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Abstract

Although there are various indices available for calculating morphological integration, the integration coefficient of variation
(ICV) is most suited for assessing magnitudes of integration within and between morphological variance/covariance (V/
CV) matrices. However, it is currently not known what the effects of varying sample sizes are on the reliable estimation of
distributions of ICV scores. In this regard, the effects of varying sample size on ICV was examined by simulating parameter
V/CV matrices with varying underlying magnitudes of average trait correlation (r*). ICV distributions were generated using
a trait resampling protocol for various sample sizes (11 through 150) within various parameter 1 values. Next, empirical
values were calculated based on data from 22 skeletal elements of 40 Macaca fascicularis specimens to examine whether the
results from the simulation corresponded to real biological data. Mean ICV scores of various sample sizes were compared
using Mann—Whitney U tests to examine which minimum sample sizes are required to reliably calculate mean ICV. Mann—
Whitney U test results based on the simulated data showed that a sample size of 51 may be sufficient even for relatively low
1% values of 0.05. The empirical macaque data showed that 30—40 individuals may be sufficient to reliably calculate mean
ICV scores across skeletal elements. Our results correspond closely with previous assessments by Cheverud and colleagues
that argued that a sample size of 40 is necessary to accurately estimate the structure of V/CV matrices.

Keywords Morphological integration - Integration coefficient of variation - Computer simulation - Macaca fascicularis

Introduction important principle in evolutionary processes; that not all
traits are caused by adaptation or direct selection (Gould

Morphological integration and modularity have been stud-  and Lewontin 1979).

ied to examine how complex traits interact in terms of
shared developmental pathways and functional demands
(Olson and Miller 1958; Hallgrimsson et al. 2009; Arm-
bruster et al. 2014; Goswami et al. 2014; Klingenberg
2014). According to the theoretical framework of integra-
tion, strictly independent evolution of traits in living organ-
isms may not be possible due to the correlated responses to
selection among traits. Thus, it serves as a reminder of one
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Morphological integration and modularity can be
regarded as “the patterns and processes” of trait interaction
and independence, respectively (Armbruster et al. 2014). For
instance, a set of traits defined as a ‘module’ may have fewer
connections with other anatomical or morphological traits
but within-module integration should be higher than others.
Thus, integration and modularity are not antonyms but rather
complimentary concepts. At the genetic level, integration
and modularity can be associated with pleiotropy, epistasis,
and linkage disequilibrium, resulting in shared developmen-
tal pathways among traits (Cheverud 1984; Hallgrimsson
et al. 2009). For instance, a pleiotropic effect can occur when
a mutation at a single gene locus causes changes in many
phenotypic traits (Cheverud 1984). Functional constraints
can also have an impact on morphological integration. For
instance, fore- and hindlimb lengths or proportions can
be functionally (and developmentally) integrated for the
locomotor behaviors, leading to morphological integration
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and evolutionary constraint in these anatomical structures
(Young et al. 2010; Rolian 2014). Young et al. (2010)
showed that fore- and hindlimb lengths or proportion is less
integrated in hominoids than other anthropoids, which may
have resulted in less evolutionary constraint for the evolution
of novel limb proportion and bipedalism in humans. Thus,
functional influence later in life (as in, locomotor behaviors
in hominoids from Young et al. 2010) can lead to reduction
of developmental integration of limb proportions earlier in
ontogeny of subsequent generations (as in Zelditch and Car-
michael 1989; Kelly et al. 2019).

In studies of morphological integration, the structures
of trait correlation or variance/covariance (V/CV) matrices
are used as proxies for pattern and magnitude of integra-
tion (Cheverud 1984; Ackermann and Cheverud 2000, 2002;
Marroig and Cheverud 2004; Porto et al. 2009; Marroig et al.
2009). In other words, multiple correlations or covariations
among traits are analyzed to examine overall patterns and
magnitudes of integration. For instance, the simple example
of A and B in Fig. 1 shows the correlation or covariation
between two traits with similar patterns but different mag-
nitudes of integration. Here,  and AZ represent the selec-
tion vectors and response vectors to selection, respectively.
The graphs show that total variation is more concentrated
in a single axis in B than A. Thus, in Fig. 1b, the response
along selection vector B, is more constrained relative to the
selection vector f3; where the selection vector is more closely
aligned with the main axis of trait correlation (Of course,
the direction of the response and selection vectors may not
be in the perfect match in real life). These differences are
expressed by different length of responses (AZ) between
Fig. 1a and b. In this regard, it has been suggested that the
pattern and magnitude of integration can constrain or facili-
tate the evolution of morphology in morphospace depending
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on the adaptive landscape (Porto et al. 2009, 2013; Marroig
et al. 2009; de Oliveira et al. 2009; Hallgrimsson et al. 2009;
Shirai and Marroig 2010; Klingenberg 2014; Armbruster
et al. 2014; Penna et al. 2017). For instance, the pattern,
but not the magnitude of integration has been shown to be
fairly consistent in the cranium of mammals (Porto et al.
2009; Marroig et al. 2009). Thus, it appears that morpho-
logical diversification may be associated with magnitudes of
integration but not necessarily patterns of integration (Porto
et al. 2009; Marroig et al. 2009; de Oliveira et al. 2009).

Several indices have been used to calculate the pattern
and magnitude of integration or modularity, such as the
RV coefficient, covariance ratio (CR) coefficient, partial
least square (PLS), Random Skewers (RS) method, coef-
ficient of determination (r*), and integration coefficient of
variation (ICV) (Klingenberg 2009; Adams 2016; Rohlf and
Corti 2000; Cheverud and Marroig 2007; Shirai and Mar-
roig 2010). However, only few studies have been conducted
regarding the issue of necessary sample sizes for various
integration indices (e.g., Adams 2016; Grabowski and Porto
2017). Thus, the purpose of this study is to examine the
effects of varying sample sizes on the reliable estimation of
distributions of ICV scores since the ICV is more suited for
calculating the magnitude of integration of the V/CV matrix
(Shirai and Marroig 2010).

