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ABSTRACT. For a braided fusion category V, a V-fusion category is a fusion category C equipped with a
braided monoidal functor ¥ : V — Z(C). Given a fixed V-fusion category (C, ¥) and a fixed G-graded
extension C € D as an ordinary fusion category, we characterize the enrichments F:V-Z (D) of D
which are compatible with the enrichment of C. We show that G-crossed extensions of a braided fusion
category C are G-extensions of the canonical enrichment of C over itself. As an application, we parameterize
the set of G-crossed braidings on a fixed G-graded fusion category in terms of certain subcategories of its
center, extending Nikshych’s classification of the braidings on a fusion category.

1. INTRODUCTION

In previous articles [MP19; MPP18] we defined monoidal categories enriched in a braided monoidal
category V, and showed this notion was equivalent to an oplax, strongly unital, braided monoidal functor
from V into the Drinfeld center of an ordinary monoidal category. When the functor ¥# : V — Z(C) is
strong monoidal, this coincides with the notion of a 1-morphism V — Vec in a suitable Morita 4-category
[BJS21] (see also §2.3 below), and with the module tensor categories of [HPT16b]. Recent work of Kong
and Zheng uses monoidal categories enriched in a braided category to give a unified treatment of gapped
and gapless edges for 2D topological orders [KZ18; CJKYZ19; KZ20]. Of particular importance is the case
where V is a braided fusion category and ¥ : V — Z(C) is a braided strong monoidal functor into the
Drinfeld center of another fusion category C. We call such a pair (C, %) a V-fusion category.

The extension theory for fusion categories of [ENO10] has proven to be an immensely important tool.
Particular applications include the process of gauging a global symmetry on a modular tensor category
[BBCW19; CGPW16], permutation symmetries on modular tensor categories [GJ19], rank finiteness for
(G-crossed) braided fusion categories [JMNR], and classification theorems for tensor categories generated
by an object of small dimension [Edi19; Edi20].

In this article, we define the notion of a G-graded extension of a “V-fusion category. We begin
by proving that G-gradings on a fusion category C are equivalent to liftings of a fixed fiber functor
Rep(G) — Vec = (1¢) € C to Z(C). Fixing such a G-grading C = @gEG Cy, we see that an object
(c,0.0) € Z(C) satisfies ¢ € C, if and only if (¢, 0..) lies in the Miiger centralizer Rep(G)’. Given this, we
define a G-graded “V-fusion category to be a V-fusion category (C, ¥7) such that the underlying fusion
category C = @gec C, is G-graded and F#(V) C Rep(G)" € Z(C).

Theorem 1.1. Fix a G-graded extension C C D of ordinary fusion categories, and a ‘V-fusion category
structure (C, %) on C. The following sets are in canonical bijection.

e For allv € V, extensions of the half-braiding for ¥7(v) with C to a half-braiding with all of D
coherently with respect to morphisms in V.

e LiftsZ : G — BrPic”' (C) of the monoidal 2-functor rr : G — BrPic(C) afforded by the G-extension
D (up to homotopy), where BrPicV (C) is our newly introduced V -enriched Brauer-Picard 2-groupoid
(see Definition 4.3 below).



o Lifts FZ .V - Z(C)® such that Forget, oF % = FZ where the categorical G-action p : G —

Mgr(Z(C)) comes from the G-extension C C D and Forget; : Z(C)° — Z(C) fo_rgets the
G-equivariant structure.

This theorem characterises the possible enrichments % : V — Z(D) of (C, ¥7) which are compati-
ble with the fixed G-graded extension C C D. The proof uses extension theory for fusion categories of
[ENO10] together with the results of [GNNO09].

Observe that the structures listed in Theorem 1.1 are more naturally viewed as collections of objects
in higher groupoids rather than sets, and it would be more natural to prove an equivalence of groupoids
rather than construct a bijection between these sets. However, each of these higher groupoids is in fact
0-truncated, i.e., equivalent to a 0-groupoid, which is a set. We make this rigorous by showing homotopy
fibers of certain forgetful functors are 0-truncated and equivalent to strict fibers. We discuss these notions
in detail in §3 on homotopy fibers of forgetful functors.

Thus one of our canonical bijections is typically constructed as a composite of bijections

{set 1} = {strict fiber 1} = 7y {homotopy fiber 1} = 7, {homotopy fiber 2} = {strict fiber 2} = {set 2}

where 7y denotes taking the 0-truncation. This strategy is also employed to construct the canonical
bijections asserted in Theorem 1.3, Corollary 3.25, Theorem 4.5, Theorem 4.6, Theorem 5.9, and Theorem
7.2. We would like to emphasize that these results prove equivalences of cores of various higher categories,
which happen to be 0-truncated, by providing a bijection on the 0-truncations. It would be interesting to
see if some of these canonical bijections could be lifted to functorial constructions on the cores, or even
on the higher categories.

The third description of compatible enrichments in Theorem 1.1 bears many similarities to the
classification from [BJLP19] of G-equivariant structures on a connected étale algebra in a nondegenerately
braided fusion category. Adapting the arguments and techniques from [BJLP19], we see that there are
two obstructions to lifting our V-enrichment. First, for every g € G, we must have that 7 = go 77 as
monoidal functors V — Z(C). We call the existence of such monoidal natural isomorphisms for g € G
the first obstruction to the equivariant functor lifting problem. When such monoidal natural isomorphisms
exist, we say D passes the first obstruction, or that the first obstruction vanishes. In this case, similar to
[BJLP19], we show that lifts p : G — Aut(Z(C)|F*) correspond to splittings of a certain exact sequence.

Theorem 1.2. There is a short exact sequence

(1.1) 1 —— Autg(F?) —— Autg(I o F7) > G > 1

where I : Z(C) — Z(C)C is the induction functor adjoint to the forgetful functor Forget;.! Moreover,
splittings of this exact sequence are in canonical bijection with lifts p : G — Aut(Z(C)|F ) as in the final
case of Theorem 1.1.

We call the exact sequence (1.1) the second obstruction to the equivariant functor lifting problem. We
say the second obstruction vanishes when this short exact sequence splits, and a splitting is a witness of
the vanishing of the second obstruction. In §6, we calculate the splittings of (1.1) for various examples.

In §7, we give an application of our two main theorems above to extend Nikshych’s classification
[Nik19] of braidings on a fixed fusion category, classifying G-crossed braidings on a fixed G-graded fusion
category in Theorem 7.3. The main tool is the following theorem, which extends [Bis18, Prop. 2.4] in the
unitary setting.

1Observe that while I is only oplax monoidal as an adjoint of a monoidal functor, it still makes sense to talk about the
(oplax) monoidal automorphisms Autg (I o F7).
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Theorem 1.3. Let“V be a braided fusion category, and C a G-graded extension of V' as fusion categories.
The set of extensions of the self enrichment V — Z (V) to Z(C) characterized in Theorem 1.1 is in bijective
correspondence with equivalence classes of G-crossed braidings on C.

We then describe the equivalence classes of G-crossed braidings on group theoretical G-graded fusion
categories, e.g., Vec(H, w) and Rep(H) for appropriate groups H, in terms of group theoretical data.
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2. BACKGROUND

In this article, we assume the reader is familiar with tensor categories, in particular the book [EGNO15].
We typically use their conventions. For example, the Drinfeld center of a tensor category C has objects
(c, 0ec) Where c € C and o = {04 : a® ¢ = ¢ ® a}ec is a family of half-braidings. In this convention,
the braiding on Z(C) is given by (., .),(d.70y) = Ted : ¢ ® d — d ® c. When C is a monoidal subcategory
of a monoidal category D, we use the notation Zg (D) for the relative Drinfeld center. This agrees with
the notation of [GNNO09], but is the reverse of the notation of [HP17].

2.1. Braided enriched monoidal categories. Recall from [Kel05] that given a monoidal category V', a
V-category C has objects together with hom objects C(a — b) € V forall a,b € C. For every a, b, c € C,
we have a composition morphism — o¢c — € V(C(a — b)C(b — ¢) — C(a — c)) which satisfies an
associativity axiom. For every a € C, we have an identity element j, € V(1 — C(a — a)) which
satisfies a unitality axiom.

There are also notions of V-functors and (1-graded) V-natural transformations. We refer the reader
to [Kel05] for more details. (See also the pedestrian exposition in [MP19, §2] or [MPP18, §2].)

Definition 2.1. Given a V-category C, the underlying category C" has the same objects as C, and
the hom-sets are given by CV(a — b) := V(19 — C(a — b)). We leave the reader to work out the
definitions of composition and identity morphisms for C”.

Definition 2.2 ([Lin81; MPP18]). A V-category C is called weakly tensored if every representable functor
C(a— -): CY — V admits a left adjoint.

When V is closed, we can form the self-enrichment YV of V over itself [Kel05, §1.6]. In this case,
the representable functor C(a — —) : CV — V can be promoted to a V-functor E(a —-):C—-YV.
A V-category C is called tensored if every V-representable functor C (a—>-):C— YV admits a left
V-adjoint.

We now assume V is a braided monoidal category.

Definition 2.3. A (strict) V-monoidal category is a V-category C equipped with an associative monoid
structure on objects, denoted ab for a,b € C, whose unit object is denoted by 1¢, together with a tensor

product morphism — ®¢ — € V(C(a — ¢)C(b — d) — C(ab — cd)) for all a, b, c,d € C satistying strict
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associativity and unitality axioms. The tensor product and composition morphisms must further satisfy
the braided interchange relation

(=®c-)(-®c~)

C(a—b)C(d - e)C(b - c)C(e = f) —————— C(ad — be)C(be — cf)

Jree-

id Bc(d—se).c(b—c) 1d C(ad — cf)

T
C(a—>b)C(b— c)C(d > e)C(e— f) M} Cla—c)C(d—f)

There are also notions of V-monoidal functors and (14/-graded) V-monoidal natural transformations.
We refer the reader to [MP19, §2] or [MPP18, §6.1] for more details.

Definition 2.4. A V-monoidal category C is called rigid if its underlying monoidal category is rigid.

Remark 2.5. When a V-monoidal category C is rigid, C is weakly tensored if and only if C(1¢ — —) :
C"Y — <V admits a left adjoint [MPP18, Lem. 6.8]. When in addition V is rigid (which implies V is

closed), C is tensored if and only if the V-functor C (1¢ — —) admits a left V-adjoint [MPP18, Cor. 7.3].

In [MP19], we proved a classification theorem for (weakly) tensored rigid V-monoidal categories in
terms of V-module tensor categories [HPT16a]. The tensored case was treated in [MPP18]. We now
restrict our focus to the tensored case for ease of exposition, as all our examples in this article are tensored.

Definition 2.6. A V-module tensor category consists of a pair (7, ¥“) with 7 a monoidal category and
F7:V — Z(T) abraided strongly monoidal functor. We call a V-module tensor category:

o rigid if 7 is rigid, and

e tensored if the strong monoidal functor # := Forget, of“ admits a right adjoint.
Based on [HPT16b, Def. 3.2], a 1-morphism (77, 7*) — (72, /) of V-module tensor categories consists

of a pair (G, y) where G : 77 — 7 is a strong monoidal functor and y : , = G o ¥ is an action coherence
monoidal natural isomorphism which satisfies the following compatibility with half-braidings:

G(H) ® Fo(v) 25 G(t) ® G(Fi(0)) — G(t & Fi(v))
(2.1) iﬂcm,ﬁ(v) lG(ot,;cz(m) .

F2(0) ® G(t) 225 G(F7 () ® G(1) ——3 G(Fi(v) ®1)

Based on [HPT16b, Def. 3.3], a 2-morphism « : (G,y) = (H, n) between 1-morphisms (7, °) — (72, F,°)
is a monoidal natural transformation x : G = H such that for all v € YV, the following diagram commutes:

F2(0) r » G(F1(0))
2 % A)
H(F(0)).

We call an invertible 1-morphism between V-module tensor categories an equivalence.

We have the following classification theorem, which has recently been extended to a 2-equivalence of

2-categories (pseudofunctor equivalence of bicategories) in [Del19].
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Theorem 2.7 ([MP19; MPP18]). Let V be a braided monoidal category. There is a bijective correspondence
between equivalence classes

Tensored rigid V-monoidal | _ | Tensored rigid “V-module tensor
categories C ~ | categories (7, F7%) '

In light of Theorem 2.7 together with the results of [KZ20; KZ18] in the fusion setting, we make the
following definition.

Definition 2.8. A V-fusion category, for V' a braided fusion category, consists of a fusion category C
together with a braided strong monoidal functor 7% : V — Z(C). Observe as ¥ is a functor between
fusion categories, it automatically admits a left adjoint, and hence V-fusion categories are tensored.

We focus on the fusion setting in order to have access to the results of [ENO10] and [GNN09].

2.2. Extension theory for fusion categories. We rapidly review the results of [ENO10] and [GNN09]
on extension theory for fusion categories.

In [ENO10], Etingof-Nikshych-Ostrik give a recipe for constructing G-extensions of a fixed fusion
category C using cohomological obstruction theory.

