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Abstract
Although there are various indices available for calculating morphological integration, the integration coefficient of variation 
(ICV) is most suited for assessing magnitudes of integration within and between morphological variance/covariance (V/
CV) matrices. However, it is currently not known what the effects of varying sample sizes are on the reliable estimation of 
distributions of ICV scores. In this regard, the effects of varying sample size on ICV was examined by simulating parameter 
V/CV matrices with varying underlying magnitudes of average trait correlation (r2). ICV distributions were generated using 
a trait resampling protocol for various sample sizes (11 through 150) within various parameter r2 values. Next, empirical r2 
values were calculated based on data from 22 skeletal elements of 40 Macaca fascicularis specimens to examine whether the 
results from the simulation corresponded to real biological data. Mean ICV scores of various sample sizes were compared 
using Mann–Whitney U tests to examine which minimum sample sizes are required to reliably calculate mean ICV. Mann–
Whitney U test results based on the simulated data showed that a sample size of 51 may be sufficient even for relatively low 
r2 values of 0.05. The empirical macaque data showed that 30‒40 individuals may be sufficient to reliably calculate mean 
ICV scores across skeletal elements. Our results correspond closely with previous assessments by Cheverud and colleagues 
that argued that a sample size of 40 is necessary to accurately estimate the structure of V/CV matrices.

Keywords  Morphological integration · Integration coefficient of variation · Computer simulation · Macaca fascicularis

Introduction

Morphological integration and modularity have been stud-
ied to examine how complex traits interact in terms of 
shared developmental pathways and functional demands 
(Olson and Miller 1958; Hallgrímsson et al. 2009; Arm-
bruster et  al. 2014; Goswami et  al. 2014; Klingenberg 
2014). According to the theoretical framework of integra-
tion, strictly independent evolution of traits in living organ-
isms may not be possible due to the correlated responses to 
selection among traits. Thus, it serves as a reminder of one 

important principle in evolutionary processes; that not all 
traits are caused by adaptation or direct selection (Gould 
and Lewontin 1979).

Morphological integration and modularity can be 
regarded as “the patterns and processes” of trait interaction 
and independence, respectively (Armbruster et al. 2014). For 
instance, a set of traits defined as a ‘module’ may have fewer 
connections with other anatomical or morphological traits 
but within-module integration should be higher than others. 
Thus, integration and modularity are not antonyms but rather 
complimentary concepts. At the genetic level, integration 
and modularity can be associated with pleiotropy, epistasis, 
and linkage disequilibrium, resulting in shared developmen-
tal pathways among traits (Cheverud 1984; Hallgrímsson 
et al. 2009). For instance, a pleiotropic effect can occur when 
a mutation at a single gene locus causes changes in many 
phenotypic traits (Cheverud 1984). Functional constraints 
can also have an impact on morphological integration. For 
instance, fore- and hindlimb lengths or proportions can 
be functionally (and developmentally) integrated for the 
locomotor behaviors, leading to morphological integration 
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and evolutionary constraint in these anatomical structures 
(Young et  al. 2010; Rolian 2014). Young et  al. (2010) 
showed that fore- and hindlimb lengths or proportion is less 
integrated in hominoids than other anthropoids, which may 
have resulted in less evolutionary constraint for the evolution 
of novel limb proportion and bipedalism in humans. Thus, 
functional influence later in life (as in, locomotor behaviors 
in hominoids from Young et al. 2010) can lead to reduction 
of developmental integration of limb proportions earlier in 
ontogeny of subsequent generations (as in Zelditch and Car-
michael 1989; Kelly et al. 2019).

In studies of morphological integration, the structures 
of trait correlation or variance/covariance (V/CV) matrices 
are used as proxies for pattern and magnitude of integra-
tion (Cheverud 1984; Ackermann and Cheverud 2000, 2002; 
Marroig and Cheverud 2004; Porto et al. 2009; Marroig et al. 
2009). In other words, multiple correlations or covariations 
among traits are analyzed to examine overall patterns and 
magnitudes of integration. For instance, the simple example 
of A and B in Fig. 1 shows the correlation or covariation 
between two traits with similar patterns but different mag-
nitudes of integration. Here, β and ΔZ represent the selec-
tion vectors and response vectors to selection, respectively. 
The graphs show that total variation is more concentrated 
in a single axis in B than A. Thus, in Fig. 1b, the response 
along selection vector β2 is more constrained relative to the 
selection vector β1 where the selection vector is more closely 
aligned with the main axis of trait correlation (Of course, 
the direction of the response and selection vectors may not 
be in the perfect match in real life). These differences are 
expressed by different length of responses (ΔZ) between 
Fig. 1a and b. In this regard, it has been suggested that the 
pattern and magnitude of integration can constrain or facili-
tate the evolution of morphology in morphospace depending 

on the adaptive landscape (Porto et al. 2009, 2013; Marroig 
et al. 2009; de Oliveira et al. 2009; Hallgrímsson et al. 2009; 
Shirai and Marroig 2010; Klingenberg 2014; Armbruster 
et al. 2014; Penna et al. 2017). For instance, the pattern, 
but not the magnitude of integration has been shown to be 
fairly consistent in the cranium of mammals (Porto et al. 
2009; Marroig et al. 2009). Thus, it appears that morpho-
logical diversification may be associated with magnitudes of 
integration but not necessarily patterns of integration (Porto 
et al. 2009; Marroig et al. 2009; de Oliveira et al. 2009).

Several indices have been used to calculate the pattern 
and magnitude of integration or modularity, such as the 
RV coefficient, covariance ratio (CR) coefficient, partial 
least square (PLS), Random Skewers (RS) method, coef-
ficient of determination (r2), and integration coefficient of 
variation (ICV) (Klingenberg 2009; Adams 2016; Rohlf and 
Corti 2000; Cheverud and Marroig 2007; Shirai and Mar-
roig 2010). However, only few studies have been conducted 
regarding the issue of necessary sample sizes for various 
integration indices (e.g., Adams 2016; Grabowski and Porto 
2017). Thus, the purpose of this study is to examine the 
effects of varying sample sizes on the reliable estimation of 
distributions of ICV scores since the ICV is more suited for 
calculating the magnitude of integration of the V/CV matrix 
(Shirai and Marroig 2010).

