To Move or Not to Move? - Page Migration for
Irregular Applications in Over-subscribed GPU
Memory Systems with DynaMap

Chia-Hao Chang

Pennsylvania State University

Abstract

This paper focuses on the severe page thrashing prob-
lem that can arise when running large irregular memory
access applications on limited GPU memory systems. Such
memory over-subscription causes very poor performance
in the currently on demand (eager) or page-group granular-
ity access-counter based (lazy) page migration mechanisms
found in NVIDIA’s UVM drivers. Our detailed analysis of
these executions reveals a very novel insight: rather than
duplicate the responsibility of catering to both temporal and
spatial locality in both GPU caches and its memory, it is
better for the former to simply cater to the temporal aspect,
and the latter to the spatial aspect, thereby saving precious
memory system capacities. Based on this, we build an adap-
tive page migration scheme, called DynaMap, that (i) uses
a compiler pass to instrument off-the-shelf CUDA UVM ap-
plications for spatial utilization tracking, (ii) dynamically
sets a spatial utilization threshold to determine migration
based on memory pressure and access characteristics, and (iii)
enhances the current NVIDIA UVM driver to dynamically
migrate the page (from the host memory to the GPU) based
on the threshold. Using 7 irregular applications from public
benchmark suites, we implement DynaMap on a real system
with different over-subscription ratios to show speedups as
much as 2.5X (34% on the average) over state-of-the-art UVM
implementations.

CCS Concepts

« Software and its engineering — Memory management;
» Computer systems organization — Heterogeneous (hy-
brid) systems.

Keywords
GPGPU; UVM; Memory Oversubscription

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SYSTOR °21, June 14-16, 2021, Haifa, Israel

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8398-1/21/06...$15.00
https://doi.org/10.1145/3456727.3463766

Adithya Kumar

Pennsylvania State University

Anand Sivasubramaniam
Pennsylvania State University

ACM Reference Format:

Chia-Hao Chang, Adithya Kumar, and Anand Sivasubramaniam.
2021. To Move or Not to Move? - Page Migration for Irregular Ap-
plications in Over-subscribed GPU Memory Systems with DynaMap.
In The 14th ACM International Systems and Storage Conference (SYS-
TOR ’21), June 14-16, 2021, Haifa, Israel. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3456727.3463766

1 Introduction

The high throughput computational capabilities of GPUs
have brought them into the mainstream to tackle the de-
mands of applications from diverse domains including enter-
tainment, bio-informatics, scientific computing, graph and
other big data analytics. In order to sustain the data needs
of numerous cores, GPU memory systems are highly tuned
for high throughput, with specialized High Bandwidth Mem-
ories (HBM) used on these GPU cards. Such memories are
designed and fabricated differently, to specific market seg-
ments, and are hence much more expensive per GB (2.5-3x
more expensive [1]) compared to their traditional DDR coun-
terparts, which are more commoditized today. Consequently,
the memory capacities of the GPU cards are not quite suf-
ficient to completely hold the entire datasets of many cur-
rent and future big-data applications. Until recently, many
of these applications, including the popular deep learning
python libraries, have either (i) offloaded kernels to these
GPUs that fit completely, and/or (ii) explicitly moved data
back-and-forth between the GPU and CPU memories similar
to how programs were written before the advent of virtual
memory. To address these capacity limitations and program-
ming interventions, Unified Virtual Memory (UVM) has been
proposed to treat the union of GPU and host CPU memo-
ries as a single unit, with demand paging like mechanisms
used to dynamically move pages back-and-forth. In this pa-
per, we point out that page migration techniques in UVM
implementations of current systems (like nvidia-uvm[28]),
though efficient for applications that only marginally exceed
the GPU memory capacity and/or for applications with reg-
ular memory access patterns, are woefully inadequate to
handle the working set needs of applications with irregular
access patterns that oversubscribe to GPU memory capac-
ity. Based on several insightful observations, we derive a
significantly better paging mechanism for UVM under such
over-subscribed scenarios, implement this on an existing

