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Abstract—One major source of air pollution is automobile
emissions in urban areas. Although hybrid and fully electric
vehicles are started to gain popularity, the majority of vehicles
are still fuel-based. With the rapid advancement of artificial
intelligence (AI) and automation based controllers, there have
been numerous studies applying such learning-based techniques
to Intelligent Transportation Systems (ITS). Combining deep
neural networks with reinforcement learning (RL) models called
DRL has shown promising results when applied to urban Traffic
Signal Control (TSC) for adaptive adjustment of traffic light
schedules. Centralized and decentralized DRL-based controller
models are proposed in literature to optimize the total system
travel time. However, the associated impact of such learning-
based TSCs to the air quality remains unexplored. In this paper,
we examine the impact of DRL-based TSCs on the environment
in terms of fuel consumption and CO2 emission. We studied a
major DRL approach called advantage actor-critic (A2C) using
multi-agent settings on a synthetic multi-intersection network and
on a real traffic network of San Francisco downtown with 24
hours traffic dataset. Our initial results indicate that learning
based DRL methods achieved the lowest air pollution level
on synthetic networks even with a simple delay-based reward
function. However, DRL-based TSC performs slightly worse than
rule-based adaptive TSCs (max-pressure control) in the San
Francisco network.

Index Terms—Deep reinforcement learning, Intelligent trans-
portation systems, Traffic signal control, Multi-agent systems,
Deep learning.

I. INTRODUCTION

Air pollution becomes a very problematic issue in urban
areas due to the rise of the number of motor vehicles. In
the US, transportation accounts for the 28% of greenhouse
gas emissions in which 97.2% of source of emission is COs
via consumption of fuels [1]. Vehicular emission depends on
several circumstances such as traffic condition, vehicle charac-
teristics, and driver behaviors. Traffic intersections play a key
role in managing mobile air pollution since frequent vehicles’
speed changes and stop-and-go traffic result in increased fuel
consumption and C'Oy emissions.

Machine learning-based control mechanisms in intelligent
transportation systems (ITS), such as traffic signal control
(TSC) systems, take action based on real-time data from the
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environment for online updating. Today, popular learning-
based controller approaches combine deep neural networks
(DNN) with RL, referred to as DRL, in which policy estima-
tion is performed by DNNs. One good example application of
such methods in ITS is developing the optimal traffic signal
schedules. In general, learning-based TSCs perform better than
standard dynamic TSCs in terms of delay and throughput for
multi-intersection settings [2]. However, it remains an open
research question how such learning based TSCs affect local
mobile emissions near the surface streets.

In this context, we investigate the emission and fuel con-
sumption produced by DRL controlled intersections. To assess
the impact of such controllers in terms of the emissions, we
consider policy-gradient-based advantage actor-critic (A2C)
DRL algorithm with multi-agent settings and simulate the
following: (i) grid-like 4-intersection TSC scenario, and (ii)
the San Francisco Downtown road network. We run all our
experiments on the SUMO traffic simulator where pollutant
emission and fuel consumption models are derived from the
HBEFA application database [3]. SUMO collects fuel con-
sumption and pollutant emission results from each vehicle
individually based on the speed and acceleration parameters.
These emission statistics are examined using different type of
traffic network settings.

The contributions of this paper are as follows:

o We quantify fuel consumption and C'Oy emission rates
with multi-agent DRL controller methods using a simple
delay-based penalty function. Our results show that the
pollution levels are highly correlated with the total travel
time in intersections and reducing the travel times spent
in intersection also lowers the C O, emission.

e In addition to simulation study of a synthetic 2x2 grid
network (Fig. 2), we train and test our DRL controller
on the San Francisco downtown network with real data
consisting of 24 hours traffic flow. To study the effect
of peak and off-peak hours, we also perform different
trace-driven simulations with 3 hours in the morning and
3 hours in the afternoon traffic flow, respectively.

o Although DRL-based TSCs perform the best on the
synthetic network, they do not outperform the rule-based
TSC method (max pressure control) in the San Francisco
downtown network in terms of CO2 emissions and fuel



consumption. DRL-based TSCs outperforms both fixed-
time and queue-based vehicle-actuated TSCs.

The rest of the paper is organized as follows. Section II
discusses related work while Section III provides background
for DRL learning agents and TSC settings. We discuss our
simulation results in Section IV. Section V concludes the

paper.
II. LITERATURE REVIEW

Learning-based TSC control mechanisms have good per-
formance compared to classic TSC approaches. One such
approach leverages different DNN settings, RL settings and
traffic network structures referred to as DRL [2]. In general,
the performance of learning based TSCs are better than
standard TSC controllers in terms of delay and total waiting
time [4]. Existing DRL based TSC approaches may differ from
one another in terms of problem definitions [5], neural network
structures [6] and applied algorithms [7]. While some studies
control multiple intersections with a centralized agent [8],
some others assign different agents for different intersections
with multi-agent models [9].

