve-less velocity (Figure 8d) and comparable to the velocity in the flow without 

adverse pressure gradient (Figure 7d). Indeed, in both cases normalized maximum valve openings 

are comparable with 61% and 68%, for Δ𝑃 = 140 and Δ𝑃 = 0, respectively. Thus, this adverse 

pressure gradient has a rather insignificant effect on the maximum valve opening.   

Note that increasing 𝑅𝑒 has opposing effects on the peristaltic pumping with valves. On one 

hand, increasing 𝑅𝑒 facilitates valve opening and decreases the associated viscous loss; on the 

other hand, the time during which the valve is closed decreases impairing the valve’s ability to 
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fully arrest the backflow. Indeed, at 𝑅𝑒 = 0.2 the valve is closed about 62% of the contraction 

cycle, whereas at 𝑅𝑒 = 0.6 the valve is closed about 42% of the contraction cycle.  

The dependencies of the pumping parameters on 𝑅𝑒 are summarized in Figure 9. The data is 

shown for Δ𝑃 = 0 using the empty symbols, and for Δ𝑃 = 140 using the filled symbols. Figure 

9a shows that normalized flow rate 𝑄  mostly increases as 𝑅𝑒  increases. Without an adverse 

pressure gradient, 𝑄 remains nearly flat in valve-less vessels and slightly increases when vessels 

are fitted with valves. Thus, the flow rate has nearly a linear relationship with the wave speed. 

When the pumping occurs against an adverse pressure gradient, 𝑄  rapidly decreases with 

decreasing 𝑅𝑒. Without valves, low 𝑅𝑒 results in a negative 𝑄, meaning that peristaltic pumping 

cannot overcome the adverse pressure gradient at these wave speeds. With valves, however, low 

𝑅𝑒 leads to slightly positive values of 𝑄, indicating that whereas peristatic motion cannot pump 

the fluid, the valves are able to eliminate the backflow.  

Figure 9b shows the normalized work 𝑊 done over a wave period by the peristaltic vessel. In 

valve-less cases and in valved cases with Δ𝑃 = 0, 𝑊 is nearly constant indicating that work done 

by the vessel increases nearly quadratically with 𝑅𝑒 since the normalization factor is proportional 

to 𝑅𝑒2. Otherwise, the work 𝑊 decreases with increasing 𝑅𝑒, as increased flow rate leads to a 

larger valve opening and decreased loss from valve interference with the flow.    

Pumping efficiency 𝜂 = 𝑞Δ𝑝𝜆/𝑤𝑎𝑣𝑔   is shown in Figure 9c as a function of 𝑅𝑒. The efficiency 

is defined as the ratio between the work due to the fluid transport against the adverse pressure 

gradient and the work done by the vessel. Note that when Δ𝑃 = 0 the efficiency is zero. We 

therefore present data only for Δ𝑃 = 140. We find that the efficiency curves for vessels with and 

without valves exhibit maxima indicating the existence of optimum Re maximizing the pumping 

per unit work against an adverse pressure gradient. This result is consistent with the analytical 

solution for peristaltic pumping (Shapiro et al., 1969; Takabatake et al., 1988). The maxima of 

efficiency are a result of two opposing trends. At small Re, peristaltic pumping cannot overcome 

the adverse pressure gradient diminishing the flow rate and therefore the pumping efficiency. For 

higher Re, the flow rate increases as Re, whereas the work increases as 𝑅𝑒2, leading to overall 

efficiency decrease with Re. Interestingly, valves increase the maximum efficiency and shift it to 

the lower values of Re. This can be related to a more rapid decrease of the flow rate with decreasing 

Re in valve-less vessels due to the adverse pressure gradient compared to vessels fitted with valves. 

Furthermore, the efficiency is greater for larger 𝜙 as a result of a faster flow (Figure 9a). For larger 
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Re, the efficiency of valve-less and valved vessels nearly overlaps, indicating a weak effect of 

valves on pumping in this flow regime.  