The RV coefficient (Escoufier 1973; Klingenberg 2009) 
and CR coefficient (Adams 2016) are used to quantify pat-
terns of integration or modularity between two or more 
morphological modules. PLS (Rohlf and Corti 2000) can 
be used to quantify degree (or magnitude) of integration or 
modularity between two or more morphological modules. 
When there are more than two modules, the mean of the 
calculated indices from all pairs of two modules can be 
obtained. RS method (Cheverud and Marroig 2007) can be 

Fig. 1   Two trait correlation or covariation graph with similar patterns 
of integration but with different magnitudes of integration. A. Traits 
1 and 2 are positively but not strongly correlated/covarying. B. Traits 

1 and 2 are also positively but much more strongly correlated/covary-
ing. Selection vectors are presented as dashed lines (β) and response 
vectors to selection vectors are presented as solid lines ΔZ

Author's personal copy



Evolutionary Biology	

1 3

used for comparing the pattern of integration between two 
modules. The indices of r2 and ICV are used to calculate 
the magnitude of integration in a single correlation or V/
CV matrix, respectively (Porto et al. 2009; Shirai and Mar-
roig 2010; Grabowski and Porto 2017).

The RV coefficient is the ratio between the covariance 
of two blocks and their within-block variances (Klingen-
berg 2009), where blocks refer to matrices describing V/
CV patterns either within- or between modules. In order to 
calculate the RV coefficient, the covariance matrix needs 
to be structured as follows (Klingenberg 2009), where, 
for example, S1 is the within-module V/CV for module 
1, while S12 is the between-module V/CV for modules 1 
and 2:

when module 1 and module 2 has p and q number of traits, 
respectively, matrix S has p + q dimensions. Then, calcula-
tion of the RV coefficient is as follows (Klingenberg 2009):

Trace(S1S1′) or trace(S2S2′) is the sum of the squared 
variance and squared covariance in each block (within-
modules). Trace(S12S21′) is the sum of the squared covari-
ance between two modules. Thus, this formula presents 
covariation between two blocks which is standardized by 
the amount of variation within blocks. It is analogous to the 
(multivariate) correlation coefficient (Klingenberg 2009). 
Calculated RV coefficients range between zero and one. The 
RV coefficient is used to quantify how much covariation 
exists between two modules considering variances within 
each module (Klingenberg 2009).

However, Adams (2016) has argued that the RV coef-
ficient may be too sensitive to sample size and the number 
of variables employed. Thus, the covariance ratio (CR coef-
ficient) was suggested instead to calculate patterns of inte-
gration or modularity between two or more modules (Adams 
2016). The CR coefficient is different from the RV coeffi-
cient as calculation of the CR coefficient is conducted with 
only the off-diagonal matrix as the numerator and denomi-
nator in the formula for the RV coefficient above. Thus, S1, 
S2, and S12 will have zeroes for their diagonal elements and 
only the sum of squared covariance will be included, while 
the sum of squared variance is excluded from the calcula-
tion of the CR coefficient (Adams 2016). Hence, the CR 
coefficient is literally a covariance ratio of the between and 
within modules covariance, and quantifies whether covari-
ation between modules is larger or smaller than covariation 
within modules (Adams 2016).
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Partial least squares (PLS) is a method for finding a 
new axis that explains most of the covariation between 
two or more modules (Rohlf and Corti 2000). Thus, PLS 
is similar to principal component analysis but the aim of 
PLS is to maximize covariance patterns between two or 
more blocks instead of maximizing variance of a single 
block (Rohlf and Corti 2000).

The Random Skewers (RS) method uses the multivari-
ate Breeder’s equation, ΔZ = Gβ, where ΔZ is the evolu-
tionary change in a vector of trait means, G is the additive 
genetic V/CV matrix, and β is the selection gradient vector 
(Lande 1979; Cheverud and Marroig 2007). Morphologi-
cal variation can be analyzed using this Breeder’s equa-
tion as the additive genetic G-matrix can be substituted 
with a phenotypic V/CV matrix (P) given that they have 
been shown to be largely proportional (Cheverud 1996; 
Roff 1995; de Oliveira et al. 2009). The RS method is 
applied to two morphological V/CV matrices to com-
pare their evolutionary response to the same set of selec-
tion vectors (Cheverud and Marroig 2007). For instance, 
the same 1000 randomly generated selection vectors are 
applied to two target matrices and the correlation between 
their responses to selection vectors is calculated. Thus, 
using this approach, one can test the similarity of pattern 
of integration (or structural similarity) between two mor-
phological V/CV matrices (Cheverud and Marroig 2007).

The coefficient of determination (r2) is simply the mean 
of squared correlation coefficients between all traits (Porto 
et al. 2009). Thus, r2 quantifies the intensity of mean cor-
relations between all traits within a module. Similarly, the 
integration coefficient of variation (ICV) is an index for 
calculating magnitude of integration within modules. The 
ICV is calculated from the standard deviation of eigenval-
ues divided by the mean eigenvalue of a V/CV matrix 
(Shirai and Marroig 2010). Thus, high ICV values indicate 
that most of the shape variation is concentrated within 
fewer dimensions as ICV = �(�)

�
 , where �(�) is the standard 

deviation of the eigenvalues and � is the mean of those 
eigenvalues (Shirai and Marroig 2010; Conaway et al. 
2018). Moreover, ICV is scale-independent as the standard 
deviation of eigenvalues is standardized by its mean.

Although there are various indices, the ICV is more 
suited for analyzing magnitudes of integration within V/
CV matrices than r2, which can be used to quantify inte-
gration in correlation matrices (Shirai and Marroig 2010). 
Moreover, the ICV can practically summarize the capacity 
of traits to vary in morphospace depending on their overall 
covariation patterns (Shirai and Marroig 2010; Conaway 
et al. 2018). Although PLS can be used to quantify degree 
(or magnitude) of integration (Rohlf and Corti 2000), PLS 
cannot take account of within-module patterns or magni-
tudes of integration (Adams 2016). The ICV, on the other 
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hand, can be employed to quantify magnitudes of inte-
gration both within- and between-modules, by combining 
traits across modules.

