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Abstract
The new era of multimessenger astrophysics requires the capability of study-
ing different aspects of the evolution of compact objects. In particular, the
merger of neutron star binaries is a strong source of gravitational waves and
electromagnetic radiation, from radio to y-rays, as demonstrated by the detec-
tion of GW 170817 and its electromagnetic counterparts. In order to understand
the physical mechanisms involved in such systems, it is necessary to employ
fully general relativistic magnetohydrodynamic (GRMHD) simulations able to
include the effects of a composition and temperature dependent equation of
state describing neutron star matter as well as neutrino emission and reabsorp-
tion. Here, we present our new code named Spritz that solves the GRMHD
equations in 3D Cartesian coordinates and on a dynamical spacetime. The code
can support tabulated equations of state, taking into account finite temperature
effects and allowing for the inclusion of neutrino radiation. In this first paper, we
present the general features of the code and a series of tests performed in special
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and general relativity to assess the robustness of the basic GRMHD algorithms
implemented. Among these tests, we also present the first comparison between
a non-staggered and a staggered formulation of the vector potential evolution,
which is used to guarantee the divergence-less character of the magnetic field.
With respect to other publicly available GRMHD codes, Spritz combines the
robust approach of a staggered formulation of the vector potential together with
the use of an equation of state driver (EOS_Omni) that can allow the code to
use finite temperature equations of state. A next version of the code will fully
test the EOS_Omni driver by coupling it with a neutrino leakage scheme.

Keywords: numerical relativity, magnetohydrodynamics, neutron stars

(Some figures may appear in colour only in the online journal)
1. Introduction

Magnetic fields play a crucial role in several high-energy astrophysical scenarios at different
scales, from active galactic nuclei (AGN) to gamma-ray bursts (GRBs). These phenomena
involve compact objects such as neutron stars (NSs) and black holes (BHs) and therefore any
attempt to model them requires a general relativistic treatment. As a consequence, studying
this kind of systems demands to solve the full set of general relativistic magnetohydrodynamic
(GRMHD) equations [1]. In most situations, the GRMHD equations are to be solved numer-
ically, often on dynamical spacetimes, and a number of GRMHD codes have been developed
over the years for this purpose (e.g., [2—4]). Some of them have been used, in particular, to study
compact binary mergers (e.g., [5-9]) and accretion onto supermassive BHs (e.g., [10-16]).

In the case of compact binary mergers, GRMHD codes have been used to simulate NS—NS
and NS—BH mergers in order to study the effects of magnetic fields on the gravitational wave
(GW) and electromagnetic (EM) emission (e.g., [17, 18]). For instance, GRMHD simula-
tions have recently provided indications that, under certain conditions, the BH remnant of an
NS-NS or NS-BH merger may be able to give rise to a relativistic jet and hence power a short
GRB [19, 20]. This is a likely scenario to explain the connection between compact binary merg-
ers and short GRBs, recently confirmed by the first simultaneous observation of GWs emitted
by an NS—NS merger and a short GRB [21, 22]. Concerning the accretion onto supermassive
BH mergers, current simulations aim at predicting the light curves of possible EM counterparts
of future GW sources detected by LISA [23, 24].

In this paper, we present our new fully GRMHD numerical code, named Spritz, that
solves the GRMHD equations in 3D and on a dynamical spacetime. The code inherits a num-
ber of basic features from the WhiskyMHD code [2], but it also takes advantage of methods
implemented and tested in the publicly available GRHydro [3] and I11inoisGRMHD [4]
codes. The WhiskyMHD code has been used successfully to simulate NS—NS mergers [7,
9, 17, 18, 25-29] and accretion onto supermassive black hole binaries [30], but it is limited
to the use of simple piecewise polytropic equations of state [31] and it is not able to take
into account neutrino emission. Moreover, this code can evolve the vector potential instead of
the magnetic field, but employing a non-staggered formalism that may have undesired effects
on the evolution (see discussion in the following sections).

The new Spritz code can instead handle any equation of state for which the pressure is
a function of rest-mass density, temperature, and electron fraction and therefore can also use
modern tabulated equations of state. This has been possible by following a similar approach
used in the GRHydro code, which can use finite temperature tabulated equations of state, but
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that still lacks of a magnetic field implementation able to handle correctly the use of mesh
refinement techniques. Spritz also implements a staggered version of the vector potential
formulation in a formalism that, as discussed later in the paper, recovers the original conser-
vative flux-CT approach implemented in the original version of WhiskyMHD. This has been
possible by using algorithms similar to those implemented in I11inoisGRMHD, which at
the moment can only handle simple ideal fluid equations of state. Therefore, the Spritz
code aims at merging together the main capabilities of the three codes mentioned above. The
use in particular of a new equation of state driver will allow Spritz to implement neutrino
radiation via a leakage scheme currently under testing and that will be presented in a future
paper.

Here, we present a series of extensive tests in 1D, 2D, and 3D, including, for the first time,
a comparison between staggered and non-staggered schemes for the vector potential evolu-
tion and a rather demanding spherical explosion test. The Spritz code passes all the tests
successfully and it will be soon used to carry out NS—NS and NS—BH merger simulations.
The current version of the code is publicly available and it can be downloaded from Zenodo
[32].

The paper is organized as follows: in section 2 we present the GRMHD equations and
the formulation used in the code; in section 3 the main numerical methods are discussed; in
section 4 we present the results of our tests; and in section 5 we summarize the main results and
discuss future developments. We use a system of units such that G = ¢ = 1 unless otherwise
specified. Greek indices run from O to 3 and Latin indices run from 1 to 3.

2. Equations

In this section we summarize the theoretical background and the equations implemented in
Spritz, giving also the main references for the reader who wants to go deeper in the related
details. In addition to these references, it is worth to mention the book [33] which presents
an extensive theoretical introduction to numerical relativity approaches to solving Einstein’s
equations in several physical scenarios.

2.1. 3 + 1 spacetime formulation

Our numerical methods and implementation are largely based on the ones employed in
WhiskyMHD [2], where a 3 + 1| formulation of the Einstein’s equations is adopted. In such a
framework, the form of the line element is:

ds* = guv dxdx” = — (a2 — ﬂ’ﬂ,-) d? +28;dx'dr + Vij dxidx/, (1)

where the usual Einstein notation is adopted. Here g,,,, is the metric tensor, y;; its purely spa-
tial part, and o and (' are respectively the lapse and the shift vector. Our coordinate setting
considers x* = ¢.

Spritz makes use of the conservative formulation presented in [1], which is the GRMHD
version of the original general relativistic hydrodynamics Valencia formulation [34, 35]. Here,
the natural observer is called the Eulerian observer and its four-velocity n is normal to the
three-dimensional hypersurface of constant # with the following components:

1 .
[ —— 1’_1 ,
n' = —(1,-5) o

n, = (-a,0,0,0).
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When considering matter, the spatial components of the fluid velocity measured by the
Eulerian observer read

- Rut u oy i
o W B 5 3)
—u-n aul « W  «

where u is the fluid four-velocity, h,, = g, + n,n, is the projector onto the aforementioned

hypersurface at constant , W = 1/+/1 — v2 is the Lorentz factor, and v> = ;00 is the square
norm of v.