 

Figure 9. a) Flow rate, b) vessel work, c) pumping efficiency, d) pumping economy, e)  maximum 

valve opening area 𝐴𝑚𝑎𝑥, and f) valve closure time 𝑇𝑐 as a function of peristaltic Reynolds number 

for vessels with 𝐾𝑏 = 88, and 𝐾𝑠 = 115. The empty and filled symbols represent data Δ𝑃 = 0 and 

Δ𝑃 = 140, respectively. The dashed lines represent results from valve-less vessels. The valve is 

considered closed when 𝐴 < 0.05. 

 

Another metric to characterize the performance of the peristaltic pumping is flow economy 𝜀 

shown in Figure 9d as a function of 𝑅𝑒. In addition to accounting for the work against the adverse 

pressure gradient, as it is in the case for 𝜂, 𝜀 also accounts for the viscous losses in the vessel. We 

find that 𝜀 is significantly greater than 𝜂 and closely resembles the trend of the normalized flow 

rate shown in Figure 9a, indicating that greater amount of work by the vessel goes to viscous loss 

than to pumping the fluid. Without an adverse pressure gradient, 𝜀 for the valve-less vessel exceeds 

the value for vessels with valves, due to the additional loss associated with valves restricting the 

flow. The difference decreases with increasing 𝑅𝑒 due to the larger valve opening (Figure 9e). 

However, when Δ𝑃 = 140, 𝜀 for vessels with valves exceeds valve-less 𝜀. Thus, adding valves 

improve the economy when the flow is confronted by an adverse pressure gradient, whereas 

without an adverse pressure, pumping of the valve-less vessel is more economical. 

We further characterize valve behavior during peristaltic pumping by quantifying the 

maximum valve opening area 𝐴𝑚𝑎𝑥 and the occlusion time 𝑇𝑐, which are shown as a function of 
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𝑅𝑒 in respective Figures 9e and 9f. The maximum opening area steadily increases with 𝑅𝑒 and 

plateaus for 𝑅𝑒 > 1. For lower 𝑅𝑒, an adverse pressure gradient somewhat decreases 𝐴𝑚𝑎𝑥 as a 

result of a lower positive flow velocity in the vessel (Figure 8). The occlusion time 𝑇𝑐 is relatively 

constant with 𝑅𝑒 when the flow is not affected by Δ𝑃. This is consistent with the velocity profiles 

shown in Figure 7 that exhibit minor variations for different 𝑅𝑒. On the other hand, an adverse 

pressure gradient causes 𝑇𝑐 to increase with decreasing 𝑅𝑒, as longer occlusion period occurs due 

to the increased backflow. 

 

3.3 Effect of adverse pressure gradient on pumping 
 

Figure 10 presents the dependence of peristaltic pumping parameters for vessels with and 

without valves on the magnitude of the adverse pressure difference Δ𝑃. Here, we keep the wave 

speed constant leading to 𝑅𝑒 = 0.4. We find that the normalized flow rate 𝑄 decreases linearly 

with increasing Δ𝑃 (Figure 10a). Furthermore, 𝑄 increases with wave amplitude 𝜙. For vessels 

without valves the decrease of 𝑄 is more rapid than for vessels with valves. As a result, valved 

vessels are able to pump fluid against significantly greater Δ𝑃. However, this enhanced pumping 

in valved vessels comes at the cost of increased work 𝑊 performed by the vessel (Figure 10b). 

The work by vessels with valves exceeds the work by valve-less vessels likely due to the increased 

viscous losses associated with the flow through the occluding valves. Increased wave amplitude 𝜙 

results in greater 𝑊. 

Pumping efficiency is presented in Figure 10c. In spite the greater work done by vessels with 

valves, their efficiency is either comparable (at lower Δ𝑃) or exceeds (at higher Δ𝑃) that of valve-

less vessels. Thus, in terms of pumping efficiency, the greater pumping capacity overcomes the 

increased viscous loss created by the valves. Furthermore, pumping efficiency curves exhibit 

maxima indicating the existence of optimum values of the adverse pressure gradient leading to the 

most efficient peristaltic pumping. For a vessel with valves, the optimum Δ𝑃 significantly exceeds 

that for a valve-less vessel. Furthermore, increasing 𝜙 increases the efficiency and the optimum 

Δ𝑃. Thus, by changing vessel parameters the pumping can be optimized to a specific value of Δ𝑃. 