Definition 2.9. Recall that a categorical n-group is an (n + 1)-category with one 0-morphism such that
every k-morphism is invertible up to a (k+1)-isomorphism for k < n, and all (n + 1)-morphisms are
invertible. Typically, we indicate the categorical group number by adding that number of underlines
below. We denote the k < n truncation obtained by inductively identifying higher isomorphism classes by
simply removing underlines.

Example 2.10. Given a group G, we view it as a category with one object where every morphism is
invertible. We get a categorical 1-group G by adding only identity 2-morphisms, and we get a categorical
2-group G by only adding identity 2-morphisms to G.

Example 2.11. Given a fixed fusion category C, the 2-groupoid Ext(G, C) of G-extensions of C is the
categorical 2-group whose unique object is C, whose 1-morphisms are G-graded fusion categories
D=6 e D, together with a fixed monoidal equivalence Ip : C — D,, whose 2-morphisms are G-
graded monoidal equivalences F : ) — & together with a monoidal natural isomorphism & : Is = Folp,
and whose 2-morphisms (F;, 1) = (F,, @) are monoidal natural equivalences y : F; = F, such that

c—2 o9 c—2 v op
A, Z,

F, = F|=|F,
Is Is

&. &

Remark 2.12. The 2-groupoid Ext(G, C) defined in the above example is equivalent to the one defined in
[DN20, Def. 8.2] where each Iy : C — D, is id¢ and each « : id¢ = F|¢ o id¢ is the identity monoidal
natural isomorphism.

Example 2.13. Given a fixed fusion category C, its Brauer-Picard groupoid BrPic(C) is the categorical

2-group whose unique 0-morphism is C, whose 1-morphisms are invertible C — C bimodule categories,
whose 2-morphisms are C — C bimodule equivalences, and whose 3-morphisms are bimodule functor

natural isomorphisms.
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Definition 2.14. In Example 2.13 above, composition of C — C bimodule categories is the relative Deligne
tensor product. In more detail, suppose D is a fusion category, My is a right D-module category, and
pN is a left D-module category. The relative tensor product is a finitely semisimple category M Rp N
together with a 9-balanced functor &y : M RN — M Rp N satisfying the universal property that for
every abelian category # and any P-balanced functor F : M ® N — P, there exists a linear functor
F:Mrp N — P, unique up to unique natural isomorphism, such that the following diagram weakly
commutes:

MrN

i&@\

Mep N —5 p

When M is a left C-module category and N is a right &-module category, then M ®p N inherits the
structure of a C — & bimodule category. We refer the reader to [ENO10, §3] for more details.

The following theorem classifies G-extensions via monoidal 2-functors G — BrPic(C). For the
definition of a monoidal 2-functor, see [DN20, Def. 2.8].

Theorem 2.15 (([ENO10] and [DN20, Thm. 8.5]). Let C be a fusion category. There is an equivalence of
2-groupoids Ext(G, C) = Hom(G — BrPic(C)).

The main tool of [ENO10] gives a cohomological prescription for constructing G-graded extensions
by lifting a group homomorphism, or symmetry action, p : G — BrPic(C) to G — BrPic(C). We can

lift p to a categorical action p : G — BrPic(C) if and only if the obstruction o3(p) € H*(G,Inv(Z(C)))

vanishes. In this case, the set of equivalence classes of liftings form a torsor over H?(G,Inv(Z(C))). Given
p + G — BrPic(C), there is a lift p : G — BrPic(C) if and only if the obstruction 04(p) € H*(G,C*)

vanishes. In this case, the equivalence classes of liftings form a torsor over H>(G, C*).

We now recall the main results of [GNN09]. Suppose we have a G-extension D = P g9e6 Dy of
C. (Note that the convention C C D is opposite to the convention of [GNN09] which uses D C C.)
The relative center Z¢(9) is canonically a G-crossed braided extension [EGNO15, §8.24] of Z(C) whose
G-equivariantization [EGNO15, §4.15] is equivalent to Z(9). Moreover, the canonical equivalence
Z(D) = Zo(D)C intertwines both forgetful functors to Z¢ (D), and maps Rep(G)’ ¢ Z(D) to Z(C)®
up to a canonical monoidal natural isomorphism.

Z(C)° < > Rep(G)’
(2.3) Zo(D)C < = > Z(D)
Form ~ Aetc
Zc(D)

2.3. The 4-category of braided tensor categories. By [Haul7; JS17], there is a 4-category of braided
tensor categories BrTens, and the sub-4-category BrdFus of braided fusion categories is 4-dualizable by
[BJS21, Thm. 1.19].

Following [B]JS21], we now describe the n-morphisms and the composition operations of the 4-category

BrdFus.
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(2.4)

(2.5)

(2.6)

e 0-morphisms are braided fusion categories.
e 1-morphisms BrdFus; (A — $B) are multifusion categories C together with a braided monoidal

functor F¢ : ARB™ — Z(C) called a central structure. Sometimes we denote C € BrdFus;(A —
B) by 4Cs.

The composite of #,Ca, and #,D 4, is defined as follows. First, we look at the Deligne tensor
product CR D, which comes equipped with a braided monoidal functor F : A'®A; — Z(CrD).
We define C ® 4, D to be (C ® D)y, the category of left L-modules in C ® D, where L € A} ®A;
is the commutative algebra obtained by taking I(14,), where I is the left adjoint to the canonical
tensor product functor ® : A ® A, — Ay, given by ®(a ® b) := a ® b and using the braiding
for the tensorator. This algebra is commutative since ® is a central functor [DMNO13, Lemma 3.5].
If A, is nondegenerate, this algebra is identified with the canonical Lagrangian algebra under the
standard equivalence A ® A, = Z(Aj). To see that C R, D has the structure of a 1-morphism
in BrdFus;(A; — As), we observe that Z((C R D)) = Z(C R Z))ILOC, the L-local modules in
Z(CrD) = Z(C)rZ (D) by [DMNO13, Thm. 3.20]. Since A, centralizes Farer (A;™)RZ(D) and
ALY centralizes Z(C)RF7,(Az) in Z(C)RZ(D), we get a braided monoidal functor A A —
ZCw Z))ILOC =Z((CrD)p).

An explicit example calculation of the composite Ad Es R, Ad E; appears in [Row19].
2-morphisms BrdFus;(C, D) are finitely semisimple C — 9 bimdodule categories M together
with natural isomorphisms 1, : m < Fp(a) — Fo(a)>mfora e AR B™ and m € M called a
A R B'V-centered structure such that the following diagrams commute (here we suppress names
of arrows):

Fe(a)» (c>m) —— (c>m) <Fp(a)

/

(Fe(a) ® c)>m c> (m<Fp(a))

T

(c®Fc(a)) > m —— c» (Fe(a)»m)

\/

Fe(a)» (m<d) —— (m<d) <Fp(a)

/

(Fc(a)>m) <d m < (d ® Fp(a))

/

(m<Fp(a)) <d —— m<(Fp(a) ®d)

Fec(a®b)ypm ———> m<Fp(a®b) ———> m<(Fp(a) ® Fp(b))

| l

(Fc(a) ® Fe(b)) > m (m < Fp(a)) <Fp(b)

! l

Fe(a) > (Fe(b) > m) —— Fe(a)» (m <Fp(b)) —— (Fc(a) > m) <Fp(b)
7



The definitions of horizontal and vertical composition of 2-morphisms are given in [BJS21, p. 41-
42]. For our purposes, we need to know that vertical composition is the relative Deligne tensor
product c M Ry Ng discussed earlier in Definition 2.14. As described in [BJS21, Def. Prop. 3.13],
when C, D, & are equipped with central structures Fe, Fp, Fg respectively and M, N are equipped
with A ® B -centered structures n’V, pM satisfying (2.4), (2.5), (2.6), the C — & bimodule category
MRy N is equipped with the A ® B™V-centered structure

(2.7) mRyp (n < Fg(a)) = mRy (Fp(a) > n) = (m < Fp(a)) Rp n = (Fo(a) > m) Ry n.

e Let M and NV be two 2-morphisms with source C and target 9. Then a 3-morphism is a bimodule
functor G : M — N such that the following diagram commutes:

G(m<Fp(a)) 28 G(Fe(a) » m)

(2.8) l l

G(m) < Fp(a) =% Fe(a) > G(m)
e 4 morphisms are bimodule natural transormations with no extra compatibility required!

Remark 2.16. Observe that we may consider a fusion category C € BrdFus;(Vec — Vec) where we
suppress the obvious braided central functor ¥“ : Vec — Z(C). Then BrPic(C) is exactly the core

(consisting of only the invertible morphisms) of the endomorphism 3-category End123(C ) which has
e asingle 0-morphism C
e 1-morphisms BrdFus;(C — C)
e 2-morphisms the 3-morphisms in BrdFus, and
e 3-morphisms the 4-morphisms in BrdFus.

Remark 2.17. Observe that given a V' € BrdFus, a 1-morphism (C, ¥7) € BrdFus; (V — Vec) is exactly
a V-fusion category.

Recall that non-degenerate braided fusion categories A, B are said to be Witt equivalent [DMNO13,
Def. 5.1 and Rem. 5.2] if there exist multifusion categories C, D such that AR Z(C) = B r Z(D). We
conclude this section with the following observation.

Theorem 2.18. Suppose A, B are non-degenerate braided fusion categories and C € BrdFus;(A — B).
The following statements are equivalent.

(1) C is an invertible 1-morphism in BrdFus.
(2) Fo : AR B™ — Z(QC) is a braided equivalence.

Before proving the theorem, we observe that the existence of C as in (2) above is equivalent to the
Witt equivalence of A and 8 by [DMNO13, Rem. 5.2 and Cor. 5.8].

Proof. Suppose C is an invertible 1-morphism in BrdFus(A — B). First, since A and B™" are non-
degenerate, every braided tensor functor out of A ® B is fully faithful. Hence Z(C) = A R D; & B
for some non-degenerate braided fusion category D;. Let C™! € BrdFus(8 — A) be an inverse for C
such that A = (C ® C™!); as 1-morphisms in BrdFus, (A — A), where L € 8™ & B is the canonical
Lagrangian algebra. By a similar argument as before, Z(C™') = 8 ® D, ® A™ for some non-degenerate
braided fusion category 9,. Observe now that

ZCrCH=2ZCO)RZCH2ARD, B R B R D, & A™.
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This means that by

Z(CrCHl = Ar D, ® Dy ®A™.
But since Z(C = C_l)lL"C =Z(CrCY)) = Z(A) = ARA™ as A is non-degenerate, we must have
D, and D, are trivial, and thus Z(C) = A ® B™.

Conversely, if Z(C) = A ® B, then observe that Z(C™) = B 1 A", where C™ is the monoidal
opposite of C. For the canonical Lagrangian algebra L € 8™ ® B,

(CmeP)L ~ (ﬂ IZBreVIZIBIZIﬂreV)L ~ ﬂxﬂrev ~ Z(ﬂ)

and so (C ® C™P);, = A as 1-morphisms in BrdFus; (A — A). Similarly, we have that (C™ = C); = B
as 1-morphisms in BrdFus; (8 — 8B), where L’ is the canonical Lagrangian algebra in A™ ® A. m]

3. TRUNCATION OF HOMOTOPY FIBERS AND CLASSIFICATION OF G-GRADINGS ON A FUSION CATEGORY

In this article, we will often discuss various notions which are somewhat evil from a categorical
perspective, such as classifying lifts of a fixed functor or G-gradings on a fixed fusion category. In this
section, we discuss how to make these notion not evil by using the notion of truncation of a homotopy
fiber. In the cases we care most about, we can show that the homotopy fiber of a particular (2-)functor
truncates to a set, and this set is in canonical bijection with a strict ‘set theoretic’ fiber.

As an example, in §3.3 below, we classify the set of G-gradings on a fixed fusion category 7 in terms
of fully faithful Rep(G)-fibered enrichments.

3.1. Homotopy fibers of forgetful functors. In this section, we make sense of how various structures
on a fixed monoidal category, like G-gradings for a fixed group G, or braidings, form a set, and not a
category.

Grothendieck’s Homotopy Hypothesis posits that homotopy n-types are equivalent to n-groupoids for
all n € NU {0} via the fundamental groupoid construction. In this section, we use the term n-groupoid
as a synonym for homotopy n-type, and weak n-functor for a homotopy class of continuous maps.

Fact 3.1. For weak n-categories, the homotopy hypothesis is known to hold for n < 3 [Lac11] to various
degrees. We will only use it for n < 2 for this article. In more detail,

e The strict 2-category of groupoids, functors, and natural transformations is equivalent to the
2-category of homotopy 1-types, continuous maps, and homotopy classes of homotopies.

e By [MS93], the homotopy category of strict 2-groupoids and strict 2-functors localized at the
strict 2-equivalences is equivalent to the 1-category of homotopy 2-types and homotopy classes of
continuous maps.

e By [Lacl1], the homotopy category of Gray-groupoids and Gray-functors localized at the Gray-
equivalences is equivalent to the 1-category of homotopy 3-types and homotopy classes of contin-
uous maps.

Definition 3.2. Recall that the path space and homotopy fiber construction produces a fibration from
any continuous map of spaces. We now explain this in the language of n-groupoids.

