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Abstract

We here present a new version of the publicly available general relativistic mag-

netohydrodynamic (GRMHD) code Spritz, which now includes an approxi-

mate neutrino leakage scheme able to handle neutrino cooling and heating. The

leakage scheme is based on the publicly available ZelmaniLeak code, with

a few modifications in order to properly work with Spritz. We discuss the

involved equations, physical assumptions, and implemented numerical meth-

ods, along with a large battery of general relativistic tests performed with and

without magnetic fields. Our tests demonstrate the correct implementation of

the neutrino leakage scheme, paving the way for further improvements of our
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neutrino treatment and the first application to magnetized binary neutron star

mergers.We also discuss the implementation in theSpritz code of high-order

methods for a more accurate evolution of hydrodynamical quantities.

Keywords: numerical relativity, magnetohydrodynamics, neutron stars

S Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1. Introduction

Binary neutron star (BNS) mergers are among the most powerful sources of gravitational

waves (GWs) that can be detected by current ground-based GW detectors. The detection of

GW170817 [1] also confirmed that these systems may emit bright electromagnetic (EM) sig-

nals and, in particular, short gamma-ray bursts (GRBs) and kilonovae (e.g. [2–15]). In order

to properly model the merger and post-merger evolution of these systems and thus establish a

reliable connection with their multimessenger observations, one needs to account not only for

general relativistic effects, but also for other key physical ingredients such as magnetic fields,

a temperature and composition dependent equation of state describing the behaviour of matter,

and neutrino emission and re-absorption. For instance, neutrino effects and magnetic fields are

both crucial (i) to accurately model the BNS merger ejecta and their composition, which are in

turn responsible for the kilonova emission and the associated heavy element nucleosynthesis

(e.g. [16–19] and references therein), and (ii) in the context of short GRB jet formation, where

magnetic fields aremost likely the main driver (e.g. [20–23])while neutrino radiationmay play

an important role in altering the baryon pollution along the spin axis of the remnant, which in

turn may affect the successful propagation of the corresponding outflow (e.g. [24]). Including

all of the above effects in one code is however rather challenging and only very fewmagnetized

BNS merger simulations with neutrino treatment (via an approximate leakage scheme) have

been presented so far [25, 26].

Here, we present a new publicly available version of our general relativistic magnetohy-

drodynamic (GRMHD) code named Spritz [27, 28], based on the Einstein Toolkit

infrastructure [29–31]. This new version of Spritz can handle finite temperature tabulated

equations of state (EOSs) as well as neutrino cooling/heating along with magnetic fields. In

particular, the neutrino treatment is built around the ZelmaniLeak code [32], implement-

ing a ray-by-ray neutrino leakage scheme. ZelmaniLeak has already been employed in

the context of BNS mergers and in particular in GRMHD simulations starting from a non-

magnetized post-merger system to which a magnetic field is added by hand [24]. We note

that while more advanced schemes have been discussed in the literature (e.g. [33]), only sim-

ple leakage schemes have been so far employed to study merging BNSs with both magnetic

fields and neutrinos [25, 26] (and the corresponding implementations are not publicly avail-

able). Therefore, neutrino leakage represents a natural starting point for the inclusion of this

key physical ingredient in Spritz.

During the writing of this paper we also finished implementing in the code new high-order

methods that are described in appendixA, where we show that the code can now reach, in some

scenarios, fifth-order convergence.High-order methods have been shown in the literature to be

very important in order to obtain accurate GW signals and a better description of the matter

dynamics (e.g. see [34, 35]). At the time of writing, only few other GRMHD codes for BNS
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simulations employ high-order methods [24, 26, 36]. The new version of the Spritz code

can be found on Zenodo as version 1.1.0 [28].

The paper is organized as follows. In section 2, we present the equations and assumptions

behind the adopted neutrino leakage scheme. Section 3 provides an overviewof the new numer-

ical methods included in the Spritz code, from tabulated EOS handling and conservative-

to-primitive recovery to the neutrino leakage implementation. Section 4 is devoted to a large

set of tests, through which we validate the novel features of Spritz. Finally, we summarize

our results in section 5.

We use geometric units such that G = c = M⊙ = 1 unless specified otherwise. Greek

indices go from 0 to 3, Latin indices from 1 to 3, and summation over repeated indices is

assumed. As usual, we employ a (−+++) metric signature. We use a 3+ 1 decomposi-

tion of the space-time, where the four-metric is indicated with gμν and ds2 = gμν dx
μ dxν =

−
(

α2 − βiβi
)

dt2 + 2βi dx
i dt + γi j dx

i dx j. α is the lapse function, β i is the shift vector,

and γ i j is the three-metric. Moreover g and γ represent the determinant of gμν and γ i j
respectively.

2. Basic equations and assumptions

In the present section we discuss the equations that are solved by the new version of our

GRMHD code which now include also the contribution of neutrino emission and absorption.

We will mainly focus on the new additions to the code and refer the reader to our previous

paper for more details on the equations and methods used to solve the GRMHD equations

[27]. We remind the reader that the (Eulerian) magnetic field Bi is evolved via a staggered-

vector-potential formulation. The equations for the evolution of the rest-mass density ρ, three-
velocity vi, and specific internal energy ε are set according to the following conservative

formulation:

1√−g
[

∂t
(√

γF0
)

+ ∂i
(√−gFi

)]

= S
i, (1)

being F0 ≡
[

D, S j, τ̃
]

11 the vector of conserved variables, defined in terms of the primitive

ones as

D ≡ ρW,

S j ≡
(

ρh+ b2
)

W2v j − αb0b j,

τ̃ ≡
(

ρh+ b2
)

W2 −
(

P+ Pmag

)

− α2
(

b0
)2 − D,

(2)

whereW = 1/
√
1− v2 is the Lorentz factor, P is the gas pressure, h = 1+ ε+ P/ρ is the rel-

ativistic specific enthalpy, Pmag = b2/2 is the magnetic pressure, b0 = (WBivi)/α, b
i
= (Bi +

αb0ui)/W, b2 ≡ bμbμ =

[

B2 + α2
(

b0
)2
]

/W2, B2 = BiBi, and u
μ is the fluid four-velocity.Fi

is instead the vector of fluxes defined as

F
i ≡

⎡

⎣

Dṽi/α
S jṽ

i/α+
(

P+ Pmag

)

δij − b jB
i/W

τ̃ ṽi/α+
(

P+ Pmag

)

vi − αb0Bi/W

⎤

⎦ , (3)

11We use the symbol τ̃ instead of the commonly used τ to avoid confusion with the optical depth τ used later in the

paper.
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where ṽi ≡ αvi − βi and β i is the shift, while Si the vector of sources that reads

S
i ≡

⎡

⎣

0

Tμν
(

∂μgν j − Γ
δ
νμgδ j

)

α
(

Tμ0∂μ ln α− Tμν
Γ
0
νμ

)

⎤

⎦ , (4)

where Tμν is the energy–momentum tensor, given by Tμν =
(

ρh+ b2
)

uμuν +
(

P+ Pmag

)

gμν − bμbν , and Γσ
νμ are the Christoffel symbols defined from the four-metric gμν .