2.2. Electromagnetic field

The general relativistic formulation of [1] describes the electromagnetic field via the Faraday
tensor and its dual, given respectively by

FW — UrEY — UVE!Y — n“"A‘SU,\Bg, (@]

1
R — E,',}/IV)\(SF)\(S — U*BY — UYB* — ’I’}IW)\(SU)\E(;, (5)

being E" the electric field, B" the magnetic field, U" a generic observer’s four-velocity, and
A = \/%—g [ Ad] the volume element.

The equations governing the electromagnetic field and its evolution are the well known
Maxwell’s equations

ViFM =0,

(6)
V,F" = 4n ",

where J is the four-vector current density, which can be expressed through the Ohm’s law as
J" =qu' +oF"u,, (7N

with g the proper charge density and o the electric conductivity. In the ideal MHD regime
(i.e., when 0 — oo and F""u, — 0) equations (4) and (5) can be expressed as

1BV _ yVB"
F = n“ﬁuybaug, Y = b'u” — b'ut = %, (3

where b is the magnetic field according to the comoving observer, which can be written
component-wise as follows [2]:
b0 — WB"U,-’ b — B + ab%'

B2+ a2(1)’
« w ’ '

2 — —
b= =

€)

Here, B> = B'B;, where B is now the magnetic field measured by the Eulerian observer (i.e.,
from now on U" = n''). With equation (8), the Maxwell’s equations considering the dual of
Faraday tensor can be written as
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ViR = V=g b’ — b"ul)) = 0. (10)

1
—0,
=

Splitted in its different components, equation (10) provides the equations governing the
magnetic field constraints and evolution, namely the divergence-free condition

OB =0, (11)
where B = ﬁBi , and the magnetic field induction equations

OB = 0; (v'B' — v'B'), (12)
where ' = av' —f3.

2.3. Conservative approach

The stress—energy tensor, considering a perfect fluid and the contribution of the magnetic field,
can be written as

T" = (ph + b*) u't + (Paas + Pmag) 8" — 0", (13)

. . o2 . .
being p the rest-mass density, pg,s the gas pressure, pmag = 5 the magnetic pressure, h = 1 +
e+ % the relativistic specific enthalpy, and ¢ the specific internal energy.

The energy—momentum conservation

v, " =0, (14)
the conservation of baryon number
V. (pu”) =0, (15)

Maxwell’s equations for the magnetic field (12), and an equation of state (EOS, see section 3.6)
give together the complete set of equations describing the evolution of the primitive variables,
ie., U= [p, v}, €, Bk] . As usual, these equations can be written in the following conservative
form:
1 )
—— [0, (VAF°) + 0, (vV—3gF')] =8, (16)
= [0 (V3F°) + 0 (v=2F)]

being F* = [D, S}, 7, B] the vector of conserved variables, defined in terms of the primitive
ones as

D = pW,
S; = (ph+ bz) Wv; — ab’b;,
2\ 12 2 (p0)? an
7= (ph+ b*) W? — (Pgas + Pmag) — o (B°)” — D,
B* = B*

F' the vector of fluxes defined as
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' D'/ '
i — S]’al/a + (pgas + pmag) (5’~ — bJBl/W
F' = i i] . , (18)
TV /O‘ + (pgasﬂ‘ pmag) v —ab’B /W
B'%'/a — B't" o
and S the vector of sources that reads
0
na )
S = T (allng - Fy/1g5j) (19)

a (770, Ina-— T"”I‘S#)
o

In order to avoid time derivatives of the metric in the source terms, these are rewritten as done
in the case of the Whisky code [36] (see section 4.3.2 of [37] for details).

2.4. Electromagnetic gauge conditions

In order to accurately describe the magnetic field and its evolution, it can be convenient to
formulate the problem in terms of the vector potential (see, e.g., [38]). Considering V as a
purely spatial operator, one may write

B=V xA, (20)
so that
V-B=V-(VxA)=0, 2n

and thus evolving the vector potential A will automatically satisfy equation (11).
As already done in [39-41], we then introduce the four-vector potential

-Au = nllq) +A1/, (22)

being A, the purely spatial vector potential and ® the scalar potential. With this, equations (11)
and (12) become respectively

B = €9y, (23)
and
A = —E; — 0; (a® — B/A)) , (24)

where €% = n, " is the three-dimensional spatial Levi-Civita tensor.

However, the choice of the four-vector potential .A” is not unique and one has to choose a
specific gauge. The first GRMHD simulations that employed the vector potential as an evo-
lution variable were performed using the algebraic gauge [41, 42] where the scalar potential
satisfies the following equation:

1 .
@:awmg. (25)

In this way equation (24) is strongly simplified, being reduced to

6
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0A; = —E,, (26)

and therefore it does not require to evolve the scalar potential ®.

More recently, GRMHD simulations started to use the Lorenz gauge [41], which consists
of imposing the constraint V, A" = 0. This gauge requires now to solve also the evolution
equation for the scalar potential:

9 (VA®) + 0; (ay/7A" — \/48'®) = 0. (27)

The Lorenz gauge has been shown to perform better in those simulations that implement
adaptive mesh refinement, such as, for example, binary neutron star and neutron star-black
hole mergers [41]. The algebraic gauge may indeed cause interpolation errors at the bound-
aries between refinement levels and thus produce spurious magnetic fields (see [41] for more
details). An even more robust gauge choice has been introduced in [12] with the name of
generalized Lorenz gauge:

VA" =¢n, A”, (28)

where ¢ is a parameter that is typically set to be equal to 1.5/Afpa, being Afyax the
timestep of the coarsest refinement level [4]. When employing this gauge choice the evolution
equation for the scalar potential becomes

O (VA®) + 0; (ay/AA" — AB'®) = —Ea\/A®. (29)

In Spritz we adopt the generalized Lorenz gauge which is also the gauge used in the latest
WhiskyMHD simulations [9, 17, 18, 27-29].

3. Numerical implementation

In the present section we summarize the main numerical methods implemented within the
Spritz code. The code is based on the Einstein toolkit [43—44] which provides a framework
to automatically parallelize the code for the use on supercomputers as well as a number of
open-source codes providing a number of useful routines, such as those for the evolution of
the spacetime, adaptive mesh refinement, input and output of data, checkpointing, and many
others.

3.1. Riemann solvers

The Spritz code adopts high resolution shock capturing (HRSC) methods to solve
equation (16). These methods are based on the choice of reconstruction algorithms, to compute
the values of primitive variables at the interface between numerical cells, and of approximate
Riemann solvers, to finally compute the fluxes.

Our default Riemann solver is the Harten—Lax—van Leer—Einfeldt (HLLE) [45], where the
numerical fluxes at cell interfaces are computed as follows:

7
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Figure 1. Representation of storage locations for magnetic field and vector potential
components in our numerical code. Point P;j; represents the cell’s center.

Fi _ CminFi + cmaxF{ — Cmax€min (F? — F?) , (30)

Cmax 1 Cmin

where a subscript r (I) means that the function is computed at the right (left) side of the
cell interface and cpax = max (0, c41, C4r), Cmin = —min (0,c_, c_;), where c1 (cx)) are
the right-going (+4) and left-going (—) maximum wave speeds computed from the primitive
variables U at the right (left) side.

We decided also to implement the Lax—Friedrichs (LxF) scheme [46], that is

P Fl+ F} — cyue (FY — FY)
2 b

3

where cyae = Max(Cmax, Cmin) [47]. This scheme is a very dissipative one and it can be useful
in cases where strong jumps in pressure must be considered.