The RV coefficient (Escoufier 1973; Klingenberg 2009)
and CR coefficient (Adams 2016) are used to quantify pat-
terns of integration or modularity between two or more
morphological modules. PLS (Rohlf and Corti 2000) can
be used to quantify degree (or magnitude) of integration or
modularity between two or more morphological modules.
When there are more than two modules, the mean of the
calculated indices from all pairs of two modules can be
obtained. RS method (Cheverud and Marroig 2007) can be
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Fig. 1 Two trait correlation or covariation graph with similar patterns
of integration but with different magnitudes of integration. A. Traits
1 and 2 are positively but not strongly correlated/covarying. B. Traits
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used for comparing the pattern of integration between two
modules. The indices of r? and ICV are used to calculate
the magnitude of integration in a single correlation or V/
CV matrix, respectively (Porto et al. 2009; Shirai and Mar-
roig 2010; Grabowski and Porto 2017).

The RV coefficient is the ratio between the covariance
of two blocks and their within-block variances (Klingen-
berg 2009), where blocks refer to matrices describing V/
CV patterns either within- or between modules. In order to
calculate the RV coefficient, the covariance matrix needs
to be structured as follows (Klingenberg 2009), where,
for example, S is the within-module V/CV for module
1, while S, is the between-module V/CV for modules 1
and 2:

S S
s= |1 12]
[521 S

when module 1 and module 2 has p and q number of traits,
respectively, matrix S has p+q dimensions. Then, calcula-
tion of the RV coefficient is as follows (Klingenberg 2009):

trace(S,S},)

\/trace (8,8))trace(S,S,)

RV =

Trace(S,;S,’) or trace(S,S,") is the sum of the squared
variance and squared covariance in each block (within-
modules). Trace(S,,S,,") is the sum of the squared covari-
ance between two modules. Thus, this formula presents
covariation between two blocks which is standardized by
the amount of variation within blocks. It is analogous to the
(multivariate) correlation coefficient (Klingenberg 2009).
Calculated RV coefficients range between zero and one. The
RV coefficient is used to quantify how much covariation
exists between two modules considering variances within
each module (Klingenberg 2009).

However, Adams (2016) has argued that the RV coef-
ficient may be too sensitive to sample size and the number
of variables employed. Thus, the covariance ratio (CR coef-
ficient) was suggested instead to calculate patterns of inte-
gration or modularity between two or more modules (Adams
2016). The CR coefficient is different from the RV coeffi-
cient as calculation of the CR coefficient is conducted with
only the off-diagonal matrix as the numerator and denomi-
nator in the formula for the RV coefficient above. Thus, S,
S,, and S, will have zeroes for their diagonal elements and
only the sum of squared covariance will be included, while
the sum of squared variance is excluded from the calcula-
tion of the CR coefficient (Adams 2016). Hence, the CR
coefficient is literally a covariance ratio of the between and
within modules covariance, and quantifies whether covari-
ation between modules is larger or smaller than covariation
within modules (Adams 2016).

Partial least squares (PLS) is a method for finding a
new axis that explains most of the covariation between
two or more modules (Rohlf and Corti 2000). Thus, PLS
is similar to principal component analysis but the aim of
PLS is to maximize covariance patterns between two or
more blocks instead of maximizing variance of a single
block (Rohlf and Corti 2000).

The Random Skewers (RS) method uses the multivari-
ate Breeder’s equation, AZ =G, where AZ is the evolu-
tionary change in a vector of trait means, G is the additive
genetic V/CV matrix, and f is the selection gradient vector
(Lande 1979; Cheverud and Marroig 2007). Morphologi-
cal variation can be analyzed using this Breeder’s equa-
tion as the additive genetic G-matrix can be substituted
with a phenotypic V/CV matrix (P) given that they have
been shown to be largely proportional (Cheverud 1996;
Roff 1995; de Oliveira et al. 2009). The RS method is
applied to two morphological V/CV matrices to com-
pare their evolutionary response to the same set of selec-
tion vectors (Cheverud and Marroig 2007). For instance,
the same 1000 randomly generated selection vectors are
applied to two target matrices and the correlation between
their responses to selection vectors is calculated. Thus,
using this approach, one can test the similarity of pattern
of integration (or structural similarity) between two mor-
phological V/CV matrices (Cheverud and Marroig 2007).

The coefficient of determination (r%) is simply the mean
of squared correlation coefficients between all traits (Porto
et al. 2009). Thus, r? quantifies the intensity of mean cor-
relations between all traits within a module. Similarly, the
integration coefficient of variation (ICV) is an index for
calculating magnitude of integration within modules. The
ICV is calculated from the standard deviation of eigenval-
ues divided by the mean eigenvalue of a V/CV matrix
(Shirai and Marroig 2010). Thus, high ICV values indicate
that most of the shape variation is concentrated within
fewer dimensions as ICV =%, where o(A) is the standard

deviation of the eigenvalues and 4 is the mean of those
eigenvalues (Shirai and Marroig 2010; Conaway et al.
2018). Moreover, ICV is scale-independent as the standard
deviation of eigenvalues is standardized by its mean.
Although there are various indices, the ICV is more
suited for analyzing magnitudes of integration within V/
CV matrices than r2, which can be used to quantify inte-
gration in correlation matrices (Shirai and Marroig 2010).
Moreover, the ICV can practically summarize the capacity
of traits to vary in morphospace depending on their overall
covariation patterns (Shirai and Marroig 2010; Conaway
et al. 2018). Although PLS can be used to quantify degree
(or magnitude) of integration (Rohlf and Corti 2000), PLS
cannot take account of within-module patterns or magni-
tudes of integration (Adams 2016). The ICV, on the other
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hand, can be employed to quantify magnitudes of inte-
gration both within- and between-modules, by combining
traits across modules.