We note that the above equations do not include the contribution of neutrino emission and

reabsorption. Following an operator-split approach, the GRMHD evolution step is first per-

formed without such contribution and then the neutrino problem is solved via the leakage

scheme. Finally, the variables Ye and ε are updated accordingly, thus including the effects of

neutrino radiation on the GRMHD evolution itself (see sections 2.3 and 3.4).

2.1. Electron fraction

In order to properly include neutrino emission and absorption, we need to add one evolution

equation for the electron fraction, which we define as

Ye =
ne

np + nn
, (5)

being ne, np, and nn the electron, proton, and neutron number densities.

From the local conservation of the total baryon number, neglecting the mass difference

between neutrons and protons, we obtain the following equation for the electron fraction, valid

in absence of neutrino emission/absorption:

∇μ (Yeρu
μ) = 0, (6)

expressing the fact that Ye is advected along the fluid lines. This equation is commonly referred

to as the electron fraction advection and can be expressed in a hyperbolic conservative form as

∂t
(√

γDYe
)

+ ∂i

[

α
√
γDYe

(

vi − βi

α

)]

= 0. (7)

In presence of reactions involving neutrinos, the local electron fraction obtained from the

above equation is then modified according to equation (19) (see section 2.3).

2.2. Equation of state

The Spritz code can handle tabulated finite-temperature and composition dependent EOS

via theEOS_Omni thorn included in the Einstein Toolkit. This is crucial since a proper descrip-

tion of the matter composition depending on temperature is necessary in order to estimate the

emission and absorption rates associated with the different processes involving neutrinos (see

the next section). Moreover, as a consequence of such processes, Ye necessarily undergoes

changes that must be estimated accurately when dealing with dynamical scenarios.

The exact matter composition at the typical densities reached in the core of an NS is still

unknown and so is the correct EOS. A large number of proposed tabulated EOS inspired by

nuclear physics calculations can be found in the literature (see, e.g. the database in [32, 37] for

several examples). These EOS are usually three-dimensional tables where every hydrodynam-

ical variable, such as the gas pressure P or the specific internal energy ε, can be related to the

rest-mass density ρ, the temperature T, and the electron fraction Ye.

4
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When building initial data, however, a one-dimensional (i.e. barotropic) EOS is typically

needed, where P is just a function of ρ. In this case, reducing the three-dimensional table

P = P(ρ, T, Ye) to a simpler one-dimensional relation P = P(ρ) becomes necessary, implying

that two conditions on the NS matter should be imposed. The first and most common one is

to assume the NS to be initially in β-equilibrium, which is a reasonable assumption for old

NSs, such as those encountered in BNS or NSBH binary systems prior to merger. As a second

assumption, onemaydecide to fix either a constant value for the entropy (S-slicing condition) or

for the temperature (T-slicing condition). The latter is the one typically used in BNS or NSBH

merger simulations since it is reasonable to expect NSs to be cold prior to merger. In this paper,

along with the standard T-slicing condition, we have also used the S-slicing condition to test

the ability of our code in dealing with ‘hot’ NSs.

All the computations presented in this paper are performed adopting the LS220 EOS [38],

that has been already used in a number of papers dealing with the evolution of BNS systems

(e.g. [16, 39, 40]).

2.3. Neutrino emission and absorption

During the merger of BNS or NSBH systems, temperatures as high as T ∼ 10 MeV ∼ 1011 K

can be produced and also the electron fraction Ye may change considerably. In this scenario,

neutrinos play a key role in both the transport of energy and in determining the evolution of

Ye and temperature, which are in turn crucial parameters for the r-process nucleosynthesis

taking place in the ejected matter and the subsequent production of heavy elements. A proper

estimate of the rates of the different reactions involving neutrinos is thus necessary in order

to compute the nucleosythesis yields and to model the radioactively-powered kilonova signals

accompanying such mergers (as the one already observed after GW170817; e.g. [14, 15]).

The typical timescale for weak processes producing neutrinos can be estimated from the

changing electron fraction as

tWP ∼
∣

∣

∣

∣

Ye

Ẏe

∣

∣

∣

∣

≪ tdyn, (8)

being tdyn the dynamical timescale of the simulated astrophysical event [41]. By carrying away

energy, neutrinos can significantly cool down the (meta)stable NS remnant of a BNS merger

or the accretion disk around the spinning BH resulting from either a BNS or an NSBH merger

(e.g. [16]). Moreover, a fraction of the emitted neutrinos may be reabsorbed by the outer mate-

rial, inducing heating and leptonization of the material itself. The surface where the neutrino

optical depth is τ = 2/3 conventionally defines the ‘neutrinosphere’ (e.g. [42]), which sepa-

rates the diffusive regime of the high-density interiors (�1012 g cm−3; e.g. [43]) and the nearly

free streaming regime of the exterior. The intermediate region between τ ≪ 1 and τ ≫ 1 (i.e.

where neutrinos are neither free to escape nor fully trapped) is the challenging one for neu-

trino transport. In its energy averaged version, the optical depth along each path ξ followed by
neutrinos can be defined as [44]

τξ =

∫

ξ

ρ(x)k(x)
√

γi j dxi dx j, (9)

being k(x) the energy averaged opacity at position x. The path giving the minimum optical

depth is the favoured one for neutrino escape and allows us to define a single optical depth for

each given location

τ (x) = min
ξ∈Ξ

τξ = min
ξ∈Ξ

∫

ξ

ρ(x)k(x)
√

γi j dxi dx j, (10)
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where Ξ is the set of all possible paths including position x.

The complexity and extremely high computational cost of the full neutrino transport

problem solved via the Boltzmann radiation transport equations forced the introduction of

approximate schemes and simplifying assumptions (e.g. [33] and references therein). We con-

sider here a so-called neutrino leakage scheme, already employed successfully in BNS and

NSBH simulations (e.g. [25, 41, 45–47]). In particular, we adopt the leakage method pre-

sented in [44, 48], which has been implemented in the publicly available ZelmaniLeak code

[32]. In what follows, we introduce the leakage scheme and the basic physical assumptions.

The numerical implementation is instead discussed in the next section (and in particular in

section 3.4).

In the neutrino leakage scheme adopted in this work, we consider three neutrino species,

electron neutrino νe, electron antineutrino ν̄e, and heavy-lepton neutrinos νx (including νμ, ν̄μ,
ντ , ν̄τ ), and for each one we compute the local number and energy emission rates according

to the following steps.

The neutrino optical depths, which are crucial to determine the emission rates (see below),

are computed under the assumption that neutrinos escape along radial paths from the centre

(ray-by-ray approach). For each species, we compute the local spectral averaged opacity as

the sum of the opacities due to the scattering off nucleons, neutrino-nucleus scattering, and

neutrino absorption by free nucleons (see [49] for details). Then, we use these mean opacities

to compute the optical depths along each radial path (equation (9)).