Flow economy shows nearly linear decrease with Δ𝑃 (Figure 10d). At lower Δ𝑃, the work of 

vessel contraction mostly goes to overcome viscous friction loss rather than useful pumping. At 

these conditions, 𝜀 for valve-less vessels exceeds 𝜀 for vessels with valves. At higher Δ𝑃, vessels 
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with valves exhibit better economy than valve-less vessels. Note that the economy is greater when 

the wave amplitude is increased.   

The maximum valve opening area and valve occlusion time are shown in Figures 10e and 10f, 

respectively. Increasing adverse pressure gradient gradually decreases the valve maximum 

opening and increases the time that valve stays closed per contraction cycle. That is consistent 

with the reduction of the pumping flow rate with increasing Δ𝑃 (Figure 10a). Indeed, the slower 

flow velocity and lower favorable pressure gradient in the vessel decrease the forces acting to open 

the elastic valve resulting in lower 𝐴𝑚𝑎𝑥 and longer 𝑇𝑐. 

 

Figure 10. a) Flow rate, b) vessel work, c) pumping efficiency, d) pumping economy, e) maximum 

valve opening area 𝐴𝑚𝑎𝑥, and f) valve closure time 𝑇𝑐 as a function of adverse pressure difference 

Δ𝑃 for vessels with 𝑅𝑒 = 0.4, 𝐾𝑏 = 88, and 𝐾𝑠 = 115. The dashed lines represent results from 

valve-less cases. The valve is considered closed when 𝐴 < 0.05. 

 

 

3.4 Effect of valve elastic properties on pumping 
 

Figure 11 shows the side views of the valves with three representative bending stiffnesses, 

which we further refer as soft, normal, and stiff valves (see Video S5). The valves are plotted at 

different instances of vessel operation. Figure 11a indicates that soft valves experience valve 

depression at the middle of the valve under backflow. This deformation does not prevent backflow 

until the valve free ends fully close. Normal and stiff valves in Figures 11b and 11c experience 

closures at the valve free ends, leading to a more effective backflow prevention than the soft valve. 
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However, stiff valves are less responsive to changing flow rate, lengthening the time required for 

the valve to be fully open and closed, decreasing the maximum valve opening area during the 

forward flow and increasing the time the valve remains closed after the flow reversal. 

 

 

 

Figure 11. a) Deformation of valves with 𝐾𝑏 = 11 , b) with 𝐾𝑏 = 88 , c) with 𝐾𝑏 = 263  at 

different instances of the vessel contraction cycle. The dots represent leaflet position at the 

centerline. The simulation parameters are Δ𝑃 = 140 , 𝜙 = 0.2 , 𝑅𝑒 = 0.4 , and 𝐾𝑠 = 115 . See 

Video S5. 

 

The behavior of the elastic valves can be further characterized by analyzing the time evolution 

of the flow rate 𝑄𝑠 and the leaflet cross-sectional opening area 𝐴 that are shown in Figure 12 for 

flow with and without an adverse pressure gradient. The flow rate 𝑄𝑠 is averaged over the entire 

simulation domain. Note that for a valve-less vessel, 𝑄𝑠 remains constant as shown by the dotted 

lines in Figures 12a and 12c. Figures 12b and 12d also show the vessel radius at the valve location. 
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Figure 12. a) Time evolution of flow rate in vessels with Δ𝑃 = 0. b) Time evolution of valve 

opening area 𝐴 in vessels with Δ𝑃 = 0. c) and d) are the same as a) and b) but with Δ𝑃 = 140. 

The flow rate is averaged over contraction wavelength. The horizontal dashed line represents flow 

rate in the valve-less vessel while the dotted lines in b) and d) represent normalized vessel radius 

near the valve (𝑟 𝑟0⁄ ). The dashed lines in a) and c) indicate that  𝑟 𝑟0⁄ > 1, while the solid lines 

indicate that 𝑟 𝑟0⁄ < 1. The horizontal dash-dot lines in a) and c) denote 𝑄𝑠 = 0. The simulation 

parameters are 𝜙 = 0.2, 𝑅𝑒 = 0.4, and 𝐾𝑠 = 115. 