In order to compute the values of F° at right and left sides of cell’s interfaces from the
primitive variables, we adopt the third-order piece-wise parabolic method (PPM) [48]. In addi-
tion, for those cases that require more dissipative methods, for example in presence of strong
shocks, we also implemented the second-order total variation diminishing (TVD) minmod
method [46].

3.2. Electromagnetic field evolution

As already mentioned in section 2.4, the Spritz code is meant to deal with different
electromagnetic gauge conditions for the vector potential.

In order to accurately evolve the magnetic field, particular care must be taken in solving
numerically equation (26), in the case of the algebraic gauge, or equations (24) and (29), in
case of the generalized Lorenz gauge. From now on, we will also use the following definition
for simplicity:
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Table 1. Location over the grid of various quantities. Symbols in the left column should
be considered at the code’s array position (i, j, k) while the right column indicates the
actual location over the grid that depends on whether the different quantities present
a particular specification for the prolongation (for the components of the four-vector
potential) or how they are computed within the code (for the components of the magnetic

field).

Symbol Definition Location

« Lapse (i, ], k)

p" m-component of the shift vector (i, ], k)

4™ mn-component of the spatial metric (1), k)

¥ Determinant of the spatial metric (i, ], k)

p Rest-mass density (i,, k)

Dgas Pressure (i,, k)

€ Energy density (@, ), k)

Um m-component of fluid velocity (i,], k)

B! x-component of magnetic field (i+ 1, j.k)

B? y-component of magnetic field (i,j+ 1.k)

B’ z-component of magnetic field (i, jk+1)

Al x-component of vector potential (i, Jj+ %, k+ %)

A, y-component of vector potential (i+3k+1)

Az z-component of vector potential (i+3.j+5k)

U ihd Scalar potential (i+1j+4k+1)
\Ijmhd = ﬁ(I) (32)

As in every numerical code, the spatial domain is divided in grid-cells of user specified
dimensions. The fluid’s state variables (e.g., p, pgas, V) are stored in the grid-cell’s centers.
Usually, the electric and magnetic fields (£ and B) are instead stored respectively on cell’s
edges and faces. Spritz evolves the magnetic field as the curl of a given vector potential
A, whose components are staggered just like the electric field E (see figure 1) and are usu-
ally evolved using the generalized Lorenz gauge. The electric and magnetic field components
are not evolved variables. The electric field is computed at cell’s edges using the flux-CT
approach as described in the original WhiskyMHD paper [2]. The magnetic field is instead
computed at the cell faces using the vector potential component stored at cell’s edges and then
linearly interpolated at the center of the cell. The precise storage location on the grid-cells of
various quantities is reported in table 1.

Since B is computed from the curl of A, the divergence-free character of the magnetic field
is automatically satisfied.

The Spritz code evolves the vector potential A and, when employing the generalized
Lorenz gauge, the scalar potential Wy,,q is also computed. Following [4], we can write the
update terms for the vector potential’s components and for the scalar potential as follows:

atAm - _Em - am (GA)

=-E, — am (O{ \Ii;l;d - /BJA]> ’ (33)

form = 1, 2 and 3, and
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O Vimna = —0; (Fu’) — £aWmna
= -0, (OéﬁAj — 5j‘I/mhd) — EaW g, (34)

being £ the so-called damping factor, used for the generalized Lorenz gauge. As the reader may
deduce from equations (33) and (34), and table 1, the terms on the right-hand sides in general
have different storage locations and therefore we decided to follow this scheme:

(a) Atfirst we consider functions Fyy/ and Gy, defined via equations (33) and (34) respectively,
to be computed at cell centers, by interpolating ¥4 and A; respectively from cell vertices
and edges to the center.

(b) Then we interpolate the values obtained at point (i) for Fyy/ back to the cell edges and for
G, back to cell vertices.

(c) Finally we numerically differentiate the values at point (ii) via a centered differ-
ence scheme. For example, the derivative along x (m = 1) of G4 in equation (33) on
the edge (i,j+ 1/2,k+ 1/2) is computed as [Ga(i + 1/2,j+ 1/2,k+ 1/2) — Ga(i —
1/2,j4 1/2,k+ 1/2)]/(Ax). A similar expression is used for the derivatives computed
at the cell vertex (i + 1/2,j+ 1/2,k + 1/2) in equation (34) where the two nearby edges

are used.
In details, if a variable f'is given at cell vertices, then we interpolate it at the center of the
cell using a simple linear interpolation:

a1 1 T B
f@LM—S{fQ i 5k 2)+f@ itk 2)

N | 1 1 1
+f<l+2,]+2,k+2>+f<l+2,]—2,k+2

IS B o1
+fQ—2J—2k+2>+fG—2J+2j+2)

Equation (35) is used to interpolate W4 at step (i) of the aforementioned scheme.
For quantities defined instead on edges, for example along the x-direction, the following

interpolation is instead used:

N Y Y R AR
f@L@—4{f@d—zk—2>+fQJ+2j—2)

+fGJ—;k+;>+fGJ+;k+;ﬂ (36)

Equation (36) is used to interpolate A, at step (i) of the aforementioned scheme. Along
other directions, the straightforward permutation of indices leads to the correct interpolating

functions.

10
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The following expression is instead used to interpolate from the cell center to a cell edge:

1

oo o .
fGJ+2k+2>—4U@LD+f@J+L@

+ fG jk+ 1)+ fG j+1,k+ 1)] (37)

We use equation (37) to obtain the values of Fg/ at point (ii). With the following interpolator
we instead compute the values of G, at point (ii):

NS R S AU B o
f<l+§,]+5,k+z>—g[f(l,],k)—Ff(l,]—Fl,k)

+ fGjk+ 1)+ fGj+ Lk+1)

+ G+ LR+ fi+1,j+ 1,k

G+ Lk 1)+ fi+1,j+ Lk +1)]
(33)

In order to finally be able to compute the right-hand side of equation (33), one needs also
to compute the electric field components E,, that are stored at cell edges. Here we follow
the same approach implemented in the WhiskyMHD code [2] and use the flux-CT method
[49], in which the electric field is computed from the magnetic field HLLE fluxes. Our stag-
gered formulation therefore benefits of the same properties of the constrained transport scheme
[50], but without the need of implementing special prolongation and restriction operators to
ensure the divergence-free character of the magnetic field [51].

An alternative scheme could use a non-staggered formulation where A and B are both stored
at the cell centers (e.g., as done in the WhiskyMHD code [7]). An example of the different
results for a shock-tube 1D test obtained via a staggered and a non-staggered scheme is shown
in figure 2.

3.3. Boundary conditions

When developing new codes to work within the EinsteinToolkit framework, the treat-
ment of boundary conditions (BC) is usually left to the generic thorn Boundary. Through
this approach, the Spritz code may consider ‘flat” or ‘none’ BC, as already implemented
in the WhiskyMHD [2] and GRHydro [3] codes. The ‘flat” BC simply copies to the ghost
zones the value that each variable has in the outermost grid point. The ‘none’ BC instead does
not update the ghost zones and keeps the value of the variables in the ghost zones equal to the
ones set by the initial data routine.