In the diffusive regime, the number and energy rates (i.e. number and energy per unit

volume, per unit time) can be written as [49]

Rdiff
νi

=
4πcgνi
(hc)3

ζνi
3χ2

νi

TF0(ηνi ), (11)

Qdiff
νi

=
4πcgνi
(hc)3

ζνi
3χ2

νi

T2F1(ηνi ), (12)

where i = 1, 2, 3 and ν1 = νe, ν2 = ν̄e, ν3 = ν x, while gν1 = gν2 = 1 and gν3 = 4. More-

over, ζ = (E2λ)−1, χ = τ/E2, with E the average neutrino energy (computed assuming a

Fermi–Dirac distribution at the local temperature T) and λ the mean free path, and F0(η),
F1(η) are the Fermi integrals defined in [50] as function of the neutrino chemical potential

η. Energy and number rates are also computed for the free neutrino emission regime (Qfree
νi

and Rfree
νi

), taking into account capture processes, electron–positron pair annihilation, plasmon

decay, and nucleon–nucleon bremsstrahlung (see [48, 49]). Finally, the actual emission rates

are found by combining the free emission and diffusive ones as follows

Reff
νi

= Rfree
νi

(

1+
Rfree
νi

Rdiff
νi

)

, (13)

Qeff
νi

= Qfree
νi

(

1+
Qfree

νi

Qdiff
νi

)

. (14)

For a given radial direction (θ,φ), the isotropic-equivalent neutrino luminosity incoming

from below at a distance r can be computed (in the coordinate frame) as

Lisoνi (r, θ,φ) = 4π

∫ r

0

[

α(r′, θ,φ)

α(r, θ,φ)

]

Qeff
νi
(r′, θ,φ)α(r′, θ,φ)W(r′, θ,φ)

×
[

1+ vr(r′, θ,φ)
]
√

grr(r′, θ,φ)r
′2 dr′,

(15)

6



Class. Quantum Grav. 38 (2021) 085021 F Cipolletta et al

being vr the radial velocity12. We can also define a fluid rest frame (FRF) luminosity as

Liso,FRFνi
(r) =

Lisoνi (r)

α(r)W(r) [1+ vr(r)]
. (16)

The heating and leptonization due to the reabsorption of a fraction of neutrinos by the material

along their path (i.e. νe and ν̄e reabsorption on neutrons and protons, respectively) is taken into
account via the local heating rate [48]

Qheat
(νe ,ν̄e)

= fheat
Liso,FRF(νe ,ν̄e)

4πr2
σheat
(νe ,ν̄e)

ρ

m(n,p)

X(n,p)

(

4.275τ(νe ,ν̄e) + 1.15
)

e−2τ(νe,ν̄e) , (17)

where fheat is a scaling factor of order one (we set fheat = 1), σheat
(νe ,ν̄e)

is the reabsorption cross-

section (see below),m(n,p) andX(n,p) are the neutronor protonmasses andmass fractions, and the

factor e−2τ(νe,ν̄e) is added to suppress heating at very large optical depths. For the reabsorption

cross-section, we adopt the following expression [44]

σheat
(νe ,ν̄e)

=
1+ 3α2

EC

4
σ0

〈E2〉NS(νe ,ν̄e)
(mec2)2

〈1 − f (e−,e+)〉, (18)

where αEC = −1.25, σ0 = 1.76× 10−44 cm2, 〈E2〉NS is the mean squared neutrino energy at

the neutrinosphere, and 〈1− f (e−,e+)〉 are the blocking factors defined in [51].
The full neutrino emission and reabsorption problem at a given time is solved along each

radial direction bymoving outwards from the centre and, at each radius, subtracting the heating

rate from the emission rate, i.e. Qeff
νi

→ Qeff
νi

− Qheat
νi

and Reff
νi

→ Reff
νi

− Qheat
νi

/〈E〉NSνi , with 〈E〉NSνi
the average neutrino energy at the neutrinosphere and Qheat

νx
= 013.

In order to couple the result to the GRMHD evolution, the Ye and ε are then modified as

follows:

Ye → Ye +∆t
∂Ye
∂t

, (19)

being∆t the local time step, and where

∂Ye
∂t

=
Reff
ν̄e

− Reff
νe

ρ
mn, (20)

being mn the rest-mass of the neutron, and

ε→ ε+∆t
∂ε

∂t
, (21)

where

∂ε

∂t
= −ΣiQ

eff
νi

ρ
. (22)

12Note that this expression neglects the time-of-flight of neutrinos, i.e. it just collects together neutrinos emitted at a

given time and at different radial locations. However, this is only used in the region where neutrino reabsorption is

relevant and in the post-merger phase of a BNS or NSBH coalescence the extension of such a region is characterized

by a light travel time much shorter than the timescale for a significant change in neutrino luminosities.
13As pointed out in [44], the present grey heating scheme does not provide a perfect balance between emission and

absorption, which would require a self-consistent radiation transport treatment.
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3. Numerical methods

The Spritz codemakes use of the Einstein Toolkit framework. Details of the numer-

ical methods used to solve the GRMHD equations are provided in [27] and here we focus

on the new parts of the code that handle the use of tabulated EOS and neutrino emission

and absorption. All the simulations reported in this paper use the MacLachlan thorn to

evolve the spacetime in the BSSNOK formalism and the Carpet driver for adaptive mesh

refinement.

3.1. Equation of state driver

As already stated in section 2.2, the Spritz code adopts the EOS_Omni thorn of the

Einstein Toolkit software infrastructure. This thorn is able to handle a large variety

of EOS, including ideal fluid, polytropic, and tabulated ones.

During our first tests with the EOS_Omni thorn and tabulated EOS, we noticed that the

EOS_Omni thorn presented some limitations in dealing with such EOS type. In particular,

to compute the temperature T from the specific internal energy ε, the thorn adopts a New-

ton–Raphson routine with a fall-back to a bisection routine in case of too many iterations,

after verifying that the root is bracketed. We found this algorithm to be not robust enough

in cases when T weakly depends on ε, which may lead T to go out of the bounds present

in the chosen table (see [52]). This problem was present in particular when dealing with

NS initial data using the lowest T available in the EOS table. Such initial data undergo a

sharp temperature increase in the core of the NS due to numerical readjustment of the ini-

tial data given by the solution of the TOV equations. We proposed a modification of the

EOS_Omni thorn to the Einstein Toolkit developers that consisted in preferring the

fall-back to the more robust bisection method in such cases. In this way, we verified the

temperature T to be always contained in the range available in the table. This modification

was accepted and it is now included in the publicly available Einstein Toolkit since

May 2020 [53].

We performed all the simulations discussed in section 4 using this new version of the

EOS_Omni thorn. We therefore caution the reader that the Spritz code should be used with

the May 2020 release of the Einstein Toolkit (or later versions) when using tabulated

EOS.

3.2. Initial data

In order to compute the initial data, one needs to reduce the 3D EOS table to a 1D EOS, in

which the pressure P is only a function of the rest-mass density ρ. To do this, we assume

β-equilibrium and then apply the S-slicing or T-slicing condition mentioned in section 2.2.