 

The valves open when the vessel diameter at the valve location increases (Figures 12b and 

12d), which corresponds to the forward fluid flow through the valve (Figure 5). The valve opening 

is maximized when the vessel diameter is near its mean value. Softer valves can open more widely 

during flow through the valve and stay open longer. Furthermore, for such valves the opening 

starts later than for stiffer valves. Comparing the flow with and without an adverse pressure 

gradient we find that the adverse pressure gradient suppresses valve opening with the effect being 

more significant for softer valves. This can be attributed to the lower flow velocity and favorable 

pressure gradient for valve opening when the flow is affected by an adverse pressure.  

The valve kinematics strongly affects the flow rate in the vessel (Figures 12b and 12d). When 

the valves are open, softer valves impose lower resistance on the flow leading to a faster flow. 

However, even with the softest valve, the instantaneous flow rate with an open valve is slower 
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than in the case of a valve-less vessel. When the valves are closed, the flow rate increases and 

exceeds the valve-less flow rate. Stiffer valves that close sooner enable a larger mean flow rate. 

Thus, during the oscillation period, the fluid is mostly pumped when the valves are closed, and the 

fluid is transported by the contracting wave propagating along the vessel. This behavior is more 

evident when the flow is confronted with an adverse pressure gradient (Figure 12c). In this case, 

the flow rate is negative when the valves are open, and the fluid is transported in the positive 

direction only when the valves are closed. Note that for the same adverse pressure gradient valve-

less vessel generates a nearly zero net flow.  

We therefore conclude that valve elasticity has opposing effects on the pumping performance. 

Softer valves enable greater valve opening, reducing viscous losses when the flow is moving in 

the positive directions through the valve. On the other hand, stiffer valves can close more rapidly 

during backflow minimizing flow reversal during this phase. This indicates that an optimum valve 

of elasticity exists that maximizes the vessel pumping performance.  

Figure 13 presents the pumping parameters as a function of valve bending elasticity 𝐾𝑏 for 

vessels with Δ𝑃 = 140 and two wave amplitudes 𝜙 = 0.2 and 𝜙 = 0.25. We indeed find that the 

flow rate is maximized when 𝐾𝑏 ≈ 63 (Figure 13a). This optimum bending elasticity is about the 

same for both contraction wave amplitudes. The pumping efficiency and economy (Figures 13c 

and 13d) also exhibit maxima with 𝐾𝑏. Here, the optimum elasticity 𝐾𝑏 ≈ 50 is somewhat lower 

than that for the maximum flow rate.  

We also find that work done by the vessel 𝑊 gradually increases with increasing 𝐾𝑏 (Figure 

13b). The work increase is related to the higher viscous losses associated with less deformable 

valve leaflets (Ballard et al., 2018) that exhibit a lower valve opening area (Figure 13e). These 

figures show that this trend is independent of the wave amplitude. While 𝐴𝑚𝑎𝑥 steadily decreases 

with increasing 𝐾𝑏, the time the valve stays closed 𝑇𝑐 is nearly independent of 𝐾𝑏 for 𝐾𝑏 > 50, 

and sharply decreases for lower 𝐾𝑏. This indicates that softer valves are unable to properly close 

and fail to prevent the backflow in the vessel.  

In Figure 13, we also examine the effect of the leaflet in-plane stiffness 𝐾𝑠  on the valve 

performance. We compare valves with 𝐾𝑠 = 23, 115, and 575. We find that a nearly 25-fold 

change of in-plane stiffness has a minor effect on the vessel parameters such as flow rate 𝑄, work 

done by the vessel 𝑊, efficiency 𝜂, and economy 𝜀. Only a slight decrease of 𝐴𝑚𝑎𝑥 is found for 

the valves with 𝐾𝑠 = 575 compared to the less stiff valves. Interestingly, the time that valve is 
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closed 𝑇𝑐 is practically insensitive to changes in 𝐾𝑠. Thus, we conclude that the valve behavior is 

mostly defined by the valve bending elasticity whereas in-plane stiffness plays a minor role.  

 

Figure 13. a) Flow rate, b) vessel work, c) pumping efficiency, d) pumping economy, e) the 

maximum valve opening area 𝐴𝑚𝑎𝑥, and f) valve closure time 𝑇𝑐 as a function of valve bending 

stiffness 𝐾𝑏  for vessels with Δ𝑃 = 140 and 𝑅𝑒 = 0.4. The dashed lines represent results from 

valve-less cases. The valve is considered closed when 𝐴 < 0.05.  