Calculating the magnitude of integration is important as 
the magnitude of integration has been found to vary in, for 
example, the mammalian cranium, while the pattern of inte-
gration was found to be consistent among the crania of mam-
mals (Marroig et al. 2009; Porto et al. 2009; de Oliveira et al. 
2009). On this basis, it was argued that evolution or diver-
sification in cranial morphology of mammals may be con-
strained and/or facilitated by magnitudes of integration but 
is less affected by differing patterns. Moreover, some studies 
have been conducted in the post-cranium and showed that 
patterns of integration may be consistent in post-cranial skel-
etal elements of mammalian taxa, such as mustelids, felids, 
or canids (Arnold et al. 2016; Randau and Goswami 2017; 
Botton-Divet et al. 2018; Jones et al. 2018). However, it 
has not been tested whether the magnitude of integration in 
the post-cranium is also consistent among mammalian taxa 
or varies like in the cranium (but see, Young et al. 2010). 
Therefore, given that the ICV index can be used to quan-
tify magnitudes of integration both within- and between-
modules across an organism, the ICV is a useful means of 
testing how (the magnitude of) morphological integration 
is associated with evolutionary constraint or facilitation in 
future studies.

Although the ICV is more suitable for calculating mag-
nitudes of integration in V/CV matrices, the effects of vary-
ing sample sizes on obtaining reliable estimates of ICV has 
not yet been explored. Only one study has been conducted 
regarding the issue of necessary sample sizes, focused on the 
magnitude of integration (r2 in Grabowski and Porto 2017). 
In the study, Grabowski and Porto (2017) argued that a sam-
ple size of 108 individuals was required to accurately esti-
mate integration parameters when average trait coefficient 
of determination (r2) is 0.05. The minimum required sample 
size is an important issue in biology as there may not be 
enough specimens available in museum collections in many 
occasions. For instance, if the purpose of a study is to ana-
lyze patterns and/or magnitudes of integration in the entire 
skeleton of primates, it may be impossible to achieve the rec-
ommended sample size of 108 individuals (Grabowski and 
Porto 2017), although the required sample size does vary 
depending on the average trait coefficient of determination 
(r2), and the overall number of traits (Grabowski and Porto 
2017). These circumstances are exacerbated if a researcher 
tries to study morphological integration using the post-
cranial skeleton, which is often more poorly represented in 
museum collections than cranial remains.

Given that, the purpose of this study is to explore the 
effects of sample size on obtaining reliable estimates of the 
ICV by simulating populations with various magnitudes of 
integration (as quantified using r2). This simulation study 

on the ICV was conducted using a trait resampling method 
for generating ICV distributions (Conaway et al. 2018). This 
methodological approach is useful for comparing magni-
tudes of integration between skeletal elements with different 
number of traits (Conaway et al. 2018). For instance, two 
skeletal elements with 50 traits and 100 traits, respectively, 
would automatically have different ICV scores if all traits 
were included, even if mean eigenvalues were the same, as 
the smallest eigenvalue may be more skewed in the eigen-
value distribution of 100 traits, resulting in unintended infla-
tion of ICV scores. Thus, the trait resampling method is an 
effective way of generating distributions of ICV values for 
each morphological module, irrespective of the number of 
traits, that can be compared statistically. To introduce here 
briefly within and between module ICV calculations, let us 
assume that there are modules A, B, C, and D with trait 
numbers of 50, 60, 70, and 80, respectively. In this example, 
a “random module” created from A‒D would have 260 traits 
in total as all traits from modules A through D are combined 
together (Conaway et al. 2018). Thereafter, within-module 
ICV values can be statistically compared to the random 
module using the resampling method described above, to 
address the basic question of whether individual modules 
(A, B, C or D) are statistically more strongly integrated than 
random sets of traits taken from across all modules. In a 
similar way, within and between module ICV scores can be 
compared between two modules A and B with the combina-
tion of modules A and B as a “random module”, by resam-
pling 10 traits out of 110 traits as there are 50 and 60 traits 
in module A and B, respectively. Therefore, distributions of 
ICV values for certain numbers of random sets of vectors 
would be generated resulting in a mean and standard devia-
tion of ICV values that can be statistically compared across 
taxa and/or across different morphological modules.

Methods and Materials

Simulations were conducted in three steps (Fig. 2). First, a 
variance/covariance (V/CV) matrix based on a multivariate 
normal distribution with known parameter values of coef-
ficient of determination (r2) of V/CV matrix was generated 
using the ‘genPositiveDefMat’ function in the clusterGen-
eration R package (Joe 2006; Qiu et al. 2006). The genera-
tion method used was “c-vine” and the range of variance 
was between 0.5 and 0.6 with reference to Grabowski and 
Porto (2017). The generated V/CV matrix had 300 dimen-
sions, representing 300 traits. Grabowski and Porto (2017) 
showed that generating V/CV matrices using the “c-vine” 
method may sometimes underestimate the effect of sample 
size for integration indices due to extremely small values of 
the smallest eigenvalue. Thus, it was suggested that V/CV 
matrices with too much skewness in terms of log-eigenvalue 
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distribution be filtered out and to choose a V/CV matrix 
with ‘proper’ skewness when generating V/CV matrix with 
parameter values. However, there was no detectable relation-
ship found between skewness of log-eigenvalue distribution 
and ICV values (Supplementary Fig. 1). Moreover, there was 
no detectable relationship in the scatter plot of the smallest 
eigenvalue and ICV values (Supplementary Fig. 2). Thus, 
the subsequent simulation was conducted without filtering 
V/CV matrices. In this regard, a V/CV matrix was generated 
once and used to apply the same pattern of integration to all 
subsequent simulation procedures as patterns of integration 
were found to have no effect on sampling effort in a previous 
study (Grabowski and Porto 2017). The first eigenvalue of 
the generated V/CV matrix was scaled to adjust parameter 
r2 values ranging from 0.02 to 0.7. Thus, the parameter r2 of 
the V/CV matrix was allowed to vary, while the pattern of 
the V/CV matrix remained the same in this study. Accord-
ingly, calculations of ICV distributions were based on the 
same pattern of integration but differential parameter r2 val-
ues, and therefore, differing magnitudes of integration.