https://doi.org/10.1145/3456727.3463766
https://doi.org/10.1145/3456727.3463766

NVIDIA UVM solution, and experimentally demonstrate a
34% speedup on the average over the current nvidia-uvm.
Memory Oversubscription: Accommodating datasets larger

than the available physical memory capacity, is an age-old
problem that Virtual Memory has to deal with. While this
has been extensively studied for host memory-disk paging
optimizations, this problem when dealing with GPU-CPU
memories is relatively new. Till recently, applications and/or
language runtimes had to deal with the limited GPU memory
capacity by themselves - either run kernels which fit and/or
move data explicitly. However, UVM is expected to ease this
programming burden to blur the gap between CPU and GPU
memories going forward. However, current UVM implemen-
tations use either a simple demand paging mechanism, or
an access-counter based lazy mechanism (i.e. bring in only
after 256 accesses to a group of 16 pages) to avoid evicting
(and thrashing) some other more useful pages resident in
GPU memory. As we will show, when applications consider-
ably over-subscribe to the GPU memory , the current UVM
implementations result in excessive thrashing of pages and
very poor performance.

Memory over-subscription will continue to be, if not be-
come even more, important. In fact, even though the cost
of memory continues to decline, the increase in memory
capacity of GPUs (2.5x over the last four years) still cannot
satisfy the size of datasets (4% or even larger) [9, 12, 24].
Cost differences will allow easier scaling and deployment of
conventional DDR capacities on the host, compared to more
specialized high-bandwidth memories on the GPU. Appli-
cation sizes are also expected to increase drastically going
forward, requiring processing of huge datasets that will spill
over to CPU memories (and possibly even storage devices).
For this reason, many prior works [9, 12, 15, 27, 32] has also
used over-subscribed scenarios for large application motiva-
tions. This work specifically targets over-subscribed GPU
memory executions to provide a new runtime paging envi-
ronment for such scenarios, and is not intended to be used
for normal/under-subscribed executions.

Irregular Applications: Dealing with memory over-
subscription is relatively easier if applications have well
defined/regular access patterns. At the application level
(or in the compiler) itself, one could (statically) better
pack the data, and tile the computations for spatial and
temporal locality. Further, in the runtime, regularity and
predictability can be used to prefetch data ahead of need,
figure out better eviction algorithms, etc. As we will show
empirically, prefetching in UVM does do well, even for
over-subscribed scenarios, in regular applications. However,
irregular applications are not readily amenable to such
static and dynamic enhancements. In fact, prefetching can
worsen performance because of the poor predictability.

There are several important irregular applications (e.g.
graph applications in epidemiology [7], social networks [14],
web-search/internet [25], bioinformatics [2], etc.) [3, 6, 31],
while are well suited to GPUs for their parallelism but have
huge datasets that may not fit in the GPU memory, and are
also randomly/irregularly accessed. Such applications are
the intended target of this work.

Differences from Conventional Paging: While the problem

seems quite similar to conventional paging between main
memory and the storage device, there are some notable dif-
ferences. There are obvious differences in latency and band-
width of the components at hand, GPU-CPU memory vs.
memory-disk, to require fine tuning some of the mecha-
nisms. More important, the 2 notable differences that we will
exploit include (i) Current GPUs allow their cores to directly
reference and access locations on host memory through the
UVM system, without requiring those pages to be brought
into the GPU memory. In conventional paging, data is neces-
sarily brought to the memory from the disk before the CPU
access; (ii) Current GPUs also allow caching of the data (close
to the cores) brought from host memory, without needing to
adhere to the “inclusion property", i.e. what is in cache does
not need to be in GPU memory [23]. Based on these two
features, we can differently use the storage structures on the
GPU. Specifically, we will use the GPU caches to hold data
that captures temporal locality and the GPU memory to hold
data that captures spatial locality, rather than duplicate both
functionalities in both these levels of the hierarchy (thereby
saving precious space as well) for over-subscribed scenar-
ios. To our knowledge, there has been no such differential
exploitation, for paging in GPUs.