Suppose C, D are n-groupoids and U : C — D is an n-functor. The path space of U, denoted Path(U),
has objects triples (c,d, ) withc € C,d € D and y € C(U(c) — d) an isomorphism, (c1,d1, V1) —
(c2, da, ) are triples (A, B, @) with A € C(¢; — ¢3), B€ D(d; — dy),and @ € D (Y, o U(A) = Bo i)
is a 2-isomorphism, and so forth, where k-morphisms consist of triples of a k-morphism in C, a k-
morphism in D, and a (k + 1)-isomorphism in 9 compatible with lower structure. Here, we interpret an
(n + 1)-isomorphism as an equality.

The homotopy fiber of U at d € D, denoted hoFiby(U), has objects pairs (c, 1) with ¢ € C and
¥ € D(U(c) — d) anisomorphism, 1-morphisms (cy, /1) — (c2, ) are pairs (A, o) with A € C(c; — ¢3)
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and a : D (Y1 = 1y, o U(A)) is a 2-isomorphism, and so forth, where k-morphisms consist of pairs of a
k-morphism in C and a (k + 1)-isomorphism in D compatible with lower structure. Here, we interpret an
(n + 1)-isomorphism as an equality.

Definition 3.3. Suppose C, D are n-groupoidsand U : C — D is a weak n-functor. We call U k-truncated
or (k + 1)-monic [BS10, §5.5] if
e k = n: no condition
e k = n — 1: faithful on n-morphisms
o k = n — 2: fully faithful on n-morphisms
e —2 < k < n — 2: fully faithful on n-morphisms and essentially surjective on j-morphisms for all
k+2 < j<n-1.(Thus a (—2)-truncated n-functor is an equivalence.)

Under the homotopy hypothesis, U being n-truncated corresponds to U, : 7.(C) — m.(D) being injective
on 741 (C) and an isomorphism on 7;(C) for all j > k + 2 for all basepoints.

Proposition 3.4. Suppose C, D are n-groupoids, andU : C — D is a weak n-functor. For every —2 < k < n,
U is k-truncated if and only if at each object d € D, the homotopy fiber hoFiby(U) is k-truncated as an
n-groupoid, i.e., a k-groupoid.*

Proof. Under the homotopy hypothesis, given a d € D, we have a fibration hoFiby(U) — Path(U) — D
which yields a long exact sequence in homotopy groups. Recall hoFiby(U) is a k-groupoid if and only if
7j(hoFiby(U)) = 0 for all j > k. Since Path(U) is homotopy equivalent to C, this happens if and only if
Us : m.(C) — m.(D) gives an injection my41(C) — mi41 (D) and an isomorphism on 7;(C) = 7;(D) for
all j > k + 2. The result now follows by quantifying over all objects d € D. m]

Remark 3.5. In this article, we will only every use the above proposition on n-functors between n-groupoids
where n < 2, where the homotopy hypothesis is known to hold. Furthermore, it is straightforward to
give an explicit proof of Proposition 3.4 for 2-groupoids using the formalism of bicategories which does
not invoke the homotopy hypothesis. We leave these details to the interested reader.

3.2. Strictification of fibers. We now discuss for how to strictify the homotopy fiber of a 0-truncated
functor U : C — D of n-groupoids for n = 1, 2.

3.2.1. n =1. Suppose C, D are groupoids and U : C — D is a 0-truncated functor, i.e., a faithful functor.
In the previous section, we saw that U : C — D gives a fibration Path(U) — D. In order to strictify the
homotopy fiber, it is necessary that U : C — 9D is a fibration in the canonical model structure on Cat, i.e.,
an isofibration, meaning every isomorphism in O can be lifted to C. Since U was assumed to be faithful,
every isomorphism can be lifted uniquely subject to a fixed source and target.

However, an isofibration is not quite strong enough to strictify the homotopy fiber, as we may not
have uniqueness of the source of the lifted isomorphism in C. Hence we requre that

e U is a discrete fibration, i.e., for every ¢ € C and every morphism g € D(d — U(c)), there is a
unique b € C and a unique morphism f € C(b — ¢) such that U(b) =d and U(f) = g.

Definition 3.6. We define the strict fiber stFib;(U) of U at d is the set of objects ¢ € C such that U(c) = d.

Proposition 3.7. Suppose U : C — D is a 0-truncated functor of 1-groupoids which is a discrete fibration.
Foreveryd € D, there is a canonical bijection stFiby(U) = ry(hoFiby(U))), the O-truncation of the homotopy
fiber of U atd.

2Here, we use ‘negative categorical thinking’ [BS10] when k = —2, —1,0. That is, a 0-groupoid is a set, a (—1)-groupoid is
either a point or the empty set, and a (—2)-groupoid is a point.
10



Proof. Suppose d € D. If d is not in the essential image of U, then both stFib;(U) and hoFiby(U) are
empty.

Now assume d is in the essential image of U so that thereisac € Candag e D(d — U(c)). Since
U is a discrete fibration, there is a unique b € C and a unique f € C(b — c¢) such that U(f) = g. In
particular, U(b) = d.

Denote the 0-truncation of hoFiby(U) by 7o(hoFibg(U)). Recall that elements of 7y(hoFiby(U)) are
equivalence classes [(c, g)] where (c1,g1) ~ (c2, g2) if there exists an isomorphism f : ¢; — ¢, such that
g2 o U(f) = g1. Observe that if (c,g) € hoFiby and b € C such that U(b) = d and f : b — ¢ such that
U(f) = g, then [(b,id,)] = [(c,9)].

Define ® : 7y(hoFiby(U)) — stFib(U) by [(c,g)] +— b where U(b) = d and U(f) = g. Itis
straightforward to verify that this map is well-defined. Going the other way, define ¥ : stFiby;(U) —
7o(hoFibg(U)) by b — [(b,idy)]. It is straightforward to show these maps are mutually inverse. O

Example 3.8. Let C be a fusion category and Z(C) its Drinfeld center. Consider the forgetful tensor
functor Forget, : Z(C) — C which is faithful. Its restriction to cores Forget, : core(Z(C)) — core(C)
is also a discrete fibration. Given a ¢ € C, the 0-truncation of the homotopy fiber 7y (hoFib.(Forget,)) is
in canonical bijection with the strict fiber stFib.(Forget,), which we view as the set of half-braidings on c.

Example 3.9. Suppose C C D is a (fully faithful) inclusion of fusion categories. The forgetful functor
Forget, : Zc(D) — O from the relative Drinfeld center to D is fully faithful. Moreover, its restriction
to cores Forget, : core(Z¢ (D)) — core(D) is also a discrete fibration. Given a d € D, the 0-truncation
of the homotopy fiber 7y(hoFiby(Forget,)) is in canonical bijection with the strict fiber stFib,(Forget,),
which we view as the set of relative half-braidings on d with C.

Example 3.10. Let C be a fusion category and (p, p*, p?) : G — Aut_(C) a categorical G-action on C by
tensor automorphisms. We write p;, pé for the unitor and tensorator of p,. Recall from [EGNO15, §2.7]
that the equivariantization C° has
e objects are ¢ € C together with a family of isomorphisms A, € C(g(c) — c) for g € G such that
the following diagram commutes:

pa(pn(@) 2228 o)

l(pj,h)c l}tg
A

pan(c) ——— c.
e morphisms are f € C((c,A4) — (d,x,)) such that the following diagram commutes for all g € G:

pa(c) 2Ly (@)

b,k
c % c.

The equivariantization tensor product given by

(e.A) ® (d,Kg) = (c®d, (A ®Ky) 0 (pD)T})

and unit object (1¢,id;,).
We have an obvious faithful forgetful tensor functor Forget; : C° — C which forgets the G-

equivariant structure. Its restriction to cores core(C®) — core(C) is also a discrete fibration. Given
11



¢ € C, the 0-truncation of the homotopy fiber 7y (hoFib,(Forget)) is in canonical bijection with the strict
fiber stFib,(Forget;), which we view as the set of G-equivariant structures on c.

Example 3.11 (Set of lifts of a (monoidal) functor). Suppose A, B, C are (monoidal) categories and F : A —
C and G : 8 — C are (monoidal) functors. The category of lifts of F is the homotopy fiber hoFibr(G o —)
where G o — : core(Hom(A — B)) — core(Hom(A — C)). In more detail,

e objects are pairs (F, «) with F:A—> Ba (monoidal) functorand a : F = G o Fa (monoidal)
equivalence, and _ _ B
e 1-morphisms (Fy, @) — (F», az) are (monoidal) natural isomorphisms 7 : F; = F, such that

B
A _
. _
N
aAa—=~F s A—2F58 s

When G is 0-truncated, G o — is 0-truncated. If moreover the restriction G : core(8) — core(C) is a
discrete fibration, then so is the restriction G o — : core(Hom(A — B)) — core(Hom(A — C)). We
leave the verification of this enjoyable exercise to the reader. In this case, the 0-truncation of the homotopy
fiber 7 (hoFibp(G o —) is in canonical bijection with the strict fiber stFibp(G o —), which we view as the
set of lifts of F. These are exactly the functors F : A — B such that G o F = F on the nose.

3.2.2. n = 2. Suppose C, D are 2-groupoids and U : C — D is a 0-truncated 2-functor, i.e., fully faithful
on 2-morphisms. Again, in order to strictify the homotopy fiber, it is necessary, but not sufficient, that U
is a fibration in the canonical model structure on bicategories [Lac04, §2].

Definition 3.12. By a slight abuse of notation, we call such a 0-truncated 2-functor U : C — D a discrete
fibration if for each ¢ € C and 1-morphism g € D(d — U(c)), there is a unique b € C and a unique
1-morphism f € C(b — ¢) such that U(b) =d and U(f) =

Definition 3.13. We define the strict fiber stFiby(U) of U at d is the set of objects ¢ € C such that
U(c)=d

The proof of the following proposition is similar to Proposition 3.7 and omitted.

Proposition 3.14. Suppose U : C — D is a 0-truncated 2-functor of small 2-groupoids which is a discrete
fibration. For every d € D, there is a canonical bijection stFiby(U) = 7y(hoFiby(U)).

Example 3.15 (Set of braidings). The strict 2-category BrdMonCat of braided monoidal categories, braided
monoidal functors, and monoidal natural transformations admits a strict forgetful 2-functor Forget, . to
the strict 2-category MonCat of monoidal categories, monoidal functors, and monoidal natural transfor-
mations which is fully faithful on 2-morphisms, since every monoidal natural transformation of braided
monoidal functors is compatible with the braidings. Moreover, its restriction to cores is a discrete fibration;
indeed, if 8 is a braided monoidal category, C is a monoidal category, and F : C — Forget, (8) is any
monoidal equivalence, there is a unique way to transport the braiding on 8 to a braiding on C such
that F is a braided equivalence. Fixing a monoidal category C € core(MonCat), the homotopy fiber
hoFibc (Forget, ) is 0-truncated, i.e., a set. Moreover, its 0-truncation 7, (hoFib¢ (Forget;)) is in canonical

bijection with the strict fiber stFibc (Forget, ), which we view as the set of braidings on C.
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Example 3.16 (Set of G-gradings). The strict 2-category GGrdMonCat of G-graded monoidal categories,
G-graded monoidal functors, and natural transformations admits a strict forgetful 2-functor Forget,
to the strict 2-category MonCat which is fully faithful on 2-morphisms, since every monoidal natural
transformation of G-graded monoidal functors is compatible with the gradings. Moreover, its restriction to
cores Forget; : core(GGrdMonCat) — core(MonCat) is a discrete fibration. Fixing a monoidal category
C, the 0-truncation of the homotopy fiber 7y (hoFib¢c (Forget;)) is in canonical bijection with the strict
fiber stFibc (Forget,;). We think of this set as the set of G-gradings on C.

Example 3.17 (Equivalence classes of G-crossed braidings). The strict 2-category GCrsBrd of G-crossed
braided fusion categories, G-crossed braided monoidal functors, and natural transformations admits a
strict forgetful 2-functor Forgety to the strict 2-groupoid GGrdFusCat of G-graded fusion categories,
G-graded monoidal functors, and natural transformations which is fully faithful on 2-morphisms.

Unfortunately, the restriction to cores Forget E core(GCrsBrd) — core(GGrdFusCat) is not a discrete
fibration, as given a G-crossed braided fusion category C and a G-graded equivalence to another G-graded
fusion category D, there is not a unique G-crossed braiding on D such that C, D are G-crossed braided
equivalent. This discrepancy arises as there is not a unique G-action on 9 compatible with the equivalence
C = D, but an equivalence class.

Suppose D = (P, Dy is a G-graded fusion category and (p', f'), (p*, f°) are two G-crossed braid-

ings on D. We say (p!, 1), (p? B?) are equivalent if there is an equivalence 1 : p! = p? of monoidal
functors G — Aut®(D) such that for all x; € Dy and y € D,

(my ®ids,) 0 By y = Brpy : % ® Y — py(y) ® xq.

