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Abstract

Using numerical simulations, we probe the fluid flow in an axisymmetric peristaltic vessel
fitted with elastic bi-leaflet valves. In this biomimetic system that mimics the flow generated in
lymphatic vessels, we investigate the effects of the valve and vessel properties on pumping
performance of the valved peristaltic vessel. The results indicate that valves significantly increase
pumping by reducing backflow. The presence of valves, however, increases the viscous resistance
therefore requiring greater work compared to valveless vessels. The benefit of the valves is the
most significant when the fluid is pumped against an adverse pressure gradient and for low vessel
contraction wave speeds. We identify the optimum vessel and valve parameters leading to the
maximum pumping efficiency. We show that the optimum valve elasticity maximizes the pumping
flow rate by allowing the valve to block more effectively the backflow while maintaining low
resistance during the forward flow. We also examine the pumping in vessels where the vessel
contraction amplitude is a function of the adverse pressure gradient as found in lymphatic vessels.
We find that in this case the flow is limited by the work generated by the contracting vessel,
suggesting that the pumping in lymphatic vessels is constrained by the performance of lymphatic
muscle. Given the regional heterogeneity of valve morphology observed throughout the lymphatic
vasculature, these results provide insight into how these variations might facilitate efficient

lymphatic transport in the vessel’s local physiologic context.

1. Introduction

The lymphatic system is responsible for transportation of interstitial fluid, lipids, and immune

cells to maintain homeostasis throughout the body. Interstitial fluid and macromolecules collected
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and circulated by the lymphatic system join the blood circulatory system to maintain tissue fluid
balance and waste management. Fatty acid is collected in the gut from food, packaged into
chylomicrons, and transported via the lymphatic system as the primary route of lipid trafficking to
the peripheral tissues, and transported immune cells and antigens provide a proper immune
response (Dixon, 2010; Swartz, 2001). Nearly all tissues in the body critically rely on the lymphatic
system for proper operation, yet this is achieved without a centralized pump and under an adverse
pressure gradient. Instead, circulation is achieved by a combination of nearby tissues’ skeletal
muscular movement (extrinsic pump) (Ikomi & Schmid-Schonbein, 1996; McGeown et al., 1988;
Reddy et al., 1981; Skalak et al., 1984; Webb Jr & Starzl, 1953) and a series of contracting vessels
and valves throughout the collecting lymphatics known as the intrinsic lymphatic pump (Davis et
al., 2011; Quick et al., 2007; Zawieja, 2009). The intrinsic lymphatic pump is composed of chains
of contractile units called lymphangions, defined as a region of lymphatic vessel separated by two
lymphatic valves. For an efficient transport of lymphatic fluids in the desired direction, lymphatic
valves play a critical role by reducing backflow and maximizing the net flow, often against a
gravitational load.

Dysfunction of lymphatic valves or smooth muscles that drive contractile motion of the
lymphatic vessels can lead to debilitating conditions of lymphedema, for which there is currently
no cure (Mortimer & Rockson, 2014). Palliative treatment options such as compression garments
do exist, but these methods only seek to relieve the symptoms of disease without addressing the
underlying cause. In some cases like genetic primary lymphedema, lymphatic valve defects have
been identified as a major source of dysfunction (Brouillard et al., 2014; Davis et al., 2012;
Eisenhoffer et al., 1995; Lapinski et al., 2017; Petrova et al., 2004; Sabine et al., 2015). While
many of these studies have identified the molecular mechanism responsible for the morphologic
valve defect, the structure-function relationship of lymphatic valves and the exact consequence of
subtle valve defects on the pump performance of the lymphatic network are less understood. In
addition, the role that factors like the heterogeneity of lymphatic valves play has been studied but
is still largely unknown.

To address this limited understanding, computational studies have been providing valuable
insights in creating a detailed picture of lymphatic operation and has indicated that lymphatic
valve’s properties affect the pumping performance of the lymphatic system (Bertram et al., 2014b;

Davis et al., 2011; Wilson et al., 2015). These computational studies range from lumped-parameter



models that solve differential equations combined with experimental data (Baish et al., 2016;
Bertram et al., 2011; Bertram et al., 2014a; Bertram et al., 2014b; Bertram et al., 2016; Jamalian
et al., 2013; Jamalian et al., 2016; Razavi et al., 2017; Reddy et al., 1977) to multi-dimensional
studies of fluid and solid components involved in lymph flow (Bertram, 2020; Kunert et al., 2015;
MacDonald et al., 2008; Rahbar & Moore, 2011; Wilson et al., 2015). However, many of these
studies employ assumptions or simplifications particularly in regard to valve behavior, providing
only a limited understanding of the role of lymphatic valve to lymphatic transport performance
and efficiency. For example, the lumped-parameter model or zeroth-dimensional study utilizes a
valve resistance curve that is an empirical fit of lymphatic valve behavior based on a single
experimental data (Bertram et al., 2011). Most of these studies can effectively simulate chains of
lymphangions, thus revealing large-scale behaviors of lymphangion networks. But because of the
rarity of measured lymphatic valve properties (Lauweryns & Boussauw, 1973; MacDonald et al.,
2008; Pan et al., 2011; Wilson et al., 2015), the empirical fit that describes the lymphatic valve’s
flow response is limited in describing lymphatic performance and efficiency under different valve
properties such as valve length and stiffness.

Higher dimensional models of the lymphatic system can address this limitation by modeling
the lymphatic valve based on more readily available geometric profile of the valve (Bertram, 2020;
Wilson et al., 2015), but these models also simplify the physics through assumptions such as a
steady flow condition (Wilson et al., 2015), exclusion of components that require fluid-structure
interaction like the lymphatic valves (Rahbar & Moore, 2011), or using externally applied fluid
flow (Bertram, 2020). We recently conducted three-dimensional simulations using a fully-coupled
fluid-structure interaction model to probe the behavior of compliant lymphatic valves in a fluid
flow (Ballard et al., 2018). Valves with different geometries and mechanics were placed in a rigid
axisymmetric vessel and flow was induced by applying oscillating or unidirectional pressure
gradients. It was found that shorter valves have a lower flow resistance, however when the valves
are too short, they are unable to fully occlude the backflow, indicating the existence of an optimal
valve length. It was also shown that more flexible valves cause a lower resistance to the flow.
Furthermore, under oscillating flow, valve elasticity leads to a delay in valve response that has
been reported in experiments (Davis et al., 2011).

In this paper, we focus on understanding the pumping behavior of a peristaltically contracting

vessel fitted with compliant valves similar to those found in lymphatic systems (Ohhashi et al.,



1980; Zawieja et al., 1993). We consider a periodic vessel that undergoes periodic radial
contractions leading to a sinusoidal traveling wave (Shapiro et al., 1969; Takabatake et al., 1988).
We use this model to investigate the effects of elastic valves on pumping performance of
peristaltically contracting vessels. Specifically, valve and vessel properties such as vessel
contraction wave speed, vessel contraction amplitude, and valve elasticity are systematically
probed for the peristaltic pumping under a range of applied adverse pressure gradients.