Contributions: Targeting irregular applications running on
over-subscribed GPU memory systems, this paper makes the

following important contributions:
e We note limitations in current UVM implementations

(nvidia-uvm), which incurs excessive page faults, with
pages evicted (early) before they are fully utilized. Prefetch-
ing worsens this problem for irregular applications.

e Based on these limitations, we identify execution char-
acteristics to better use the limited storage structures on
the GPU. It is better to track locality at finer granularities.
Further, if we examine the temporal (using LRU stack)
and spatial locality of the data accesses, the former can be
fulfilled with the GPU caches themselves, and is better to
devote the GPU memory for spatial locality instead. This
separation of responsibilities is a novel contribution of our
work, especially for GPUs.

e Consequently, we focus on identifying, predicting, and ex-
ploiting the spatial locality within pages for dynamic page
migration. We show that prior spatial utilization of a page,
before its eviction, is a good indicator of the future. To

track this utilization, without a hardware access control/-
tracking mechanism at that granularity in today’s systems,
we have implemented a compiler pass to instrument ac-
cesses. The runtime system uses these logs to estimate
utilization, and dynamically sets an adaptive threshold
(based on page fault rates) to determine migration. This
decision making is based on an analytic formulation of
different static and runtime parameters.

e We have implemented this compiler pass (on LLVM) and
runtime system (on nvidia-uvm) for the NVIDIA Turing
platform, into a system called DynaMap, which can readily
run off-the-shelf CUDA UVM applications.

e Experimentation on an actual system, with 7 irregular ap-
plications from different public suites, shows that DynaMap
provides on average, a speedup of 197% over the default
NVIDIA driver and 34% over the enhanced hardware ac-
cess counter based solution by NVIDIA.

2 UVM Implementation in NVIDIA GPUs

UVM creates a single address space across the DDR mem-
ory on the host CPUs and the GDDR/HBM memory on the
GPUs [20] for seamless data movement (via the PCI-e bus)
without requiring programmer intervention. The core run-
time responsible for UVM is nvidia-uvm, a kernel module
that is open source as part of the NVIDIA GPU driver. Pro-
grammers allocate memory regions on UVM via the cud-
aMallocManaged CUDA APIL. UVM then demand pages the
memory allocated within these regions to the device where
they are accessed (CPU or the GPU).

When the GPU accesses a non-resident location (cache and
memory), a page fault is raised and the driver interrupt ser-
vice routine (ISR) is invoked. The ISR performs the following:
(i) Fetches the faulting address from a hardware buffer where
concurrent faults from different threads are ’batched’ [16]
together. (ii) Moves the page group corresponding to these
faulting pages using DMA engines [21][29] to the GPU based
on the migration policy. The migration policy comprises
(a) system enforced policies [28], (b) prefetching using the
widely acknowledged [10] tree-based prefetcher and, (c) user
specified hints [23]. (iii) Evicts a group of pages (LRU based),
if memory space is unavailable on the GPU for the new page.
Note that this LRU list is ordered based on time of allocation
and not updated at time of access.

We refer to the above default demand paging system as
Eager. NVIDIA also supports a less eager mechanism, where
hardware counters are used to track access counts at 64KB
(16 pages) page group granularity, with a static threshold (of
256) used to trigger migration (we refer to it as LazyGrpHW).
A recent work [11] extends this to use page granularity coun-
ters with adaptive thresholds. We will evaluate this scheme
(LazyPgDynSW) with a software implementation, as it is not
realizable in current hardware.