Observe that there is at most one equivalence between any two G-crossed braidings as the monoidal
natural isomorphism 7 is completely determined by !, 42 if it exists. (Indeed, ﬁ,lcg,y is invertible, and
— ® id, is injective on hom spaces for every fusion category using [HPT16a, Lem. A.5].)

Thus, fixing a G-graded fusion category D, the 0-truncation of the homotopy fiber 7y (hoFiby (Forgety))
of Forgety : core(GCrsBrd) — core(GGrdFusCat) is in canonical bijection with the set of equivalence
classes G-crossed braidings on D.

Example 3.18 (Set of lifts of a (monoidal) 2-functor). Given two (monoidal) 2-categories A, B, there is a
2-category Hom(A — B) whose objects are (monoidal) 2-functors, 1-morphisms are (monoidal) natural
transformations, and 2-morphisms are (monoidal) modifications. Now suppose G : 8 — C is a (monoidal)
2-functor between (monoidal) 2-categories and A is another (monoidal) 2-category. We have a 2-functor
G o — : Hom(A — B) —» Hom(A — C). As in Example 3.11, if G is 0-truncated, then so is G o —.
Moreover, if G is a discrete fibration, then so is G o —. Fixing F € Hom(A — C), the 0-truncation of the
homotopy fiber 7y (hoFibr(G o —)) is in canonical bijection with the strict fiber stFibr(G o —) of (monoidal)
2-functors F : A — B such that G o F = F on the nose. We view this set as the set of lifts of F.

3.3. G-gradings on fusion categories. Fix a finite group G. In this section, we explain how G-gradings
on a fixed fusion category 7 may be characterized in terms of braided-enriched structure. In this section,
our fusion categories are always over an algebraically closed field k of characteristic zero. (Although it is
not necessary, we would even be happy to assume further thatk = C.)

Definition 3.19. Suppose G is a group and 7 = P gec Tgisa faithfully G-graded fusion category. In this

case, by [GNN09, p. 12] there is a canonical fully faithful strong monoidal functor 7 = 7”7 : Rep(G) —
Z(7T) defined as follows. For a representation (K, ) € Rep(G), we consider the object 7, :=K® 15 € 7.

Notice that both 7, ® t and t ® 7, are canonically isomorphic to K ® t. Thus we can endow 7, with the
13



half-braiding
Gr, =my®id : t@; =K@t —K®t=1,®t ted,
For a morphism f : (K, r) — (L, p), we get a morphism Z7 := f ® id : Z; — I,,. It is straightforward to
verify:
e [ is a fully faithful strong monoidal functor (using the obvious tensorator/strength) since 7~ is
tensored over Vec,

o the forgetful functor Forget, : Z(7") — 7 restricted to this copy of Rep(G) C Z(7") is canonically
monoidally naturally isomorphic to the canonical symmetric monoidal fiber functor

Forgetg,, : Rep(G) — Vec = (17,idy,) C 7.

The following important lemma is essentially in [GNNO09]. Recall that given a braided fusion category
(V, B) and a symmetric subcategory S C V, the Miiger centralizer S’ of S € V is the full subcategory
of V whose objects are transparent to S, i.e., Bys 0 s = idsg, for all s € S.

Lemma 3.20. An object (t,0.;) € Rep(G)" € Z(7) if and only if Forget,(t,04;) =t € 7.

Proof. 1t is clear that ¢t € 7, implies (¢, 0e;) € Rep(G)’. Suppose (t, 0s;) € Rep(G)'. If t = @g ty, then for
all (H, ) € Rep(G),

idI,,@t = gt,[,, O OForget, (I;),t = gt,f,, °O0P 1t = @(”g ® idtg)-
g9

Since 7 is fusion, the above holds if and only if t;, = 0 for all g # e. O

Definition 3.21. Suppose (V,F : V — Vec) is a braided fusion category equipped with a fixed faithful
strong monoidal fiber functor. Given a fixed fusion category 7, a V-fibered enrichment of 7 is a braided
strong monoidal functor 7% : V — Z(7) together with a monoidal natural isomorphism

v 2 27
lF (1/7 J/Forgetz a:F = Forget, oF4 = iz oF
Vec Cl% T

where iz : Vec = (157) < 7 is the inclusion V —» V ® 14
Similar to V-module tensor categories as in Definition 2.6, V-fibered enrichments form a 2-category
VFibFusCat. A 1-morphism (71, 7, a') — (72, %/, &*) is a 1-morphism (H, ) : (71, F7) — (T2, F) of

the underlying V-module tensor categories satisfying the extra compatibility with !, a?:

7_—22
m
7:Z 7:Z
V —— Z(T) Z(T) V ——= Z(%)
(3.1) \L / \LForgetZ ForgetZ = \L / iForgetZ
Vec < > T2 Vec 2 ;

"

iz
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Above, note that the unitality constraint H! : 17; — G(17;) determines a monoidal natural isomorphism
still denoted H' : iz; = H o ig; of monoidal functors Vec — 7;. Moreover, observe that  is completely
determined, as !, %, H! are all isomorphisms; indeed, (3.1) above is equivalent to which is equivalent to

(3.2) Mo = H(ay) o (H')zly 0 ()7 VoeV.

A 2-morphism « : (Hy,n') = (Ha, %) is an arbitrary monoidal natural transformation k : H; = H,.
Observe that the the extra compatibility with the fiber functor F amounts to unitality of the monoidal
natural isomorphism k, and the extra action coherence (2.2) with 5!, ? is automatically satisfied. Indeed,
setting 7; := Forget, of.” for i = 1,2, (2.2) automatically commutes by naturality and unitality of :

My

= by (3.2)

a?)™! (H)p¢ 1(a}
F2(0) ~y F(o) ® 1y, —8 H,(F(0) ® 177) =4 H, (% (0))

| .. | o
(@) (Hp)5(

Fa(0) L F0) © 15, —8 Hy(F(0) ® 177) 22 (i (0))
= by (3.2)

s

The following lemma allows us to work with an equivalent strict V-fibered enrichement.

Lemma 3.22. The 2-category VFibFusCat is equivalent to the full 2-subcategory VFibFusCat®* with objects
(7,F7,id), i.e, Forget, of “ = ig- o F on the nose.

Proof. Suppose (7, 7%, a) € VFibFusCat. Define (7, ¥'%,id) € VFibFusCat by ¥ (v) := F(v) ® 14 and
at’f,(v) = (a;! ® idy) © o ;) © (id; ®cty) with tensorator p] , = ayg, © puo © (2 ® ). By definition,
we have ' := Forget, o> = iy o F on the nose, so (7,F'%,id) € VFibFusCat*. We claim that
(H :=1idq,n ==@a) : (T,F% a) — (7,F"%,id) defines an invertible 1-morphism in VFibFusCat. it is
clear that a' = @, * = id, n = « satisfies (3.2). It remains to check that = « satisfies the half-braiding
coherence (2.1), which expands to the formula (a, ® id;) o a;f, (0) = OLF(2) © (id; ®,), which holds by
definition. O

The following theorem shows that fully faithful Rep(G)-fibered enriched fusion categories are the
same as faithfully G-graded fusion categories. We denote by GGrdFusCats the 2-category of faithfully
G-graded fusion categories and by Rep(G)FibFusCatg the 2-category of fully faithful Rep(G)-fibered
enriched fusion categories, where we endow Rep(G) with the canonical symmetric fiber functor to Vec.

Theorem 3.23. There is a strict 2-equivalence ® : GGrdFusCat; — Rep(G)FibFusCat such that the
following triangle commutes:

GGrdFusCats 2 % Rep(G)FibFusCatg
(3.3)
ForgetG IJorgetRep(G)
FusCat

Here, Forget; : GGrdFusCat — FusCat forgets the G-grading (cf. Example 3.16), and Forgetpe, (o) :

VFibFusCat — FusCat forgets the Rep(G)-fibered enrichment.
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Proof. We already saw in Definition 3.19 how to endow a faithfully G-graded fusion category 7~ with a fully
faithful Rep(G)-fibered enrichment. It is straightforward to show that every G-graded monoidal functor
H : 97 — 7; gives a 1-morphism in Rep(G)FibFusCat, since the coherence 7 is completely determined by
(3.1). Indeed, the verification that this determined 7 satisfies the compatibility (2.1) with the half-braidings
amounts to the following commuting square for a homogeneous ¢, € (1), and (K, 7) € Rep(G):

K®H(t;) — H(K®ty)

\Lﬂg(@id}[(,g) \LH(]I’g@idtg) .

K®H(ty) — H(K®t,)

Moreover, the 2-morphisms of both GGrdFusCats and Rep(G)FibFusCaty consist of all monoidal natural
transformations, so @ is the identity on 2-morphisms. We leave it to the reader to check that ® is a strict
2-functor which is obviously fully faithful on 2-morphisms such that (3.3) commutes.

It remains to show essential surjectivity on objects and 1-morphisms. By Lemma 3.22, we may restrict
our attention to the 2-subcategory Rep(G) FibFusCatf:ft of fully faithful Rep(G)-fibered enriched fusion
categories (7, 77) such that Forget, o7 “ = iz o F on the nose.

Given (7, Z%) € Rep(G)FibFusCat®, we claim there is a canonical faithful G-grading on 7~ which
recovers our Rep(G)-fibered enrichment. We expect this result is known to experts, but we are unaware
of its existence in the literature.

Recall O(G) is the commutative algebra of k-valued functions on G. Moreover, O(G) is a Hopf
algebra with comultiplication given by A(),) := X5 xgn-+ ® xn Where y, denotes the indicator function
at g € G, antipode given by Sy, := x,1, and counit given by €( ;) = Jy=. Let Irr(Rep(G)) be a set of
representatives for the simple objects of Rep(G). There is a unital isomorphism of Hopf algebras

(3.4) D @ (K, 7)* ® (K, 1) = O(G)
(K,m)elrr(Rep(G))

given on w* ® v € (K, 7)* ® (K, m) by ®(w* ® v)(g) := w*(1,(v)). Multiplication on the left hand side is
given on w; ® v; € K ® K; for i = 1,2 by

(W} ® 1) (wj ® vp%) = > [(w; ® w)) 0 a’] @ [a o (v; ® )]
(L,m)€elrr(Rep(G))
{a}cRep(G)(K1®K,—L)
where {a¢} C Rep(G)(K; ® K, — L) is a basis and {@*} C Rep(G)(L — K; ® K) is the dual basis under
the pairing &’ oa” = 8/, id;.. The unit on the left hand side is exactly 17 ® 1c € C*®C where C € Rep(G)
is the trivial representation. Comultiplication on w* ® v € K* ® K is given by

Aw* ®0) = Z(W* Re) (e ®0)

where {e;} is a basis for K and {e} is the dual basis. We will identify both sides of (3.4) under the
isomorphism @ below.

Now given t € 7, we get a unital k-algebra homomorphism O(G) — 7 (t — t) (whose image lies in
Z(7 (t — t))) whose image on w* ® v € K* ® K is given by

(3.5) w Qv+ = (w" ®1id;) o {1, ¢ o (id; ®0)
t
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where we identify elements v € K as morphisms v : k — K, which givesamapov € 7 (15 — 14®K = 1),
and similarly w* € 7(I; = 179K — 1). Now O(G) = kl%l is an abelian k-algebra, so for each t € 7~ and
g € G, we have a canonical projector )(; € 7 (t — t). The proof of the following lemma is straightforward.

Lemma 3.24. Fort € T, the projectors )(; € T (t — t) satisfy the relations
o (direct sum) y; o x; = Og=h Xy and Yyec X, = id:, and
e (compatibility with morphisms) for all s € T with projectors x; € T (s — s) and all morphisms
f €T (s—t), wehave yyof =foy.

As 7 is fusion and thus idempotent complete, for g € G, we may define ¢, := im( )(;). By the
direct sum relation in Lemma 3.24 we have t = @ 4¢G tg- Moreover, for all f € 7 (s — t), we see that
T(s—>t)= @geG T (s4 — t4). Thus defining 7; to be the subcategory whose objects are of the form ¢,
fort € 7, wehave 7 = @geG T4, i.e., T is G-graded as a semisimple category.

We now claim that this G-grading is compatible with the tensor product, i.e., if s € 7, and t € 7,
then s ® t € 7. To show this, we observe that the map (3.5) endows each hom space 7 (s — t) with an

O(G)-action
n
t

(W'®u) > f =

such that
(3.6) (wy ®0v1)(wy ®0v2) > f=(w; ®01) > (W, ®0v2) > f VfeT(s—t).