Although the ‘flat’ and ‘none’ BC have been successfully used in simulations with the afore-
mentioned codes, we decided to modify the BC at the external boundary of the computational
domain for the vector and scalar potential in order to provide a more accurate calculation of
B. We followed in particular the work presented in [4] and we implemented the numerical
extrapolation of A and W ;4 at the outer boundary as described in the I11 inoi sGRMHD code.
Basically, for each grid-point in the outer boundary we apply the following linear extrapolation
formula:
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1.0

0.5

0.0

BY

-0.5

—@— NotStaggered 200 pts
—~1.0 —4— Staggered 200 pts
— Exact

-0.50 —-0.25 0.00 0.25 0.50
X

Figure 2. Comparison of results of Balsara 1 test (from [52]), obtained via stag-
gered (red diamonds) and non-staggered (blue dots) vector potential. Post-shock oscil-
lations are clearly visible in the blue curve. It is worth noting that the non-staggered
scheme is anyway still stable since the maximum amplitude of those oscillations does
not grow indefinitely during the evolution. We remind that indeed WhiskyMHD applied
a Kreiss—Oliger dissipation to the vector potential in order to remove such oscillations

(7.

. [2F]  —F/, fori=N/ —2,N —1,N
Fi— : (39)

CeFl, —F, fori=3,21

where F € {A, Uiha}, j € {1,2,3}, N is the number of grid-points in the j-direction, and we
use 3 points in the ghost zones for each direction. In addition, the user may choose whether
BC for A and W14 should be given by equation (39) or simply be obtained by the other two
conditions provided by the Boundary thorn.

Finally, we also successfully tested the implementation of periodic BC provided by the thorn
Periodic through the loop advection test (see section 4.2), in both uniform and mesh-refined
grids.

We note also that radiative BCs may be more suitable for GRMHD simulations, but these
are not yet available in our code or in the Einstein toolkit. Nevertheless, simulations of com-
pact binary mergers already require large domains in order to compute GW signals. There-
fore the effect of the BCs on the matter dynamics is negligible. Another approach, not yet
implemented in the code, could be the use of multipatch methods such as those used in the
Llama infrastructure [53, 54].

3.4. Primitive variables recovering

As mentioned in section 3.1, the computation of fluxes at each time during the evolution
depends on values of the primitive variables U, although we evolve the conserved ones F°.

12
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As recurrent in many conservative approaches, one of the most delicate point is the inversion
of equation (17), a problem that presents no analytic solution. Thus one has to apply a numerical
method (usually a Newton—Raphson scheme).

In the literature many methods have been presented in order to perform this step [55, 56].
In the Spritz code we implemented both the 2D method used in WhiskyMHD [2] and the
one presented in [55] and used in GRHydro.

3.5. Atmosphere

As any GRMHD grid-based code, Spritz cannot handle zero values for the rest-mass density
and a minimum value p,, needs to be set. If at time 7 the rest-mass density p computed in our
conservative-to-primitive routine is such that p < p,m, then its value is set to pym, the pressure
and specific internal energy are recomputed using a polytropic EOS, and the fluid’s three-
velocity is set to zero. In the tests presented here we typically set pym = 1077 po max, being
Po.max the initial maximum value of the rest-mass density.

3.6. Equation of state

To close the GRMHD system of equations, an equation of state that provides a relation between
p, €, and pgas must be supplied. Many EOS exist, from analytical ones, such as that of an ‘ideal
fluid” or of a ‘polytropic’ gas [57], to more complex ones that can only be expressed in a
tabulated form [58]. One of the most challenging research fields in astrophysics is focused
on trying to understand how matter behaves in the core of NSs, where the rest-mass density
may reach values as high as ~10"> g cm ™3, not reproducible in Earth laboratories. Different
EOS result in different bulk properties of the star, e.g., different maximum mass or equatorial
radius for both spherical (i.e., non-rotating) and rapidly-rotating equilibrium configurations of
NS models (see [59] for examples taking into account EOS with various stiffness). It is there-
fore crucial for any GRMHD code to be able to handle different EOS with different composition
as well as different treatments of nucleon interactions, in order to improve the capabilities of
comparison between theoretical models and observations.

The Spritz code can implement both analytic and tabulated EOS. This is done via the
EOS_Omni thorn provided by the EinsteinToolkit which supports analytic EOS, such
as ‘ideal fluid’ and ‘piecewise polytropic’ ones [31], and ‘tabulated’ EOS.

For the sake of clarity, we report the explicit equations for the ‘ideal fluid” EOS, that can
be written as

Doas = (I' — 1) pe, (40)
where I is the adiabatic index, and for the ‘polytropic’ EOS, that reads

Pgas = KPF, 41
e=Kp" /T -1, (42)

being K the polytropic constant. The tests presented in this paper will use only the ‘ideal fluid’
EOS. A follow-up paper will present instead tests with cold and finite temperature equations
of state, including also the evolution of the electron fraction and neutrino emission.
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Figure 3. Comparison of numerical results (red dots) and exact solutions (continuous
black lines) for the suite of tests of [52]. Left and right columns show respectively the
spatial distributions of the rest-mass density and the magnetic field component B” at the
final time of the evolution. Here the Balsara 1, 2, 4 and 5 tests are performed with
the third order PPM method. On the other hand, the Balsara 3 is performed with the
second order MINMOD method, because this test is the most demanding one due to the
very high jump of four orders of magnitude in the initial pressure and this requires a
slightly more dissipative method to succeed.

3.7 Adaptive mesh refinement

Adaptive mesh refinement (AMR) is very important in full 3D simulations of binary mergers
because it allows for the optimization of the number of grid points by refining only inter-
esting regions of the domain while maintaining a sufficiently large computational domain to
reduce the effects of external boundaries and to allow for the extraction of gravitational wave
signals far away from the source.

In the EinsteinToolkit framework [43, this task is performed via the Carpet driver
[60, 61]. Particular care must be taken in case of staggered variables, like A and W pg
in the Spritz code, as already mentioned in section 3.2. In particular, one needs to use
separate restriction and prolongation operators with respect to variables located at the cell
centers. Such operators are already provided by the Carpet driver and they are the same
used by the I11inoisGRMHD code. In section 4.2 we show also some tests of our AMR
implementation.

3.8. Spacetime evolution

The spacetime evolution is performed using the McLachlan thorn [62—-64], which is part of
the EinsteinToolkit. It adopts the BSSNOK formulation presented in [65-67] and for
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Table 2. Initial data for Bal sara relativistic shock tube tests.

Test: 1 2 3 4 5
L R L R L R L R L R

p 1.0 0.125 1.0 1.0 1.0 1.0 1.0 1.0 1.08 1.0
Dgas 1.0 0.1 30.0 1.0 1000.0 0.1 0.1 0.1 0.95 1.0
Vy 0.0 0.0 0.0 0.0 0.0 0.0 0.999 —0.999 0.4 —0.45
vy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 —0.2
v, 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2
B* 0.5 0.5 5.0 5.0 10.0 10.0  10.0 10.0 2.0 2.0
B 1.0 —1.0 6.0 0.7 7.0 0.7 7.0 -7.0 0.3 —-0.7
B* 0.0 0.0 6.0 0.7 7.0 0.7 7.0 —-7.0 0.3 0.5

which the numerical implementation has been presented in [36, 68, 69]. More details on the
code can be found in [43].

4. Results

As already stressed in the introduction, the central goal of the Spritz code is to perform
simulations of BNS and NS—BH binary mergers. In order to address such a complex task
with the necessary confidence, we need to assess the reliability of the code in a variety of
physical conditions. In this section, we report on the results of our extensive testing, including a
number of one-, two- and three-dimensional simulations. These simulations include critical
tests that have been already considered in the literature in several previous papers (see, e.g., [3,
4,52, 70] and references therein), allowing for a direct comparison with other codes.