Calculating the magnitude of integration is important as
the magnitude of integration has been found to vary in, for
example, the mammalian cranium, while the pattern of inte-
gration was found to be consistent among the crania of mam-
mals (Marroig et al. 2009; Porto et al. 2009; de Oliveira et al.
2009). On this basis, it was argued that evolution or diver-
sification in cranial morphology of mammals may be con-
strained and/or facilitated by magnitudes of integration but
is less affected by differing patterns. Moreover, some studies
have been conducted in the post-cranium and showed that
patterns of integration may be consistent in post-cranial skel-
etal elements of mammalian taxa, such as mustelids, felids,
or canids (Arnold et al. 2016; Randau and Goswami 2017,
Botton-Divet et al. 2018; Jones et al. 2018). However, it
has not been tested whether the magnitude of integration in
the post-cranium is also consistent among mammalian taxa
or varies like in the cranium (but see, Young et al. 2010).
Therefore, given that the ICV index can be used to quan-
tify magnitudes of integration both within- and between-
modules across an organism, the ICV is a useful means of
testing how (the magnitude of) morphological integration
is associated with evolutionary constraint or facilitation in
future studies.

Although the ICV is more suitable for calculating mag-
nitudes of integration in V/CV matrices, the effects of vary-
ing sample sizes on obtaining reliable estimates of ICV has
not yet been explored. Only one study has been conducted
regarding the issue of necessary sample sizes, focused on the
magnitude of integration (r* in Grabowski and Porto 2017).
In the study, Grabowski and Porto (2017) argued that a sam-
ple size of 108 individuals was required to accurately esti-
mate integration parameters when average trait coefficient
of determination (r?) is 0.05. The minimum required sample
size is an important issue in biology as there may not be
enough specimens available in museum collections in many
occasions. For instance, if the purpose of a study is to ana-
lyze patterns and/or magnitudes of integration in the entire
skeleton of primates, it may be impossible to achieve the rec-
ommended sample size of 108 individuals (Grabowski and
Porto 2017), although the required sample size does vary
depending on the average trait coefficient of determination
(%), and the overall number of traits (Grabowski and Porto
2017). These circumstances are exacerbated if a researcher
tries to study morphological integration using the post-
cranial skeleton, which is often more poorly represented in
museum collections than cranial remains.

Given that, the purpose of this study is to explore the
effects of sample size on obtaining reliable estimates of the
ICV by simulating populations with various magnitudes of
integration (as quantified using r?). This simulation study

@ Springer

on the ICV was conducted using a trait resampling method
for generating ICV distributions (Conaway et al. 2018). This
methodological approach is useful for comparing magni-
tudes of integration between skeletal elements with different
number of traits (Conaway et al. 2018). For instance, two
skeletal elements with 50 traits and 100 traits, respectively,
would automatically have different ICV scores if all traits
were included, even if mean eigenvalues were the same, as
the smallest eigenvalue may be more skewed in the eigen-
value distribution of 100 traits, resulting in unintended infla-
tion of ICV scores. Thus, the trait resampling method is an
effective way of generating distributions of ICV values for
each morphological module, irrespective of the number of
traits, that can be compared statistically. To introduce here
briefly within and between module ICV calculations, let us
assume that there are modules A, B, C, and D with trait
numbers of 50, 60, 70, and 80, respectively. In this example,
a “random module” created from A—D would have 260 traits
in total as all traits from modules A through D are combined
together (Conaway et al. 2018). Thereafter, within-module
ICV values can be statistically compared to the random
module using the resampling method described above, to
address the basic question of whether individual modules
(A, B, C or D) are statistically more strongly integrated than
random sets of traits taken from across all modules. In a
similar way, within and between module ICV scores can be
compared between two modules A and B with the combina-
tion of modules A and B as a “random module”, by resam-
pling 10 traits out of 110 traits as there are 50 and 60 traits
in module A and B, respectively. Therefore, distributions of
ICV values for certain numbers of random sets of vectors
would be generated resulting in a mean and standard devia-
tion of ICV values that can be statistically compared across
taxa and/or across different morphological modules.

Methods and Materials

Simulations were conducted in three steps (Fig. 2). First, a
variance/covariance (V/CV) matrix based on a multivariate
normal distribution with known parameter values of coef-
ficient of determination (r*) of V/CV matrix was generated
using the ‘genPositiveDefMat’ function in the clusterGen-
eration R package (Joe 2006; Qiu et al. 2006). The genera-
tion method used was “c-vine” and the range of variance
was between 0.5 and 0.6 with reference to Grabowski and
Porto (2017). The generated V/CV matrix had 300 dimen-
sions, representing 300 traits. Grabowski and Porto (2017)
showed that generating V/CV matrices using the “c-vine”
method may sometimes underestimate the effect of sample
size for integration indices due to extremely small values of
the smallest eigenvalue. Thus, it was suggested that V/CV
matrices with too much skewness in terms of log-eigenvalue
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Fig.2 Summary of the three steps used in this study to conduct simulations