Additional complexity in lymphatic systems emerges due the coupling between the contraction
amplitude of lymphatic vessel and the applied adverse pressure gradient (Davis et al., 2012).
Experiments show that an increasing adverse pressure gradient results in a decreased contraction
amplitude diminishing the pumping performance of lymphatic vessel. Such behavior is typically
associated with the finite force generation by the lymphatic muscle cells driving contractions.
Other physiological features affecting lymphatic pumping include nonuniformity of vessel
contraction near the valve (Akl et al., 2011; Davis et al., 2012) and lymph flow-sensitive wall
contraction via wall shear stress (Gashev et al., 2002; Kornuta et al., 2015). Here, we examine how
the coupling between the adverse pressure gradient and the vessel contraction amplitude affects
the pumping performance of peristaltic vessels with elastic valves.

Without valves, peristaltic pumping generates fluid packets with alternating axial velocity that
are steady in the moving frame of reference under constant contraction wave speed c (Figure 1a).
These velocity packets lead to a net transport of the fluid in the direction of wave propagation that
we refer as the positive flow direction. The presence of an adverse pressure gradient can reduce
the net fluid pumping by peristaltic oscillations and ultimately can result in a negative flow (Figure
1b). When the adverse pressure gradient is large enough, sections with positive flow velocity
diminish or entirely disappear, even though the general pattern with repeating velocity packets is
still maintained (Figure 1c). The peristaltic pumping in a vessel without valves provides a baseline
that allows us to evaluate the function of valves and to identify their effects on the fluid flow and

pumping.
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Figure 1. a) Axial component of flow velocity U, in a valve-less peristaltic vessel without an
imposed pressure gradient yielding a flow rate Q = 0.15. b) Axial velocity U, in a vessel with an
adverse pressure gradient AP = 140 yielding a flow rate Q = —0.22. ¢) Centerline axial velocity
U,.(0) in the moving reference frame X — T. In these simulations, the contraction ratio is ¢ = 0.2,
and the peristaltic Reynolds number is Re = 0.2. Note that X = x/A, T = t/1, AP = Ap, ry°p/
u? Q =q/nric, ¢ = %, and Re = pcry?/ul, where Ap, is the pressure difference across a

contraction wavelength, g is the vessel flow rate, 1 is the mean radius of the vessel, x is the axial
coordinate, p and u are the fluid density and dynamic viscosity, and ¢ is time. Furthermore, 4, 7,
¢, and a are the wavelength, period, speed, and amplitude of vessel contraction. See Video S1 in
SI.

The paper is organized as follows. In Section 2, we present our computational methodology
and the model validation. This section also describes the relevant model parameters. The
simulation results are reported and discussed in Section 3. Section 3.1 compares peristaltic
pumping in vessels with and without valves to identify the effects of valve on the flow pattern and
pumping performance. Section 3.2 investigates the effect of vessel contraction speed on flow
behavior and pumping performance. Section 3.3 studies the effect of an adverse pressure gradient,
while Section 3.4 examines the effect of valve elasticity on the pumping performance. Section 3.5
considers the effects of coupling between the adverse pressure gradient and the amplitude of vessel

contractions on the fluid pumping. Our conclusions are summarized in Section 4.



2. Methodology

To model viscous fluid flow within a peristaltic vessel fitted with elastic valves, a fully coupled
three-dimensional fluid-structure interaction solver (FSI) is used. A lattice Boltzmann model
(LBM) and a lattice spring model (LSM) are used to simulate the fluid mechanics and solid
mechanics, respectively. To capture interactions between fluid and solid, the models are coupled
through the boundary conditions as implemented previously (Alexeev et al., 2005; Alexeev &
Balazs, 2007).

LBM efficiently simulates incompressible viscous flows (Ladd & Verberg, 2001; Succi, 2001)
and is well suited for studies with complex, moving geometries, such as compliant valves and
contracting vessels. LBM simulates the Navier-Stokes equations at mesoscale by integrating the
time evolution of the velocity distribution function representing fluid “particles” moving on a fixed
lattice f;(r,t), where i, , and t are the velocity direction, the lattice position, and time,
respectively. The distribution function is integrated over discrete time steps via streaming and
collision of “particles”, where fluid “particles” travel across the lattice in a given speed and
direction. In this work, we use BGK collision operator and a D3Q19 grid representing a three-
dimensional system with 19 discrete velocity directions. Hydrodynamic fields such as density,
momentum, and stresses are evaluated by taking moments of the distribution function.

Solid components of the system are modelled using LSM (Buxton et al., 2005; Ostoja-
Starzewski, 2002). We represent thin elastic valve material as an infinitely thin elastic plate
discretized using a network of masses linked by stretching and bending springs. Solid nodes are
arranged in a regular triangular lattice with nearby nodes connected via a linear stretching spring
of in-plane stiffness kg. The bending of the plate is modeled through a series of bending springs
with bending stiffness kj, which connect three neighboring LSM nodes. The related macroscopic
properties, such as Young’s modulus and bending rigidity, are defined using the in-plane and
bending stiffnesses as e, = 2k, /+/3 (Ostoja-Starzewski, 2002) and d;, = 33k, /4, respectively
(Buxton et al., 2005).

LBM and LSM interact through a two-way coupling at fluid-solid boundaries with the
momentum exchange approach. The momentum due to fluid-solid interaction is transferred to fluid
using interpolated bounce-back rule and distributed through corresponding solid nodes via applied

forces to ensure momentum conservation (Alexeev et al., 2005; Alexeev et al., 2006; Mao &



Alexeev, 2014). This method of coupling has been previously extensively validated with different
FSI problems (Ballard et al., 2018; Hanasoge et al., 2017; Mao & Alexeev, 2014; Masoud et al.,
2012; Yeh & Alexeev, 2016).

Initial geometry of the model is composed of a periodic fluid-filled axisymmetric vessel and
two sets of valves with each valve made up of two compliant leaflets (Figure 2). Each leaflet is
created from an intersecting plane between an axisymmetric vessel and a plane that cuts through
the vessel at an angle (Ballard et al., 2018). Thus, the elastic leaflets are initially flat. The leaflet
edge that overlaps with the vessel wall is firmly attached to the wall and follows the wall motion.
The free edge of the leaflet has a semicircular cutout mimicking the typical geometry observed for
lymphatic valves (Watson et al., 2017). The valve geometry combined with the axisymmetric
vessel deem it necessary to use of a three-dimensional computational model since lower
dimensional or axisymmetric models are unable to capture the leaflet motion. The leaflet geometry
is characterized by the aspect ratio that is defined as the ratio between axial length of the leaflet
and mean diameter of the vessel. In this work, we keep the leaflet aspect ratio equal to 1.75 that is
in the typical range of experimental values (Ballard et al., 2018). The simulation domain has 301
by 44 by 44 LBM nodes in x, y, and z-directions, respectively, while the vessel and valves are
composed of 8272 LSM nodes. The initial distance between two neighboring LSM nodes is about
twice the distance between neighboring LBM nodes.