Next, populations of size 10,000 were generated based on 
the simulated V/CV matrix with a mean of zero and vari-
ous parameter r2 values ranging from 0.02 to 0.7 with about 
0.02 intervals (Fig. 2). Distributions of ICV values were 
generated using a resampling method whereby 10 traits were 
sampled at random out of 300 traits 1000 times (Kazi-Aoual 
et al. 1995; Conaway et al. 2018; Fig. 2). The resampling 
method was conducted based on the generated population 

size of 10,000. The resampling method randomly generates 
vectors with ten elements from the original vector of length 
300. Next, ICV scores were calculated from these randomly 
generated vectors with length of 10. This procedure is reiter-
ated 1000 times each for differential sample sizes of between 
11 and 150 specimens. Samples of between 11 to 150 speci-
mens were randomly selected from the population of 10,000 
based on the simulated V/CV matrix with various parameter 
r2 values. Sample size started at 11 in order to generate sam-
ple V/CV matrices with full rank (i.e., more samples than 
the number of traits) as 10 traits were resampled in this sim-
ulation (Grabowski and Porto 2017). Thus, distributions of 
ICV values were generated for each sample size to examine 
the effect of varying sample sizes between 11 and 150. As 
a result, there were 140 ICV distributions (with 1000 ICV 
scores in each distribution) generated for each simulated 
V/CV matrix with specific parameter r2 values. Boxplots 
illustrating ICV distributions for varying sample size were 
examined to determine which minimum sample sizes were 
required to generate ‘stable’ ICV calculations, under differ-
ent assumptions of average trait r2 values based on previous 
empirical estimates, such as r2 = 0.05 for the human cra-
nium, r2 = 0.08 for the hominoid cranium, and r2 = 0.12 for 
the cranium of New and Old World monkey (Marroig et al. 
2009; Porto et al. 2009; de Oliveria et al. 2009). Moreo-
ver, for future reference, simulations were also conducted 
with r2 values of 0.2 and 0.35. Mann–Whitney U tests were 
employed to statistically compare mean ICV scores between 

Fig. 2   Summary of the three steps used in this study to conduct simulations
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sample size distributions intervals of 10 (e.g., 11 vs. 21 and 
21 vs. 31) within each r2 value tested. Bonferroni adjustment 
was applied due to multiple comparisons and the resultant 
alpha level was 0.0038 (i.e., 13 comparisons within each r2 
value).

It was also possible that ICV values may be affected by 
the number of traits (in this case 300) used in the starting V/
CV matrix, as skeletal elements are likely to have different 
number of traits based on the number of landmarks or meas-
urements available. The effects of changing the total trait 
numbers on ICV values was examined by altering starting 
trait numbers to 75, 150, and 300. Moreover, the number of 
resampled traits was also altered from 10 to 29 traits, sample 
sizes were set as either 30 or 100, and parameter r2 values 
were set as 0.1 or 0.5 to simultaneously examine the effect 
of the number of total traits to choose from, the number 
of resampled traits, sample size, and the r2 (magnitude of 
integration) of the V/CV matrix. Based on the results of this 
simulation, it is possible to test whether different skeletal 
elements (e.g., cranium or mandible) would show systemati-
cally differential ICV values due to differing total number 
of traits. Alternatively, it may be the case that only r2 and/or 
the number of resampled traits matters for calculating ICV 
using the resampling method as predicted above and that it 
is not necessarily dependent on the total number of traits in 
terms of magnitude of integration.

For real biological data, sample r2 values were empiri-
cally quantified for 22 different skeletal elements using sam-
ples of n = 40 Macaca fascicularis. Skeletal elements were 
scanned using a HDI-120 and a Macro R5X structured-light 
scanner (LMI technologies INC., Vancouver, Canada). 18 
wild specimens of M. fascicularis were from the Museum of 
Comparative Zoology at Harvard University and 22 captive 
specimens were from the Department of Anthropology of 
University at Buffalo, SUNY. For the limb bones (scapula, 
humerus, radius, os coxa, femur, tibia), only 35 specimens 
(18 wild and 17 captive) out of total 40 specimens were 
available. The following 22 skeletal elements were quanti-
fied: cranium, mandible, 13 elements of the vertebral col-
umn (C1, C2, C3, C5, C7, T1, T4, T7, T10, T12, L1, L4, 
L7), sacrum, scapula, humerus, radius, os coxa, femur, and 
tibia (there were 3 specimens with T13 as the last thoracic 
vertebra, 4 specimens with L6 as the last lumbar vertebra, 
and 1 specimen with 4 sacral vertebrae). In the case of bilat-
eral elements, the left side was landmarked. When the left 
side was damaged, the right side was landmarked instead. 
All landmarks were digitized using the software Landmark 
(Wiley et al. 2005) on the 3D scanned skeletal elements. 
Descriptions of the landmarking protocol for each skeletal 
element can be found in supplementary data (Supplementary 
Table 1–10). Traits were generated for each skeletal element 
by calculating all possible Euclidean distances between pairs 
of landmarks on each bone.

Within-sex mean standardization was conducted to 
remove the potentially confounding effect of sexual dimor-
phism and to control for size differences within and between 
traits of different skeletal elements (Conaway et al. 2018). 
For instance, larger bones may have higher ICV scores if 
larger interlandmark distances explain most of the varia-
tion and show larger variance. For each trait, the mean was 
centered to zero but variance was not scaled within each sex. 
Thus, the variance and covariance structure was similarly 
maintained while the effect of sexual dimorphism in size 
difference was controlled. Next, a MANOVA was conducted 
on the mean standardized traits for each skeletal element to 
remove the possibility of artificial inflation of variance due 
to inclusion of both wild and captive specimens, by extract-
ing trait residuals which were used in further analyses. For 
each of the 22 elements, the average r2 values were calcu-
lated based on the MANOVA residuals for all possible traits 
available for that element.