distribution be filtered out and to choose a V/CV matrix
with ‘proper’ skewness when generating V/CV matrix with
parameter values. However, there was no detectable relation-
ship found between skewness of log-eigenvalue distribution
and ICV values (Supplementary Fig. 1). Moreover, there was
no detectable relationship in the scatter plot of the smallest
eigenvalue and ICV values (Supplementary Fig. 2). Thus,
the subsequent simulation was conducted without filtering
V/CV matrices. In this regard, a V/CV matrix was generated
once and used to apply the same pattern of integration to all
subsequent simulation procedures as patterns of integration
were found to have no effect on sampling effort in a previous
study (Grabowski and Porto 2017). The first eigenvalue of
the generated V/CV matrix was scaled to adjust parameter
1% values ranging from 0.02 to 0.7. Thus, the parameter r* of
the V/CV matrix was allowed to vary, while the pattern of
the V/CV matrix remained the same in this study. Accord-
ingly, calculations of ICV distributions were based on the
same pattern of integration but differential parameter r* val-
ues, and therefore, differing magnitudes of integration.
Next, populations of size 10,000 were generated based on
the simulated V/CV matrix with a mean of zero and vari-
ous parameter 12 values ranging from 0.02 to 0.7 with about
0.02 intervals (Fig. 2). Distributions of ICV values were
generated using a resampling method whereby 10 traits were
sampled at random out of 300 traits 1000 times (Kazi-Aoual
et al. 1995; Conaway et al. 2018; Fig. 2). The resampling
method was conducted based on the generated population

size of 10,000. The resampling method randomly generates
vectors with ten elements from the original vector of length
300. Next, ICV scores were calculated from these randomly
generated vectors with length of 10. This procedure is reiter-
ated 1000 times each for differential sample sizes of between
11 and 150 specimens. Samples of between 11 to 150 speci-
mens were randomly selected from the population of 10,000
based on the simulated V/CV matrix with various parameter
1% values. Sample size started at 11 in order to generate sam-
ple V/CV matrices with full rank (i.e., more samples than
the number of traits) as 10 traits were resampled in this sim-
ulation (Grabowski and Porto 2017). Thus, distributions of
ICV values were generated for each sample size to examine
the effect of varying sample sizes between 11 and 150. As
a result, there were 140 ICV distributions (with 1000 ICV
scores in each distribution) generated for each simulated
V/CV matrix with specific parameter r?> values. Boxplots
illustrating ICV distributions for varying sample size were
examined to determine which minimum sample sizes were
required to generate ‘stable’ ICV calculations, under differ-
ent assumptions of average trait r> values based on previous
empirical estimates, such as r2=0.05 for the human cra-
nium, r>=0.08 for the hominoid cranium, and r*=0.12 for
the cranium of New and Old World monkey (Marroig et al.
2009; Porto et al. 2009; de Oliveria et al. 2009). Moreo-
ver, for future reference, simulations were also conducted
with r? values of 0.2 and 0.35. Mann—Whitney U tests were
employed to statistically compare mean ICV scores between
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sample size distributions intervals of 10 (e.g., 11 vs. 21 and
21 vs. 31) within each r? value tested. Bonferroni adjustment
was applied due to multiple comparisons and the resultant
alpha level was 0.0038 (i.e., 13 comparisons within each >
value).

It was also possible that ICV values may be affected by
the number of traits (in this case 300) used in the starting V/
CV matrix, as skeletal elements are likely to have different
number of traits based on the number of landmarks or meas-
urements available. The effects of changing the total trait
numbers on ICV values was examined by altering starting
trait numbers to 75, 150, and 300. Moreover, the number of
resampled traits was also altered from 10 to 29 traits, sample
sizes were set as either 30 or 100, and parameter 2 values
were set as 0.1 or 0.5 to simultaneously examine the effect
of the number of total traits to choose from, the number
of resampled traits, sample size, and the > (magnitude of
integration) of the V/CV matrix. Based on the results of this
simulation, it is possible to test whether different skeletal
elements (e.g., cranium or mandible) would show systemati-
cally differential ICV values due to differing total number
of traits. Alternatively, it may be the case that only 1 and/or
the number of resampled traits matters for calculating ICV
using the resampling method as predicted above and that it
is not necessarily dependent on the total number of traits in
terms of magnitude of integration.

For real biological data, sample r* values were empiri-
cally quantified for 22 different skeletal elements using sam-
ples of n=40 Macaca fascicularis. Skeletal elements were
scanned using a HDI-120 and a Macro R5X structured-light
scanner (LMI technologies INC., Vancouver, Canada). 18
wild specimens of M. fascicularis were from the Museum of
Comparative Zoology at Harvard University and 22 captive
specimens were from the Department of Anthropology of
University at Buffalo, SUNY. For the limb bones (scapula,
humerus, radius, os coxa, femur, tibia), only 35 specimens
(18 wild and 17 captive) out of total 40 specimens were
available. The following 22 skeletal elements were quanti-
fied: cranium, mandible, 13 elements of the vertebral col-
umn (C1, C2, C3, C5, C7, T1, T4, T7, T10, T12, L1, L4,
L7), sacrum, scapula, humerus, radius, os coxa, femur, and
tibia (there were 3 specimens with T13 as the last thoracic
vertebra, 4 specimens with L6 as the last lumbar vertebra,
and 1 specimen with 4 sacral vertebrae). In the case of bilat-
eral elements, the left side was landmarked. When the left
side was damaged, the right side was landmarked instead.
All landmarks were digitized using the software Landmark
(Wiley et al. 2005) on the 3D scanned skeletal elements.
Descriptions of the landmarking protocol for each skeletal
element can be found in supplementary data (Supplementary
Table 1-10). Traits were generated for each skeletal element
by calculating all possible Euclidean distances between pairs
of landmarks on each bone.