The vessel undergoes a prescribed radial motion that leads to a sinusoidal traveling wave

propagating along the vessel in the axial x direction. The periodic motion of the vessel wall is
given by 7,,055(X, t) =1, [1 + ¢ sin (27” (x — ct))], where 1 is the mean radius of the vessel, ¢

is the normalized contraction amplitude, 4 is the wavelength, and ¢ = 1/t is the wave speed with

T being the oscillation period. Note that ¢ = riwhere a is the vessel contraction amplitude. We
0

set the wavelength equal to the distance between centroids of two consecutive valves. The
wavelength is kept at a constant value equal to the distance between valves to induce synchronous
valve deformation, providing a clearer understanding behind fundamental operation of valves in
contracting vessel. We plan to further explore the effect of contraction wave wavelength in our

future works.
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Figure 2. a) Model of a periodic contracting vessel fitted with two valves. b) Shape and dimensions
of the valve leaflet. The edge on the right side of the leaflet is free, whereas the remaining part of
the edge is attached to the vessel wall. The aspect ratio of the valve is defined as [/d = 1.75. ¢)
Image of a lymphatic vessel segment with a valve. d) Typical valve profiles during different stages
of'valve operation. i: initial valve configuration, ii: valve opening, and iii: valve closure. See Video
S2 in SI.

Experiments report a wide range of the contraction wavelength A. Indeed, the weave speed ¢
ranges from zero to 10mm/s with the frequency between 7 and 21 contractions per minute
yielding the wavelength between 0 and 81mm (Akl et al., 2011; MacDonald et al., 2008). Since
the vessel diameters typically range from 80um to 2.8mm and considering that the larger vessels
exhibit a longer wavelength, we estimate that the ratio of the wavelength to the vessel radius A/,
is in a wide range between 0 and 60. In our simulations, we set A/1, = 15, which falls well in the
experimental range. Furthermore, considering that inter-valve distance is the same as A, this puts

the valve placement within the experimental range where the values of this ratio are up to 20

(Margaris & Black, 2012; Pan et al., 2010; Pan et al., 2011). To model lymphatic chain, we use a



periodic boundary condition in the axial direction, simulating an infinitely long repeating chain of
valves.

We vary the following system parameters to investigate the vessel pumping performance: the
traveling speed of vessel contraction wave c that is varied by varying the contraction period 7, the
normalized contraction ratio ¢, the adverse pressure difference over a contraction wavelength Ap;,
and the in-plane stiffness and the bending stiffness of the valve. The ranges of these system
parameters are selected based on the available experimental data summarized in Table 1.

Note that in lymphatic systems, the contraction amplitude depends on the adverse pressure
difference Ap, (Davis et al., 2012). Here, we first examine the flow where the two parameters are
independent to isolate the effect of each parameter on the flow. Then, the two parameters are
coupled via the experimentally reported relationship and investigated to reveal any difference

arising from the coupling.

Table 1 Lymphatic system parameters

Parameters Experiments | Reference
Valve length, [ (um) 80~2800 Akl et al. (2011); Pan et al. (2011); Rahbar and
(est.) Moore (2011); Wilson et al. (2015)

Average vessel diameter, d 80~2800 Akl et al. (2011); MacDonald et al. (2008);

(um) Pan et al. (2011); Rahbar and Moore (2011);
Wilson et al. (2015)

Valve thickness (um) 0.5~6 Lauweryns and Boussauw (1973)

Applied adverse pressure 0~2000 Davis et al. (2011); Davis et al. (2012); Scallan

difference, 4p, (Pa) et al. (2012)

Contraction wave speed, ¢ 0~10 Akl et al. (2011)

(mm/s)

Contraction frequency, 1/t 7~21 Akl et al. (2011)

(contraction/min)

Dimensionless contraction 0~0.45 Davis et al. (2012)

amplitude, (¢)

Viscosity, u (mPa - s) 0.89~1.36 | Kassis et al. (2016); MacDonald et al. (2008);
Moore and Bertram (2018)

Fluid density, p (kg/m3) 998~1016 | Burton-Opitz and Nemser (1917); MacDonald
et al. (2008); Moore and Bertram (2018)




The above mentioned physical parameters can be expressed in terms of the following
dimensionless parameters relevant to peristaltic pumping (Shapiro et al., 1969; Takabatake et al.,
1988), which are indicated using the uppercase. We use the dimensionless axial coordinate X =
x /A, radial coordinate R = r /1, axial component of flow velocity U, = u,/c,andtime T = t/t.
The adverse pressure difference is nondimensionalized as AP = Ap, 1y%p/u?, which represents
the ratio between pressure and viscous forces during peristaltic pumping (Béhme & Miiller, 2013;
Hariharan et al., 2008; Rachid & Ouazzani, 2015; Rao & Usha, 1995; Shapiro et al., 1969; Tripathi,
2013). The Reynolds number for peristaltic pumping is defined as Re = pcry?/ul, where p is the
fluid density, and u is the dynamic viscosity (Connington et al., 2009; Pozrikidis, 1987; Shapiro
et al., 1969; Takabatake et al., 1988; Zien & Ostrach, 1970). Because parameters that describe Re
are kept constant throughout the work except for ¢, a change in peristaltic Reynolds number means

a corresponding change in contraction wave speed defined by 7. We vary Re in the range between

kspr
Sp()and

0.1 and 1.4. The dimensionless valve leaflet in-plane and bending stiffnesses are K; = 2

K . ) . :
K, = uff’ respectively. These parameters represent the ratios between, respectively, stretching
0

and bending forces experienced by the valve and the viscous forces applied on the vessel wall.
The pumping performance is quantified in terms of the flow rate g averaged over a wave period
T, the average work done by the vessel wall wy,,4, pumping efficiency n and pumping economy &
that are both evaluated over a wavelength A and averaged over a wave period 7. To calculate wg,,4
the work done by vessel walls is calculated by integrating the hydrodynamic force on the wall over
the wall displacement and averaging the work over the wavelength A and period 7 of the vessel.
The pumping efficiency is defined as n = qAp,T/wg,, While the pumping economy is defined as
€ = q(Apa + APyisc)T/Wavg, Wwhere Apy,;s. is pressure loss due to viscous friction for laminar flow
arising at flow rate g in a straight pipe with radius 1y and length A. This is expressed as Apyisc =
q/ (mry*/8ud). Thus, the pumping efficiency represents the relative amount of work done by the
vessel that goes into the transporting the fluid against the adverse pressure gradient, whereas the
flow economy indicates the proportion of the work that is consumed by the fluid transport and
viscous losses. The flow rate is normalized as Q = q/q,, where q, = nréc is the flow rate in a
rigid pipe with radius 1y and average flow velocity c. Note that this normalization that has been
previously used for peristaltic pumping (Shapiro et al., 1969; Takabatake et al., 1988). Work done

by the vessel wall per wave period is normalized by the corresponding friction loss generated in a
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rigid pipe with an average flow velocity ¢ using Hagen-Poiseuille law (Sutera & Skalak, 1993)
and is given by W = w4/ (8uAmc?t). To characterize valve opening, we evaluate the cross-
sectional area defined by the free edges of the leaflets a,,;. that is normalized as A =
Apaive/TTo>. The maximum valve opening A,y is defined as the maximum value of A over a
vessel cycle. Furthermore, we examine the time that the valve is closed per vessel cycle T, = 1./7.
Here, 7 is the time that valve remains closed during one vessel period. The valve is considered

closed when A < 0.05. The dimensionless parameters are summarized in Table 2.