We coded a python script for this purpose (available with the public version of Spritz) that

produces a 1D tabulated EOS starting from a 3D tabulated EOS in .h5 format, such as the ones

provided in [32]. The 1D EOS is saved in the CompOSE format [37] that can be easily used

with LORENE [54]. The initial data used in this paper, reproducing a single non-rotating NS

(TOV), were in particular produced with the code Nrotstar that can compute equilibrium

solutions for non-rotating or uniformly rotating NSs. These solutions are non-magnetized, but

a magnetic field can be easily added to the initial data as long as the field strength is �1017 G,

such that no significant effects on the NS structure nor significant violations of the constraint

equations are introduced.

To read the initial data in the Spritz code we developed the ID_Nrotstar thorn

which is simply a reader that makes use of the LORENE library to read initial data

8
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Figure 1. Left panel: initial magnetic field setup for simulations 13 and 14 (see table 2).
Black lines represent isocontours of the φ-component of the vector potential, while the
red line corresponds to ρ ≃ 3× 1012 g cm−3. Right panel: as in the left panel but at the
end of simulation 16.

produced with Nrotstar and import them in the Cartesian grid used by the code. Since

the initial data were produced assuming β-equilibrium, we also developed an additional thorn,

Spritz_SetBeta, that instead makes sure that, when computing the conservative variables

from the primitive ones at iteration 0, the code uses the same 1D EOS used to compute the

initial data. After the initial data are correctly imported and conserved variables computed, the

evolution starts and the full 3D EOS table is used.

Both ID_Nrotstar and Spritz_SetBeta are part of version 1.1.0 of the Spritz

code [28].

3.3. Conservative-to-primitive inversion

When using tabulated EOS we employ the 1D method for the conservative-to-primitive inver-

sion presented by Palenzuela et al [25]. This method is a modification to the 1Dmethod already

used in GRHD [52]. It consists of rewriting the conserved variables in the following way

q ≡ τ̃

D
, r ≡ S2

D2
, s ≡ B2

D
, t ≡ BiS

i

D
3
2

, (23)

and searching for the independent variable x ≡ hW. One then looks for the solution of

f(x) = 0, where f(x) = x − hW. We point the reader to [25] for more details about the

algorithm. Here, it is only important to note that the Brent’s method [55] is used for the root

finding, where the independent variable x should be properly bracketed, thus x ∈]xL, xR[, with
f (xL) · f (xR) < 0. The left and right bounds can be defined in the following way (see [56]):

xL = 1+ q− s,

xR = 2+ 2q− s.
(24)

If no consistent bound is found, then the point is set to atmosphere.

As we will show in section 4, we are also interested in performing simulations where the

initial temperature T is forced to be constant. This may be useful in order to avoid spuri-

ous neutrino production in particular scenarios, e.g. during BNS inspiral (for some examples,

see [57–59]) or when evolving a single cold NS (that may undergo a sharp initial rise of

9
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Table 1. Initial data used for the unmagnetised (B = 0) tests.

ID Test name β-eq. Initial data ν leakage T evolution

01 Spr_S_NL_NB_3D S-slice 1kb/bar Disabled Yes

02 GRH_S_NL_NB S-slice 1kb/bar Disabled Yes

03 Spr_S_NL_NB S-slice 1kb/bar Disabled Yes

04 Spr_S_YL_NB_3D S-slice 1kb/bar Enabled Yes

05 GRH_S_YL_NB S-slice 1kb/bar Enabled Yes

06 Spr_S_YL_NB S-slice 1kb/bar Enabled Yes

07 GRH_T_NL_NB T-slice 0.01 MeV Disabled Yes

08 Spr_T_NL_NB T-slice 0.01 MeV Disabled Yes

09 Spr_T1_NL_NB T-slice 0.01 MeV Disabled Yes (after t = 2 ms)

10 GRH_T_YL_NB T-slice 0.01 MeV Enabled Yes

11 Spr_T_YL_NB T-slice 0.01 MeV Enabled Yes

12 Spr_T1_YL_NB T-slice 0.01 MeV Enabled (at t = 3 ms) Yes (after t = 2 ms)

Table 2. Initial data used for the magnetized (B ∼ 1016 G) tests.

ID Test name β-eq. Initial data ν leakage T evolution

13 Spr_S_NL_YB S-slice 1kb/bar Disabled Yes

14 Spr_S_YL_YB S-slice 1kb/bar Enabled Yes

15 Spr_T1_NL_YB T-slice 0.01 MeV Disabled Yes (after t = 2 ms)

16 Spr_T1_YL_YB T-slice 0.01 MeV Enabled (at t = 3 ms) Yes (after t = 2 ms)

temperature as already mentioned in section 3.1). However, the aforementioned 1D

conservative-to-primitive scheme cannot be used in such cases and we adopt a modification

of the 3eqs method that was already implemented in the Spritz code (see [27, 60] for

details), where the τ̃ variable is not used in computing the primitive variables. In particular, we

refer to equation (45) of [60], defining the function

f
(

Wguess

)

≡ S2 −
[

(

Ẑ + B2
)2W

2
guess − 1

W2
guess

− 2Ẑ + B2

Ẑ2

(

BiSi
)2

]

, (25)

where

Ẑ = W2
guess

(

ρ̂+ ρ̂ε̂+ P̂
)

, (26)

ρ̂ =
D

Wguess

, (27)

and P̂ and ε̂ can be computed via the EOS using ρ̂ and the constrained value of T. The algorithm
proceeds as follows:

(a) The initial guess for the solution is assumed to be Wguess ∈ [1.0, 1.5];14

(b) ρ̂, P̂, ε̂, and Ẑ are computed using the EOS with the constrained value of T and the

conserved variables;

(c) If, using equation (25), f(1) · f(1.5) > 0, the point is actually set to the atmosphere;

14This corresponds to assuming v ∈ [0.0, 0.75c].

10
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Figure 2. Evolution of initial data produced with the S-slicing conditions and without
neutrinos. The left panel shows the evolution of the maximum rest-mass density normal-
ized to its initial value. The right panel is the equivalent for the maximum temperature
(which is located at the NS centre).

Figure 3. Same as figure 2 but for T-slicing conditions (in this case the maximum of the
temperature is located on the NS surface).

(d) The Brent’s method [55] is applied to the function f defined in equation (25).

We note that we use equation (45) but not equation (46) of [60] when forcing the temperature

to be constant. Therefore, we also need to update the value of τ̃ after each conservative-to-

primitive calculation in order to guarantee consistency between primitive and conservative

variables. This is similar to what is done in other codes when using a cold EOS during the

evolution. As we will show in section 4, the code is able to easily switch from a constrained to

a free temperature evolution without particular problems.
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Figure 4. Evolution of initial data produced with the T-slicing conditions for simulations
where the temperature evolution is only allowed after 2 ms. The left panel shows the
evolution of the maximum rest-mass density normalized to its initial value, while the
right panel shows the same but for the maximum temperature.