Since for all s, t € T,

our O(G)-action satisfies

(37) (—®@7r—)o AW ®0) > (fi® f2) =(W' ®0) > (f1i® f2) VAET (st > t1), fr €T (s2 > ty).
This immediately implies that the idempotent )(;t € 7 (st — st) decomposes as

X =D X ® X = o (®x) =x9®x  VeheG.
heG
Thus the G-grading on 7 respects the tensor product of 7. We leave it to the reader to verify this
G-grading recovers an equivalent Rep(G)-fibered enrichment on 7.
Finally, we show essential surjectivity on 1-morphisms. Suppose (H,n) : (71, I7) — (72, 1) is a
1-morphism in VFibFusCat}. It suffices to prove that H is G-graded, since  is completely determined
by H by (3.2). By using the compatibility of n with the half-braidings (2.1), we see that H intertwines the

O(G)-actions (3.5) on 7{(t — t) and 72(H(t) — H(t)) for all t € 7;. Thus H maps )(; € Ti(t > t) to
Xf(t) € 7;(H(t) — H(t)), and H is G-graded. O

We now look at the equivalent 2-subcategory Rep(G)FibF usCat?} such that Forget, 0oJ? = iz o F
on the nose. On this 2-subcategory, the restriction to cores of the forgetful 2-functor Forgetg,, ) is

a discrete fibration, since given any fully faithful Rep(G)-fibered enriched fusion category (77, Z;°)
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such that Forget, o7 = iy o F and any monoidal equivalence H : 77 — 73, there is a unique lift
I} : Rep(G) — Z(7) such that Forget, oZ,” = ig; o F, which completely determines the necessary
action coherence morphism 7 to make (H,n) an invertible 1-morphism in Rep(G) FibFusCat]Eft. We
conclude that the 0-truncation of the homotopy fiber 7o (hoFibs-(Forgetg,,,(s))) of the forgetful 2-functor
Forgetpe, () core(Rep(G) FibFusCatzft) — core(FusCat) is in canonical bijection with the strict fiber
stFibT(ForgetRep(G)), which we view as the set of V -fibered enrichments of T .

Corollary 3.25. Fix a fusion category T and a finite group G, and denote by F : Rep(G) — Vec = (1) C T
the canonical symmetric fiber functor. There is a bijective correspondence between the sets of

(1) Fully faithful Rep(G)-fibered enrichments I° : Rep(G) — Z(7") such that Forget, oI? =iz o F
on the nose, where i : Vec < T is the canonical inclusion V — V ® 14, and
(2) the set of faithful G-gradings on T (cf. Example 3.16).

Proof. The equivalence ® : GGrdFusCat; — Rep(G)FibFusCatg such that the triangle (3.3) commutes
gives an equivalence when restricted to cores such that the obvious triangle of cores commtes. This gives an
equivalence of the 0-truncated homotopy fibers over 7 of Forget,; : core(GGrdFusCatf) — core(FusCat)
and Forgetg,, ) : core(Rep(G) FibFusCaty) — core(FusCat). Since both Forget; and Forgetpe, )
restricted to cores are fully faithful and discrete fibrations (the former by Example 3.16 and the latter by
the discussion before the corollary), we get canonical bijections

stFiby-(Forget;) = 7o(hoFibs(Forget;)) = To(hoFibT(ForgetRep(G))) = stFibrr(ForgetRep(G)).
This completes the proof. O

Remark 3.26. By [EGNO15, Cor. 3.6.6] G-gradings on a fusion category are also classified by surjective
group homomorphisms from the universal grading group U to G.

With these results in hand, we make the following definition.

Definition 3.27. A faithfully G-graded V-fusion category is a V-fusion category (D, ¥)) such that D
is faithfully G-graded as an ordinary fusion category, and (V) C Rep(G)’ € Z(D).

A G-extension of a ‘V-fusion category (C, ¥7) is a faithfully G-graded V-fusion category (D, )
together with an equivalence of V-fusion categories (C, 77) = (D, F;) (recall (Forget, oF7) (V) C D,
by Lemma 3.20).

We close this section with the following observation about Rep(G)-fibered enrichments. Given a fully
faithful braided tensor functor Rep(G) — Z(C) where C is a fusion category, it is not necessarily the
case that C is G-graded. For example, taking C = Rep(G), the universal grading group of C is Z(G). Note
that this enrichment is as far as possible from a Rep(G)-fibered enrichment, since postcomposing the
enrichment with the forgetful functor yields an equivalence. However, Rep(G) is Morita equivalent to
Vec(G), the quintessential example of a G-graded fusion category. Our next result shows this behavior
is generic. The proposition below shows that any fusion category with a Rep(G) enrichment is Morita
equivalent to a G-graded fusion category whose associated Rep(G) enrichment (obtained from the
canonical equivalence of centers) is fibered. This can be interpreted as a partial converse to Corollary
3.25.

Proposition 3.28. Suppose C is a fusion category and F : Rep(G) — Z(C) is a fully faithful tensor functor.
Then there exists a faithfully G-graded fusion category O which is Morita equivalent to C such that the

associated enrichment Rep(G) — Z(C) = Z(D) is a Rep(G)-fibered enrichment.
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Proof. Consider the image of O(G) inside Z(C), which is a connected étale algebra, which we will still

denote by O(G). Observe that Z(C)o(c) is a G-crossed braided extension of Z (C)BEG) by [EGNO15,

Thm. 8.24.3]. Now note that Z(C )BEG) = Z(Co(c)) by [DMNO13, Thm. 3.20] where Cyp () is a multifusion
category, and every center of a multifusion category is also the center of an ordinary fusion category
[DMNO13, Rem. 5.2]. By [GNNO09], there is a bijective correspondence between G-extensions of fusion
categories ¥ and G-crossed braided extensions of Z (%) which is established by taking the relative center.
Thus there is a G-graded fusion category 9 whose relative center with respect to its trivial component is
Z(C)o(c)- Furthermore, by [GNN09], Z(D) = (Z(C)o(c))¢ = Z(C). Hence D is Morita equivalent to
C. Since the forgetful functor Z(D) — D factors through Z(C)o(c), the Rep(G)-enrichment for D is
fibered. ]

4. LIFTING V-ENRICHMENT TO A FIXED G-EXTENSION

For this section, we fix a braided fusion category V, a ‘V-fusion category (C, ¥“) € BrdFus;(V —
Vec).

Definition 4.1. A V-enriched G-extension of (C, F7) is a triple (D, ¥z, «) such that

e D= @geG Dy is an orginary G-extension of C = D,

o 77 :V — Rep(G) c Z(D) is a V-enrichment of D that lands in the Muger centralizer of the
canonical copy of Rep(G) ¢ Z(D), and

e « is a natural isomorphism

AV (A > Rep(G)’
‘le Ji
(4.1) Z(C) — Z(D)
\ Aetc
Zo(D).

where Forget, : Z(D) — Zc (D) denotes the forgetful functor.

Observe that V-enriched G-extensions of (C, ¥7) form a 2-groupoid which admits an obvious forgetful
2-functor to the 2-groupoid of ordinary G-extensions of C as an ordinary fusion category. This forgetful
functor is fully faithful at the level of 2-morphisms and a discrete fibration. Hence by similar arguments to
those in §3.2.2, the homotopy fiber over a fixed ordinary G-extension D = e D, of C is 0-truncated
and in bijective correspondence with the strict fiber over D, i.e., set of tensor functors 7% : V —
Rep(G)’ € Z(D) such that Forget, of “ = i o ¥ on the nose.

Remark 4.2. Given an ordinary G-extension D = P _; Dy of our V-fusion category (C, ), choosing

- geG
a functor 77 : V — Rep(G)’ € Z(D) in the strict fiber over D is equivalent to choosing for all v € V
coherent lifts of the half-braidings for ¥ (v) with C to all of D.

We now use the ENO extension theory for fusion categories [ENO10], together with the results from
[GNNO09] to give several equivalent characterizations of the set of compatible V-enrichments on a fixed

ordinary G-extension D of our V-fusion category (C, 7).
19



4.1. Classification in terms of monoidal 2-functors.

Definition 4.3. The V-Brauer-Picard 2-groupoid BrPicV (C, F7) of the ‘V-fusion category (C, F7?) is
obtained by taking the ordinary unenriched Brauer-Picard 2-groupoid BrPic(C) and imposing extra
structure.

e objects in BrPicV' (C, ?) are invertible C — C bimodules M equipped with natural isomorphisms

Nam : m<Fc(a) — Fc(a) » m satisfying (2.4), (2.5), and (2.6).
e 1-morphisms are bimodule equivalences E : M — N satisfying (2.8).
e 2-morphisms are all bimodule natural isomorphisms.

We now endow BrPicV (C, ¥%) with the structure of a categorical 2-group (3-group) by lifting

the monoidal structure on BrPic(C). Observe that there is an obvious forgetful 2-functor Forget,, :

BrPic” (C, %) — BrPic(C) that forgets the extra structure, and Forget,, is fully faithful at the level of

2-morphisms and a discrete fibration.
We now define a monoidal structure on objects in BrPic” (C, %) as the relative Deligne tensor

product in BrPic(C) from Definition 2.14, together with the centering morphism defined from the vertical
composition on 2-morphisms in BrdFus from (2.7). The monoidal product of objects in BrPic(C) is defined

by a universal property, so there is not just one composite; there is a contractible choice. We observe that
when these bimodules are in the image of the forgetful 2-functor Forget.,, there is a choice of composite
M Rqp N which is also in the image of Forget.,, by construction. Following [Gre10], we get an associator
and pentagonator for BrPic(C) from the universal property defining the relative Deligne product. By

the universal property, these associators lift to BrPic” (C, ¥7), and since Forget,, is fully faithful on
2-morphisms, so does the pentagonator. This also means the forgetful 2-functor Forget,, is automatically
a monoidal 2-functor.
Remark 4.4. We expect that BrPic (C, F7) is monoidally 2-equivalent to the core of the endomorphism
monoidal 2-category of the 1-morphism (C, %) € BrdFus(V — Vec). We leave this verification to the
interested reader.

Observe that there is a 2-groupoid of monoidal 2-functors Hom(G — BrPic” (C, ¥7)), and this
2-groupoid admits a 2-functor U := (Forget,,). to the 2-groupoid of monoidal 2-functors Hom(G —
BrPic(C)). By Theorem 2.15, this latter 2-groupoid is equivalent to the 2-groupoid Ext(C,G) of G-

extensions of C as an ordinary fusion category. Now fixing an ordinary G-extension D of C, we get
a corresponding monoidal 2-functor z : G — BrPic(C). Similar to Example 3.18, the homotopy fiber

hoFib,(U) is 0-truncated, i.e., a set. Moreover, since U is a discrete fibration, this set is in bijection to
the strict fiber stFib,(U) whose elements are monoidal 2-functors g(v :G— BrPic" (C, %) such that

Forgetq, oV = z on the nose.

BrPicV (C, ¥7)




We call this set the set of lifts of & to BrPic” (C, F7?).

We now prove a version Theorem 2.15 for V-fusion categories.

Theorem 4.5. Let (C, %) be a V-fusion category and D an ordinary G-extension of C. Letx : G —
BrPic(C) be any monoidal 2-functor corresponding to D under the equivalence of 2-groupoids Ext(C, G) =
Hom(G — BrPic(C)) afforded by Theorem 2.15. The set of 'V -enrichments ¥, : V — Z(D) compatible
with the enrichment 77 : 'V — Z(C) is in bijective correspondence with the set of lifts of = : G — BrPic(C)

to BrPicV (C, 7).

Proof. Suppose we can lift the V-enrichment of C to . We define morphisms 7, , : m<Fg(v) — Fc(v)>m
for each m € D, where F¢ : V — Z(C) — C as follows. A lift F:V o Z(D) appliedtoaov € V can
be viewed as & (v) = (F¢(v), Ou Fp(v))> Where 04 p, (o) is a half-braiding for F¢(v) with d € D. We define
Nod = OdFa(v) - d ® Fc(v) — Fo(v) ® d. The fact that F:V - Z (D) is a braided monoidal functor
ensures that 7, ; makes the diagrams (2.4), (2.5), and (2.6) commute. This means we can lift the image of
the monoidal 2-functor G — BrPic(C) to BrPic" (C, %) at the level of 1-morphisms. To lift at the level
of 2-morphisms, recall that ® induces a bimodule equivalence D, B¢ Dy — Dy, We need to show that
this bimodule equivalence is a morphism in mw((,‘, ¥ 7). Given objects dy € Dy, dy, € Dy, we need to

check the following diagram commutes:

® ((dy B¢ dp) < Fe(v)) = dy ® (dy ® Fc(v)) — ® (Fe(0) » (dg Be dp)) = (Fo(v) ® dy) ® dp)

(4.2) l l

®(dy ®e dp) < Fe(v) = (dg ® dy) ® Fo(v) — Fe(v) » (®(dy Re dp)) = Fe(v) ® (dy ® d)

where the top isomorphism is that from (2.7). This now follows immediately from the associativity of a
half-braiding.

Conversely, given a g(v :G — BrPic(V(C , ¥7) such that Forget,, or " = z, we need to extend the
half-braiding of ¥*(v) with C to all of . We simply use 79 on D, as our half-braiding:

Mom, : Mg < Fp,(0) = my ® F(v) — F(v) ® my = Fp, (v) > my.

Now one uses the commutativity of (2.4), (2.5), (2.6) and (4.2) to verify that this is a well-defined half-
braiding with all of D.

Finally, one verifies these two constructions are mutually inverse. O

4.2. Classification in terms of G-equivariant structures on 7“. We now show that given a V-fusion
category (C, ¥“) and an ordinary G-extension D of C, the set of possible compatible V-enrichments on
9 is in canonical bijection with G-equivariant structures on the classifying functor 7% : V — Z(C) with
respect to the categorical action p : G — Mg(Z (C)) induced from the G-extension C € D = P g Dy.