4.1. 1D tests

The first tests that any GRMHD code should pass are those involving Riemann problems in
order to check the correctness of the approximate Riemann solvers implemented in the code.
In figure 3, we present the results for one-dimensional (1D) relativistic shock-tube problems
corresponding to the suite of tests of [52]. Here, our numerical solution of such problems
can be directly compared with the exact solutions computed via the code presented in [71].
Initial data for such tests are described in table 2. In all tests we employ an ideal fluid EOS, with
I' =2.0fortest Balsara 1 andI' = 5/3 for the others. The final evolution time is # = 0.55
fortest Balsara 5 andf = 0.4 for the others. All tests show an excellent agreement between
the numerical results and the exact solutions.

We also compared the results of these 1D tests obtained with the Spritz code with those
already published for the numerical code GRHydro [3], finding a perfect match. In figure 4,
we show an example of such comparison referring to the Balsara 1 shock-tube test.

Finally, figure 5 shows our results on the most demanding Balsara 3 test with different
resolutions (200, 800, and 1600 grid points). Higher resolution leads to a significant increase
in accuracy, which is particularly evident at the shock front (compare also with the exact
solution in figure 3).

4.2. 2D tests

We now move on to discuss 2D tests performed with the Spritz code. In this work, we con-
sidered three types of 2D tests, namely the cylindrical explosion, the magnetic rotor and the
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Figure 4. Comparison of results on the Balsara 1 test (from [52]) obtained with the
Spritz code (red dots) and the GRHydro code (green diamonds) [3].
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Figure 5. Comparison of results on the Balsara 3 test [52] obtained with the Spritz
code at three different resolutions: low resolution (200 points—green diamonds),
medium resolution (800 points—blue triangles) and high resolution (1600 points—red
dots).

magnetic loop advection, all performed in Cartesian coordinates. The cylindrical explosion
test allows us to check the capability of the code to follow a shock front on the equatorial
plane (such as for instance the ones that can be produced in a merging BNS system during the
very last orbit prior to merger). The magnetic rotor test is a special relativistic test that, in a
setup as simple as possible, allows to start testing the evolution of the magnetic field in the
presence of rotation. Finally, the magnetic loop advection test is instead the only 2D test here
with an exact solution to be compared with and as such it allows us also to better test the
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differences between our reconstruction schemes. We discuss all of them in some detail in the
following subsections.

4.2.1. Cylindrical explosion. The cylindrical explosion (also known as the cylindrical blast
wave) is a demanding multidimensional shock test, first introduced by [72], and later modi-
fied and implemented in [3, 42, 70, 73]. This test considers a uniformly magnetized domain
consisting of a dense, over-pressured cylinder in the central region expanding in a surround-
ing ambient medium. Here, we adopt the parameters from the setup described in [3]. For the
cylinder, we set

Fin = 08; Fout = 10; Pin = 10_2; Pgas,in = 10; (43)
while for the surrounding ambient medium, we set
Pout — 10_4, Pgas,out = 3 x 10_5~ (44)

Here, r;, and rqy are the radial parameters used for the density profile smoothening prescription
(and similarly for the pressure profile smoothening prescription) considered in [3], such that

Pin 3 7 < Fin
Tow — 1) In pin 4+ (r — rip) In
p(?‘) —{exp (Fout ) Pin ( in) Pout Crn <P < Fou (45)
Fout — Fin
Pout 37 2 Fout

The fluid velocity is initially set to zero and the magnetic field is initially uniform with B* =
0.1 and B = B* = 0. The test is performed on a 200 x 200 grid with x- and y-coordinates
spanning over the range [—6, 6]. We adopt a Courant factor of 0.25 and an ideal fluid EOS with
adiabatic index I" = 4 /3. We use the second order MINMOD reconstruction method along with
the HLLE flux solver and the RK4 method for time-step evolution.

The resulting structure of the blast wave is shown in figure 6 for the final time r = 4.0. In
particular, we show the two-dimensional distribution of gas pressure py,s, Lorentz factor W
(together with magnetic field lines), and the x- and y-components of the magnetic field, B* and
BY. This figure shows a very similar behavior as compared to the results already presented in
the literature [3, 42, 73].

Figure 7 provides instead a quantitative indication of the accuracy of our code. In this case,
we show a one-dimensional slice along y = 0 of the final blast wave configuration at time
t = 4.0, in terms of rest-mass density and B*. Two cases are considered: on the left, we com-
pare the results obtained with low (200 grid-points) and high resolution (400 grid-points);
on the right, we compare the high resolution test results obtained with Spritz with those
obtained with GRHydro [3]. For the first comparison, we notice that the peaks differ slightly in
p due to the fact that the ability to capture the peak sharpness depends significantly on reso-
lution. The values of B* show a much smaller deviation, due to a smoother variation of this
quantity. For the second comparison, the agreement between Spritz and GRHydro appears
excellent, further verifying the robustness of our code.

To validate the implementation of adaptive mesh refinement, we carried out another sim-
ulation including an inner refined grid covering the x- and y-coordinates in the range [—3,
3] with grid-spacing Ax = Ay = 0.03 (while the rest of the domain has double grid spac-

17



Class. Quantum Grav. 37 (2020) 135010 F Cipolletta et al

1 Pressure ! R | {iorentz factor——

4817 1073 107| 7| Magnetic fieldlines 1.00 _2.19 _3.38 4.57]
| ] Magnetic fiel

2.4 A

2.4 1

-4.8

4.8

2.4

2.4 1

-4.8 A

B e e B L B e e e e
—-4.8 —-2.4 0.0 2.4 4.8
X X

Figure 6. Cylindrical explosion test snapshots at the final evolution time ¢t = 4, showing
the distribution of gas pressure pg,s (top-left), Lorentz factor W together with magnetic
field lines (top-right), and x- and y-components of the magnetic field, B* (bottom-left)
and B” (bottom-right). The resolution considered here is Ax = Ay = 0.06.

ing). Figure 8 shows the comparison with the uniform grid test in terms of final pressure
distribution. No significant differences are found, nor specific effects at the inner grid sepa-
ration boundary, demonstrating a correct implementation of the AMR infrastructure.

4.2.2. Magnetic rotor. The second two-dimensional test we consider is the magnetic cylin-
drical rotor, originally introduced for classic MHD in [49, 74] and later employed also for
relativistic MHD in [42, 47]. The initial setup of this test consists of a dense, rapidly spinning
fluid at the center, surrounded by a static ambient medium, where the entire domain is set with
a uniform magnetic field and pressure. For setting the initial parameters, we take the radius of
the inner rotating fluid as r = 0.1, with inner rest-mass density p;, = 10.0, uniform angular
velocity €2 = 9.95, and therefore the maximum value of the fluid three-velocity iS Vmax =
0.995. For the outer static ambient medium, we set the rest-mass density as poy = 1.0. The ini-
tial magnitudes of the magnetic field and gas pressure are B = (1.0,0,0)and Dgasin = Pgasout =
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Figure 7. One-dimensional cut along the x-axis of the cylindrical explosion test for the
final evolution time = 4. A comparison between a low resolution test with N = 200
grid-points (green solid line) and high resolution test with N = 400 grid-points (blue
dashed line) is shown in the left-side panels for the rest-mass density p (top) and x-
component of the magnetic field B* (bottom). The right-side panels show a comparison
of the same quantities between the high resolution test performed with Spritz (blue
dashed line) and the same test performed with GRHydro (red solid line).