3.4. Neutrino leakage implementation

Our implementation of the neutrino leakage scheme described in section 2.3 is based on the

thornZelmaniLeak available at the stellarcollapsewebsite [32] and firstly presented

in [44]. In particular, we employ version20161117 of such thorn. The thorn ZelmaniLeak

uses all the cross-sections and heating rate described in section 2.3 and these cannot be modi-

fied by the user unless the code itself is modified. Nevertheless, the user can choose whether to

activate neutrino heating or not as well as to include or not neutrino emission since the begin-

ning of the simulation or after some time. Moreover, the user can freely set the number of radii

across which the optical depth is computed.

4. Tests

In this section, we report the full set of tests that we performed in order to check the imple-

mentation of the new infrastructure for the neutrino leakage scheme. Our reference physical

system is a stable non-rotating NS (TOV). In particular, we consider an NS with mass 1.68M⊙
and EOS LS220 [61], which gives a radius of about 9.7 km. The initial data are produced using

the Lorene/Nrotstar code, as discussed in section 3.2. We consider both magnetized and

non-magnetized NSs. For the latter, we initially add a purely poloidal magnetic field using the

following vector potential prescription:

Aφ ≡ Ab̟
2 max (P− Pcut, 0)

ns , (28)

where ̟ is the cylindrical radius, Ab is a positive constant, Pcut = 0.04Pmax determines the

cutoff when the magnetic field goes to zero inside the NS, with Pmax corresponding to the

initial maximum gas pressure, and ns = 2 sets the degree of differentiability of the magnetic

field strength [62]. The magnetic field is confined within the NS because of our use of the ideal

MHD approximation, which is not valid in extremely low density regions (i.e. outside the NS).

12
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Figure 5. Top panels: same as figure 2 but for S-slicing simulations considering leakage
and no heating. Bottom panels: evolution of neutrino luminosities (equation (29)) for the
different neutrino species (from left to right: νe, ν̄e indicated here as νa, and νx).

This is also the ‘standard’ magnetic field configuration used for the initial data of most BNS

merger simulations (but see, e.g. [22]). The value of Ab is chosen such that the maximum value

of the initial magnetic field strength is set to 1016 G. This corresponds to the largest order

of magnitude for a magnetic field that can be added to a TOV solution without introducing

significant violations in the constraints of Einstein’s equations. Significantly larger magnetic

fields would indeed affect the structure of the star and therefore TOV equations could not be

used anymore [63].We also note that the averagemagnetic field that is reached in a post-merger

remnant is typically of order ∼1016 G (see for example [64]). One example of the initial and

final magnetic field distribution is given in figure 1.

All the simulations adopt 5 refinement levels. The outer boundary of the domain extends

to ≈193 km in every direction, while the innermost refinement level extends up to 13 km.

The finest grid resolution is dx ≈ 177 m and the grid spacing doubles going from a refine-

ment level to the next. The entire NS is contained within the most refined region and the NS

13
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Figure 6. Same as figure 5 but for T-slicing simulations 10 and 11, performed respec-
tively with the GRHydro and the Spritz codes.

radius is covered with about 60 points. Magnetized simulations adopt the full 3D domain15,

while non-magnetized simulations are performed in octant symmetry, unless specified other-

wise (label ‘3D’ appearing in the test name). All simulations adopt the so called ‘none’ outer

boundary conditions described in [27] for the hydro variables (i.e. the values of all hydro

variables are kept fixed to their initial values), linear extrapolation for the vector and scalar

potential [27], and radiative boundary conditions for the metric variables [29]. The simulations

in octant symmetry also employ reflection symmetry conditions across the x = 0, y = 0, and

z = 0 planes. For the ray-by-ray calculations of the neutrino leakage scheme, we use 9 inde-

pendent directions in θ and 16 in φ. While this holds for full 3D simulations, these numbers

should be rescaled for cases where octant symmetry is employed (i.e. 5 independent directions

in both θ and φ).
The set of tests we performed are summarized in tables 1 and 2, referring to non-magnetized

and magnetized cases, respectively. All simulations cover about 6 ms of evolution. This

15This choice is due to the lack of proper reflection symmetry conditions implemented for staggered variables (i.e. for

the vector and scalar potentials evolved by our code when magnetic fields are present).

14
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Figure 7. Same as figure 5 but for the simulation 06 including leakage, with and without
the heating contribution.

timescale corresponds to ∼14 dynamical timescales and therefore it allows us to study these

systems for a sufficiently long time for the tests presented here without requiring too much

computational resources. We remark that the code was stopped after ∼6 ms and it did not

present any sign of instability or numerical problem at that time. In the following, we first

discuss the results without neutrino leakage, testing the implementation of the tabulated EOS

handling, and then those with neutrino leakage, with and without neutrino heating.

Among the physical quantities monitored in our tests, we considered the total neutrino

luminosity of each neutrino species, defined in Cartesian coordinates as

L∞νi =

∫ ∞

0

∫ ∞

0

∫ ∞

0

Qeff
νi
(x′, y′, z′)

[

α2(x′, y′, z′)W(x′, y′, z′)

×
(

1+ vr(x′, y′, z′)
)]√

γ dx′ dy′ dz′,

(29)

where vr = (xvx + yvy + zvz)/
√

x2 + y2 + z2.
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Figure 8. Same as figure 5 but for the simulation 10 including leakage, with and without
the heating contribution. Where heating is considered (blue solid curve), the leakage is
activated at t = 1 ms in order to avoid spurious effects due to the initial sharp drift in the
maximum temperature.

4.1. Testing tabulated EOS without neutrino leakage

In order to test the implementation of the tabulated EOS treatment, we here report the results of

all the simulations performedwithout enabling the leakage scheme, starting fromboth S-slicing

and T-slicing initial data.

The results for the evolution of the maximumof ρ and T for the S-slicing initial condition are

shown in figure 2. In these models the maximum of the temperature is located at the NS centre

and it shows an increase of less than 1% by the end of the simulation (likely due to shocks

produced by the NS oscillations). In particular, the figure shows exact match for simulations

01, 02, 03, and 13, as expected (see tables 1 and 2). Noticeably, adopting octant symmetry

in pure-hydro simulations 02 and 03, performed with the GRHydro and the Spritz codes

respectively, produces the same results as adopting full-3D in simulations 01 and 13.Moreover,

the magnetic field of simulation 13 is correctly handled during the evolution and does not

significantly alter the hydrodynamic quantities as expected (we remind that, even if large, a

16
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Figure 9. Same as figure 5 but considering the heating contribution.

magnetic field of ∼1016 G provides a magnetic energy which is still ∼2 orders of magnitude

below equipartition).

The same comparison for T-slicing initial condition is shown in figures 3 and 4. In this case

the maximum of the temperature is located instead on the NS surface. Simulation 09 is the

most delicate in the pure-hydro setting, since it forces the temperature T to be constant for

the first ∼2 ms and then allows it to evolve (see section 3.3). When the temperature is free

to evolve, an artificial shock is produced at the surface of the NS (as expected), but, after this

initial transient, the maximum of ρ follows closely the results given by the simulations 07 and

08, where T is evolved since the beginning. Also the temperature, after the initial transient,

tends to a constant value. In addition, figure 4 shows perfect match between simulation 09,

performed in pure-hydro, and the magnetized simulation 15.