The means and standard deviations (SD) of ICV scores 
for M. fascicularis skeletal elements were calculated with 
varying sample sizes to examine how r2 values and sample 
size affect ICV distributions based on real empirical data. 
Distributions of ICV scores were calculated using the resa-
mpling method described above. For the vertebral column, 
only the first and last vertebra for the cervical, thoracic, and 
lumbar region was examined (i.e., six vertebrae). Sample 
sizes were set to 10, 20, 30, and 40 (or 35) for comparison. 
For instance, for a sample size of 10 for the cranium, 10 indi-
viduals from 40 individuals, and 10 traits out of 595 inter-
landmark distances were randomly drawn with resampling 
1000 times. Hence, there were 1000 ICV scores in each ICV 
distribution. To test the correlation between the empirical 
r2 value and the mean and SD of ICV scores, a Spearman’s 
rank correlation test was conducted for each sample size 
category. For statistical comparison, Mann–Whitney U tests 
were conducted between different sample sizes (e.g., 10 vs. 
20) with Bonferroni adjustment. Test results were considered 
to be statistically significant when p-values were less than 
0.0125. All simulations and statistical tests were conducted 
with r 3.4.4. and ICV scores were calculated using the ‘Cal-
cICV’ function in the evolqg package (Melo et al. 2015) in 
r 3.4.4.

Results

Simulation Study

The results showed that means of ICV distributions could 
be reliably estimated for r2 values of 0.05 or greater with 
sample sizes of about 100, for r2 values of 0.08 or greater 
with sample sizes of about 55‒60, and for r2 values of 0.12 
with sample sizes of about 40‒45 (Figs. 3, 4, and 5). In 
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other words, when the mean trait r2 value is relatively low, 
larger sample sizes are required to accurately estimate ICV 
values, and vice versa. On the other hand, a sample size of 
40 individuals is large enough to accurately calculate the 
magnitude of integration when the average trait r2 value 
is over 0.08. Moreover, with fairly high r2 values (r2 > 0.2 
or > 0.35), about 20 or 30 individuals are sufficient for calcu-
lating reliable ICV means (Figs. 6 and 7). For the parameter 
r2 value of 0.05, Mann–Whitney U tests were not statisti-
cally significant once sample sizes were over 51 (Table 1). 
For r2 values of 0.08 and 0.12, Mann–Whitney U tests were 
not statistically significant once sample sizes were over 31. 

For r2 values of 0.2 and 0.35, Mann–Whitney U tests were 
not statistically significant once sample sizes were over 11 
(Table 1). Mann–Whitney U test results showed that even 
sample sizes with means above the ‘asymptote’ red line in 
Figs. 3, 4, 5, 6, and 7 are sufficient to reliably estimate mean 
ICV scores for some r2 values.     

Boxplots of ICV distributions based on various parameter 
r2 values show that the mean ICV based on various sample 
sizes increased logarithmically with increasing parameter r2 
values (Fig. 8). Conversely, the standard deviation (SD) of 
mean ICV exponentially decreased with increasing param-
eter r2 values (Fig. 9). Thus, there is a clear relationship 

Fig. 3   Distributions of ICV values based on 10 traits resampled at 
random from 300 traits with varying sample sizes (n = 11–150) from 
a multivariate normal population of 10,000 individuals when aver-

age among trait correlation is r2 = 0.05 (similar to the empirical r2 
for human cranial traits in Porto et al. 2009). Red straight line shows 
where sample size starts to approach an asymptote ICV value

Fig. 4   Distributions of ICV values based on 10 traits resampled at 
random from 300 traits with varying sample sizes (n = 11–150) from 
a multivariate normal population of 10,000 individuals when aver-

age among trait correlation is r2 = 0.08 (similar to the empirical r2 for 
hominoid cranial traits in Porto et al. 2009). Red straight line shows 
where sample size starts to approach an asymptote ICV value
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between parameter r2 values and the means and standard 
deviations of resultant ICV estimates, which explains why 
only relatively small sample sizes are required to reliably 
calculate ICV distribution using the resampling method if 
overall trait r2 values are reasonably high.

The results of the simulations of the effects of total trait 
number, sample size, and number of resampled traits on 
mean ICV showed that mean ICV increased with more 
resampled traits irrespective of the starting total num-
ber of traits, sample size, or parameter r2 value (Fig. 10). 

However, the rate at which mean ICV increased as the 
number of resampled traits increased was faster when the 
r2 value was higher. Moreover, the mean ICV was mostly 
influenced by r2 values and number of resampled traits, 
rather than sample size and the total number of traits 
(Fig. 10). Thus, it appears that the total number of traits 
per skeletal element does not affect the calculation of ICV 
distributions as long as the number of resampled traits is 
held constant between elements being compared.

Fig. 5   Distributions of ICV values based on 10 traits resampled at 
random from 300 traits with varying sample sizes (n = 11–150) from 
a multivariate normal population of 10,000 individuals when aver-
age among trait correlation is r2 = 0.12 (similar to the empirical r2 for 

Old and New World monkey cranial traits in Porto et al. 2009). Red 
straight line shows where sample size starts to approach an asymptote 
ICV value

Fig. 6   Distributions of ICV values based on 10 traits resampled at 
random from 300 traits with varying sample sizes (n = 11–150) from 
a multivariate normal population of 10,000 individuals when average 

among trait correlation is r2 = 0.2. Red straight line shows where sam-
ple size starts to approach an asymptote ICV value
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Skeletal elements of Macaca fascicularis

The empirical r2 values for the 22 skeletal elements of M. 
fascicularis tested are presented in Table 2. Among skeletal 
elements, mean trait r2 values ranged between 0.22 and 0.51 
(Table 2). In general, postcranial elements showed higher 

r2 values than the cranium and mandible. The lowest r2 
value was 0.22 in the first cervical vertebra (C1), while the 
highest r2 value was 0.51 in the tibia. The average r2 value 
across skeletal elements was 0.35. The correlation between 
r2 values and mean ICV scores was significant for all sam-
ple sizes (sample size of 10: r = 0.758, p = 0.002; sample 