1.0. The problem is set up on a 400 x 400 grid with x- and y-coordinates lying in range [0, 1].
Here, we fix the Courant factor to 0.25 and consider an ideal fluid EOS with adiabatic index
I' = 5/3. For the system evolution, we use the second order MINMOD reconstruction method,
the HLLE flux solver, and the RK4 method for time-stepping.

Figure 9 shows he two-dimensional profiles of density p, gas pressure pg,s, magnetic pres-
SUTE Pgg = b’ /2, and Lorentz factor W along with magnetic field lines, all at the final time
t = 0.4. The rotation of the cylinder causes magnetic winding. As one can see in the bottom-
right panel of figure 9, the field lines are twisted roughly by ~90° in the central region. This
twisting of field lines eventually slows down the rotation of the cylinder. There is also a decrease
N p, Pgas, and iy in the central region, observed along with the formation of an oblate shell of
higher density. Also for this test, the results are in good agreement with the ones in the literature
[3, 42, 47].

Similarly to the test discussed in section 4.2.1, we perform a quantitative check by tak-
ing a one-dimensional slice along y = 0 of the final rotor configuration at t = 0.4. Again two
cases are considered: (i) results comparison for the low and high resolution runs having 250
and 400 grid-points, respectively; (ii) results comparison for our high resolution test with the
corresponding one preformed with GRHydro [3]. Figure 10 shows this comparison made for
the two quantities p and B*. For (i), as the resolution is increased, the peaks in p as well as
BT are better captured, showing signs of convergence toward the expected solution. For (ii),
except for a minor difference in the peak values, the curves are comparable.

4.2.3. Loop advection. The third and last two-dimensional test we performed is the advection
of a magnetic field loop, which was first described in [75] and appeared later in a slightly
modified version (the one we consider) in [3, 70, 76, 77]. In this test, a magnetized circular field
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Figure 8. Cylindrical blast wave test with adaptive mesh refinement (AMR). A compar-
ison is made for the final pressure configuration at # = 4 between the low resolution test
(left panel) performed with uniform grid and spacing Ax = Ay = 0.06 and the AMR
test (right panel) including a refined inner grid (red box) with double resolution (i.e., grid-
spacing Ax = Ay = 0.03). The two results are in agreement and no spurious effects are
observed at the inner grid boundary.

loop is propagated within the surrounding non-magnetized ambient medium with a constant
velocity in a two-dimensional periodic grid. In particular, the analytical prescription for the
initial imposed magnetic field (taken from [3]) is given by

—AtoopY/ s AloopX /T3 T < Rioo
Bx, By:{ 1 Py/ 1 P/ loop (46)

0, r= Rloop

where Ajoop is the amplitude of the magnetic field, r = y/x? 4 y? is the radial coordinate,
Rioop is the loop radius, and B is set to zero. The corresponding vector potential prescription
from which equation (46) can be obtained is given by A(r) = (0,0, max[0, Ajoop(Rioop — 7)])
[76].

For the initial parameters, we set the density as p = 1.0 and pressure as pgs = 3.0
throughout the computational domain. For the loop, we assume Ajqop = 0.001 and Rjop =
0.3. The fluid 3-velocity is set to v’ = (1/12,1/24,0) for a case where v* =0 and v’ =
(1/12,1/24,1/24) for a more generic case in which the vertical component of the velocity
is non-zero, i.e., v* # 0. We run the test in both low resolution with a 128 x 128 grid and high
resolution with a 256 x 256 grid, where the x- and y-components span the range [—0.5, 0.5].
The Courant factor is 0.4 and the adiabatic index for the ideal EOS is I" = 5/3. Like the previ-
ous 2D tests, we utilize the MINMOD reconstruction method along with the HLLE flux solver
and the RK4 method for time-step evolution.

The outcome of the v* # 0 test case is shown in figure 11. Here, the top row illustrates the
initial configuration of the magnetic loop for the quantities B* and py, = b*/2 att = 0. After
one entire cycle of the loop across the domain at # = 24, the same quantities are depicted in
the middle row for low resolution run and the bottom row for high resolution run. We notice
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Figure 9. Magnetic rotor test with the following parameters shown for final evolved
time t = 0.4: density p (top-left), gas pressure pg,s (top-right), magnetic pressure pp,e
(bottom-left), and Lorentz factor W together with magnetic field lines (bottom-right).
The resolution considered is Ax = Ay = 0.0025.

a significant loss of magnetic pressure due to numerical dissipation for the low resolution test
after one evolution cycle as also reported in [3], which is however smaller for higher resolu-
tion. Our results are comparable with the ones presented in [3]. It is worth noting that the
expression for magnetic pressure used for figure 11 is pp,e = b /2 and differs from the
expression used for figure 10 of [3] by a factor of 1/2 (in [3] the authors actually plotted
).

To consider a less dissipative numerical scheme, we also perform another run in low resolu-
tion employing the PPM reconstruction and compare the results with those obtained with MIN-
MOD reconstruction. This is shown in figure 12, where the top and bottom panels represent
the outcome of the runs with MINMOD reconstruction and PPM reconstruction, respectively.
The first column depicts the initial data at + = 0, the second column shows the loop at final
time r = 24, while the third column shows the logarithmic values of the absolute differences
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Figure 10. One-dimensional cut along the x-axis for the magnetic rotor test at the final
evolution time ¢ = 0.4. A comparison between a low resolution test with 250 grid-points
(green solid line) and a high resolution test with 400 grid-points (blue dashed line) is
shown for the rest-mass density p and the x-component of the magnetic field B* in the
top and bottom left-side panels, respectively. In the top and bottom right-side panels,
the same quantities are compared for the analogous high resolution test performed with
Spritz (blue dashed line) and with GRHydro [3] (red solid line).

between the initial and final times. As expected, we find significantly lower dissipation in the
PPM case.

4.3. 3D tests

‘We now present the results of our 3D tests, mostly including a fully dynamical spacetime. The
first one is the generalization in 3D of the cylindrical explosion test and it allows us to check
the robustness of our code to handle 3D spherical shock waves (similar to those that can be
formed for example during the merger of two NSs). The other tests instead follow the evolution
of non-rotating NSs and these are the first tests in full general relativity, hence assessing the
correctness of our code also in a curved and dynamical background.

4.3.1. Spherical explosion. We present here the results of a very demanding GRMHD test
which is not usually performed by other GRMHD codes and that is successfully passed by the
Spritz code: the so-called spherical explosion.

Usually, GRMHD codes based on Cartesian coordinates are tested with the cylindrical
explosion test (refer to section 4.2.1), because the cylindrical symmetry can be well exploited in
such a geometrical setting. Spherical explosion tests, instead, have commonly been performed
with GRMHD codes working in spherical coordinates [78—80], which are not well-suited
for dealing with cylindrical symmetry. What make the spherical explosion test challenging
in Cartesian coordinates are indeed the potential limitations in regions where the shock front
is not parallel to the orientation of grid-cells’ faces.