@ Springer

Within-sex mean standardization was conducted to
remove the potentially confounding effect of sexual dimor-
phism and to control for size differences within and between
traits of different skeletal elements (Conaway et al. 2018).
For instance, larger bones may have higher ICV scores if
larger interlandmark distances explain most of the varia-
tion and show larger variance. For each trait, the mean was
centered to zero but variance was not scaled within each sex.
Thus, the variance and covariance structure was similarly
maintained while the effect of sexual dimorphism in size
difference was controlled. Next, a MANOVA was conducted
on the mean standardized traits for each skeletal element to
remove the possibility of artificial inflation of variance due
to inclusion of both wild and captive specimens, by extract-
ing trait residuals which were used in further analyses. For
each of the 22 elements, the average 2 values were calcu-
lated based on the MANOVA residuals for all possible traits
available for that element.

The means and standard deviations (SD) of ICV scores
for M. fascicularis skeletal elements were calculated with
varying sample sizes to examine how r? values and sample
size affect ICV distributions based on real empirical data.
Distributions of ICV scores were calculated using the resa-
mpling method described above. For the vertebral column,
only the first and last vertebra for the cervical, thoracic, and
lumbar region was examined (i.e., six vertebrae). Sample
sizes were set to 10, 20, 30, and 40 (or 35) for comparison.
For instance, for a sample size of 10 for the cranium, 10 indi-
viduals from 40 individuals, and 10 traits out of 595 inter-
landmark distances were randomly drawn with resampling
1000 times. Hence, there were 1000 ICV scores in each ICV
distribution. To test the correlation between the empirical
2 value and the mean and SD of ICV scores, a Spearman’s
rank correlation test was conducted for each sample size
category. For statistical comparison, Mann—Whitney U tests
were conducted between different sample sizes (e.g., 10 vs.
20) with Bonferroni adjustment. Test results were considered
to be statistically significant when p-values were less than
0.0125. All simulations and statistical tests were conducted
with r 3.4.4. and ICV scores were calculated using the ‘Cal-
cICV’ function in the evolgg package (Melo et al. 2015) in
r3.4.4.

Results
Simulation Study

The results showed that means of ICV distributions could
be reliably estimated for r* values of 0.05 or greater with
sample sizes of about 100, for 2 values of 0.08 or greater
with sample sizes of about 55—60, and for 2 values of 0.12
with sample sizes of about 40—45 (Figs. 3, 4, and 5). In
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age among trait correlation is r>=0.05 (similar to the empirical r>
for human cranial traits in Porto et al. 2009). Red straight line shows
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Fig.4 Distributions of ICV values based on 10 traits resampled at
random from 300 traits with varying sample sizes (n=11-150) from
a multivariate normal population of 10,000 individuals when aver-

other words, when the mean trait 1? value is relatively low,
larger sample sizes are required to accurately estimate ICV
values, and vice versa. On the other hand, a sample size of
40 individuals is large enough to accurately calculate the
magnitude of integration when the average trait r* value
is over 0.08. Moreover, with fairly high r? values (r>> 0.2
or>0.35), about 20 or 30 individuals are sufficient for calcu-
lating reliable ICV means (Figs. 6 and 7). For the parameter
1% value of 0.05, Mann-Whitney U tests were not statisti-
cally significant once sample sizes were over 51 (Table 1).
For 12 values of 0.08 and 0. 12, Mann—Whitney U tests were
not statistically significant once sample sizes were over 31.

age among trait correlation is r>=0.08 (similar to the empirical r? for
hominoid cranial traits in Porto et al. 2009). Red straight line shows
where sample size starts to approach an asymptote ICV value

For 12 values of 0.2 and 0.35, Mann-Whitney U tests were
not statistically significant once sample sizes were over 11
(Table 1). Mann—Whitney U test results showed that even
sample sizes with means above the ‘asymptote’ red line in
Figs. 3,4, 5, 6, and 7 are sufficient to reliably estimate mean
ICV scores for some r? values.

Boxplots of ICV distributions based on various parameter
1% values show that the mean ICV based on various sample
sizes increased logarithmically with increasing parameter r>
values (Fig. 8). Conversely, the standard deviation (SD) of
mean ICV exponentially decreased with increasing param-
eter r? values (Fig. 9). Thus, there is a clear relationship
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Fig.5 Distributions of ICV values based on 10 traits resampled at
random from 300 traits with varying sample sizes (n=11-150) from
a multivariate normal population of 10,000 individuals when aver-
age among trait correlation is r>=0.12 (similar to the empirical r? for

Old and New World monkey cranial traits in Porto et al. 2009). Red
straight line shows where sample size starts to approach an asymptote
ICV value
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Fig.6 Distributions of ICV values based on 10 traits resampled at
random from 300 traits with varying sample sizes (n=11-150) from
a multivariate normal population of 10,000 individuals when average

between parameter r* values and the means and standard
deviations of resultant ICV estimates, which explains why
only relatively small sample sizes are required to reliably
calculate ICV distribution using the resampling method if
overall trait 1 values are reasonably high.

The results of the simulations of the effects of total trait
number, sample size, and number of resampled traits on
mean ICV showed that mean ICV increased with more
resampled traits irrespective of the starting total num-
ber of traits, sample size, or parameter r* value (Fig. 10).
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among trait correlation is r>=0.2. Red straight line shows where sam-
ple size starts to approach an asymptote ICV value

However, the rate at which mean ICV increased as the
number of resampled traits increased was faster when the
12 value was higher. Moreover, the mean ICV was mostly
influenced by r? values and number of resampled traits,
rather than sample size and the total number of traits
(Fig. 10). Thus, it appears that the total number of traits
per skeletal element does not affect the calculation of ICV
distributions as long as the number of resampled traits is
held constant between elements being compared.
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Fig.7 Distributions of ICV values based on 10 traits resampled at
random from 300 traits with varying sample sizes (n=11-150) from
a multivariate normal population of 10,000 individuals when aver-