Emission and fuel consumption increases in the urban areas
due to high load of traffic and congestion [10]. Authors in
[11] evaluates the impact of TSCs on air pollution based on
VT-Micro microscopic fuel and emission estimation model
[12]. Another team studies the effects of coordinated and non-
coordinated TSC on emission rates with different emission
models [13]. The work in [14] examines the roundabout
effects on air pollution on a microscopic traffic simulator
by comparing the results with standard fixed-time TSCs. A
recent review discusses impact of different traffic management
systems such as lane management, speed management and
traffic flow control strategies on air pollution [10].

There are not many studies investigating the effects of
learning based TSCs on air quality. In this paper, we examine
the effects of learning based TSCs on CO2 emission and
fuel consumption on both a synthetic network and the San
Francisco downtown network with the SUMO microscopic
traffic simulator.

III. DRL-BASED TRAFFIC SIGNAL CONTROLLERS
A. Deep Reinforcement Learning

Reinforcement learning (RL) is a trial-and-error based learn-
ing algorithm where agent interacts with the environment and
takes action to maximize cumulative reward. Mathematical
formulation of RL is based on Markov Decision Process
(MDP). In general, an RL agent interacts with the environment
and receives a numerical reward (or penalty if it is negative).
Continuously observing the environment called state s, re-
ceiving feedback from the environment 7; and taking action
at, an RL agent learns an action policy which defines how
to behave by computing action value function Q(s;,a;) after
each iteration [15]. Through linear approximation, DNN can
estimate this function easily. Controlling RL agents with DNN-
based function approximations is called DRL [16].

1) Advantage Actor-Critic DRL: In a general DRL model,
DNN s extract the features from data with multi-layered neural
networks [16]. Actor-critic-based DRL models consist of pol-
icy estimation and value function estimation algorithms apply-
ing to an advantage function (Fig 1). Instead of estimating the
Q-value function only with a single learner neural network,
the A2C approach estimates the policy function with critic
network and Q-value function with an actor network. Since the
policy gradient-based policy estimation algorithms are also not
effective in large-scale applications due to high variance of the
policy estimation, a general solution is to combine policy and
value functions with an advantage function using two individ-
ual estimators, where the agent’s behaviour is controlled by
policy and the actions are balanced with Q-value functions.
A2C actor-critic models update both actor and critic net-
works synchronously. There are several synchronous and asyn-
chronous actor critic models in literature [17]. Asynchronous
advantage actor-critic (A3C) models estimate both actor and
critic networks in parallel asynchronously, which increases
the computation time. Since there is not much performance
difference between synchronous and asynchronous actor-critic
models, we used synchronous actor-actor critic method know
as A2C. The learning is stabilized with experience replay
memory [15], which stores the experiments in replay memory
and samples experiments randomly from memory for policy
and value function estimation. Such experience replay models
are good for preventing agents from getting stuck in a local
optimal point.
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Fig. 1. Actor Critic RL model for a TSC

B. Deep Reinforcement Learning for TSC

In this work, the states of A2C agents are value vectors
for each incoming lane of intersection. For one intersection,
we created two value vectors for each lane: one is average
speed and the other is total number of vehicles. Position
and speed of each vehicle can be collected from individual
vehicles via vehicle-to-infrastructure (V2I) communication to
calculate the average speed and number of vehicles. Using
the formed state input, the DRL agent in TSC selects a green



phase from among possible green phases: North-South Green,
East-West Green, North-South Advance Left Green, East-West
Advance Left Green. Each selected green phase is executed
after a yellow phase transition. With the objective of maxi-
mizing cumulative reward, a scalar reward is computed for
penalizing or rewarding each taken action. There are several
reward/penalty definitions for TSC settings such as vehicle
waiting time, cumulative delay, and queue length. Although
there are more complicated reward designs in literature, the
authors in [8] demonstrated that in general, simpler state
and reward definitions are superior to the complex reward
functions. For this reason, in our DRL-based TSCs, we choose
a simpler reward function namely the change in the waiting
time at an intersection for one green phase.