(Recall from Example 3.10 that lifts of 77 : V — Z(C) to Z(C)® naturally form a set.)

Theorem 4.6. The lifts ijz : V — Z(D) which are compatible with 7 : V — Z(C) are in bijective

correspondence with lifts F7 : V — Z(C)C which satisfy Forget; oF Z = FZ, where Forget, : Z(C)° —
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Z(C) forgets the G-equivariant structure.

Vommo e > Z(C)°
(4.3) % A .
Z(C)

S -

~
Z(C)® <— Rep(G)’

AT T

(4.4) Z(C) Ze(D)° —— Z(D)

Forget
\ \L g%etc

Zc(D)

We see that the set of liftgjv—'z : V — Rep(G)’ N Z(D) which are compatible with F7 are in bijective
correspondence with lifts 77 : V — Z(C)C which satisfy i o Forget; of ? = i o 2. Since i is faithful on
both objects and morphisms, we can cancel it from the left on both sides of the equation, and the result
follows. O

Thus to classify enriched extensions, we must solve the equivariant lifting problem for the data given
by the initial enrichment and the extension. In other words, given an (oplax) braided (strongly unital)
monoidal functor ¥“ : V — Z(C) and a categorical action p : G — ME;(Z (C)), we need to find all the

G-equivariant structures on ¥“. We will formalize this notion in Definition 5.3 in the next section.

5. THE EQUIVARIANT FUNCTOR LIFTING PROBLEM

In this section, we study the equivariant functor lifting problem, showing lifts are in bijection with
splittings of a certain exact sequence. Our approach is similar to [BJLP19, §3]. We do so in greater
generality than needed for (4.3) above, since our results are significantly more general.

For this section, V, W will denote linear monoidal categories (which are not necessarily braided!)
and (7, ¢,¢) : V — W denotes an oplax monoidal functor (which need not be strongly unital!), where
¢ = {Qup : F (u0) = F(u)F (v) }yupey is the oplaxitor and € : F(1q) — 1qy is the counit.

Assumption 5.1. Notice that F(1q) € W is a coalgebra object with comultiplication A := ¢;.,,1,, and
counit ¢. For this section, we assume ¥ (1) is connected, i.e., W (F (1) — 1qy) = Ce.

We further suppose (p, ) : G — Aut (W) is a categorical action of the finite group G. We write
g = pg for notational simplicity, and we write /¢ for its tensorator. Our convention for the tensorator y
for pis pigp : go h = gh.

5.1. The first obstruction.

Definition 5.2. We consider the following categorical groups.
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o Aut, (‘W) is the categorical group of (strong) monoidal auto-equivalences of ‘W. Thought of as a
monoidal category, objects are monoidal auto-equivalences of ‘W, and morphisms are monoidal
natural isomorphisms.

o Aut (W/|F) is the categorical group defined as follows: objects are triples (a,y*, A%), where
(a, ¥%) € Aut, (‘W) is a monoidal auto-equivalence of ‘W (here, /* is the tensorator of @), and

A%+ F = a o F is an (oplax) monoidal natural isomorphism. The 1-composition is strict and
defined as

(9,47 0 (ByP.2F) = (@0 f.y" o a(y?). 2" 0 a(2)).
The 2-morphisms 5 : (o, Y%, A%) = (B, 1/?, \P) are all monoidal natural isomorphisms 5 : (a, %) =
(B, ¥P) such that (5 o idr) o A% = AP,
e Stab () is the full categorical subgroup of Aut, (W) generated by the image of Aut, (‘W|F)
under the forgetful functor («, %, A*) — (a, ¥%).

Definition 5.3. Let p : G — Aut (W), g — p, be a categorical action, and ¥ : V — W an oplax
monoidal functor. A G-equivariant structure on ¥ is a lifting

Aut, (‘WIF)
(5. 1) E/ -7 g \LForget(}-
G —5— Auty (W)
which satisfies Forgets op = p on the nose.

Hence in order to find a lifting p : G — Aut(‘W|¥), it is necessary that for each g € G, there exists a
monoidal natural isomorphism A9 : ¥ = g o F. We call the existence of such a A9 for each g € G the first
obstruction to the equivariant functor lifting problem. We say the first obstruction vanishes if such a 19
exists for each g € G.

5.2. The second obstruction. We now assume that the first obstruction to the equivariant lifting
problem vanishes, i.e., for every g € G, there exists a monoidal natural isomorphism A9 : ¥ = go F.
We now give a necessary and sufficient condition for the isomorphisms (19),ec to assemble to a lift
p: G — Aut, (W|F). We call this condition the second obstruction to the equivariant functor lifting
problem.

Recall that the adjoint to the forgetful functor Forget; : W¢ — WisI: W — Wby w > P g(w)
and f € W(w; — wy) maps to I(f)gn = d4n - g(f). Observe that given w € W, f : I(w) — I(w) is
G-equivariant if and only if the following diagram commutes for all g, h, k € G:

g(k(w)) —25 (gk)(w)
(5.2) lg(fh,k) lfgh,gk Vg.hk e G
g(h(w)) —2 (gh)(w)

where fy i : k(w) — h(w) is the (h, k)-component map of f. The functor I is endowed with an oplax

monoidal structure vﬁvm € WO (I(wy ® wy) — I(w;) ® I(wsy)) given componentwise by

@ ‘;bvgvl,wz : @g(wl ® wy) Wﬁ_wz) @g(wl) ® g(wz) C @ g(w1) ® h(wy) = I(w1) ® I(wy).

geG geG geG g.heG
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Remark 5.4. In addition to ¥ (1) being a coalgebra with comultiplication A (see Assumption 5.1), notice
that (I o F)(14) € ‘W is also a coalgebra object with comultiplication given on components by

AP = 8Byt Vs 1 © I £ K(F (1)) = g(F (1)) ® A(F (1))
and counit given on components by ¢, := g(e7) : g(F (19)) = 1oy

We define 1 : Autg(F) — Autg(I o F) by 1(f)° := I(f°) € WOI(F (v)) — I(F(v))). To verify
that 1(f) is oplax monoidal, we see the outside square of the following diagram commutes, as the inner
squares both commute:

I(p®1%2) yF(01).F(02)

I(F (01 ® v3)) ————> I(F(01) ® F(02)) ———— I(F (1)) @ I(F (02))
lf(f”l% lf(f”l ®f*) ll(f”l)@’l(f”z)

I(p®1%2) yF(01).F(v2)

I(F (01 ®03)) ————— I(F (v1) ® F(v2)) ————— I(F(0v1)) ® [(F (v2)).

The following lemma is similar to [BJLP19, Lem. 3.2]. We provide a proof for completeness and
convenience of the reader.

Lemma 5.5. Supposen € Autg(I o F).

(1) Forh,k € G, Mo : k(F (v)) — h(F (v)) is equal to Mhx = yzrk(f?h o k(nz-lh,e) o (uZ:U))_l. Hence n°
is completely determined by its components g, : (¥ (v)) — ¥ (v) forv € V.

(2) There is a unique g € G such that n;,“g # 0, and 17;}3’ : F(ly) — g(F (1)) is a coalgebra
isomorphism.
(3) For every h € G, there are unique g,k € G such that ”;,h # 0 # 1, forallv € V. These g,k are

independent of v € V.

Proof. To prove (1), since n° : I(F (v)) = I(F (v)) is G-equivariant, replacing h, k by g 'h, g~k respec-
tively in (5.2) for f = n° gives

F F
M © ug,g(f’fk - ﬂg,g(f?h © g(My-1p g 1) Vg hkeG

Now setting g = k gives the desired formula.
To prove (2), we first note that for each g € G, there is a scalar y, € C such that g(¢) o 17;2,’ =y, €€
C(F (19) = 1qy) = C - &. Looking at the e-component of the counitality axiom

dol(¢N) = oI(eF) 0 6!V € WO(I(F (1)) — 1ap)
gives us the identity

= Ty enlr = (Tn s

heG heG

which implies >}, yn = 1. Fix h € G such that y, # 0. For g # h, looking at the component Ag’g F(ly) —
h(F (1)) ® g(F (197)) yields the identity

(n @) oyl (VT 0 A = 8y VTV 6 g(A) 0 Y = 0.
Postcomposing with h(e) ® idgy(#(1.,)) yields

0=((n,Y oh(e") @ng¥) o A=yu- (7 ®ng¥) o A=ry-ngl.
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Since y, # 0, we conclude 77;,1’ = 0 whenever g # h, proving (2). Notice this also proves y, = 1. That

;7;}/ : F (1) — g(F (1)) is a coalgebra isomorphism follows immediately by looking at components as
above.

Now (3) follows by (1) and (2) using monoidality of . Indeed, for v € V, we have v = 19 ® v
(suppressing unitors), so the components of ° € Endqyc ((I0F)(v) = P g(F (v))) satisty the following
commuting diagram below:

h
V()7 P P1.0)

h(F (v)) > h(F (1v)) @ h(F (0))

l”;h \Ln;?,’ &,
Wg»“(l,v),(f(v) Og((/’l(v,v)
9(¥ (0)) > 9(F (1v)) ® g(F (v)).

Notice that the map 1//;(1@ (o) © 9(@1,,0) has a left inverse for every v € V, namely (g(¢) ® idg(y)) ©

(l//g'—(lfv),?'(u))_l' This implies that U;,h = 0 whenever ”;,qh/ —0. -

Lemma 5.6. The function  : Autg(IoF) — G given by setting (n) to be the unique g such that ’7;?/1,6 #0
gives a well-defined group homomorphism.

Proof. Suppose n, ¢ € AUtszc (I o F), and consider 1 o &. Then 7 (n o &) is the unique element g € G such
that (n o 5);?; , # 0. We calculate that

(o d) = > mh, oy =n Lo&r .
heG
By (5.2), we see that 77;:"1,”(9_1 # 0 if and only if n:rz’g)g_l’e # 0. Hence (7(&)g™!)™! = n(n), which
immediately implies 7(n o &) = g = n(n) - 7(§). ]

Lemma 5.7. Foreveryn € n7(g71), 0, = Nge + F (0) = g(F (v)) gives an monoidal natural isomorphism
0 : ¥ = go F. Moreover, every monoidal natural isomorphism ¥ = g o ¥ arises in this way. Hence
x71(g7Y) is in bijective correspondence with monoidal natural isomorphisms 0 : F = go F.

Proof. First, if n € 771(g™!), then the following diagram commutes for all g € G as 7 is an oplax monoidal
automorphism of I o ¥

F (uv) b s F(u) ® F(0)
ln;ffé iﬂ;e@m;’,e
w;(u),¢(ﬂ)°g(¢u,v) N
9(F (uv)) > 9(F(u) ® g(F ().

Notice this is exactly the condition that 8 : ¥ = g o ¥ is oplax monoidal. Conversely, if 0 : ¥ = go F
is an monoidal natural isomorphism, then defining

F F(0)\—
Mok = Ogmtin - L 0 k(B0) 0 (] )"

gives a well-defined n € 771 (g™ !) such that Nge = by by construction. O

Proposition 5.8. The following sequence is exact:

(5.3) 1 ———— Autg(F) ————— Autg(Io F) TG
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Proof. The map 1 is injective by definition. The map x is surjective by Lemma 5.7. To see im(1) = ker (),
if n € ker(r), then each 1° is determined by 0° := ng, : F (v) — ¥ (v) by Lemma 5.5,and 0 : ¥ = ¥ isa
monoidal natural isomorphism such that ¢(6) = . O

Theorem 5.9. The set of G-equivariant structures on ¥ as in (5.1) is in bijective correspondence with
splittings of the exact sequence (5.3).

Proof. Suppose p is a lift of p, and denote p(g) = (g, A4), where A9 : ¥ = g o ¥ is a monoidal natural

isomorphism. We get a splitting ¢ : G — Autg (I o ¥) by mapping ¢! to the element corresponding
to 9. Conversely, given a splitting o, 0(g7!) € n7'(g') gives an monoidal natural isomorphism
M= 0(g7")ge : F = goF. One now verifies that p(g) = (g, A,) is the desired lift. These two
constructions are clearly mutually inverse. B ]

5.3. The braided case. We now assume V, W are braided monoidal categories and ¥ : V — W is an
oplax braided monoidal functor. We again use Assumption 5.1 that ¥ (1) is a connected coalgebra in

w.

Definition 5.10. We consider the categorical groups

. Mg(‘W) is the full categorical subgroup of Aut, (‘W) whose objects are braided (strong) monoidal
auto-equivalences of ‘W. Observe that if (o, %) € Mgr((W), (y,¥¥) € Aut (W), and 1 :
(a0, ¥*) = (y,¢") is a monoidal natural isomorphism, then (y, ¢¥) € ME’; (W), as the back face
of the following diagram commutes.