Table 2 Definitions of the dimensionless parameters

Dimensionless parameter

Expression

Input parameters

Peristaltic Reynolds number

Re = pcry? /ul

Contraction amplitude

¢ =a/r

Pressure difference

AP = Apy ro®p/u?

Bending stiffness

K, = kpp/u?ro

In-plane stiffness

Ky = kspro/1?

Output parameters

Flow rate

Q =4q/q0 = q/(mr§c)

Work done by the vessel

W = Wgpg/ (Buimc?T)

Pumping efficiency

n= qulT/Wavg

Pumping economy

E= Q(Ap,l + Apvisc)T/WaUg

Valve opening cross section

— 2
A= avalve/nro

Valve closure time T, =1./T
Descriptive parameters

Axial coordinate X=x/2

Radial coordinate R=r/r

Axial flow velocity U, =u,/c

Time T=t/t
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The simulations start with a stagnant fluid and continue for at least 5 contraction periods to
eliminate the influence of the initial transient. This ensures that the difference in the results
between consecutive periods does not exceed 1%.

We have previously extensively validated our FSI model with application to different flows
including lymphatic pumping (Ballard et al., 2018; Hanasoge et al., 2017; Mao & Alexeev, 2014;
Masoud et al., 2012; Yeh & Alexeev, 2016). Here, we perform two additional tests to examine the
accuracy of the model for simulating flow generated due to moving vessel walls. The first test
(Figure 3) compares the axial velocity profiles in vessels with radially moving walls with the

analytical solutions for semi-infinite circular pipe flow with the same wall motion (Uchida & Aoki,

prr(Or(t)
u

1977). The normalized radial velocity is defined as a = , Where v,.(t) is the radial speed

and r(t) is the radial position. Three different normalized radial speeds were tested for expanding
and contracting vessels. Normalized axial velocity profiles in Figure 3 indicate that the numerically
calculated flow velocities are in close agreement with the analytical results for both expanding and

contracting vessels.
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Figure 3. Axial flow velocity u, in a) expanding and b) contracting vessels for different values of
radial wall velocity a. Axial velocity is normalized by the mean axial velocity of the vessel u,,,
whereas the radial coordinate r is normalized by the vessel radius 7,;,.. The lines represent the

simulated results, whereas the symbols represent the analytical solution (Uchida & Aoki, 1977).
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The second test compared Q and W obtained using an analytical solution for peristaltic
oscillation (Shapiro et al., 1969; Takabatake et al., 1988) with simulated results, as shown in Figure
4. The comparison is made for ¢ = 0.2 and 0.25, AP = 0 and 140, and for a range of Re. It was
found that the simulations are close to the analytical solution under different system parameters
relevant to our study. Divergence from the analytical solution growths as Re increases. This can

be expected since the analytical solution assumes Re < 1.
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Figure 4. a) Flow rate Q and b) vessel work W as a function of peristaltic Reynolds number Re
for different contraction amplitude ¢ without valves. The solid and dotted lines show the analytical
and numerical solutions, respectively. The empty and filled symbols represent data for AP = 0 and
AP = 140, respectively.

3. Results and discussion

3.1 Flow pattern

Figures 5a and 5b present snapshots showing axial velocity magnitude and valve deformation
for different stages of the vessel contraction cycle, respectively, without and with adverse pressure
gradient (see Video S3 in SI). Note that figures show one valve since the flow profile and valve
deformation repeat due to their synchronous motion. Similar to peristaltic pumping without valves
(Figure 1), the flow is divided into alternating packets of positive and negative axial velocities.
Regions of the positive axial velocity travel in the expanded region of the vessel, while packets of
negative axial velocity propagate within the contracted region of the vessel. This indicates that
velocity packets propagate with the same speed as the contraction wave (Shapiro et al., 1969;
Takabatake et al., 1988).

Unlike vessels without valves, velocity packets are disrupted when they pass through the

elastic valves. Compared to an axisymmetric flow profile in the cases without valves, flow
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disruption by the valves results in a flow that is no longer axisymmetric even though the pattern
of alternating positive and negative velocity packets still persists. The valves open when they
encounter packets of positive axial velocity and close to occlude the flow when packets of negative
axial velocity pass. Thus, the valves affect the forward and backward flow in different ways. While
the forward flow is allowed with some viscous loss due to the reduced orifice size, the backflow

can be significantly suppressed and ultimately stopped by fully closed valves.
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Figure 5. a) Axial flow velocity U, at different instances of the contraction cycle in a valved vessel
with no adverse pressure gradient. b) Axial flow velocity U, in a valved vessel with AP = 140.
The flow profiles are shown at the symmetry plane perpendicular to the valve opening. Note that
due to the valves, flow profile is not axisymmetric. The simulation parameters are ¢ = 0.2, Re =
0.2, K;, = 88, and K; = 115. See Video S3 in SI.

The valves deform differently when encountering fluid packets with positive and negative
velocities, as shown in Figure 2d and in Video S2. When encountering packets of positive axial
velocity, the leaflets stretch and deform outwards by a combined action of the flow and the vessel
expansion. This process increases the opening area of the valve defined by the leaflet free edges,

thereby enabling fluid flow. When the valve encounters negative velocity packets, the vessel

contracts. The middle of the leaflets deforms inwards, allowing the free edges to rapidly collapse
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and block the flow. The valve closure process culminates by creating a coaptation zone expanding
from the leaflet free edges.

The effect of valves on backflow reduction is more evident when the flow is subjected to an
adverse pressure gradient. In this scenario, a peristaltic vessel without a valve has a limited
capacity to transport fluid in the direction of wave propagation (Figure 1b), whereas addition of
unidirectional valves yields a positive net flow in the vessel (Figure 5b). Note that without adverse
pressure gradient, both vessels with and without valves can successfully pump fluid in the positive
direction (Figure la and Figure 5a). This further points to the important role that valves play in

enabling pumping against adverse pressure gradients.
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Figure 6. a) Axial flow velocity difference AU, at different instances of the contraction cycle in a
valved vessel with no adverse pressure gradient. b) Axial flow velocity difference AU, in a valved
vessel with AP = 140. The flow profiles are shown at the symmetry plane perpendicular to the
valve opening. The simulation parameters are ¢ = 0.2, Re = 0.2, K}, = 88, and K; = 115. The
flow velocity difference AU, is calculated as the difference between flow velocities in vessels with
and without valves. See Video S4 in SI.