Based on the above results, we conclude that the tabulated EOS treatment is correctly

handled by our implementation andwe can then proceed in testing the neutrino leakage scheme.

4.2. Testing the neutrino leakage implementation

Here we report the results of simulations involving neutrino leakage with constant-S and

constant-T initial data, including the evolution of the total neutrino luminosity for each neutrino

species, computed according to equation (29). We first present the results of tests performed

without the heating contribution of equation (17) and then including it.
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Figure 10. Comparison of results for evolution of Bmax produced with the S-slicing
conditions, with and without neutrino leakage and heating.

4.2.1. Tests without heating. Figure 5 shows the comparison of tests evolving S-slicing initial

data with neutrino leakage, but without the contribution of neutrino absorption and heating:

the maxima of ρ and T normalized to their initial values are shown in the top panels, while

the bottom panels show the results for the luminosity of each neutrino species (electron neu-

trinos, electron antineutrinos, and the μ and τ species going from left to right) as computed

in equation (29). In particular, the luminosity plots show that the scenario is clearly domi-

nated by electron capture. Also in this case we can see that the maximum temperature, which

for the S-slicing initial data is located at the NS centre, shows an increase of less than 1%.

Neutrino cooling at the centre of the star is not effective due to the high density (and thus

high optical depths) and therefore it does not significantly affect the temperature evolution in

that region.

A similar comparison for T-slicing initial data is shown in figure 6 (we remind that in

this case the maximum of the temperature is located on the NS surface and it is strongly

affected by the artificial shocks that develop there). Despite minor differences due to the

different implementations in the GRHydro and Spritz codes, the results appear in good

agreement.

4.2.2. Tests including heating. We now turn to consider how the heating contribution alters

the results of simulations. In figures 7 and 8 we compare the results respectively of one S-

slicing and one T-slicing ID performed with and without such contribution. As already seen

in figure 3, starting from cold NS initial data produces a sharp transient for the maximum of

T (located at the NS surface for the T-slicing ID) in the first few time steps, where the NS

internal temperature undergoes a re-adjustment (due also to the expected production of shocks

at the NS surface). This transition may be an issue when considering neutrino leakage since
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Figure 11. Same as figure 5 but considering T-slicing cases with neutrino leakage and
heating contribution, where leakage is activated 1 ms after temperature evolution is
enabled (at t = 0 for model 11, at t = 2 ms for model 12, 16).

it may produce luminosities much larger than expected. Moreover, we recall that the heating

given by equation (17) is not self-consistent in terms of energy balance (see also section 3.4).

Therefore, when considering the heating contribution (figure 8), we activated the leakage 1 ms

later, i.e. after the initial transient.

Figure 9 collect results for S-slicing ID and neutrino leakage including heating. In this case,

without an initial temperature readjustment, the heating contribution does not need to be acti-

vated after 1 ms.We also show themaximummagnetic field evolution for the magnetized cases

13 (without leakage) and 14 (with leakage and the heating contribution) in figure 10.We found

an exact match.

In figure 11, we compare the cases with cold NS initial data (T-slicing) and neutrino leakage

including heating. For simulation 11, which evolves the temperature since the beginning, we

enable the leakage after only 1 ms. For simulations 12 and 16, evolving the temperature only

after 2 ms, we enable the leakage at 3 ms. Despite the difference in the activation times of T

evolution and leakage, and in the presence or absence of magnetic fields, all the results show

a very good agreement in the maximum rest-mass density and the late-time electron neutrino

luminosities. Finally, looking again at the maximummagnetic field evolution, figure 12 shows

that also simulations 15 and 16 are perfectly matching each other.

19



Class. Quantum Grav. 38 (2021) 085021 F Cipolletta et al

Figure 12. Same as figure 10 but for T-slicing ID.

All the test results presented in this section are indicative of a correct implementation of the

neutrino leakage scheme and that the code is ready to be used in more complex astrophysical

scenarios, e.g. BNS mergers including tabulated EOS, magnetic fields, and neutrino emis-

sion and absorption (with the intrinsic limitations of the leakage scheme itself; see discussion

below).

5. Discussion and conclusions

We presented a new version of our fully GRMHD code Spritz (available on Zenodo as ver-

sion 1.1.0 [28]) that now includes neutrino cooling and heating via the ZelmaniLeak code.

We performed a series of tests to show the robustness of the code in handling a variety of differ-

ent physical scenarios, including the evolution of both ‘cold’ and ‘hot’ NSs with and without

magnetic fields or neutrino leakage. For the cases with neutrino leakage, we also considered

the effects of having neutrino heating activated or deactivated.

The Spritz code will be used in future work to study the merger of magnetized

BNS systems employing finite temperature tabulated EOSs and including neutrino emis-

sion and reabsorption. The code has indeed all the necessary routines to evolve BNS

systems during inspiral, merger and post-merger phases. Initial data for BNS systems

can be produced with the publicly available LORENE library and they can be read

with the EinsteinInitialData/Meudon_Bin_NS thorn included in the Einstein

Toolkit. Results from BNS merger simulations with Spritz will be presented in a future

paper. We note that the neutrino leakage scheme implemented here, which represents the

first step towards a more advanced neutrino treatment, presents some limitations. First, the
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method adopts a ray-by-ray approach, which is well-suited for problems involving geome-

tries that are, at first approximation, spherically symmetric (for instance, in the context of core

collapse supernovae; see, e.g. [65] and references therein). For this reason, it should work

reasonably well in a post-merger remnant NS phase where the latter has already achieved an

approximately spherical configuration [24], but in the early post-merger or after the collapse

into a BH surrounded by an accretion disk, when significant deviations from spherical sym-

metry are present, it would in part over-estimate the neutrino opacities used in the leakage

scheme. To overcome such limitation, various groups implemented a local opacity calculation

[66], which better accounts for non-spherical geometries. This different opacity calculation

has been already employed in magnetized BNS mergers with neutrino leakage [25, 26], but

without accounting for neutrino heating/reabsorption. These simulations represent the cur-

rent state-of-the-art in the context of magnetized BNS mergers with neutrinos. A second and

more general limitation, that is shared among all leakage schemes, is that neutrino energy esti-

mates are not precise enough to provide an accurate estimate of the electron fraction in the

ejecta and thus in the computation of the r-process nucleosynthesis and consequent kilonova

emission (e.g. see [16]). The above limitations can be overcome by adopting more accurate

neutrino transport schemes, such as the Monte-Carlo-based scheme recently adopted for the

first time in (nonmagnetized) BNS merger simulations [33] or even the (much more compu-

tationally expensive) full solution of Boltzmann transport equations [67]. Future work will

be devoted to improve on our current neutrino treatment, possibly following the direction

suggested by [33].