Table 1 Mann—Whitney U test results between different sample sizes under different assumptions of r* values

age among trait correlation is r>=0.35. Red straight line shows where
sample size starts to approach an asymptote ICV value

12 values
Comparison  0.05 0.08 0.12 0.2 0.35
of sample
sizes
11vs. 21 U="718,330; U=630,000; p<0.0001 U=608,050; p<0.0001 U=530,910; p=0.0166 U=516,950; p=0.1893
p <0.0001"
21 vs. 31 U =1593,780; U=547,050; p<0.0001 U=559,720; p<0.0001 U=530,070; p=0.0198 U=528,270; p=0.0286
p<0.0001
31 vs. 41 U=530,500; U=519,410; p=0.1328 U=513,290; p=0.3035 U=484,220; p=0.2216 U=477,640; p=0.0833
p=0.0182
41 vs. 51 U =548,320; U=514,950; p=2469  U=536,140; p=0.005 U=499,690; p=0.9809 U=504,820; p=0.7087
p=10.002
51 vs. 61 U=512,090; p=0.3493 U=505,760; p=0.6554 U=485,950; p=0.2767 U=513,800; p=0.2853 U=512,470; p=0.3341
61 vs. 71 U=516,650; p=0.1974 U=502,390; p=0.8531 U=532,310; p=0.012 U=490,560; p=0.4647 U=489,330; p=0.4086
71 vs. 81 U=509,790; p=0.4483 U=503,560; p=0.7826 U=487,720; p=0.3417 U=493,720; p=0.6265 U=515,450; p=0.2315
81 vs. 91 U=521,260; p=0.01 U=513,300; p=0.3031 U=503,060; p=0.8126 U=505,140; p=0.6909 U=492,580; p=0.5655
91 vs. 101 U=488,920; p=0.3908 U=491,430; p=0.5071 U=505,790; p=0.6537 U=515,580; p=0.2277 U=519,220; p=0.1366
101 vs. 111 U=488,380; p=0.3681 U=516,920; p=0.1901 U=504,480; p=0.7284 U=481,070; p=0.1427 U=480,950; p=0.1402
111 vs. 121 U=518,070; p=0.1616 U=497,420; p=0.8416 U=496,250; p=0.7714 U=505,730; p=0.6573 U=504,240; p=0.7427
121 vs. 131 U=504,580; p=0.7229 U=509,830; p=0.4464 U=506,270; p=0.6274 U=492,600; p=0.5665 U=486,360; p=0.2909
131 vs. 141 U=509,020; p=0.4849 U=520,400; p=0.1141 U=500,330; p=0.9799 U=520,390; p=0.1144 U=502,250; p=0.8618

“Significant results are in bold when p-value of Mann-Whitney U test is < 0.0038

Skeletal elements of Macaca fascicularis

The empirical 1* values for the 22 skeletal elements of M.
fascicularis tested are presented in Table 2. Among skeletal
elements, mean trait r* values ranged between 0.22 and 0.51
(Table 2). In general, postcranial elements showed higher

1% values than the cranium and mandible. The lowest 12
value was 0.22 in the first cervical vertebra (C1), while the
highest r? value was 0.51 in the tibia. The average r* value
across skeletal elements was 0.35. The correlation between
1* values and mean ICV scores was significant for all sam-
ple sizes (sample size of 10: r=0.758, p=0.002; sample
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Table 2, Cgefﬁcizent of Skeletal element 12 value

determination (r~) values for

skeletal elements in Macaca Cranium 0.24

Jascicularis Mandible 0.29
Cl 0.22
C2 0.31
C3 0.33
C5 0.31
Cc7 0.29
Tl 0.33
T4 0.38
T7 0.35
T10 0.38
T12 0.44
L1 0.40
L4 0.41
L7 043
Sacrum 0.40
Scapula 0.30
Humerus 0.35
Radius 0.40
Os coxa 0.24
Femur 0.39
Tibia 0.51

size of 20: r=0.725, p<0.001; sample size of 30: r=0.766,
p<0.001; sample size of 40 (or 35): r=0.771, p<0.001).
The correlation between 12 values and standard of devia-
tions (SD) of ICV scores was also significant for all sample
sizes (sample size of 10: r=— 0.547, p=0.035; sample size
of 20: r=— 0.58, p=0.023; sample size of 30: r=— 0.649,
p=0.009; sample size of 40 (or 35): r=— 0.63, p=0.012).
Thus, mean ICV scores increased but SD of ICV scores
decreased with increasing r’ values.

The mean ICV scores for different skeletal elements of
M. fascicularis generated using various sample sizes showed
that for all skeletal elements there was no significant differ-
ence in ICV scores between sample sizes of 30 and 40 (or
35) (Table 3). In all skeletal elements, except for the radius
and tibia, there was a significant difference in ICV between
sample sizes of 10 and 20. Therefore, even very small sam-
ples were sufficient to accurately estimate the ICV for the
radius and tibia, which reflect the fact that these skeletal
elements had the highest 1 values (0.4 and 0.51, respec-
tively) among skeletal elements. For all other skeletal ele-
ments, barring the femur, scapula, and humerus, there was
also a significant difference in ICV scores between sample
sizes of 20 and 30, but for all bones tested, increasing the
sample size above 30 did not have any significant impact on
the estimation of distributions of ICV. Thus, in general, the
results from the empirical analysis of M. fascicularis skel-
etal elements corroborate the computer simulation results in

Table3 Means and standard deviations of ICV distributions gener-
ated using resampling method (1000 resamples of 10 traits) with vari-
ous sample sizes for skeletal elements of Macaca fascicularis

Skeletal element Sample size Mean and standard
deviation of ICV
scores

Cranium™* 10 1.95 (0.312)