The effect of valves on pumping is further revealed when considering the difference in axial
velocity between vessels with and without valves denoted as AU, and shown in Figure 6 (see

Video S4 in SI). When packets of positive velocity pass through an open valve (see Figure 6 for
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T = 0.2 and 0.4), the overall flow velocity pattern is similar to the flow in the valve-less vessel
with minor flow disturbances around the valves, where the flow accelerates due to the reduced
opening between the leaflets. In this case, AU, is nearly zero everywhere in the vessel except for
a small region in the vicinity of the valve. The velocity difference AU, is more significant when
vessel contraction passes the valve. In this case, negative flow velocity causes the valve to close
and block the flow. This, in turn, results in a positive AU, in most of the vessel, as shown in Figure
6 for T = 0, 0.6, and 0.8. A significant positive difference in velocity between the cases with and
without valves when the valves are closed indicates that the valves increase pumping by reducing
backflow. Furthermore, when comparing Figures 6a and 6b, we find that the backflow reduction
is more prominent when the pumping is against an adverse pressure gradient. Indeed, the adverse
pressure gradient causes a significant negative flow when the valve-less vessel contracts (Figure
1b). The backflow is stopped by the closed valves in the case of the vessel fitted with valves (Figure
5b).

3.2 Effect of contraction wave speed on pumping

We examine the effect of contraction wave speed on pumping by varying the peristaltic
Reynolds number that, in turn, is realized by varying the contraction period t. In Figure 7, we
show how the centerline flow velocity U, (0) changes along the vessel without an adverse pressure
gradient at Re = 0.2 and Re = 0.6. The velocity is shown as a function of the distance along the
vessel X and in the moving reference frame X — T. In Figures 7a and 7c, which show the velocity
U, (0) as a function of the distance along the vessel X, the two vertical dotted lines indicate the
location of the valve with the leaflet free edge being on the right side. Furthermore, the horizontal
lines in these figures show the maximum and minimum magnitude of the centerline velocity in a
vessel without a valve. Figures 7b and 7d show the velocity U, (0) in the moving reference frame
X — T in which case the velocity in a valve-less vessel is represented by a single line. Note that

the velocities in Figures 7a and 7b correspond to the snapshots shown in Figure 5a.
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Figure 7. a) Centerline axial flow velocity U, (0) in the stationary reference frame in a vessel with
no adverse pressure gradient with Re = 0.2. The maximum valve opening is A4, = 0.44. b)
Same as a) but in the moving reference frame, the solid black line indicates the average centerline
velocity for the valve-less vessel. ¢) Centerline axial flow velocity U, (0) in a stationary reference
frame in a vessel with Re = 0.6. The maximum opening is 4,4, = 0.68. d) Same as c) but in the
moving reference frame, the solid black line indicates the average centerline velocity for the valve-
less vessel. The horizontal solid lines indicate the maximum and minimum centerline velocities in
a vessel without valves. The dashed vertical lines indicate the boundaries of valve position. The
blue and red lines show the velocities when the valves are, respectively, open (4 = 0.05) and
closed (A < 0.05). The simulation parameters are AP = 0, ¢ = 0.2, K;, = 88, and K; = 115.

Outside from the regions around the valve, the centerline velocity follows a sinusoidal wave
(Figure 7a), which is characteristic for the centerline velocity in peristaltic vessels without valves
(Figure 1c). The valves introduce a velocity disturbance that is manifested by a velocity maximum
at the valve orifice located at X = 0.6 and is formed by the partially open leaflets at T = 0.2 and
0.4 (Figure 7a). Furthermore, when the valve is closed at T = 0, 0.6, and 0.8, the centerline
velocity between coapted leaflets is nearly zero. Thus, the valve prevents a negative flow at the
valve orifice.

To identify the velocity changes induced by the valves with respect to the centerline velocity
in the valve-less vessel, we use a moving reference frame that is translated with the speed of the

traveling wave (Figure 7b). We find that the valve can both decrease and increase the centerline

velocity with respect to the valve-less vessel. The velocity corresponding to the open valve
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condition is somewhat lower than the valve-less velocity. Thus, the flow resistance in the valves
on average reduces the flow in the entire vessel. On the other hand, when the valve is closed, the
centerline velocity in the vessel exceeds the valve-less velocity. For a fully closed valve, the
velocity within the vessel is defined by the fluid redistribution induced by the peristaltic wave
propagating along the vessel.

The overall pumping in the vessel with valves is greater than in a valve-less vessel when the
backflow reduction due to valve closure outweighs the velocity decrease due to the hydrodynamic
resistance in the open valve. Thus, the pumping performance is determined by the valve properties
and is maximized when the valve is able to fully block the backflow with minimal resistance for
the forward flow.

Increasing the Reynolds number from Re = 0.2 to Re = 0.6 does not change the general
shape of the centerline velocity profile, although the maxima at the valve orifice are less
pronounced (Figure 7c¢). During the backflow phase the valve is able to fully close as indicated by
the near zero velocity at T = 0 and 0.8 at the leaflet edge. Compared to the case of Re = 0.2, the
increase in wave speed decreases the deviation of centerline velocity from that of a valve-less
vessel. We also find that the velocity during the open valve phase matches closer to the valve-less
velocity with increased Reynolds number, which can be attributed to a reduced hydrodynamic
resistance of the valve from a greater opening due to the faster fluid flow. Indeed, at Re = 0.2 the
maximum opening of the valve is about 44% of the cross-sectional area under the average vessel
diameter, whereas the maximum opening increases to 68% when Re = 0.6.

Figure 8 shows centerline velocities for the flow in vessels with Re = 0.2 and Re = 0.6 that
experience an adverse pressure difference AP = 140. The velocities in Figures 8a and 8b
correspond to the snapshots in Figure 5b. An adverse pressure gradient has a minor effect on the
shape of the velocity profiles compared to the case of the flow with AP = 0 (Figure 7) although
the velocities are shifted towards the negative values. For Re = 0.2, the valve-less vessel is unable
to produce a net positive flow resulting in Q = —0.22. For the same Re, the vessel with the valves
yields a small positive @ = 0.01, indicating that a sufficiently high AP can stop pumping by such
vessels. Note that further increase of AP leads to the valve remaining fully closed throughout the
entire contraction cycle. When compared to the velocity in the valve-less vessel, the velocities at
the open valve condition are nearly identical to the valve-less velocity (Figure 8b). This can be

attributed to a reduced flow through the valve at this AP as shown in Figure 8a.
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Figure 8. a) Centerline axial flow velocity U, (0) in the stationary reference frame in a vessel with
Re = 0.2 with an adverse pressure gradient. The maximum valve opening is 4,,4, = 0.3.b) Same
as a) but in the moving reference frame, the solid black line indicates the average centerline
velocity for the valve-less vessel. ¢) Centerline axial flow velocity U, (0) in a stationary reference
frame in a vessel with Re = 0.6. The maximum opening is A4, = 0.61. d) Same as c) but in the
moving reference frame, the solid black line indicates the average centerline velocity for the valve-
less vessel. The horizontal solid lines indicate the maximum and minimum centerline velocities in
vessels without valves. The dashed vertical lines indicate the boundaries of valve position. The
blue and red lines show the velocities when the valves are, respectively, open (4 = 0.05) and
closed (A < 0.05). The simulation parameters are AP = 140, ¢ = 0.2, K;, = 88, and K; = 115.

At a larger Re = 0.6 (Figure 8c) both vessels with and without valves are able to generate a
net positive fluid flow in spite of an adverse pressure gradient. However, valves enable
significantly greater pumping of Q = 0.11 compared to Q = 0.04 without valves. This is again
due to the ability of valves to stop backflow. The velocity during the open valve phase is slightly
lower than the valve-less velocity (Figure 8d) and comparable to the velocity in the flow without
adverse pressure gradient (Figure 7d). Indeed, in both cases normalized maximum valve openings
are comparable with 61% and 68%, for AP = 140 and AP = 0, respectively. Thus, this adverse
pressure gradient has a rather insignificant effect on the maximum valve opening.