We have also implemented high-ordermethods for the evolution of hydrodynamical quanti-

ties (see appendix A for a discussion) which will allow our code to provide a better description

of matter dynamics and produce also more accurate GW signals. We plan to extend the imple-

mentation of these methods also to the equations describing the evolution of magnetic fields,

following an approach similar to the one discussed in [26].
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Appendix A. Higher order methods

Here we present the implementation of the high-order scheme in the Spritz code and some

tests that assess the convergence order of this algorithm.
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A.1. Reconstruction step: WENOZ method

The first step in the development of a high-order scheme is the choice of the reconstruction

method. Here, we consider the fifth-order WENOZ algorithm [68]. In the following, we will

consider only one dimensionwithout loss of generality: the multidimensional scheme is simply

retrieved by considering the fluxes in each direction separately.

The fifth-orderWENO scheme employs a 5-points stencil, S5, which is subdivided into three

3-points substencils, {S0, S1, S2}. The polynomial approximation f i+1/2, which is the recon-

struction of the grid function f i on the left side of the interface
16, is built through the following

convex combination of the interpolated values f k
i+1/2, that are third degree polynomials defined

on each substencil Sk, k = 0, 1, 2:

f i+1/2 =

2
∑

k=0

ωk f
k
i+1/2. (A.1)

The polynomial on each substencil is given by the quadratic interpolations

f 0i+1/2 =
1

8
(3 f i−2 − 10 f i−1 + 15 f i) , (A.2)

f 1i+1/2 =
1

8

(

− f i−1 + 6 f i + 3 f i+1

)

, (A.3)

f 2i+1/2 =
1

8

(

3 f i + 6 f i+1 − f i+2

)

. (A.4)

The weights ωk are defined as

ωk =
αk

∑2
j=0 α j

. (A.5)

For WENOZ, the unnormalized weights αk are defined as

αk = dk

(

1+
|β0 − β2|
βk + ε

)

, (A.6)

with ε = 10−26 (which avoids a possible division by zero), optimal weights dk =

(1/16, 10/16, 5/16), corresponding to the weights obtained for smooth fields, and smoothness

indicators

β0 =
13

12
( f i−2 − 2 f i−1 + f i)

2
+

1

4
( f i−2 − 4 f i−1 + 3 f i)

2, (A.7)

β1 =
13

12

(

f i−1 − 2 f i + f i+1

)2
+

1

4

(

f i−1 − f i+1

)2
, (A.8)

and

β2 =
13

12

(

f i − 2 f i+1 + f i+2

)2
+

1

4

(

3 f i − 4 f i+1 + f i+2

)2
, (A.9)

that measure the regularity of the kth polynomial approximation f ki at the stencil Sk.

16 f i−1/2 is simply given by swapping the indices of the stencil: (i− 2, i− 1, i, i+ 1, i+ 2)→ (i+ 2, i+ 1, i, i− 1,

i− 2).
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Table A1. Coefficients of the approximation f̂ j+1/2.

n d0 d2 d4

2 1 0 0

4 13/12 −1/24 0

6 1067/960 −29/480 3/640

Note that the choices of the coefficients in (A.2)–(A.4) and of the optimal weights dk follow

the one in [69], which differ from the one in the original paper, because it has been noted that

these values suit better the high order scheme in combination with the derivation operation.

A.2. Derivation operation

The derivation operation is a high-order procedure which allows one to obtain a high order

approximation from the point value quantities calculated at the intercell location.

This step has to be performed right after the computation of the fluxes via an approximate

Riemann solver and it is necessary to preserve the accuracy in the calculation of spatial deriva-

tives for schemes with order n > 2. As we did before, we will restrict the discussion to one

dimension. The procedure described here follows the one outlined in the ECHO paper [69].

Using this procedure, we will provide the numerical flux function f̂ i+1/2, given a stencil of

intercell fluxes { f i+1/2}.
The finite difference approximation of the first derivative in the point xi can be written as

h f ′(xi) ≈ f̂ i+1/2 − f̂ i−1/2

= a( f i+1/2 − f i−1/2)+ b( f i+3/2 − f i−3/2)+ c( f i+5/2 − f i−5/2), (A.10)

where the approximation has been truncated at sixth order and h is the constant grid spacing.

If we now expand both sides of the equation in Taylor series around xi we find

h f
(1)
i =

+∞
∑

k=0

f
(k)
i

hk

k!2k

[

1− (−1)k
] [

a+ 3kb+ 5kc
]

, (A.11)

where the exponents indicate the corresponding order of derivation, and the first derivative has

been rewritten as f
(1)
i ≡ f ′(xi). It is clear that all terms with even k vanish. For n = 2, where

b = c = 0, we find a = 1. For n = 4, where c = 0, we have a = 9/8 and b = −1/24. Finally,
for n = 6, the solution is a = 75/64, b = −25/384, c = 3/640. The next step is to write

f̂ i+1/2 = d0 f i+1/2 + d2( f i−1/2 + f i+3/2)+ d4( f i−3/2 + f i+5/2), (A.12)

and the comparison with (A.11) gives the relations d0 = a+ b+ c, d2 = b+ c, d4 = c. The

numerical values of d0, d2, and d4 for the different order of approximation are provided in

table A1. Note that for n = 2 one gets f̂j+1/2 = f j+1/2 as expected.

In order to highlight the nature of this procedure as a correction for higher than second order

approximation, it is convenient to rewrite equation (A.12) as

f̂ i+1/2 = f i+1/2 −
1

24
∆

(2) f i+1/2 +
3

640
∆

(4) f i+1/2, (A.13)

where only the first term is used in the case n = 2, the second is added for n = 4 and the com-

plete expression is used for n = 6. For a generic index i the second and fourth order numerical
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derivative are given by

∆
(2) f i = f i−1 − 2 f i + f i+1, (A.14)

and

∆
(4) f i = ∆

(2) f i−1 − 2∆(2) f i +∆
(2) f i+1

= f i−2 − 4 f i−1 + 6 f i − 4 f i+1 + f i+2, (A.15)

respectively.

A.3. Simple wave test

The first test performed to check the convergence of the total procedure is the evolution of a

relativistic simplewave [70, 71].We have run this test usingWENOZ as reconstructionmethod

along with n = 2, 4, 6 correction to the HLLE Riemann solver (in the following, they will be

addressed as HLLE2, HLLE4, and HLLE6, respectively).