 

The emergence of an optimum 𝐾𝑏  indicates that the vessel mechanical properties can be 

optimized for specific pumping conditions. Furthermore, the optimum 𝐾𝑏 leading to the fastest 

pumping performance and the highest efficiency and economy are somewhat different due to the 

dependency of 𝑊  on 𝐾𝑏 . Indeed, increasing 𝑊  with 𝐾𝑏  results in the softer valve being more 

efficient while providing slightly slower pumping. In Figure 14, we examine the dependency of 

the optimum valve elasticity on the magnitude of the adverse pressure gradient. The figure shows 

that the optimum elasticity increases with ∆𝑃. We relate this trend to the improved ability of stiffer 

valves to withstand backflow due to an increasing adverse pressure gradient as such valves can 

close faster than softer valves (Figure 12d). When ∆𝑃 increases, flow rate in the vessel reduces 

and the ability to prevent the backflow has more significant effect on the pumping than increased 

viscous losses due to stiffer valves.  
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Figure 14. Optimal normalized bending stiffness yielding the maximum efficiency, economy, and 

flow rate under different adverse pressure gradients. The simulation parameters are 𝜙 = 0.2, 𝑅𝑒 =
0.4, and 𝐾𝑠 = 115. 

 

 

3.5 Effect of contraction amplitude dependence on adverse pressure 

gradient 
 

In the lymphatic system, the vessel contraction amplitude depends on the magnitude of the 

adverse pressure gradient (Davis et al., 2012). As shown in Figure 15, contraction amplitude 

gradually decreases with increasing ∆𝑃 . The decrease is more rapid for lower ∆𝑃  and the 

amplitude converges to a non-zero value when the pressure gradient increases beyond ∆𝑃 > 1000 

due to the inability of the lymphatic muscle cells to generate enough force for the pressure in the 

vessel proximal to the valve to exceed the pressure distal to the valve.  

 

 

Figure 15. Contraction amplitude as a function of normalized pressure difference. Experimentally 

reported values (Davis et al., 2012) are shown by the triangles while the fit is shown by the solid 

line.  

 

In Figure 16, we examine the effects of the pressure dependence of the contraction amplitude 

on the pumping performance. To isolate these effects, we compare normalized flow rate 𝑄, work 

done by the vessel 𝑊, and pumping efficiency 𝜂 for a vessel with pressure dependent contraction 
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amplitude to a vessel with a constant contraction amplitude. For the later vessel, we set the 

contraction amplitude such that the amplitudes for both vessels are identical when ∆𝑃 = 0. The 

data is presented for two values of 𝑅𝑒. 

 

 
Figure 16. a) Flow rate, b) vessel work, and c) pumping efficiency as a function of the pressure 

gradient for vessels with and without pressure-dependent contraction amplitude. The valve 

elasticity is 𝐾𝑏 = 88, and 𝐾𝑠 = 115. Without adverse pressure gradient both the vessels exhibit 

an identical contraction amplitude of 𝜙 = 0.44.  

 

The simulations show that vessels with pressure dependent amplitude significantly 

underperform compared to the constant amplitude vessels, resulting in a rapid decrease of the 

pumping flow rate with increasing adverse pressure gradient (Figure 16a). This trend is consistent 

with the results shown in Figure 10a indicating a reduction in pumping rate with lower contraction 

amplitude. Pressure dependent contraction amplitude also has significant effect on the work done 

by the pumping vessel. As shown in Figure 16b, constant contraction amplitude leads to an 

increasing amount of work as the adverse pressure increases. By contrast, the pressure dependent 

amplitude results in work that is nearly independent from ∆𝑃. This result suggests that lymphatic 

vessel contraction amplitude is limited by the work of contractile muscles driving vessel 

contraction and that once exposed to an adverse pressure gradient, lymphatic muscle quickly 

achieves maximum capacity in terms of the work generated. It is also interesting to note that the 

work only slightly changes with 𝑅𝑒 . Furthermore, pressure dependent contraction amplitude 