The test settings are an extension in spherical symmetry of the cylindrical explosion test of
section 4.2.1. We consider an inner dense sphere of radius R;, = 0.8 centered in the domain’s
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Figure 11. Loop advection test with v* = 1/24. Left and right columns represent the x-
component of the magnetic field B and the magnetic pressure pmag = b* /2, respectively.
The initial data for B* and its corresponding pi,g at# = 01is depicted in the top row, while
middle and bottom rows represent these quantities after one periodic cycle of evolu-
tion, i.e., at 7 = 24, in low resolution (Ax = 1/128) and high resolution (Ax = 1/256),

respectively. Our results are in very good agreement with those reported in [3].
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Figure 12. Comparison between the MINMOD and PPM reconstruction methods for the
loop advection test with v* = 1/24. Top and bottom rows correspond to results obtained
with MINMOD and PPM respectively. First column depicts the initial configuration
of the magnetic field B* at r = 0, second column shows the final configuration of B*
after one periodic cycle at t = 24, and the third column shows the logarithmic absolute
differences in B* between the initial and final times.

origin with p;, = 1072 and Dgasin = 1.0, surrounded by a spherical shell covering the radial
range Ri, < r < Roy = 1.0 where pressure and density are characterized by an exponential
decay analogous to the prescription given in equation (45), except that here a spherical radius
is considered instead of a cylindrical one. At r > R, we have then a low-pressure uniform
fluid with poy = 107 and Poasont = 3.0 X 1073 In addition, following [78, 79], a uniform
magnetic field parallel to the z-axis is added all over the domain. The domain extension is
[—6.0,6.0] and is covered by 160 grid-cells, in all directions. Although a direct compar-
ison with spherical coordinates settings of [78, 79] can not be done in a straightforward
way, it is worth noting that this choice for the resolution corresponds to considering 80 cells
in the radial direction along the polar axis, i.e., the low-resolution version of the results pre-
sented in the aforementioned papers. We decided to perform the evolutions for a total time of
tina = 6.0, with a CFL factor of 0.25. Our runs did not crash even at this late time, although
the shock-front always reaches the boundary of the domain (that is treated with ‘none’ BCs).
We also note that in this case the imposed lower limit for the rest-mass density (defining the
atmospheric floor, see section 3.5) is pgm = 10712

In figure 13 we report on separated rows the results on the y = 0 plane of the tests per-
formed respectively with magnetic field strength B> = 0.0, 0.1 and 1.0. In particular, we show
the gas pressure and Lorentz factor W (respectively on the left and right columns) at time
t = 4. Looking the top-right panel (Lorentz factor in the non-magnetized case), we can observe
small deviations from spherical symmetry exactly aligned with the Cartesian axes, giving a
hint of the geometrical issues brought by such a demanding test. In fact, as already noted by
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Figure 13. Spherical explosion test results at time ¢ = 4.0. Top row is the result for
the non-magnetised case, middle row is the intermediate magnetization case with B* =
0.1 and bottom row is the strongly magnetized case with B> = 1.0. The left and right
columns show respectively the logarithm of the gas pressure and the Lorentz factor along
with isodensity contour lines of ||B|| = v/BB;.
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[47] for the cylindrical explosion, the biggest problems are due to the fluid velocity compo-
nents along the diagonals. However, despite the accumulation of errors along the diagonals
due to the non-perpendicularity of the fluxes, the spherical shape of the shock front seems to
be very well preserved in this case, even at the relatively low resolution considered here.

In presence of a dynamically important magnetic field oriented along the z-axis, the shock
front deviates naturally from spherical symmetry (see middle row of figure 13). Finally,
when the magnetic field strength is very high (see bottom row), the central region gets com-
pletely evacuated. Even in such an extreme case, the evolution is still performed without any
problem.

A final important note is that all the tests for the spherical explosion here presented where
performed with the minmod reconstruction and the LxF flux method, but without adopting any
additional dissipation or ad hoc fixes.

4.3.2. TOV star. Static, spherically symmetric stars in general relativity are best described
by the Tolman—Oppenheimer—Volkoff (TOV) equations [81, 82]. To further assess the stabil-
ity and accuracy of our code, the next test we considered is the evolution of a non-rotating
stable TOV configuration for both non-magnetised and magnetised cases. For the test setup,
we adopt the model described in [36] that we build using the TOVSolver thorn. In particular,
the initial TOV star configuration is generated using a polytropic EOS with adiabatic index
I' = 2.0, polytropic constant K = 100, and initial central rest-mass density p = 1.28 x 1073,
We perform the evolution of this initial configuration adopting an ideal fluid EOS with the
same value for I'. For the magnetised version, we add the magnetic field to the computed TOV
configuration using the analytical prescription of the vector potential Ay given by

Ad) = Abw2 max (17 — Peuts O)ns’ (47)

where t is the cylindrical radius, Ay is a constant, peyr = 0.04ppax determines the cutoff when
the magnetic field goes to zero inside the NS, with py.x corresponding to the initial maximum
gas pressure, and n; = 2 sets the degree of differentiability of the magnetic field strength [7].
The value of Ay, is chosen such that the maximum value of the initial magnetic field strength
is set to ~1 x 10'® G. This generates a dipole-like magnetic field confined inside the NS and
zero magnetic field outside.

The non-magnetised tests are run on a uniform grid with x-, y- and z-coordinates spanning
over the range [0, 20] with low, medium and high resolution having (32)3, (64)® and (128)° grid-
cells respectively, and considering reflection symmetry with respect to every direction, i.e., the
so-called octant symmetry. Furthermore, we perform two more tests for non-magnetised TOV
NS in high resolution (i) employing the Cowling approximation (i.e. considering a fixed space-
time) [83—85] to check the accuracy of our code by evolving just the hydrodynamical equations
on a static spacetime background, and (ii) implementing a mesh refinement composed by
two nested boxes centered at the origin and extending up to x,y,z = 20 and 40, respectively,
both having (128)* grid-cells in each direction (therefore the inner box corresponds to the
domain evolved in the unigrid run at high resolution while the outer box allows for a fur-
ther out external boundary). As the EinsteinToolkit does not provide a way to handle
reflection symmetry for staggered variables, we perform the magnetised TOV tests in low,
medium and high resolution covering the entire domain with x-, y- and z-coordinates lying in
the range [—20, 20] (considering no reflection symmetries) having the same respective grid-
spacing as that of the non-magnetised simulations. All the test cases are simulated for 10 ms
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Figure 14. Results of the non-magnetised TOV simulations. Top: time evolution of
the normalised central rest-mass density p./p.o for the different resolution simulations
inclusive of cases with Cowling approximation and AMR. Bottom: comparison of results
on the p./pco evolution with those obtained with GRHydro for low, medium, and high
resolution, showing an exact match.

using the PPM reconstruction method, the HLLE flux solver, and the RK4 method for time
stepping with a CFL factor of 0.25.

The top panel of figure 14 shows the central rest-mass density p. evolution for all three
resolutions, the high-resolution in Cowling approximation and the high-resolution with AMR,
all for the non-magnetised TOV case. It is worth noting that the AMR case (orange curve)
can reproduce perfectly the result in high-resolution (green curve), this proving once again
the correctness of AMR implementation within the Spritz code. Periodic oscillations are
initiated as a result of the truncation errors generated in the initial data, while the cause of
dissipation is primarily due to the numerical viscosity of the finite differencing (FD) scheme
[36, 86]. The results converge well after increasing the resolution, and the additional tests
for the cases with Cowling approximation and AMR are also fully satisfactory. In order to
further investigate the accuracy of our code, we compare the low, medium, and high resolution
tests’ results on the p. evolution with those obtained with GRHydro. As shown in the bottom
panel of figure 14, we observe an exact match.