3 UVM under memory over-subscription

To illustrate the deficiencies of UVM under over-
subscription, we conduct experiments on a representative
set of applications by over-subscribing the GPU memory (see
section 6 for setup). We set a nominal 100% over-subscription
ratio! by allocating extra data in the GPU driver, so that
availability to each application decreases commensurately.
As Figure 1a shows, we see considerable slowdowns, > 100X
in several applications because of limited memory capacity
on the GPU. The primary reason for this performance degra-
dation is the (expected) thrashing of pages between the host
DRAM and the GPU’s DRAM. This is further corroborated by
examining their memory access patterns. While applications
with regular patterns (Figure 1b), suffer minor slowdowns, ir-
regular access pattern (Figure 1c) applications exhibit worse
spatial locality (distinct pages are accessed in a short time)
and temporal locality (high temporal separation for faults to
the same page) and incur a high degree of thrashing.

There are two more factors which can worsen the per-
formance, ineffective prefetching and premature eviction.
Prefetching may be harmful for irregular applications un-
der over-subscribed scenarios. As shown in Figure 1d, the
performance of PageRank improves by 41% when we dis-
able prefetching. Not only are many of the fetched pages
not very useful, they occupy precious space evicting some
other more useful pages. This becomes challenging when
dealing with irregular applications where the what/when to
prefetch question is a lot harder to answer. Besides, prema-
ture eviction can exacerbate thrashing. Even though prior
research [10, 16, 17] has proposed efficient ways for page
evictions, large working sets, coupled with large granularity,
can cause less useful in-demand pages to evict more useful
page in the over-subscribed GPU memory. We see evidence
in Figure 1e where the evictions normalized to number of ref-
erences increase with over-subscription ratio. Also, we plot
the frequency of references to the distances in the LRU stack
below the memory capacity limit, i.e. these would be faults
because the ones on the top of the stack will be in memory
for LRU, in Figure 1le. we plot the CDF of this for different
over-subscription ratios. As we see, the over-subscription
skews the curves to the left as the over-subscription ratio
increases. This clearly shows evidence of earlier eviction
of those units than what the optimal eviction (the evicted
units should percolate deep down in the stack) would have
done by trying to retain those units longer in memory (be-
fore eviction). In summary, while UVM is adequate for cases
where there is sufficient GPU memory, there is a severe per-
formance penalty under over-subscription, especially when
application references are sparse and irregular.

1Over-subscription ratio is defined as (problem size - memory capacity) /
memory capacity.

Page Number

Page Number
7 +6.708e7

()
6.67020 ’
6.67018 i |
6.67016 | 4000
6.67014 '
10 6.67012 ! !
6.67010 ' |
s [}

6.67098

11.14 1,66 l .
| o I 66709 |

ope
Slow Down 5000
20

= Regular

15| mm irregular

3000

2000

"

-
i

1000

i
i

* W e > 6700
(a) Performance degradation O SRcoumt 010t
with 100% oversubscription (b) Black Scholes (c) Page Rank
(Regular) (Irregular)

Figure 1: U

L1 Cache Size === L2 Cache Size === Memory Capacity

w07 648 Cache Block

100 102 104 108 10°

107 4K Page \
> 10°

100 102 104 108 10°
1

o’ 64K Page ‘L
= 10°

10° 10? 10% 10° 10°
LRU Stack Distance
Figure 2: LRU stack distance of over-subscribed scaled-down