Y

y(u® o) - > y(u) ®y(v)
Nuo /
‘ ye Nu®My
a(u®0) — a(u) ® a(v) V(o)
y(ﬁ;‘,’v)l
Vou
a(BY.) y(v®u) : > y(v) ® y(w)
Nou Bt (o) /
ye No®My
a(o ®u) : > a(v) ® a(u)

Indeed, the left face commutes since 7 is natural, the right face commutes since % is natural,
the top and bottom faces commute since 7 is monoidal, and the front face commutes since « is
braided. We conclude the back face must also commute.

o Mg(‘WU’) is a the full categorical subgroup of Aut, (‘W|[¥) whose objects are triples (a, %, 1%),
where (a, ¥%) € Mg(‘W).

o Mg(?‘) is the full categorical subgroup of Mg (‘W) generated by the image of Mg (WI|F)
under the forgetful functor (a, Y%, A%) — (a, ¢%).

In this setting, we make the following definition.
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Definition 5.11. Let p : G — Mgr((W) be a categorical action, and ¥ : V — ‘W an oplax braided
monodal functor. A G-equivariant structure on ¥ is a lifting

Aut'(W|F)
(5.4) “_)////\( \LForget¢
G—— Aut? (W)
which satisfies Forget op = p on the nose.

Since 1, (Mg(‘W)) = my(Aut, (‘W)) and (M&%WlF)) = m(Aut, (‘WIF)), G-equivariant lifts
as in (5.4) are again in bijective correspondence with splittings of the exact sequence (5.3).

6. EXAMPLES

In this section, we work out examples of our main Theorems 4.6 and 5.9 above in the V-fusion setting.

6.1. Fully faithful enrichment. Suppose (C, ¥7) is a V-fusion category such that 7 is fully faithful.
This type of example is particularly important, since every enrichment can be “pushed forward" to a fully
faithful enrichment by considering the enrichment over the full subcategory generated by the image of
V in Z(C). We will see that in the fully faithful setting, the G-action on the normal subgroup Autg (7 %)
is trivial, and thus splitting of the short exact sequence (5.3) becomes a 2-cocycle obstruction.

Now suppose D is any G-graded extension of C as an ordinary fusion category, so we get a categorical
actionp : G — ME;(Z (C)). Assume that p passes the first obstruction, so that for each g € G, there

exists a monoidal natural isomorphism A9 : ¥ = g o ¥. By a direct computation, we see that
(6.1) w(g, h) = (291 o ’u;rh o g(/lh) oM:F=F

is an element of Autg (F) = Autg(idq,), which is in turn isomorphic to the group W of characters on
the universal grading group of V. In fact w € Z%(G, W) Any other choice of A9 for g € G will give a
cohomologous 2-cocycle. We see directly that the second obstruction vanishes if and only if [w] = 0 in
H%(G, W). Hence the exact sequence (5.3) is exactly

1 ——— UV) ———— UV) %, G TG 5 1,

which splits if and only if [w] = 0.
Observe that when p passes the first obstruction, the 2-cocycle w in (6.1) automatically vanishes if
U (V) is trivial, in which case there is a unique splitting.

Corollary 6.1. Suppose (C, F%) is a ‘V-fusion category with ¥% fully faithful. Let D be an arbitrary

G-graded extension of C for which the first obstruction vanishes. If U(V) is trivial, then the V -enrichment
has a unique lifting to D.

Example 6.2. If (C, ¥7) is a Fib-fusion category and D is a G-graded extension of C for which the first
obstruction vanishes, then there is unique lift of the Fib enrichment to D. For an explicit example, one
may consider C = Ad(Eg) and D = Es.
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6.2. Zesting a trivial extension. For convenience, we assume that H*(G, C*) = (1). Recall a braided
categorical action of G on Z(C) is called G-stable if each g € G acts by the identity functor. Such actions
are given by twisting the trivial action by a 2-cocycle @ € H?*(G, Autg(idzc)) = H*(G,Inv(Z(C)))
[ENO10]. Since H*(G,C*) = (1), we get a G-graded extension D of C called C ®,, Vec(G), which is
C ® Vec(G) as a linear category with the tensor product functor twisted by w. Twisting the monoidal
product by a 2-cocycle in this manner is sometimes called zesting c.f. [Bru+17].

For such extensions, for any enrichment (C, %), the first obstruction always vanishes, namely
go F7 = F7 since g = idyz(c). If in addition F7 is fully faithful (or more generally sends simple objects
to simple objects), then we get a restriction map R : Autg(idz(c)) = Inv(Z(C)) — Autg(idy) = W
and the 2-cocycle (6.1) corresponds to the push forward of R.w € H%(G, W). Thus we can extend the
enrichment (C, ¥7) if and only if R, is trivial.

For a shghtly more explicit example, when V = Rep(N) and C = Vec(N), we have Inv(Z(C)) =
N x Z(N) and (L(((V) =~ Z(N). Then the push-forward map R : N x Z(N) — Z(N) is the canonical
projection to the factor Z(N). In particular, for any group with Z(N) = (1) and for any w € H?(G, N )
(with the trivial action of G on N ), we can lift the Rep(N) enrichment on Vec(N) to the zested extension
Vec(N) ®,, Vec(G). In this case, the latter category is actually equivalent to Vec(N X G).

since the 3-cocyle obtained from w via a connecting map in the Lyndon-Hochschild-Serre spectral
sequence associated to the short exact sequence 1 - N — N X G — G — 1 is trivial (see [ENO10,
Appendix]). Indeed, all differentials in the LHS spectral sequence are zero; we thank the referee for
pointing this out.

6.3. Fibered enrichments and group theoretical extensions. In this example, we focus on Rep(N)-
fibered enrichments (recall Definition 3.21) with C = Vec(N) and D = Vec(E) for some normal subgroup
N < E corresponding to a fixed exact sequence

(6.2) 1 y N S E > G 5 1.

We now analyze when we can extend the Rep(N)-fibered enrichment on Vec(N) to Vec(E). The first step
will be to analyze the categorical action of G on the center, and in particular how it restricts to the fibered
enrichment.

First, from the extension above we directly define a braided categorical action on Rep(N). Pick
a set theortical section A : G — E of the quotient map E — G which we will denote g — A, € E.
Then we have AgA, = Agnng) for some n,, € N. For each g € G, we define a4 € Mg(Rep(N)) by
ag(m, V) = (n()tg_1 - Ag), V) on objects, and we set a, to be the identity on morphisms. This has the
obvious structure of a (braided) monoidal functor. We now define monoidal natural isomorphisms
Hgh : 0tg © ap — agp. For each (7,V) € Rep(N), consider the linear map 7 (n,;) on the vector space V.
Then we have

ﬂ(ng)h)ﬂ'(ﬂgl/l 1_) gAn) = Jr(ngh)ﬂ(ngh gh — Aghgp) = 7[(/19_,3 — Agn) 7 (ngp). Vg, h € G.

Setting g p = {,ugf;l’ = 7(Ngh)}(r,V)eRep(N)> WE S€€ [lgp = g © A, — g, gives a monoidal natural
isomorphism of functors.

Lemma 6.3. The assignment g — ay € Mgr(Rep(G)) together with the monoidal natural isomorphisms

Hgh : @g © ap — agp, described above assembles into a categorical action a : G — Autgr(Rep(N)).
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Proof. A quick computation shows that the equation we need to verify for all g, h, k € G and all represen-
tations (s, V) is the cocycle-type equation

(6.3) m(ngnieAy 'ngpdi) = (g pcnnk).
From the definition of Ngh, We have
Aglh/lk = Aghng,h/lk = Agh/lk/llzlng,h/lk = Aghkngh,kllzlng,h/lk-
On the other hand, we also have
AgAnAk = AgAnknpk = Aghk g hkNhk.

Comparing these two expressions, we see ngh,k/llzlng,h/lk = ngpkMhk in N, so (6.3) holds for any represen-
tation of N. O

Now, we consider Vec(E) as a G-extensions of Vec(N). This yields a braided categorical action which
we denote @ : G — Mgr(Z(C)).

Lemma 6.4. The categorical action & restricts on the canonical copy of Rep(N) C Z(Vec(N)) to a defined
in Lemma 6.3.

Proof. Recall that as a Vec(N) bimodule, Vec(E) = @geG gVec(N), where here ;,Vec(N) can be viewed
as the linear category of vector spaces graded by elements of the coset indexed by g € G. Let us consider
the section G > g — A, € E chosen above. We can identify the simple objects of ;Vec(N) as elements
Agn for n € N. Furthermore ;Vec(N) = Vec(N) as a right N module, where Ajn’ <n := Ayn’n, but the left
action of N on ,Vec(N) is given by n»> Agn" = A4 (Ag_ln/lg)n’. In other words, the left action is twisted by
the auto-equivalence /lg'l - Ay € Aut(N). From the definition of the categorical action & [ENO10, Eq. 24]
and the canonical copy of Rep(N) € Z(Vec(N)), the result follows. O

Corollary 6.5. The canonical Rep(N)-fibered enrichment of Vec(N) extends to Vec(E) if and only if
E = N X G. In this case, these extensions form a torsor over H' (G, Z(N)).

Proof. Since the canonical fibered enrichment is fully faithful, by the previous lemma we can lift the
enrichment if and only if the categorical action ¢ : G — Mgr(Rep(G)) is isomorphic to the trivial
categorical action. This would imply, in particular, that each a is trivial, namely that ﬂ(/lg_ln)tg) = 7(n)
foralln € N, g € G, and (7, V) € Rep(N). Applying this to the regular representation implies Ag_ln/lg =n,
and thus we have a decomposition E = N X,, G for some 2-cocycle w € Z?(G, Z(N)), where the action
on the latter coefficient module is trivial. Furthermore, we see this 2-cocycle wgy, is precisely the ngj,

associated to our choice of A. But since the tensorator for the action « is given by ,u;’;l’v) = m(ngy) by

definition, we see that the action « is precisely the trivial action twisted by w. Therefore, « is isomorphic
to the trivial action precisely when [w] is trivial in H2(G, Z(N)), which happens precisely when E splits
as N X G. The final claim follows easily. O

7. APPLICATION: CLASSIFICATION OF G-CROSSED BRAIDINGS

An interesting point of view we wish to advocate is that various sorts of structures on a G-graded
extension can be equivalent to extensions of an enrichment on the base category. In particular, a
braided fusion category can be canonically enriched over itself. In this section, our goal is to show that
(equivalence classes of) G-crossed braidings on a G-graded fusion category 9 which restrict on the trivial
graded component C to some fixed braiding are exactly classified by extensions of the corresponding self

enrichment of C to D.
29



While this proof essentially boils down to results in [ENO10; DN13; DN20] using [Gre10], we believe
our point of view sheds new light on G-crossed braidings while simultaneously providing intuition for
enriched extensions as being ‘something like a G-crossed braiding’. We then apply our earlier results
to give a classification of G-crossed braidings generalizing the results of Nikshych [Nik19]. This allows
us to classify G-crossed braidings on a G-graded fusion category D in terms of full subcategories of its
Drinfeld center, satisfying some conditions.

7.1. The canonical self-enrichment and G-crossed braidings. Fix a braided fusion category C with
braiding f.

Definition 7.1. The canonical self-enrichment C — Z(C) is given by ¢ — (c, f-).
In §4.1, we defined a monoidal product on BrPic€ (C) via lifting the product on BrPic(C) determined by

the universal property discussed in Definition 2.14 via the forgetful 2-functor Forget,, which automatically
makes Forget, a monoidal 2-functor.

Recall from [ENO10, §4.4], [DN13, §2.8], or [DN20, §3.3 and 5.2] that the monoidal 2-groupoid of
invertible C-modules Pic(C) is also endowed with a monoidal product by lifting the relative product from

BrPic(C). In more detail, there is a canonical inclusion 2-functor Pic(C) — BrPic(C) which identifies

the right action with the left action, and one lifts the monoidal product to make this canonical inclusion
into a monoidal 2-functor.
Observe now that this monoidal 2-functor Pic(C) — BrPic(C) natrually factors through BrPic®(C)!

Indeed, when one defines the right action on an invertible C-module M as equal to the left action, we get
an obvious C-centered structure n given by the identity. Since the monoidal products on Pic(C) and

BrPic®(C) were both lifted from BrPic(C), we see we have a commuting triangle:

ic(C) — =20 ¢ BipicC(C)

(7 1) _M l/ForgetC

The horizontal arrow in (7.1) is easily seen to be an equivalence of the underlying 2-groupoids, with
inverse (up to equivalence) given by forgetting the right C-action (cf. [DN13, Def. 2.12 and Rem. 2.13)).

We now fix a braided fusion category C together with a G-extension C € D as ordinary fusion
categories corresponding to a monoidal 2-functor p : G — BrPic(C) from [ENO10]. We are now ready to

-

prove Theorem 1.3, which is (1) = (4) of the following theorem.

Theorem 7.2. Fix a braided fusion category C and a G-extensionC C D = @gec Dy as an ordinary fusion
category. Let 1 : G — BrPic(C) be any monoidal 2-functor corresponding to D under Theorem 2.15. The

following sets are in canonical bijection:

(1) Lifts of the self C-enrichment ¥% : C — Z(C) to D, i.e., braided tensor functors ¥% : C —
Rep(G)" C Z(D) such that Forget, of * = i o 7 wherei : Z(C) — Zc(D) is the canonical
inclusion.