20 1.85 (0.267)
30 1.80 (0.246)
40 1.79 (0.227)
Mandible"™# 10 2.16 (0.302)
20 2.09 (0.259)
30 2.06 (0.246)
40 2.04 (0.228)
c1# 10 1.79 (0.272)
20 1.67 (0.219)
30 1.62 (0.187)
40 1.60 (0.165)
c7# 10 2.11 (0.283)
20 2.01 (0.229)
30 1.99 (0.203)
40 1.97 (0.177)
T 10 2.34(0.301)
20 2.29 (0.258)
30 2.28 (0.223)
40 2.25 (0.207)
T12"#* 10 2.32(0.261)
20 2.27 (0.193)
30 2.26 (0.160)
40 2.25 (0.140)
L1™# 10 2.23 (0.298)
20 2.16 (0.242)
30 2.16 (0.209)
40 2.14 (0.195)
L7# 10 2.37 (0.243)
20 2.28 (0.189)
30 2.28 (0.157)
40 2.28 (0.131)
Sacrum™* 10 2.41(0.313)
20 2.36 (0.260)
30 2.36 (0.227)
40 2.36 (0.203)
Scapula® 10 2.35(0.273)
20 2.28 (0.239)
30 2.26 (0.236)
35 2.26 (0.222)
Humerus” 10 2.64 (0.274)
20 2.61 (0.242)
30 2.61 (0.225)
35 2.60 (0.231)
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Table 3 (continued)

Skeletal element Sample size Mean and standard
deviation of ICV
scores

Radius 10 2.97 (0.129)

20 2.99 (0.096)
30 2.99 (0.084)
35 2.99 (0.078)
Os coxa™ 10 2.08 (0.313)
20 2.01 (0.276)
30 1.96 (0.251)
35 1.96 (0.248)

Femur” 10 2.93 (0.144)

20 2.93 (0.146)
30 2.94 (0.089)
35 2.94 (0.083)

Tibia 10 3.07 (0.077)

20 3.07 (0.052)
30 3.07 (0.049)
35 3.07 (0.049)

“Significant difference between sample size 10 and 20 when p-value
of Mann—Whitney U test is <0.0125

#Significant difference between sample size 20 and 30 when p-value
of Mann—Whitney U test is <0.0125

suggesting that sample sizes of 30—40 are sufficient to reli-
ably calculate mean ICV scores in skeletal elements where
the average r° values among traits are reasonably high.

Discussion
Interpretation of the simulation results

In general, the results corresponded to the previous study
of Grabowski and Porto (2017) as both sample size and
12 were important for calculating and estimating reliable
indices of morphological integration. In this regard, it is
advisable that a ‘universal’ sample size for different ana-
tomical regions or skeletal elements be based on the lowest
12 obtained for any anatomical region or skeletal element.
For instance, if the cranium shows lower r? than post-cra-
nial skeletal elements, the sampling effort should be based
on the 12 of the cranium, although post-cranial skeletal
elements may show relatively higher 1 values than the
cranium. The simulation results showed that calculation
of reliable mean ICV mostly depends on the value of the
parameter 2. When r? is ‘moderate’ (i.e., r>> 0.08), a sam-
ple size of 40 individuals is large enough to calculate the
mean ICV using a trait resampling method. Moreover,
standard deviations of mean ICV exponentially decreased

@ Springer

as r? values increased (Fig. 9). Thus, the accuracy of the
calculation of mean ICV is fairly reliable with high r? val-
ues. In contrast, when 12 is low as is the case with the
human cranium (r*>=0.05) found in previous studies (Porto
et al. 2009; de Oliveira et al. 2009), a larger sample size is
required to calculate stable mean ICV.

Nevertheless, the Mann—Whitney U test results showed
that a sample size of 51 may be sufficient even with a low
1% value of 0.05 for calculating reliable mean ICV scores
using the trait resampling method (Table 1). Thus, for the
human cranium (r*=0.05), 51 individuals may be the bare
minimum required to calculate reliable mean ICV based on
the results of the present study, while at least 108 individuals
are required to calculate reliable integration indices (e.g., 1%)
based on the results of Grabowski and Porto (2017). The dis-
crepancy between the results of Grabowski and Porto (2017)
and the present study may depend on the methods used to
quantify errors. In the present study, we used Mann—Whit-
ney U tests to statistically compare significant differences
in mean ICV between sample sizes to examine how many
individuals are required to calculate a reliable mean ICV
for each r* value. In contrast, Grabowski and Porto (2017)
used three measures of error; bias, imprecision, and inac-
curacy. For instance, inaccuracy was calculated as “Inac-
curacy = Imprecision + Bias“,” where imprecision is “the
distance of repeated measurements to each other”, and bias
is “the difference between the expected value of a parameter
and the true parameter value.” Or, inaccuracy can be calcu-
lated as “the distance of a measured value to its parameter
value” (Grabowski and Porto 2017). They considered an
inaccuracy value of 0.05 as a “cut-off” for calculating reli-
able integration indices in their simulation (Grabowski and
Porto 2017). Hence, Grabowski and Porto’s (2017) findings
that much larger sample sizes are required may be related to
their fairly strict criteria for calculating reliable integration
indices. If we determine required minimum sample sizes
based on the ‘asymptote’ lines in Figs. 3, 4, 5, 6, and 7, the
present study demonstrates similar conclusions to the results
of Grabowski and Porto (2017) (i.e., more than 100 indi-
viduals are required when 2= 0.05). However, the results
of the Mann—Whitney U tests show a less strict criterion for
sample size determination that may be applicable to empiri-
cal studies of morphological integration. Thus, in terms of
required sample size, our results correspond better to those
of Cheverud and colleagues (e.g., Ackermann 2009), which
showed that sample sizes of 40 are necessary for accurately
estimating the structure of V/CV matrices or calculating
integration indices. At the very least, our simulation results
suggest that a sample size of 30—40 when trait r value is
over 0.08 (e.g., cranium of hominoids) or a sample size over
51 when 2 value is over 0.05 (e.g., cranium of humans) are
the bare minimums required to accurately calculate magni-
tudes of integration using mean ICV scores (Table 1).
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Moreover, as shown in previous studies (Grabowski and
Porto 2017) and the present study, the number of (resam-
pled) traits can significantly affect the index of morphologi-
cal integration as different numbers of traits will change
the average trait r> of a certain morphology. For instance,
mean ICV increased when the number of resampled traits
increased in this study (Fig. 10). Nevertheless, it was also
shown that the total number of traits did not affect mean ICV
values when the number of resampled traits remained the
same (Fig. 10). This result shows the merit of the resampling
method as different skeletal elements have different num-
bers of traits, which may artificially alter ICV values. For
instance, two skeletal elements with smaller and larger num-
ber of traits, respectively, would automatically have different
ICV scores as the smallest eigenvalue may be more skewed
in an eigenvalue distribution from a larger number of traits,
resulting in unintended inflation of ICV scores even if mean
eigenvalues are the same between skeletal elements with
different number of traits. Thus, calculating distributions
of ICV scores using a resampling method is an effective
way to compare magnitudes of integration between skeletal
elements with different number of traits, such as different
developmental and/or functional modules.