Gaussian application for different granularities

4 Requirements for Over-subscribed

Scenarios

As observed, UVM brings in pages eagerly, thereby evict-
ing pages that are not fully utilized, and causing severe
thrashing under over-subscription. One way to address this
“eagerness” problem is to delay the migration [11], wherein
pages can be soft-pinned on the host memory, and the GPU
accesses for these pages can be tracked by access counters,
(since NVIDIA Volta [28]), with a threshold which when hit
automatically migrates the pages to the GPU. However, we
have seen that the counters are at a 64 KB granularity, rather
than for individual page level tracking, and the threshold
is pre-determined (set to 256) in the NVIDIA driver. While
arresting the eagerness, such an approach still does not ad-
dress many requirements. As we will show: (i) A granularity
of 64KB for tracking these accesses is too coarse and misses
out on the utilization of individual pages when determining
when/whether to migrate. (i) Access counters (even at the
page level) do not distinguish between accesses to different
parts of a page, i.e. the same cache block of a page could be
referenced multiple times (temporal locality) and the access
counts cannot differentiate those from accesses to different
parts (spatial locality) of a page. (iii) The eagerness factor
for migrating pages should depend dynamically on the GPU
memory pressure. We illustrate these deficiencies below, and
use these results to derive requirements for a better strategy.
4.1 Granularity of page tracking

To amortize the cost of tracking and leverage efficiencies of
bulk data transfer, current page management schemes (hard-
ware counter based) and prefetching mechanisms in NVIDIA

100% over-subscribed
" 0.24 evictions/memory access
200% over-subscribed

0.30 evictions/memory access
300% over-subscribed

0.34 evictions/memory acce:

Normalized Runtime

30.0%

= Prefetching
= Disable Prefetching
2.27

5.0% MM

o 10000 20000 30000 40000 0000
Distance below memory capacity in 64KB units

(e) CDF of the number of

unique 64KB referenced since
evictions

(d) Prefetching disabled with
100% over-subscription ratio

20

under over-subcription

drivers track accesses at a page or higher granularity. This
is based on a reasonable expectation that neighboring pages
are likely to be accessed in the near future. While this may
be true for regular memory access applications that sweep
data structures, the same cannot be said of irregular appli-
cations that are quite sparse and random in accessing their
data structures. To illustrate this, we study the LRU stack dis-
tance [4] (a measure of temporal locality) of pages accessed
by an irregular application with different page granularities.

As seen in Figure 2 for the same irregular application
(Gaussian [26]), the LRU stack distance plots shift consider-
ably to the right (i.e. worse temporal locality) as the granu-
larity of tracking increases from a cache block (64 B) to a 4K
page and a 16 page (64 KB) granularity. This can be explained
as follows. If the application accesses every byte of the cor-
responding granularity in a spatially contiguous fashion, the
stack distance would likely be similar across the granulari-
ties. However, when not every byte is accessed - especially as
the granularity gets large (e.g. 64 KB) and the access pattern
is sparse, the LRU stack distance gets larger because there
would be addresses/bytes in the stack that are closer to the
top of the stack (since they fall within the same unit as some
other byte in the same unit that is recently referenced) than
the currently referenced address, This problem accentuates
with the sparsity of references (irregular accesses) and the
coarser granularity of tracking.

The 3 vertical lines of the figure correspond to L1, L2, and
memory capacity of the GPU. We see that at the cache line
granularity, the first working set (the first knee where the
curve drops steeply) occurs at a stack distance which can fit
in the size of the GPU L1 cache. With the page granularity,
it takes up to L2 capacity to fit this working set. However,
with 64K granularity, neither L1 nor L2 can fit the working
set even if they were to use a fully associative LRU cache.

These results point to the need for a finer granularity of (i)
tracking accesses to determine what we want to retain and
what we want to evict, and (ii) determining the specificity of
bringing in data from the host to the GPU to avoid bringing
in “non-referenced" data. While we would like to go as low as
a cache block (64B), the problems are (i) address translation
at that granularity cannot be supported in hardware (due to

105 —Cache Main Memory

Frequency
8

5

100
80%

a
60%

3
0%
104 L " 20%

[J 02 o 06 08 10

" Spatial Utilization

1000 2000 3000
Unique Page

(a) Distribution of spatial
utilization of pages migrated to
GPU memory before eviction

(b) Location of service for
low-utilized pages

—Cache Main Memory

3000 4000

100%
80%

60%

2

0

20%

]

o 1000 2000
Unique Page

(c) Location of service for
high-utilized pages

of spatial utilization

Figure 3: Spatial utilization of pages for the Gaussian application with 200% over-subscription