The initial magnetic field configuration for the magnetised TOV test is illustrated in
figure 15. Here, the magnetic field strength is shown along with representative magnetic field
lines.

The top panel of figure 16 shows the evolution of the maximum of the rest-mass density p.
for the magnetised TOV case, which matches almost exactly the one for the non-magnetised
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Figure 15. Initial internal magnetic field configuration of the magnetised TOV. The col-
ormap indicates the strength of the magnetic field, while the contours (in white) trace a
number of representative isosurfaces of the ¢-component of the vector potential, A4. The
latter contours also correspond to poloidal magnetic field lines. The red line is an approx-
imate representation of the TOV surface, showing the iso-density contour of 5 x 103
times the assumed atmospheric floor density.

case (see the top panel of figure 14). This should be expected, since the imposed magnetic
field represents only a small perturbation compared to the gravitational binding energy of the
system. In addition, the time evolution of the maximum value of the magnetic field strength
Bax 18 depicted in the bottom panel of figure 16. While By« is highly damped for the lowest
resolution test with a decrease by a factor of roughly 14.75 in 10 ms, its value stabilizes with
increasing resolution, as observed for p.. We note again that here the damping is a numerical
viscosity effect of the FD scheme.

To conclude this section, we report in figure 17 the oscillations’ peak frequencies for the
evolution of the TOV star models that were simulated with our code, in order to validate our
models with the literature results. In particular, we show the results of the high-resolution
simulations in pure hydrodynamics with dynamical space-time both adopting uniform grid
and AMR, with the Cowling approximation (see figure 17 left-panel), as well as of the high-
resolution run with magnetic field (see figure 17 right-panel). The power spectrum of each
simulation is computed via fast Fourier transform (FFT) in order to extract the amplitudes
and frequencies of the oscillations of the central rest mass density, and then the amplitudes
are normalized to the maximum one relatively to each simulation. Figure 17 also shows the
peak frequencies of the oscillations from the literature taken from [87], that were obtained
with an independent 2D code for fixed space-time and with a perturbative code in the case of
hydrodynamics coupled to space-time evolution. An interesting point to note is that although
the results of [87] were obtained with a polytropic EOS, our ideal fluid simulations seem to
match perfectly the peak frequencies. The ideal fluid EOS produces indeed different results
from a polytropic one only in presence of shocks, which in this case appears only on the low-
density surface and therefore do not affect the oscillations of the core. Finally, it is worth
noting that the peak frequencies of our non-magnetised and magnetised models are in perfect
agreement as shown by the left panel of figure 17, proving the correctness of the magnetic field
implementation.
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Figure 16. Results of the magnetised TOV simulation. Top: time evolution of the nor-
malised central rest-mass density p./pco for the different resolution simulations; this
gives a nearly exact match with that of the non-magnetised TOV case results (cf,
figure 14). Bottom: time evolution of the maximum value of the magnetic field strength

for all three resolutions.
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Figure 17. Power spectrum of the central rest-mass density evolution, normalized to
maximum amplitude of the peaks of oscillations’” frequencies. Left-panel shows the
results from the runs without magnetic field, while right-panel shows the results where

also magnetic field is considered.

5. Conclusion and future developments

We have presented a new fully general relativistic code, named Spritz, able to evolve the
GRMHD equations in three spatial dimensions, on Cartesian coordinates, and on dynamical
backgrounds. The code is based and considerably improves over our previous WhiskyMHD
code [2, 7, 27]. The Spritz code benefits also from the publicly available GRHydro [3] and
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I11inoisGRMHD [4] codes, in particular in the handling of different EOSs and in the use of
a staggered formulation of the vector potential equations.

In this paper, we presented in detail the equations and the numerical methods imple-
mented in the code. We have adopted a conservative formulation of GRMHD equations, high-
resolution shock-capturing schemes, and we guarantee the divergence-less character of the
magnetic field by evolving the vector potential. We also presented a series of tests in spe-
cial and general relativity. We started by showing the code capability of accurately solving
1D Riemann problems by comparing the numerical results with exact solutions [71]. We also
showed, for the first time, a comparison between a non-staggered and a staggered formula-
tion of the vector potential, demonstrating that the latter prevents the formation of spurious
post-shock oscillations (see figure 1) and therefore does not require to apply dissipation to
the vector potential [7]. We then performed a series of special relativistic MHD tests in 2D,
including the cylindrical explosion, the magnetic rotor, and the loop advection tests. All tests
showed very good agreement with the exact solution (loop advection) or with other GRMHD
codes (cylindrical explosion and magnetic rotor). In the cylindrical explosion case we also
tested the code capability of dealing with mesh refinement boundary and demonstrated that
they have no effect in the correct evolution of MHD quantities. We also performed, for the first
time for a fully GRMHD code, a demanding 3D spherical explosion test with different levels
of magnetization. The code produced results in very good agreement with those produced by
other codes. We concluded our series of tests with a standard 3D evolution of a stable TOV
configuration (both with and without magnetic field) in order to show the code ability to handle
fully general relativistic regimes. In particular we checked the frequency of TOV oscillations
and compared them with results available in the literature.

While the Spritz code can handle any equation of state, in this paper we focused on
tests using simple gamma-law EOSs in order to check the robustness of our basic GRMHD
routines. In a second paper we will present also tests involving the evolution of isolated NSs
with finite temperature EOSs and neutrino emission with and without magnetic fields (Sala
et al, in preparation).

Once this second family of tests will be performed successfully, the Spritz code will be
one of the very few codes worldwide able to evolve magnetised neutron stars with finite tem-
perature EOSs and neutrino emission [88, 89]. In the multimessenger era it is indeed crucial
to take into account different aspects of the microphysics in order to be able not only to com-
pute a more accurate merger and post-merge GW signal, but also to provide reliable estimates
of the EM emission, including both kilonova and short GRBs. The former requires indeed
an accurate estimate of electron fraction and temperature in the post-merger remnant as well
as in the ejected material, while the latter needs a precise description of the magnetic field
evolution.

The version of the code used for this paper is available for download from Zenodo [32].
Once the Spritz code will have been used for a first set of binary NS merger simulations,
we will also ask for its inclusion in future releases of the Einstein toolkit [43—44].
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Appendix A. Convergence study

In order to estimate the convergence order of our code, we decided to perform the so-called
Alfvén wave test and compare the results with GRHydro (see [3] for details). This test consists
in the advection of a low-amplitude, circularly-polarized Alfvén wave across the domain. We
used the same initial conditions of [3], namely: the wave amplitude Ay = 1.0, the fluid rest-
mass density p = 1.0, the fluid pressure pg,, = 1.0, the x-component of velocity v, = 0.0,
the x-component of the magnetic field B* = 1.0. We used a I' = g ideal fluid EOS and
evolved for 1 period. The convergence s studied considering several different resolutions along
the x-axis, namely N, = 8, 16, 32, 64, 128, and 256, and using x € [—0.5,2.5]. The results for
the L2-norm of the difference between the initial and final values of the y-component of the
magnetic field, B”, are presented in figure Al. The initial wave is centered in x = 0 and the
final values of B” are compared with the initial profile. There, an overall 2nd order convergence
can be observed.
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