Fig. 7   Distributions of ICV values based on 10 traits resampled at 
random from 300 traits with varying sample sizes (n = 11–150) from 
a multivariate normal population of 10,000 individuals when aver-

age among trait correlation is r2 = 0.35. Red straight line shows where 
sample size starts to approach an asymptote ICV value

Table 1   Mann–Whitney U test results between different sample sizes under different assumptions of r2 values

* Significant results are in bold when p-value of Mann–Whitney U test is < 0.0038

r2 values

Comparison 
of sample 
sizes

0.05 0.08 0.12 0.2 0.35

11 vs. 21 U = 718,330;
p < 0.0001*

U = 630,000; p < 0.0001 U = 608,050; p < 0.0001 U = 530,910; p = 0.0166 U = 516,950; p = 0.1893

21 vs. 31 U = 593,780;
p < 0.0001

U = 547,050; p < 0.0001 U = 559,720; p < 0.0001 U = 530,070; p = 0.0198 U = 528,270; p = 0.0286

31 vs. 41 U = 530,500;
p = 0.0182

U = 519,410; p = 0.1328 U = 513,290; p = 0.3035 U = 484,220; p = 0.2216 U = 477,640; p = 0.0833

41 vs. 51 U = 548,320;
p = 0.002

U = 514,950; p = 2469 U = 536,140; p = 0.005 U = 499,690; p = 0.9809 U = 504,820; p = 0.7087

51 vs. 61 U = 512,090; p = 0.3493 U = 505,760; p = 0.6554 U = 485,950; p = 0.2767 U = 513,800; p = 0.2853 U = 512,470; p = 0.3341
61 vs. 71 U = 516,650; p = 0.1974 U = 502,390; p = 0.8531 U = 532,310; p = 0.012 U = 490,560; p = 0.4647 U = 489,330; p = 0.4086
71 vs. 81 U = 509,790; p = 0.4483 U = 503,560; p = 0.7826 U = 487,720; p = 0.3417 U = 493,720; p = 0.6265 U = 515,450; p = 0.2315
81 vs. 91 U = 521,260; p = 0.01 U = 513,300; p = 0.3031 U = 503,060; p = 0.8126 U = 505,140; p = 0.6909 U = 492,580; p = 0.5655
91 vs. 101 U = 488,920; p = 0.3908 U = 491,430; p = 0.5071 U = 505,790; p = 0.6537 U = 515,580; p = 0.2277 U = 519,220; p = 0.1366
101 vs. 111 U = 488,380; p = 0.3681 U = 516,920; p = 0.1901 U = 504,480; p = 0.7284 U = 481,070; p = 0.1427 U = 480,950; p = 0.1402
111 vs. 121 U = 518,070; p = 0.1616 U = 497,420; p = 0.8416 U = 496,250; p = 0.7714 U = 505,730; p = 0.6573 U = 504,240; p = 0.7427
121 vs. 131 U = 504,580; p = 0.7229 U = 509,830; p = 0.4464 U = 506,270; p = 0.6274 U = 492,600; p = 0.5665 U = 486,360; p = 0.2909
131 vs. 141 U = 509,020; p = 0.4849 U = 520,400; p = 0.1141 U = 500,330; p = 0.9799 U = 520,390; p = 0.1144 U = 502,250; p = 0.8618
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Fig. 8   Distributions of mean ICV of varying sample sizes (n = 11–150) based on various r2 values (0.02–0.7)

Fig. 9   Standard deviation of mean ICV of varying sample sizes (n = 11–150) based on various r2 values (0.02–0.7)

Fig. 10   Effect of total trait number, sample size, and number of traits resampled on mean ICV. t total trait number, s sample size, r r2 value
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size of 20: r = 0.725, p < 0.001; sample size of 30: r = 0.766, 
p < 0.001; sample size of 40 (or 35): r = 0.771, p < 0.001). 
The correlation between r2 values and standard of devia-
tions (SD) of ICV scores was also significant for all sample 
sizes (sample size of 10: r = − 0.547, p = 0.035; sample size 
of 20: r = − 0.58, p = 0.023; sample size of 30: r = − 0.649, 
p = 0.009; sample size of 40 (or 35): r = − 0.63, p = 0.012). 
Thus, mean ICV scores increased but SD of ICV scores 
decreased with increasing r2 values.

The mean ICV scores for different skeletal elements of 
M. fascicularis generated using various sample sizes showed 
that for all skeletal elements there was no significant differ-
ence in ICV scores between sample sizes of 30 and 40 (or 
35) (Table 3). In all skeletal elements, except for the radius 
and tibia, there was a significant difference in ICV between 
sample sizes of 10 and 20. Therefore, even very small sam-
ples were sufficient to accurately estimate the ICV for the 
radius and tibia, which reflect the fact that these skeletal 
elements had the highest r2 values (0.4 and 0.51, respec-
tively) among skeletal elements. For all other skeletal ele-
ments, barring the femur, scapula, and humerus, there was 
also a significant difference in ICV scores between sample 
sizes of 20 and 30, but for all bones tested, increasing the 
sample size above 30 did not have any significant impact on 
the estimation of distributions of ICV. Thus, in general, the 
results from the empirical analysis of M. fascicularis skel-
etal elements corroborate the computer simulation results in 

Table 2   Coefficient of 
determination (r2) values for 
skeletal elements in Macaca 
fascicularis 

Skeletal element r2 value

Cranium 0.24
Mandible 0.29
C1 0.22
C2 0.31
C3 0.33
C5 0.31
C7 0.29
T1 0.33
T4 0.38
T7 0.35
T10 0.38
T12 0.44
L1 0.40
L4 0.41
L7 0.43
Sacrum 0.40
Scapula 0.30
Humerus 0.35
Radius 0.40
Os coxa 0.24
Femur 0.39
Tibia 0.51

Table 3   Means and standard deviations of ICV distributions gener-
ated using resampling method (1000 resamples of 10 traits) with vari-
ous sample sizes for skeletal elements of Macaca fascicularis 