(2) Lifts of m to ¥ : G — BrPic®(C) such that Forget, ox® = x on the nose.

(3) Lifts of D to Zc (D) that agree with the reversed self enrichment FZ, : C* — Z(C), i.e., tensor

functors F : D — Zc(D) such that Forget, oF = idg on the nose and Fl¢c =i o FZ,.
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(4) The equivalence classes of G-crossed braidings on D (cf. Example 3.17).

Proof.
(1) = (2) : This is a special case of Theorem 4.5 with V = C and ¥7 : C — Z(C) the self-enrichment.

(1) = (3) : Observe that lifts F : D — Zo(D) such that Forget, oF = idp are in bijection with lifts
F7:C — Rep(G)’ C Z(D) such that Forget,, oF 7 = i o F7 by taking the inverse half-braiding.

(2) = (4) : In Example 3.18 we saw that the set (2) of lifts of 7 : G — BrPic(C) to BrPic(C) is the
strict fiber stFibg ((Forget;).) where (Forget;). : Hom(G — BrPic¢(C)) — Hom(G — BrPic(C)) is

IR

R

post-composition with Forget,. : BrPic®(C) — BrPic(C).

By essentially the same argument as in Example 3.17, the equivalence classes (4) of G-crossed braidings
is equivalent to the O-truncation of the homotopy fiber over D 7o(hoFibg (Forgety)) of the forgetful
2-functor Forgety : Extcrsprd (G,C) — Ext(G,QC).

By Theorem 2.15, we have an equivalence of 2-groupoids Hom(G — BrPic(C)) = Ext(G,C),

and by [ENO10, Thm. 7.12] (see also [DN20, Prop. 8.11 and Thm. 8.13]), there is an equivalence of
2-groupoids Hom(G, Pic(C)) = Extcrsgrd(G, C), where the latter denotes the 2-groupoid of G-crossed

braided extensions of C. Since the horizontal arrow in (7.1) above is a monoidal 2-equivalence, we see
Hom(G, BrPic®(C)) = Extcrspra(G, C).

Putting it all together, we have a (weakly) commuting square of 2-functors

Hom(G, BrPic®(C)) —— Extcrsgrd(G,C)

\L( Forget ). lForgetﬁ

Hom(G, BrPic(C)) ——— Ext(G,C)

Since  maps to O under the lower horizontal arrow, the homotopy fibers at 7 and D are equivalent. We

thus have canonical bijections

. . . Equivalence classes of G-
stFibg ((Forget;).) = ro(hoFibz ((Forget,).)) = To(hoFlbz)(Forgetﬂ)) = {cfossed braidings on D }

where 77 denotes the 0-truncations of the homotopy fibers. This completes the proof. O

7.2. Classification of G-crossed braidings on a fixed G-graded fusion category. We can use The-
orem 1.3 to obtain a classification of G-crossed braidings on a G-graded fusion category generalizing
a similar style of classification by Nikshych of braidings on a fusion category [Nik19]. Recall that if
A € C is an algebra object, a subcategory D C C is called transverse to A if for all objects d € D,
C(d — A) = C(d — 1). Recall that a subcategory D of a category C is called replete if for all triples
(c,d, f) withc e C,d € D, and f : ¢ — d an isomorphism, we have ¢ € D and f € D(c — d).

Theorem 7.3. Let D = (P D, be a faithfully G-graded fusion category and Rep(G) C Z(D) the canonical
subcategory of the center. Then G-crossed braidings on D are classified by full and replete fusion subcategories
A C Z(D) satisfying the following properties:

(1) A C Rep(G)'.

(2) |G|FPdim(A) = FPdim(D).

(3) A istransverse toI1(1), i.e. foranya € A, Z(D)(a — 1(1)) = Z(D)(a — 1), whereI is the right

adjoint of the forgetful functor Forget, : Z(D) — D.
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Proof. We have just shown that G-crossed braidings are classified by braidings on the trivial component
D, and a lift of this braided category to Z (). Given a braiding ¢ on D, which lifts to the center of D,
this defines a full subcategory A C Rep(G)’ N Z(D), which is equivalent as a braided fusion category to
D, with braiding o. By construction FPdim(:A) = FPdim(9D,) = FPdim(D)/|G| as desired. Furthermore,
since the forgetful functor Forget, | # is fully faithful, A is transverse to I(1).

Conversely, given a subcategory A C Rep(G)’ N Z(D) (condition (3)) which is transverse to I(1)
(condition (2)), Forget, | # is fully faithful. Since A centralizes Rep(G), Forget(A) C D,. If moreover
condition (1) holds,

FPdim(D)
Gl
and thus Forget, | # is an equivalence. Thus we can transport the half-braidings induced from A onto

D, to obtain a braiding which lifts to the center.
It is clear these two constructions are mutually inverse. ]

FPdim(A) = FPdim(Forget,(A)) = = FPdim(D,),

We note that a G-crossed braiding, by definition, is additional structure on a fusion category consisting
of an entire categorical action by G and a family of natural isomorphisms satisfying complicated coherences.
In the following two subsections, we apply Theorem 7.3 to provide a complete classification of H-crossed
braidings on group theoretical categories of the form Vec(G, w) and Rep(G).

7.3. Example: Vec(G, w). First, we consider pointed categories D = Vec(G, w) where G is a finite group
and w € Z3(G,C%).

We recall the results of [NNW09], which classifies fusion subcategories of Z(Vec(G, w)). To state
these results, given a normalized 3-cocycle w, for any triple of elements a, g, h € G, we define the function

w(a, g, h)w(g, h, " g tagh)
w(g.9~"ag, h)
Letting Cs(a) = {g € G : ga = ag}, then Balc,(ayxco(a) € Z2(Cs(a), C¥). Isomorphism classes of simple

objects in Z(C) are then classified by pairs (a, y), where a € G is a representative of a conjugacy class
and y is an irreducible f,-projective representation of Cs(a). [DW90; CGR00]

Ba(g, h) =

Definition 7.4. Let L, M <G be commuting normal subgroups. A function B : L X M — C* is called an
w-bicharacter if

(1) B(¢,mn) = B, '(m,n)B(¢,m)B(t,n) forall{ € Land m,n € M

(2) B(kt,m) = B (k,€)B(k,m)B(¢,m) forallk,f € Land m e M
An w-bicharacter B: L X M — C* is called G-invariant if moreover

(3) B(g~'tg,m) = (g, m)Be(gm, g7 ") B, (9.9 )B(¢,gmg™") forallg € G, £ € L,and m € M.

We recall the following classification theorem.

Theorem 7.5 ((NNW09, Thm. 5.11]). Full and replete fusion subcategories of Z(Vec(G, w)) are classified
by the following data

e a pair L, M of commuting normal subgroups of G, and
e a G-invariant w-bicharacter B: L Xx M — C*.

Given such an abstract fusion subcategory A, the subgroup L is determined by the normal subgroup
of G generated by the image of the forgetful functor, while M is determined by Rep(G/M) = A N Rep(G),
where Rep(G) denotes the canonical copy of Rep(G) € Z(Vec(G, w)). See [NNW09] for an explanation

of the role of the bicharacter B.
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We denote the subcategory associated to the above data as S(L, M, B). In this notation, the canonical
subcategory Rep(G) is S(1,1,1), and the trivial subcategory Vec is S(1,G, 1). We further recall the
following facts from [NNW09].

e FPdim(S(L, M, B)) = |L|[G : M] [NNW09, Lem. 5.9].
e S(L,M,B) = S(M, L, (B°®)~!) [NNW09, Lem. 5.10].
e S(L,M,B) C S(L',M',B’) ifand only if L C L', M’ C M and B|xa = B'|rxarr [NNWO09, Prop. 6.1].

Proposition 7.6. Suppose we have a faithful H-grading on Vec(G, w) given by a surjective homomorphism
m : G — H. Then if Vec(G, w) admits an H-crossed braiding, ker() C Z(G). In this case, H-crossed
braidings are classified by G-invariant w-bicharacters B : ker(r) X G — C*.

Proof. It suffices to show that subcategories of Z(Vec(G, w)) satisfying the conditions of 7.3 are precisely
those of the form S (ker(), G, B), where B is an arbitrary G-invariant w-bicharacter. Note that S(L, M, B)
is transverse to I(1) if and only if Rep(G/M) = S(L, M, B) N Rep(G) = Vec, since I(1) = O(G) € Rep(G)
contains all the irreducible objects of Rep(G). Thus M = G. Note this implies L < Z(G), since L must
centralize M. Now observe that S(L, G, B) centralizes Rep(H) = Rep(G/ker(r)) = S(1,ker(x),1) if
and only if S(L,G, B) < S(ker(r),1,1), which can be restated as L < ker(x), 1 < G, and B|x; = 1,
where the last follows automatically from the properties of w-bicharacters. Finally, the third condition is
FPdim(S(L, G, B)) = |G|/|H| = | ker(r)|. However, FPdim(S(L, G, B)) = |L|[G : G] = |L|, and thus we
must have |L| = | ker(x)|. But since L < ker(xr), we must have equality, which concludes the proof. O

As a special case, we recover the following well known corollary.
Corollary 7.7. There is a unique G-crossed braiding on Vec(G, v).

Remark 7.8. Recall that a braiding on a G-graded fusion category O can be viewed as a G-crossed braiding
together with an extra piece of data, namely a trivialization of the categorical action G — Aut, (D). For
example, when G is abelian, we have a unique G-crossed braiding on Vec(G), where the G action is by
conjugation, and the G-braiding is the identity. However, we have several different braidings on Vec(G)
which correspond to distinct trivializations of the conjugation action, which it is easy to show correspond
to bicharacters on G.

7.4. Example: Rep(G). Now we consider the case where D = Rep(G), and we consider its center in
terms of Z(Vec(G)), where we can use the convenient description as above. In this case, the universal
grading group is the dual group Z’(\G) The copy of Rep(Z(\G)) = Vec(Z(G)) sitting inside Z(Vec(G)) is
identified with the objects which are direct sums of objects (z, 1) where z € Z(G) represents a conjugacy
class, and 1 is the trivial representation of the centralizer subgroup of z (which is G).

Note that all (normal) subgroups of Z(G) are of the form
H = {y € Z(G)‘y(h) —1Vhe H}

for some H < Z(G). Thus faithful grading groups are given by quotients Z(G)/H*, and Rep(Z(G)/H*) =
Vec(H) € Vec(Z(G)).
We have the following result:

Proposition 7.9. For H < Z(G),faithfulZ/(\G)/HL—crossed braidings on Rep(G) are classified by triples
(L, M, B), such that

e M <G is normal such that H < M and M/H is abelian,

o [ <« G is abelian and commutes with M, and

e B:LxXM/H — C* is a non-degenerate G-invariant bicharacter.
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Proof. Consider the faithful Z(\G) /H*-crossed braiding on Rep(G) corresponding to the fusion subcate-
gory S(L, M, B) C Z(Vec(G)) = Z(Rep(G)) under Theorem 7.3.
Step 1: The subgroups L, M < G and the bicharacter B satisfy:
e M <G is normal such that H < M and [M : H] = |L|.
e [ « G commutes with M, and R
e B:L XM — C*is a G-invariant bicharacter such that B|;xy = 1 and the homorphism B : L —
M, 1 B(l, -) is injective.

Proof of Step 1. The canonical copy of Rep(Z(G)/H*) = Vec(H) is given by the subcategory S(H, G, 1),
whose centralizer is S(G, H, 1). Thus S(L, M, B) € S(H,G, 1)’ ifand only if L < G,H < M and By xy = 1.
Now, the FP dimension condition is satisfied if and only if FPdim(S(L, M, B)) = |L|[G : M] = [G : H],

which happens if and only if |L| = % = [M : H]. Finally, S(L, M, B) is transverse to the Lagrangian

algebra I(1) (for Rep(G)) if and only if the homorphism B:L—>MI+— B(l, -) is injective by [Nik19,
Lem. 5.1]. O

Step 2: L and M/H are abelian, and B:L— M/H given by E(l) := B(l, ) is an isomorphism, which gives
non-degeneracy of the bicharacter.

Proof of Step 2. By the first condition in Step 1, |L| = |[M/H]|. By the third condition, B:L — M/Hisan
injection. Thus we have

IM/H| = |L| < [M/H| = [(M/H)/[M/H, M/H]| < |M/H|.

This forces the equality |(M/H)/[M/H, M/H]| = |[M/H|, and thus M/H is abelian. Furthermore, this
implies |M/H| = |[M/H|, and thus the injective map B is an isomorphism as claimed. O

We now consider some examples.

Example 7.10. When Z(G)/H* = 1 so that H = 1 < Z(G), then we should recover braidings on Rep(G),
which have been classified by [Dav97] and again by [Nik18], and indeed this is the case.

Example 7.11. Consider the case H = Z(G), so that the grading on Rep(G) is the universal grading. Then
choosing M = Z(G) and L = 1 and B = 1, we obtain the usual braiding on Rep(G), viewed as a G-crossed
braiding.
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