Note that increasing Re has opposing effects on the peristaltic pumping with valves. On one

hand, increasing Re facilitates valve opening and decreases the associated viscous loss; on the

other hand, the time during which the valve is closed decreases impairing the valve’s ability to
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fully arrest the backflow. Indeed, at Re = 0.2 the valve is closed about 62% of the contraction
cycle, whereas at Re = 0.6 the valve is closed about 42% of the contraction cycle.

The dependencies of the pumping parameters on Re are summarized in Figure 9. The data is
shown for AP = 0 using the empty symbols, and for AP = 140 using the filled symbols. Figure
9a shows that normalized flow rate Q mostly increases as Re increases. Without an adverse
pressure gradient, Q remains nearly flat in valve-less vessels and slightly increases when vessels
are fitted with valves. Thus, the flow rate has nearly a linear relationship with the wave speed.
When the pumping occurs against an adverse pressure gradient, Q rapidly decreases with
decreasing Re. Without valves, low Re results in a negative @, meaning that peristaltic pumping
cannot overcome the adverse pressure gradient at these wave speeds. With valves, however, low
Re leads to slightly positive values of @, indicating that whereas peristatic motion cannot pump
the fluid, the valves are able to eliminate the backflow.

Figure 9b shows the normalized work W done over a wave period by the peristaltic vessel. In
valve-less cases and in valved cases with AP = 0, W is nearly constant indicating that work done
by the vessel increases nearly quadratically with Re since the normalization factor is proportional
to Re?. Otherwise, the work W decreases with increasing Re, as increased flow rate leads to a
larger valve opening and decreased loss from valve interference with the flow.

Pumping efficiency = qAp;/Wgyg is shown in Figure 9¢ as a function of Re. The efficiency
is defined as the ratio between the work due to the fluid transport against the adverse pressure
gradient and the work done by the vessel. Note that when AP = 0 the efficiency is zero. We
therefore present data only for AP = 140. We find that the efficiency curves for vessels with and
without valves exhibit maxima indicating the existence of optimum Re maximizing the pumping
per unit work against an adverse pressure gradient. This result is consistent with the analytical
solution for peristaltic pumping (Shapiro et al., 1969; Takabatake et al., 1988). The maxima of
efficiency are a result of two opposing trends. At small Re, peristaltic pumping cannot overcome
the adverse pressure gradient diminishing the flow rate and therefore the pumping efficiency. For
higher Re, the flow rate increases as Re, whereas the work increases as Re?, leading to overall
efficiency decrease with Re. Interestingly, valves increase the maximum efficiency and shift it to
the lower values of Re. This can be related to a more rapid decrease of the flow rate with decreasing
Re in valve-less vessels due to the adverse pressure gradient compared to vessels fitted with valves.

Furthermore, the efficiency is greater for larger ¢ as a result of a faster flow (Figure 9a). For larger
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Re, the efficiency of valve-less and valved vessels nearly overlaps, indicating a weak effect of

valves on pumping in this flow regime.
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Figure 9. a) Flow rate, b) vessel work, ¢) pumping efficiency, d) pumping economy, €) maximum
valve opening area A,,,,, and f) valve closure time T, as a function of peristaltic Reynolds number
for vessels with K;, = 88, and K; = 115. The empty and filled symbols represent data AP = 0 and
AP = 140, respectively. The dashed lines represent results from valve-less vessels. The valve is
considered closed when A < 0.05.

Another metric to characterize the performance of the peristaltic pumping is flow economy &
shown in Figure 9d as a function of Re. In addition to accounting for the work against the adverse
pressure gradient, as it is in the case for 7, € also accounts for the viscous losses in the vessel. We
find that ¢ is significantly greater than 7 and closely resembles the trend of the normalized flow
rate shown in Figure 9a, indicating that greater amount of work by the vessel goes to viscous loss
than to pumping the fluid. Without an adverse pressure gradient, € for the valve-less vessel exceeds
the value for vessels with valves, due to the additional loss associated with valves restricting the
flow. The difference decreases with increasing Re due to the larger valve opening (Figure 9e).
However, when AP = 140, ¢ for vessels with valves exceeds valve-less €. Thus, adding valves
improve the economy when the flow is confronted by an adverse pressure gradient, whereas
without an adverse pressure, pumping of the valve-less vessel is more economical.

We further characterize valve behavior during peristaltic pumping by quantifying the

maximum valve opening area A,,,, and the occlusion time T,, which are shown as a function of
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Re in respective Figures 9¢ and 9f. The maximum opening area steadily increases with Re and
plateaus for Re > 1. For lower Re, an adverse pressure gradient somewhat decreases A4, as a
result of a lower positive flow velocity in the vessel (Figure 8). The occlusion time T is relatively
constant with Re when the flow is not affected by AP. This is consistent with the velocity profiles
shown in Figure 7 that exhibit minor variations for different Re. On the other hand, an adverse
pressure gradient causes T, to increase with decreasing Re, as longer occlusion period occurs due

to the increased backflow.

3.3 Effect of adverse pressure gradient on pumping

Figure 10 presents the dependence of peristaltic pumping parameters for vessels with and
without valves on the magnitude of the adverse pressure difference AP. Here, we keep the wave
speed constant leading to Re = 0.4. We find that the normalized flow rate Q decreases linearly
with increasing AP (Figure 10a). Furthermore, Q increases with wave amplitude ¢. For vessels
without valves the decrease of Q is more rapid than for vessels with valves. As a result, valved
vessels are able to pump fluid against significantly greater AP. However, this enhanced pumping
in valved vessels comes at the cost of increased work W performed by the vessel (Figure 10b).
The work by vessels with valves exceeds the work by valve-less vessels likely due to the increased
viscous losses associated with the flow through the occluding valves. Increased wave amplitude ¢
results in greater W.

Pumping efficiency is presented in Figure 10c. In spite the greater work done by vessels with
valves, their efficiency is either comparable (at lower AP) or exceeds (at higher AP) that of valve-
less vessels. Thus, in terms of pumping efficiency, the greater pumping capacity overcomes the
increased viscous loss created by the valves. Furthermore, pumping efficiency curves exhibit
maxima indicating the existence of optimum values of the adverse pressure gradient leading to the
most efficient peristaltic pumping. For a vessel with valves, the optimum AP significantly exceeds
that for a valve-less vessel. Furthermore, increasing ¢ increases the efficiency and the optimum
AP. Thus, by changing vessel parameters the pumping can be optimized to a specific value of AP.

Flow economy shows nearly linear decrease with AP (Figure 10d). At lower AP, the work of
vessel contraction mostly goes to overcome viscous friction loss rather than useful pumping. At

these conditions, ¢ for valve-less vessels exceeds € for vessels with valves. At higher AP, vessels
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with valves exhibit better economy than valve-less vessels. Note that the economy is greater when
the wave amplitude is increased.