For DRL models, designing a DNN structure for better
performance is another critical step. In this paper, we used
multi-layer perceptron with 5 layers for both actor and critic,
with “relu” and “softmax” activation functions for policy
estimations of learning agents. In multi-agent RL settings, in-
teraction with the nearest agents is necessary to reach a global
optimum. In our experiments, each agent updates its policy
by including the current traffic condition of neighbor TSCs
as well to decrease the overall traffic delay. The global state
is found with concatenation of the local states of neighboring
intersections and the reward is generated by summing the local
rewards of neighboring intersections.

C. Fuel Consumption and Emission Models

There are several vehicle acceleration-based emission es-
timation models such as HBEFA [18], MODEM [19]. We
adopted the HBEFA emission estimation model in our ex-
periments, which is widely used in Europe, with SUMO
traffic simulator providing a variety of tools for collecting
statistics from the simulation. The parameter called relative
positive acceleration (RPA) is a key component determining
the emission rates for driving cycles. RPA value is calculated
using the equation:

RPA:%Zai*vi*At 1)

where ) is the total traveled distance, a; is positive acceleration
value, v; is speed for the sample 7, and At is the time interval
between sample ¢ and 7 — 1.

The latest version of HBEFA is v4.1 released in August
2019. Although HBEFA includes a large amount of source data
for different sort of pollutants, SUMO only allows its users to
simulate a few of them such as fuel consumption, COs, CO,
HC'. In our experiments, we only measured the rates of fuel
consumption and C'O; since we know that 97.2% of emission
in traffic is only C'O2. SUMO also enables the use of different
vehicle classes for simulating such parameters. Some of them
are passenger cars, buses, heavy duty vehicles with gas driven
and diesel driven types. In this work, we only simulated one
type of vehicle that releases the same amount of gas to the air
and consumes the same amount of fuel for all the vehicles.

IV. EXPERIMENTAL EVALUATION

In this section, we experimented the impact of DRL-based
TSCs on fuel consumption and C'Oy emission statistics using
SUMO [20] microscopic vehicular traffic simulator with Ten-
sorflow Python API for controlling multi-agent A2C agents.
Both synthetic and real networks are trained on the same agent
parameters with 2000 experience replay memory size, discount
factor v = 0.95, as well as, 0.00001 and 0.000005 learning
rates for actor and critic networks, respectively.

All our experiments compare the performance of DRL
TSCs with three baselines. One of the baselines is standard
fixed time TSC where green light times are allocated to
each direction with pre-defined duration. We also compared
our method with two adaptive control methods: queue-based
vehicle-actuated TSC [21], and max-pressure-based TSC [22].
Maximum phase duration for the vehicle-actuated controller
and the max-pressure controller and DRL controller is set to
be 40 seconds.

A. Results from the Synthetic Network

In this section, we perform experiments on a multi-
intersection environment with A2C DRL-based TSCs using
4 connected intersections (see Fig. 2). One traffic intersection
has only 3 incoming roads while the other three intersections
have 4 incoming roads. The roads connecting the different
intersections are 1000 meters long, while the roads on the
edges are 500meters long. 1 hour traffic flows on the synthetic
traffic network constitutes one episode. The traffic is generated
one vehicle per second by selecting the origin and destinations
randomly. We trained our DRL agent on synthetic network for
20 episodes.

Due to space limitations we do not include comparison
results with other DRL methods here but our previous ex-
periments show that multi-agent A2C model achieves the best
performance among other DRL models. In this paper, we only
showed the impact of multi-agent A2C (MA2C) model on
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Fig. 2. Traffic scenario for multi-agent multi-intersection TSCs.



Fig. 3. San Francisco downtown traffic network

fuel consumption and C'O, emission rate in addition to total
network waiting time. Fig. 4 shows the air pollution statistics
and total vehicle waiting time with established baselines
fixed-time, actuated and max-pressure TSCs throughout the
simulation for the synthetic network. Fig. 4(a) exhibits the
learning curve of multi-agent A2C agents in terms of total
travel waiting time. Fig. 4(b) and Fig. 4(c) show the total
fuel consumption rate and total C'Oy emission rate. Results in
Fig. 4 shows that DRL based TSC can achieve the minimal
fuel consumption and CO2 emission rate, along with the
total waiting time. In general, as the total vehicles travel
time decreases, fuel consumption and CO5 emission rate also
decrease proportionally.