Skeletal element Sample size Mean and standard 
deviation of ICV 
scores

Cranium*,# 10 1.95 (0.312)
20 1.85 (0.267)
30 1.80 (0.246)
40 1.79 (0.227)

Mandible*,# 10 2.16 (0.302)
20 2.09 (0.259)
30 2.06 (0.246)
40 2.04 (0.228)

C1*,# 10 1.79 (0.272)
20 1.67 (0.219)
30 1.62 (0.187)
40 1.60 (0.165)

C7*,# 10 2.11 (0.283)
20 2.01 (0.229)
30 1.99 (0.203)
40 1.97 (0.177)

T1*,# 10 2.34 (0.301)
20 2.29 (0.258)
30 2.28 (0.223)
40 2.25 (0.207)

T12*,# 10 2.32 (0.261)
20 2.27 (0.193)
30 2.26 (0.160)
40 2.25 (0.140)

L1*,# 10 2.23 (0.298)
20 2.16 (0.242)
30 2.16 (0.209)
40 2.14 (0.195)

L7*,# 10 2.37 (0.243)
20 2.28 (0.189)
30 2.28 (0.157)
40 2.28 (0.131)

Sacrum*,# 10 2.41 (0.313)
20 2.36 (0.260)
30 2.36 (0.227)
40 2.36 (0.203)

Scapula* 10 2.35 (0.273)
20 2.28 (0.239)
30 2.26 (0.236)
35 2.26 (0.222)

Humerus* 10 2.64 (0.274)
20 2.61 (0.242)
30 2.61 (0.225)
35 2.60 (0.231)
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suggesting that sample sizes of 30‒40 are sufficient to reli-
ably calculate mean ICV scores in skeletal elements where 
the average r2 values among traits are reasonably high.

Discussion

Interpretation of the simulation results

In general, the results corresponded to the previous study 
of Grabowski and Porto (2017) as both sample size and 
r2 were important for calculating and estimating reliable 
indices of morphological integration. In this regard, it is 
advisable that a ‘universal’ sample size for different ana-
tomical regions or skeletal elements be based on the lowest 
r2 obtained for any anatomical region or skeletal element. 
For instance, if the cranium shows lower r2 than post-cra-
nial skeletal elements, the sampling effort should be based 
on the r2 of the cranium, although post-cranial skeletal 
elements may show relatively higher r2 values than the 
cranium. The simulation results showed that calculation 
of reliable mean ICV mostly depends on the value of the 
parameter r2. When r2 is ‘moderate’ (i.e., r2 > 0.08), a sam-
ple size of 40 individuals is large enough to calculate the 
mean ICV using a trait resampling method. Moreover, 
standard deviations of mean ICV exponentially decreased 

as r2 values increased (Fig. 9). Thus, the accuracy of the 
calculation of mean ICV is fairly reliable with high r2 val-
ues. In contrast, when r2 is low as is the case with the 
human cranium (r2 = 0.05) found in previous studies (Porto 
et al. 2009; de Oliveira et al. 2009), a larger sample size is 
required to calculate stable mean ICV.

Nevertheless, the Mann–Whitney U test results showed 
that a sample size of 51 may be sufficient even with a low 
r2 value of 0.05 for calculating reliable mean ICV scores 
using the trait resampling method (Table 1). Thus, for the 
human cranium (r2 = 0.05), 51 individuals may be the bare 
minimum required to calculate reliable mean ICV based on 
the results of the present study, while at least 108 individuals 
are required to calculate reliable integration indices (e.g., r2) 
based on the results of Grabowski and Porto (2017). The dis-
crepancy between the results of Grabowski and Porto (2017) 
and the present study may depend on the methods used to 
quantify errors. In the present study, we used Mann–Whit-
ney U tests to statistically compare significant differences 
in mean ICV between sample sizes to examine how many 
individuals are required to calculate a reliable mean ICV 
for each r2 value. In contrast, Grabowski and Porto (2017) 
used three measures of error; bias, imprecision, and inac-
curacy. For instance, inaccuracy was calculated as “Inac-
curacy = Imprecision + Bias2,” where imprecision is “the 
distance of repeated measurements to each other”, and bias 
is “the difference between the expected value of a parameter 
and the true parameter value.” Or, inaccuracy can be calcu-
lated as “the distance of a measured value to its parameter 
value” (Grabowski and Porto 2017). They considered an 
inaccuracy value of 0.05 as a “cut-off” for calculating reli-
able integration indices in their simulation (Grabowski and 
Porto 2017). Hence, Grabowski and Porto’s (2017) findings 
that much larger sample sizes are required may be related to 
their fairly strict criteria for calculating reliable integration 
indices. If we determine required minimum sample sizes 
based on the ‘asymptote’ lines in Figs. 3, 4, 5, 6, and 7, the 
present study demonstrates similar conclusions to the results 
of Grabowski and Porto (2017) (i.e., more than 100 indi-
viduals are required when r2 = 0.05). However, the results 
of the Mann–Whitney U tests show a less strict criterion for 
sample size determination that may be applicable to empiri-
cal studies of morphological integration. Thus, in terms of 
required sample size, our results correspond better to those 
of Cheverud and colleagues (e.g., Ackermann 2009), which 
showed that sample sizes of 40 are necessary for accurately 
estimating the structure of V/CV matrices or calculating 
integration indices. At the very least, our simulation results 
suggest that a sample size of 30‒40 when trait r2 value is 
over 0.08 (e.g., cranium of hominoids) or a sample size over 
51 when r2 value is over 0.05 (e.g., cranium of humans) are 
the bare minimums required to accurately calculate magni-
tudes of integration using mean ICV scores (Table 1).