decreases the pumping efficiency compared to the constant amplitude case (Figure 16c). Although 

the work is roughly constant with pressure, the decreasing 𝑄 in the pressure dependent vessels 

results in a rapid decrease in efficiency when ∆𝑃 is sufficiently large. As a result, the optimum 

pumping occurs at lower values of ∆𝑃  compared to the vessels with a constant contraction 

amplitude.  
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4. Summary 

 
Using fully coupled three-dimensional simulations, we investigate fluid pumping by a 

peristaltic vessel outfitted with elastic valves. The valves are formed by two adjusted angled elastic 

sheets representing a typical valve in a collecting lymphatic vessel. We compare fluid pumping by 

peristaltic vessels with and without valves to identify and isolate the effects of the valves on the 

resulting flow rate and pumping performance characterized in terms of pumping efficiency and 

economy. The simulations show that elastic valves increase the net fluid flow generated by a 

peristaltic vessel by reducing the backflow due to the periodic vessel contractions. At the same 

time, valves generate an additional flow resistance during the forward fluid flow. The effect of the 

valves on the pumping is more pronounced at lower Reynolds numbers and when the pumping is 

performed against an adverse pressure gradient. In both scenarios, the pumping by a valve-less 

peristaltic vessel diminishes due to a significant backflow.  

We systematically investigate the effects of the vessel contraction wave speed, contraction 

amplitude, adverse pressure gradient, and valve elastic properties on the pumping performance. 

Increased vessel contraction wave speed and contraction amplitude increase pumping flow rate 

and work done by the vessel. Increasing adverse pressure gradient suppress fluid pumping while 

requiring greater work by the vessel. The valve stiffness exhibits an optimum maximizing the 

pumping flow rate. Higher valve stiffness increases viscous loss leading to an increased work, 

whereas softer valves close slowly enhancing backflow. The pumping economy is dominated by 

the viscous losses in the vessel and, thus, increases with increasing pumping flow rate. Optimal 

valve and vessel parameters exist that maximize the pumping efficiencies of valved peristaltic 

vessels. We find that the stiffer valves are required with increased adverse pressure gradients to 

maintain the high pumping efficiency. When the vessel amplitude decreases with increasing 

adverse pressure gradient in the manner it takes place in lymphatic systems, we find that vessel 

maintains a relatively constant work for the entire range of the pressure gradients, while gradually 

decreases the pumping flow rate. This result indicates that lymphatic vessel pumping is limited by 

the contractile capacity of lymphatic muscle.  

Understanding valve mechanics in the lymphatic vasculature has become increasingly 

important. Oscillatory wall shear stress has been shown to enhance the expression of transcription 

factors necessary for the formation of lymphatic valves during development as well as for post-
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natal valve maintenance (Cha et al., 2016; Cha et al., 2018; Choi et al., 2019; Sabine et al., 2012; 

Sabine et al., 2015). In addition mutations in mouse models in genes associated with primary 

lymphedema have produced valves that are dysfunctional at preventing backflow (Castorena‐

Gonzalez et al., 2020; Kazenwadel et al., 2015; Lapinski et al., 2012; Lapinski et al., 2017) and 

abnormal conduction of contraction waves (Castorena-Gonzalez et al., 2018). Thus, understanding 

the structure-function relationships that underpin proper valve performance and how subtle 

alterations in lymphatic structure and mechanics negatively impact over lymphatic transport is of 

high clinical importance. Moreover, knowledge of these structure-function relationships could also 

provide insight into the underlying mechanobiology that is driving the observed regional variation 

in lymphatic vessel pumping behavior and morphology (Gashev et al., 2004; Gashev et al., 2012; 

Zawieja et al., 2018). For example, it is possible that the regional differences in valve length and 

morphology in vessels close to the heart (such as the thoracic duct) compared to vessels found in 

the extremities could exist to optimize function in the context of the local mechanical loads placed 

on these vessels. Finally, our findings from this study can lead the development of simplified 

functional relationships between various valve properties and flow performance metrics, which 

can be incorporated into the existing lower dimensional models. Such simplified models are 

computationally less expensive enabling simulations of extensive lymphangion chains and their 

branched networks.  
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