B. Results from the Real Network

In addition to simulating the synthetic road network, we
evaluated the DRL-based traffic controllers and state-of-the-
art conventional TSC controllers using a real dataset on San
Francisco downtown road network, which follows a grid
structure. The traffic from the bay bridge is also a part
of the traffic flow in San Francisco downtown, where the
bridge is merged with the main downtown traffic network.
Fig. 3 shows the downtown San Francisco traffic network with
115 signalized intersections in total. Since it is not practical
to control all the signalized intersections, we trained and
tested only 10 neighboring intersections in the lower central
downtown area. In addition, we tested our DRL agent with
4 neighboring intersections on the real road network, closer
to the synthetic network. The results of such a 4 intersection
controller have similar results with 10 intersections. Hence, in
this paper we only present the 10 intersection controller model
results below. We trained our DRL-based TSC controller with
a 24 hours replicated traffic route file where similar timely

traffic patterns are preserved. Cumulative C'Os emission and
fuel consumption rates are collected at around the signalized
intersections. We presented real network test results in separate
tables for three scenarios: 24-hour all-day traffic, 8am-1lam
morning traffic, and Spm-8pm evening traffic.

First, the all-day simulation results for the San Francisco
traffic network is shown in Table I. Although multi-agent A2C
achieves the highest performance in the synthetic network,
it performs slightly worse than Max-pressured-based TSC in
the San Francisco network. Among the four TSC models we
evaluated, DRL-based TSC controller achieves the second best
performance in terms of total vehicle waiting time, total fuel
consumption and total C'O2 emission.

TABLE I
Comparison of different TSC controllers using 24 hours traffic flow on San
Francisco downtown network

TSC Waiting time (sec) | Fuel (liter) | C'O2 (gram)
Max-pressure 658656 1658.5 128443.5
MA2C 783140 1835.2 146028.4
Actuated 845829 1925.4 159295.3
Fixed-time 1453968 2543.5 254762.2

Next, we studied the San Francisco network with 3 hours
traffic flow for two groups of time periods: 8am-1lam and
Spm-8pm. The purpose of this analysis is to identify how
learning agents behave in different time periods of the day.
SUMO runs traffic flow with a given route file. Since we have
only one all-day dataset, we need to train the network with
replicated traffic flow route files before testing learning agent
with the actual traffic conditions. We randomly sampled traffic
routes and replaced some of the routes with sampled routes
for creating a replicated route file. This way, we preserved the
same traffic behaviors for the given time period. However,
we observe that training with the 3-hour dataset with one
replicated route file does not provide sufficient learning for the
DRL agent. Therefore, we generated 10 different route files
with the same traffic behaviours and trained the DRL agent 10
episodes. Then we tested real traffic routes with DRL agent.
Tables II and III summarize our results.

TABLE I
Comparison of different TSC controllers using 3 hours traffic flow on San
Francisco downtown network between 8am and 1lam

TSC Waiting time (sec) | Fuel (liter) | C'O2 (gram)
Max-pressure 94762 285.6 19594.0
MA2C 110485 310.1 21789.2
Actuated 141265 341.7 27024.0
Fixed-time 218525 421.1 38889.0

We begin with presenting the morning simulation results
in Table II. Similar to the all-day results in Table I, the max-
pressure TSC performs best in lowering traffic congestion, fuel
consumption and CO2 emissions than other controllers, with
MAZ2C comes second.
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TABLE III
Comparison of different TSC controllers using 3 hours traffic flow on San
Francisco downtown network between Spm and 8pm

TSC Waiting time (sec) | Fuel (liter) | C'O2 (gram)
Max-pressure 40537 146.7 8941.3
MA2C 61584 170.6 11972.0
Actuated 69748 181.2 13495.7
Fixed-time 117731 227.5 20824.9

Next we present the results for the evening period shown
in Table III. Compared with the morning period, the evening
period has lower congestion, fuel consumption, and COs
emissions, largely due a difference in traffic demand between
the two peak commuting periods. Among all the control
methods, the max pressure controller still performs the best,
with MA2C being the second best. But the performance of
MAZ2C is closer to that of the actuated controller in the evening
period than in the morning period.

V. CONCLUSION

This paper investigated the effectiveness of learning based
TSCs in reducing fuel and emissions, as compared with other
state-of-the-art conventional TSCs, on both a synthetic and a
real road network. The main findings are (i) there is a high
correlation between the CO2 emission and fuel consumption
rates and the total waiting time, (ii) learning based TSC
controllers are not universally more effective than other types
of controllers in our application context. While the multi-
agent A2C controller achieves the best performance on the
synthetic network, it was outperformed by the max pressure
traffic controller on the San Francisco downtown network in all
three testing scenarios. Nevertheless, the DRL controller still
performs the second best in these cases. Several factors influ-
ence the ability of DRL controllers to learn and generalize,
one of which is the reward function. Our current study used
a simple reward function based on vehicle waiting time only.
We will explore other forms of reward functions including the
emission in our future work to see if the performance of the
DRL controller can be further improved.
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