The initial data are set up by choosing a reference state: following [35], we chose a right-

propagating simple wave with ρ0 = 1 and v0 = 0. Assuming a polytropic EOS with Γ = 5/3
and K = 100, one can compute the sound speed in the reference frame via

c20 =
KΓ(Γ− 1)ρΓ0

(Γ− 1)ρ0 + KΓρΓ0
, (A.16)

obtaining, in the specific case, c0 ≈ 0.815. After the reference state has been defined, the veloc-
ity is perturbedwith a sin-like function, so that its profile becomes (dashed line in the left panel

of figure A1)

v = aΘ(X − |x|)sin6
[π

2

( x

X
− 1

)]

, (A.17)

where Θ(x) is the Heaviside function, a = 0.5, and X = 0.3. Finally, the new sound speed is

computed according to the Riemann invariant [71]

cs =
√
Γ− 1

√
Γ−1+c0√
Γ−1−c0

(

1+v
1−v

)

√
Γ−1/2 − 1

√
Γ−1+c0√
Γ−1−c0

(

1+v
1−v

)

√
Γ−1/2

+ 1
, (A.18)

so that cs = c0 at v = 0 and cs →
√
Γ− 1 as v → 1. The other quantities follow from the EOS:

ε̂ =
c2s

Γ(Γ− 1− c2s )
, (A.19)

ρ̂ = ε1/(Γ−1), (A.20)

p̂= εΓ/(Γ−1), (A.21)

where ε̂, ρ̂, and p̂ are, respectively, the specific internal energy, the density, and the pressure

normalized over the correspondingquantities in the reference state. The solutions are computed
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Figure A1. Left: solution with 400 points. Right: self-convergence factor (A.22), com-
puted from three different resolutions: 400, 800, 1600 points.

on a one-dimensional domain [−1.5, 1.5], employing RK4 integrator for HLLE2 and HLLE4,

and RK65 for HLLE617, with a CFL factor of 0.125.

During the evolution, the profile of the wave begins to steepen until a shock is formed at

t ≈ 0.63 (see [70]). In order to quantify the convergence properties of the various methods, we

computed the self convergence factor defined as

p≡ log2

(‖ f (4∆x)− f (2∆x)‖
‖ f (2∆x)− f (∆x)‖

)

. (A.22)

The functions f(∆x), f(2∆x), and f(4∆x) represent the numerical solutions calculated on

uniform grids with corresponding grid spacing, and the norm employed is the L2-norm. In

this test, the three different resolutions are ∆x = 0.0075, 0.00375, 0.001875, corresponding
to 400, 800, 1600 points.

As it can be seen from the right panel of figureA1, the nominal convergenceorder is reached

until the appearance of the shock. For both WENOZ + HLLE2 and WENOZ + HLLE4, the

convergence is dominated by the order of the derivation operation; otherwise, for WENOZ +

HLLE6, the convergence is dominated by the order of the reconstruction method and this is

why we cannot get an order of convergence higher than fifth. As expected, the convergence

order goes down for all methods when the shock is formed.

A.4. Non-magnetized TOV

A second test that has been performed is the evolution of a non-magnetizedTOV star; the setup

is the same used in the first paper of Spritz [27]. In particular, the initial configuration is

generated using a polytropic EOS with Γ = 2.0 and K = 100, and initial rest-mass density

ρ = 1.28× 10−3. The evolution of the system is then carried out adopting an ideal fluid EOS

with the same value of Γ. The physical domain is [−20, 20] for x-, y-, and z-coordinates, with

low, medium, and high resolution having 323, 643, and 1283 cells, respectively. All the tests

lasted for 5 ms using the WENOZ reconstruction method and the three approximation for the

Riemann solver (HLLE2, HLLE4, and HLLE6). In the cases of HLLE2 and HLLE4, RK4

17This choice has been carried out in order to avoid a possible limitation on the order of convergence due to the

Runge–Kutta integrator.
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Figure A2. Left: evolution of |ρc(t)− ρc(0)|. Right: self-convergence factor p (top
panels), computed from the three different resolutions (323, 643, 1283 points), and
ρmax/ρmax,0 (bottom panels).

method is employed for time stepping, while RK65 is used in HLLE6 case, with a CFL factor

of 0.25.

In the continuum limit, the evolution of this kind of system is trivial; however, the discretiza-

tion of the problem brings errors (due to the discretization itself ) that cause radial oscillations,

which are observable, for example, in the central rest-mass density (see figure A2). The ampli-

tude of these oscillations becomes smaller as the number of points increases. In the right panels

of figure A2 it is possible to note that the density has a peculiar behaviour for low and medium
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Figure A3. Power spectrum of the central rest-mass density evolution, normalized to the
maximum amplitude of the oscillation frequency peaks.

resolution at late times. This fact can be traced back to the choice of the ideal fluids EOS in

the evolution of the system: it is known that truncation errors with this EOS are very large,

because significant unphysical shock-heating is observed at low densities [35].

In order to verify the convergence of the high-order methods, we compute the self-

convergence factor (based on deviations of central rest-mass density with respect to the initial

value), which oscillates around the value p = 3 for both HLLE4 and HLLE6. Such order of

convergence is maintained until the aforementioned truncation errors become significant, i.e.

until ∼4 ms.

In the end, figure A3 reports the power spectrum of the evolution of the rest-mass densi-

ties of the different runs. The power spectrum is computed via a fast Fourier transform (FFT)

in order to extract the amplitudes and the frequencies of the oscillations, and then the ampli-

tudes are normalized to the maximum for each simulation. Figure A3 also shows the peaks’

frequencies of the oscillations taken from the literature [72], that were obtained with indepen-

dent codes. All the simulations show a good agreement with each other and the independent

results. In particular, it is worth noting that the high-order reconstruction coupled to high-order

Riemann solvers (black-dotted and green-dashed curves in the figure) is evidently capable of

better resolving the overtones (i.e. the higher frequency peaks in the spectrum) with respect to

the lower-order methods (red-solid and blue-dash-dotted curves in the figure).
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Figure A4. Comparison between the results obtained with and without high-order meth-
ods for a TOV evolved with the LS220 EOS. Upper panels: evolution of the central
rest-mass density (left) and the maximum of the temperature (right), both normalized to
their initial values. Bottom panel: normalized power spectrum of the central rest-mass
density.

A.5. Magnetized TOV with tabulated EOS

Finally, we performed a test evolving a magnetized TOV star using a tabulated EOS (LS220),

with an S-slicing initial condition, and employing WENOZ as reconstruction method and the

4th order approximation for the HLLE Riemann solver (this case has been called WENOZ +

HLLE4). This case is then compared with the same case evolved using PPM reconstruction

method and the 2nd order approximation to HLLE, denoted with PPM + HLLE2.

The upper panels of figure A4 show the evolution of the central rest-mass density ρc and of
the maximum of the temperature Tmax, both normalized over their initial values, respectively

ρc,0 and Tmax,0. The results obtained with the use of the high-order scheme, in particular the

setup WENOZ + HLLE4, are more precise than the ones obtained with the older version of

the Spritz code; using high-order methods helps reducing the oscillations around the real
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value. Moreover, enablingWENOZ and the fourth-order correction to HLLE softens the slight

increasing behaviour of Tmax, as shown in the upper right panel of figure A4.

The gain in accuracy is particularly evident in the plot for the power spectrum of the evo-

lution of the central rest-mass density, shown in the lower panel of figure A4. Each power

spectrum is computed, as before, via the FFT and the amplitudes are normalized over their

maximum for each simulation. It can be easily seen that, while the lower-order version of

Spritz shows a noticeable peak only for the fundamental frequency, the high-order upgrade

can resolve very well also the first overtone, which results to be more prominent than the one

of the PPM + HLLE2 case.
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