Table 3   (continued)

Skeletal element Sample size Mean and standard 
deviation of ICV 
scores

Radius 10 2.97 (0.129)

20 2.99 (0.096)

30 2.99 (0.084)

35 2.99 (0.078)
Os coxa*,# 10 2.08 (0.313)

20 2.01 (0.276)
30 1.96 (0.251)
35 1.96 (0.248)

Femur* 10 2.93 (0.144)
20 2.93 (0.146)
30 2.94 (0.089)
35 2.94 (0.083)

Tibia 10 3.07 (0.077)
20 3.07 (0.052)
30 3.07 (0.049)
35 3.07 (0.049)

* Significant difference between sample size 10 and 20 when p-value 
of Mann–Whitney U test is < 0.0125
# Significant difference between sample size 20 and 30 when p-value 
of Mann–Whitney U test is < 0.0125

Author's personal copy



Evolutionary Biology	

1 3

Moreover, as shown in previous studies (Grabowski and 
Porto 2017) and the present study, the number of (resam-
pled) traits can significantly affect the index of morphologi-
cal integration as different numbers of traits will change 
the average trait r2 of a certain morphology. For instance, 
mean ICV increased when the number of resampled traits 
increased in this study (Fig. 10). Nevertheless, it was also 
shown that the total number of traits did not affect mean ICV 
values when the number of resampled traits remained the 
same (Fig. 10). This result shows the merit of the resampling 
method as different skeletal elements have different num-
bers of traits, which may artificially alter ICV values. For 
instance, two skeletal elements with smaller and larger num-
ber of traits, respectively, would automatically have different 
ICV scores as the smallest eigenvalue may be more skewed 
in an eigenvalue distribution from a larger number of traits, 
resulting in unintended inflation of ICV scores even if mean 
eigenvalues are the same between skeletal elements with 
different number of traits. Thus, calculating distributions 
of ICV scores using a resampling method is an effective 
way to compare magnitudes of integration between skeletal 
elements with different number of traits, such as different 
developmental and/or functional modules.

Empirical Data of Macaca fascicularis

The analysis of skeletal elements in M. fascicularis showed 
that average trait r2 values ranged between 0.22 and 0.51 
(Table 2). The correlation coefficient between r2 values and 
mean ICV scores of skeletal elements ranged between 0.725 
in the sample size of 20 and 0.771 in sample size of 40 
(or 35). Although there is a clear relationship between r2 
and ICV measures of morphological integration, the ICV is 
more appropriate for calculating magnitudes of integration 
in V/CV matrices, while r2 is better for the same purpose 
when using correlation matrices as suggested by Shirai and 
Marroig (2010). The average trait r2 value for the cranium 
(r2 = 0.24) was slightly higher than that found in a previous 
study (r2 ≈ 0.17; de Oliveira et al. 2009). This difference 
most likely reflects the different landmarks used to capture 
cranial traits and differences in sample composition used in 
the present and previous studies. In particular, the total num-
ber of traits for the cranium in this study was 595 interland-
mark distances, which was much larger than trait sets used 
in previous studies. The r2 value of the post-cranium was 
generally higher than the cranium except for C1, while the 
os coxa showed the same r2 value as the cranium (Table 2). 
In this regard, the r2 value for the cranium of mammals in 
previous studies (e.g., Marroig et al. 2009; Porto et al. 2009; 
de Oliveira et al. 2009) can be used as a guideline for decid-
ing the minimum sample size required to reliably calculate 
the magnitude of integration using mean ICV scores. Based 
on the simulation results above, only about 10–20 specimens 

are required to analyze magnitudes of integration for the 
skeletal elements of M. fascicularis presented here (Table 1 
and 2). However, it was found that sample sizes of 10–30 are 
required to reliably calculate mean ICV scores based on the 
results of the Mann–Whitney U tests comparing the effect 
of sample size on mean ICV for the skeletal elements of M. 
fascicularis (Table 3). The difference between the results 
of the simulation and real biological data is likely due to 
the structure of the data as a parameter V/CV matrix was 
generated in the simulation with multivariate normality but 
this is not always likely to be the case for real biological 
data. Thus, if one wants to examine mean ICV scores in all 
skeletal elements of M. fascicularis, a minimum sample size 
of 30 is recommended (Table 3).

A Cautionary Tale: The Relationship Between r2 
Values and Landmarking Protocol

As shown in this study, a posterior calculation of average 
trait r2 values will be important and necessary for validating 
necessary sample sizes for analyzing magnitudes of integra-
tion using the ICV. Having said this, the results of the pre-
sent study also suggest that how traits are determined, such 
as the landmarking protocol used, may also be an important 
issue for morphometric integration studies, in terms of esti-
mation of the average r2 value (Conaway et al. 2019). In pre-
vious studies and in the present study, one of the main ways 
in which researchers can decide on an appropriate sampling 
effort for reliably calculating integration indices is to evalu-
ate the average trait r2 value. Thus, it is also important to 
consider whether different (geometric) morphometric meth-
ods applied to skeletal elements have substantial effects on 
the calculation of r2 values. In this respect, Conaway et al. 
(2019) reported that the r2 can vary based on the landmark-
ing protocol used to define morphometric traits, such as the 
use of different numbers of landmarks and/or inclusion of 
semi-landmarks in the analysis. In other words, the magni-
tude of integration could be different even within the same 
skeletal region due to differing landmarking protocols and, 
resultant varying r2 values. Therefore, sampling effort should 
be considered not only prior to the study based on r2 values 
from previous studies but also after the (preliminary) sam-
pling is completed when r2 can be recalculated posteriorly 
based on the specific traits (i.e., specific landmarking pro-
tocol) being employed in each analysis. In this regard, it is 
recommended to prepare to sample more than the minimum 
required sample sizes for specific skeletal elements of cer-
tain species (e.g., more than 51 individuals for the human 
cranium) as it is impossible to know a priori what the precise 
r2 will be based on the specific morphometric protocol being 
employed and the sample composition. For instance, it may 
be that the actual r2 value is lower than 0.05, which would 
require a much larger sample size than 51 individuals as 
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the standard deviation of mean ICV exponentially increase 
with lower r2 values (Fig. 9). In a nutshell, while the results 
of this simulation provide guidelines for minimum sample 
sizes based on average trait r2 values, sampling effort should 
be tailored to the specific purpose (i.e., hypothesized devel-
opmental and/or functional module), trait definition method 
(i.e., landmarking protocol), and material (i.e., skeletal ele-
ment) of each study.
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