The maximum valve opening area and valve occlusion time are shown in Figures 10e and 10f,
respectively. Increasing adverse pressure gradient gradually decreases the valve maximum
opening and increases the time that valve stays closed per contraction cycle. That is consistent
with the reduction of the pumping flow rate with increasing AP (Figure 10a). Indeed, the slower
flow velocity and lower favorable pressure gradient in the vessel decrease the forces acting to open

the elastic valve resulting in lower A,,,, and longer T,.
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Figure 10. a) Flow rate, b) vessel work, ¢) pumping efficiency, d) pumping economy, €) maximum
valve opening area A, and f) valve closure time T, as a function of adverse pressure difference
AP for vessels with Re = 0.4, K;, = 88, and K; = 115. The dashed lines represent results from
valve-less cases. The valve is considered closed when A < 0.05.

3.4 Effect of valve elastic properties on pumping

Figure 11 shows the side views of the valves with three representative bending stiffnesses,
which we further refer as soft, normal, and stiff valves (see Video S5). The valves are plotted at
different instances of vessel operation. Figure 11a indicates that soft valves experience valve
depression at the middle of the valve under backflow. This deformation does not prevent backflow
until the valve free ends fully close. Normal and stiff valves in Figures 11b and 11c experience

closures at the valve free ends, leading to a more effective backflow prevention than the soft valve.
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However, stiff valves are less responsive to changing flow rate, lengthening the time required for
the valve to be fully open and closed, decreasing the maximum valve opening area during the

forward flow and increasing the time the valve remains closed after the flow reversal.
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Figure 11. a) Deformation of valves with K;, = 11, b) with K, = 88, c) with K, = 263 at
different instances of the vessel contraction cycle. The dots represent leaflet position at the
centerline. The simulation parameters are AP = 140, ¢ = 0.2, Re = 0.4, and K; = 115. See
Video S5.

The behavior of the elastic valves can be further characterized by analyzing the time evolution
of the flow rate @ and the leaflet cross-sectional opening area A that are shown in Figure 12 for
flow with and without an adverse pressure gradient. The flow rate Q; is averaged over the entire

simulation domain. Note that for a valve-less vessel, Q remains constant as shown by the dotted

lines in Figures 12a and 12c. Figures 12b and 12d also show the vessel radius at the valve location.
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Figure 12. a) Time evolution of flow rate in vessels with AP = 0. b) Time evolution of valve
opening area A in vessels with AP = 0. c) and d) are the same as a) and b) but with AP = 140.
The flow rate is averaged over contraction wavelength. The horizontal dashed line represents flow
rate in the valve-less vessel while the dotted lines in b) and d) represent normalized vessel radius
near the valve (/7). The dashed lines in a) and ¢) indicate that r/ry > 1, while the solid lines
indicate that r /7, < 1. The horizontal dash-dot lines in a) and c) denote Qg = 0. The simulation
parameters are ¢ = 0.2, Re = 0.4, and K, = 115.

The valves open when the vessel diameter at the valve location increases (Figures 12b and
12d), which corresponds to the forward fluid flow through the valve (Figure 5). The valve opening
is maximized when the vessel diameter is near its mean value. Softer valves can open more widely
during flow through the valve and stay open longer. Furthermore, for such valves the opening
starts later than for stiffer valves. Comparing the flow with and without an adverse pressure
gradient we find that the adverse pressure gradient suppresses valve opening with the effect being
more significant for softer valves. This can be attributed to the lower flow velocity and favorable
pressure gradient for valve opening when the flow is affected by an adverse pressure.

The valve kinematics strongly affects the flow rate in the vessel (Figures 12b and 12d). When

the valves are open, softer valves impose lower resistance on the flow leading to a faster flow.

However, even with the softest valve, the instantaneous flow rate with an open valve is slower
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than in the case of a valve-less vessel. When the valves are closed, the flow rate increases and
exceeds the valve-less flow rate. Stiffer valves that close sooner enable a larger mean flow rate.
Thus, during the oscillation period, the fluid is mostly pumped when the valves are closed, and the
fluid is transported by the contracting wave propagating along the vessel. This behavior is more
evident when the flow is confronted with an adverse pressure gradient (Figure 12c). In this case,
the flow rate is negative when the valves are open, and the fluid is transported in the positive
direction only when the valves are closed. Note that for the same adverse pressure gradient valve-
less vessel generates a nearly zero net flow.

We therefore conclude that valve elasticity has opposing effects on the pumping performance.
Softer valves enable greater valve opening, reducing viscous losses when the flow is moving in
the positive directions through the valve. On the other hand, stiffer valves can close more rapidly
during backflow minimizing flow reversal during this phase. This indicates that an optimum valve
of elasticity exists that maximizes the vessel pumping performance.

Figure 13 presents the pumping parameters as a function of valve bending elasticity K, for
vessels with AP = 140 and two wave amplitudes ¢ = 0.2 and ¢p = 0.25. We indeed find that the
flow rate is maximized when K;, =~ 63 (Figure 13a). This optimum bending elasticity is about the
same for both contraction wave amplitudes. The pumping efficiency and economy (Figures 13c
and 13d) also exhibit maxima with K;. Here, the optimum elasticity K;, = 50 is somewhat lower
than that for the maximum flow rate.

We also find that work done by the vessel W gradually increases with increasing Kj, (Figure
13b). The work increase is related to the higher viscous losses associated with less deformable
valve leaflets (Ballard et al., 2018) that exhibit a lower valve opening area (Figure 13e). These
figures show that this trend is independent of the wave amplitude. While 4,,,, steadily decreases
with increasing Kj,, the time the valve stays closed T, is nearly independent of K}, for K;, > 50,
and sharply decreases for lower Kj,. This indicates that softer valves are unable to properly close
and fail to prevent the backflow in the vessel.

In Figure 13, we also examine the effect of the leaflet in-plane stiffness K; on the valve
performance. We compare valves with K; = 23, 115, and 575. We find that a nearly 25-fold
change of in-plane stiffness has a minor effect on the vessel parameters such as flow rate Q, work
done by the vessel W, efficiency 7, and economy &. Only a slight decrease of A4,,,, 1s found for

the valves with K; = 575 compared to the less stiff valves. Interestingly, the time that valve is
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closed T, is practically insensitive to changes in K. Thus, we conclude that the valve behavior is

mostly defined by the valve bending elasticity whereas in-plane stiffness plays a minor role.
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Figure 13. a) Flow rate, b) vessel work, c) pumping efficiency, d) pumping economy, e) the
maximum valve opening area A,,,,, and f) valve closure time T, as a function of valve bending
stiffness Kj, for vessels with AP = 140 and Re = 0.4. The dashed lines represent results from
valve-less cases. The valve is considered closed when A < 0.05.