Empirical Data of Macaca fascicularis

The analysis of skeletal elements in M. fascicularis showed
that average trait r* values ranged between 0.22 and 0.51
(Table 2). The correlation coefficient between r> values and
mean ICV scores of skeletal elements ranged between 0.725
in the sample size of 20 and 0.771 in sample size of 40
(or 35). Although there is a clear relationship between r?
and ICV measures of morphological integration, the ICV is
more appropriate for calculating magnitudes of integration
in V/CV matrices, while 12 is better for the same purpose
when using correlation matrices as suggested by Shirai and
Marroig (2010). The average trait r> value for the cranium
(r*=0.24) was slightly higher than that found in a previous
study (r2 ~ 0.17; de Oliveira et al. 2009). This difference
most likely reflects the different landmarks used to capture
cranial traits and differences in sample composition used in
the present and previous studies. In particular, the total num-
ber of traits for the cranium in this study was 595 interland-
mark distances, which was much larger than trait sets used
in previous studies. The 12 value of the post-cranium was
generally higher than the cranium except for C1, while the
os coxa showed the same r? value as the cranium (Table 2).
In this regard, the 2 value for the cranium of mammals in
previous studies (e.g., Marroig et al. 2009; Porto et al. 2009;
de Oliveira et al. 2009) can be used as a guideline for decid-
ing the minimum sample size required to reliably calculate
the magnitude of integration using mean ICV scores. Based
on the simulation results above, only about 10-20 specimens

are required to analyze magnitudes of integration for the
skeletal elements of M. fascicularis presented here (Table 1
and 2). However, it was found that sample sizes of 10-30 are
required to reliably calculate mean ICV scores based on the
results of the Mann—Whitney U tests comparing the effect
of sample size on mean ICV for the skeletal elements of M.
fascicularis (Table 3). The difference between the results
of the simulation and real biological data is likely due to
the structure of the data as a parameter V/CV matrix was
generated in the simulation with multivariate normality but
this is not always likely to be the case for real biological
data. Thus, if one wants to examine mean ICV scores in all
skeletal elements of M. fascicularis, a minimum sample size
of 30 is recommended (Table 3).

A Cautionary Tale: The Relationship Between r?
Values and Landmarking Protocol

As shown in this study, a posterior calculation of average
trait r* values will be important and necessary for validating
necessary sample sizes for analyzing magnitudes of integra-
tion using the ICV. Having said this, the results of the pre-
sent study also suggest that how traits are determined, such
as the landmarking protocol used, may also be an important
issue for morphometric integration studies, in terms of esti-
mation of the average r* value (Conaway et al. 2019). In pre-
vious studies and in the present study, one of the main ways
in which researchers can decide on an appropriate sampling
effort for reliably calculating integration indices is to evalu-
ate the average trait r> value. Thus, it is also important to
consider whether different (geometric) morphometric meth-
ods applied to skeletal elements have substantial effects on
the calculation of r? values. In this respect, Conaway et al.
(2019) reported that the r* can vary based on the landmark-
ing protocol used to define morphometric traits, such as the
use of different numbers of landmarks and/or inclusion of
semi-landmarks in the analysis. In other words, the magni-
tude of integration could be different even within the same
skeletal region due to differing landmarking protocols and,
resultant varying r? values. Therefore, sampling effort should
be considered not only prior to the study based on r? values
from previous studies but also after the (preliminary) sam-
pling is completed when r can be recalculated posteriorly
based on the specific traits (i.e., specific landmarking pro-
tocol) being employed in each analysis. In this regard, it is
recommended to prepare to sample more than the minimum
required sample sizes for specific skeletal elements of cer-
tain species (e.g., more than 51 individuals for the human
cranium) as it is impossible to know a priori what the precise
1% will be based on the specific morphometric protocol being
employed and the sample composition. For instance, it may
be that the actual 12 value is lower than 0.05, which would
require a much larger sample size than 51 individuals as

@ Springer



Evolutionary Biology

the standard deviation of mean ICV exponentially increase
with lower r2 values (Fig. 9). In a nutshell, while the results
of this simulation provide guidelines for minimum sample
sizes based on average trait r values, sampling effort should
be tailored to the specific purpose (i.e., hypothesized devel-
opmental and/or functional module), trait definition method
(i.e., landmarking protocol), and material (i.e., skeletal ele-
ment) of each study.
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