The emergence of an optimum K}, indicates that the vessel mechanical properties can be
optimized for specific pumping conditions. Furthermore, the optimum K}, leading to the fastest
pumping performance and the highest efficiency and economy are somewhat different due to the
dependency of W on K,,. Indeed, increasing W with K}, results in the softer valve being more
efficient while providing slightly slower pumping. In Figure 14, we examine the dependency of
the optimum valve elasticity on the magnitude of the adverse pressure gradient. The figure shows
that the optimum elasticity increases with AP. We relate this trend to the improved ability of stiffer
valves to withstand backflow due to an increasing adverse pressure gradient as such valves can
close faster than softer valves (Figure 12d). When AP increases, flow rate in the vessel reduces
and the ability to prevent the backflow has more significant effect on the pumping than increased

viscous losses due to stiffer valves.
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Figure 14. Optimal normalized bending stiffness yielding the maximum efficiency, economy, and
flow rate under different adverse pressure gradients. The simulation parameters are ¢p = 0.2, Re =
0.4, and K, = 115.

3.5 Effect of contraction amplitude dependence on adverse pressure
gradient

In the lymphatic system, the vessel contraction amplitude depends on the magnitude of the
adverse pressure gradient (Davis et al., 2012). As shown in Figure 15, contraction amplitude
gradually decreases with increasing AP. The decrease is more rapid for lower AP and the
amplitude converges to a non-zero value when the pressure gradient increases beyond AP > 1000
due to the inability of the lymphatic muscle cells to generate enough force for the pressure in the

vessel proximal to the valve to exceed the pressure distal to the valve.
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Figure 15. Contraction amplitude as a function of normalized pressure difference. Experimentally
reported values (Davis et al., 2012) are shown by the triangles while the fit is shown by the solid
line.

In Figure 16, we examine the effects of the pressure dependence of the contraction amplitude
on the pumping performance. To isolate these effects, we compare normalized flow rate Q, work

done by the vessel W, and pumping efficiency 1 for a vessel with pressure dependent contraction
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amplitude to a vessel with a constant contraction amplitude. For the later vessel, we set the
contraction amplitude such that the amplitudes for both vessels are identical when AP = 0. The

data is presented for two values of Re.

b)

Re =04 Re = 0.8
- f(AP) @ | &
044 S| A

o
66'9‘8-9 seo_ B
\‘\
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
AP AP AP

Figure 16. a) Flow rate, b) vessel work, and c¢) pumping efficiency as a function of the pressure
gradient for vessels with and without pressure-dependent contraction amplitude. The valve
elasticity is K;, = 88, and K; = 115. Without adverse pressure gradient both the vessels exhibit
an identical contraction amplitude of ¢p = 0.44.

The simulations show that vessels with pressure dependent amplitude significantly
underperform compared to the constant amplitude vessels, resulting in a rapid decrease of the
pumping flow rate with increasing adverse pressure gradient (Figure 16a). This trend is consistent
with the results shown in Figure 10a indicating a reduction in pumping rate with lower contraction
amplitude. Pressure dependent contraction amplitude also has significant effect on the work done
by the pumping vessel. As shown in Figure 16b, constant contraction amplitude leads to an
increasing amount of work as the adverse pressure increases. By contrast, the pressure dependent
amplitude results in work that is nearly independent from AP. This result suggests that lymphatic
vessel contraction amplitude is limited by the work of contractile muscles driving vessel
contraction and that once exposed to an adverse pressure gradient, lymphatic muscle quickly
achieves maximum capacity in terms of the work generated. It is also interesting to note that the
work only slightly changes with Re. Furthermore, pressure dependent contraction amplitude
decreases the pumping efficiency compared to the constant amplitude case (Figure 16¢). Although
the work is roughly constant with pressure, the decreasing Q in the pressure dependent vessels
results in a rapid decrease in efficiency when AP is sufficiently large. As a result, the optimum
pumping occurs at lower values of AP compared to the vessels with a constant contraction

amplitude.
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4. Summary

Using fully coupled three-dimensional simulations, we investigate fluid pumping by a
peristaltic vessel outfitted with elastic valves. The valves are formed by two adjusted angled elastic
sheets representing a typical valve in a collecting lymphatic vessel. We compare fluid pumping by
peristaltic vessels with and without valves to identify and isolate the effects of the valves on the
resulting flow rate and pumping performance characterized in terms of pumping efficiency and
economy. The simulations show that elastic valves increase the net fluid flow generated by a
peristaltic vessel by reducing the backflow due to the periodic vessel contractions. At the same
time, valves generate an additional flow resistance during the forward fluid flow. The effect of the
valves on the pumping is more pronounced at lower Reynolds numbers and when the pumping is
performed against an adverse pressure gradient. In both scenarios, the pumping by a valve-less
peristaltic vessel diminishes due to a significant backflow.

We systematically investigate the effects of the vessel contraction wave speed, contraction
amplitude, adverse pressure gradient, and valve elastic properties on the pumping performance.
Increased vessel contraction wave speed and contraction amplitude increase pumping flow rate
and work done by the vessel. Increasing adverse pressure gradient suppress fluid pumping while
requiring greater work by the vessel. The valve stiffness exhibits an optimum maximizing the
pumping flow rate. Higher valve stiffness increases viscous loss leading to an increased work,
whereas softer valves close slowly enhancing backflow. The pumping economy is dominated by
the viscous losses in the vessel and, thus, increases with increasing pumping flow rate. Optimal
valve and vessel parameters exist that maximize the pumping efficiencies of valved peristaltic
vessels. We find that the stiffer valves are required with increased adverse pressure gradients to
maintain the high pumping efficiency. When the vessel amplitude decreases with increasing
adverse pressure gradient in the manner it takes place in lymphatic systems, we find that vessel
maintains a relatively constant work for the entire range of the pressure gradients, while gradually
decreases the pumping flow rate. This result indicates that lymphatic vessel pumping is limited by
the contractile capacity of lymphatic muscle.

Understanding valve mechanics in the lymphatic vasculature has become increasingly
important. Oscillatory wall shear stress has been shown to enhance the expression of transcription

factors necessary for the formation of lymphatic valves during development as well as for post-
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natal valve maintenance (Cha et al., 2016; Cha et al., 2018; Choi et al., 2019; Sabine et al., 2012;
Sabine et al., 2015). In addition mutations in mouse models in genes associated with primary
lymphedema have produced valves that are dysfunctional at preventing backflow (Castorena-
Gonzalez et al., 2020; Kazenwadel et al., 2015; Lapinski et al., 2012; Lapinski et al., 2017) and
abnormal conduction of contraction waves (Castorena-Gonzalez et al., 2018). Thus, understanding
the structure-function relationships that underpin proper valve performance and how subtle
alterations in lymphatic structure and mechanics negatively impact over lymphatic transport is of
high clinical importance. Moreover, knowledge of these structure-function relationships could also
provide insight into the underlying mechanobiology that is driving the observed regional variation
in lymphatic vessel pumping behavior and morphology (Gashev et al., 2004; Gashev et al., 2012;
Zawieja et al., 2018). For example, it is possible that the regional differences in valve length and
morphology in vessels close to the heart (such as the thoracic duct) compared to vessels found in
the extremities could exist to optimize function in the context of the local mechanical loads placed
on these vessels. Finally, our findings from this study can lead the development of simplified
functional relationships between various valve properties and flow performance metrics, which
can be incorporated into the existing lower dimensional models. Such simplified models are
computationally less expensive enabling simulations of extensive lymphangion chains and their

branched networks.
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