20

—— measured page fault rate —— measured page fault rate

w“ [A ‘\A ‘\“
I

=
«a

Number of pages faulted
[
°

150 N Il I
. 100 JL‘J‘JLV‘SWLJ‘N | MM H“WL”
ot sy 550‘\\“ vy \“' N "“" /
\
0% 1000 2000 3000 4000 05— 10606 20000 30600 40000
Time (ms) Time (ms)
(a) NN (Regular) (b) PageRank (Irregular)

Figure 5: Measured page fault rate
high overheads), and (ii) becoming more latency constrained
(not exploiting higher bulk data transfer bandwidths) for
moving units between host-GPU. Our solution, described
later, will still track accesses at cache block granularities, so as
to be very discretionary about what to bring in and evict, but
at the same time transfer and map at page granularities when
migration is needed, providing a good trade-off between the

cache block and 64KB extremes.
4.2 Capturing spatio-temporal access
characteristics

While hardware access counters do provide a direct mea-
sure of estimating temporal locality, they only provide an
indirect way of inferring spatial locality, i.e. right shift of
the higher granularities in Figure 2 is a consequence of poor
spatial locality. We corroborate this observation of spatial
locality for the same Gaussian application in Figure 3a which
shows the distribution of spatial utilization of pages migrated
to the GPU before their eviction. As seen, there is a large
number of pages with very low spatial utilization, but are
nevertheless migrated to the GPU. In fact, these are just a
couple of cache lines within a page, which would automati-
cally get cached in the GPU’s caches, and do not even need
to be present in GPU memory? This is clearly the case when
we examine where requests to these pages are serviced from
in Figures 3b and 3c. We see that on average 91% of the re-
quests for low utilized pages are serviced from GPU caches
(Figure 3b) while for high utilization pages they are serviced
equally from both the GPU memory and caches (Figure 3c).
This observation suggests a very different way of deciding
what pages to migrate to GPU memory, and how to service

2Note that NVIDIA GPUs allow data from host memory to get cached
without requiring the corresponding pages to be brought into its memory
[23].

the remaining pages: migrate pages where a large number
of its cache blocks will be utilized (i.e. with good spatial
locality), and leave pages with low utilization in the host
memory without migration and rely on the GPU caches to
exploit the temporal locality to service those requests. In
other words, we should use the GPU caches for leveraging
the temporal locality in the application (and not put the cor-
responding pages in the GPU memory), while we will use the
GPU memory for those pages with high spatial locality. This
is a novel way of using the different layers of the memory
hierarchy to optimize for different kinds of locality, as op-
posed to optimizing for both spatial and temporal locality in
each layer. The GPU caches automatically identify and retain
(using LRU) high locality data in the temporal dimension,
and we only need to identify and retain (in GPU memory)
high spatial locality/utilization data.

4.3 Predictability of Spatial Utilization

A natural question next is how to estimate the spatial
utilization of a page, especially for sparse and irregular appli-
cations. To answer this, we measure the spatial utilization
of a page when it is brought into the GPU memory (current)
and the time when it is brought in after an eviction (next) and
then calculate the probability of this correlation. We observe
that the current and next utilization for a page during its res-
idence in the GPU are highly correlated as shown in Figure
4. This suggests that if we could somehow track the utilization
of a page when it is brought into memory the first time, even
if it was a bad decision, we could use this information for the
future to avoid bringing it in if the value is low.

4.4 Dynamically adapting to memory

pressure

While the above arguments help guide the eagerness factor
in controlling when and whether to migrate a page based on
the spatial and temporal locality, it is equally important to
take into account the memory pressure at that point in time.
Applications can go through widely varying phases, with
corresponding page fault rates widely different, as Figure 5b
shows. Consequently, the cost vs. utility of migrating a page
to the GPU memory also varies across these phases. When
the page fault rate is high (higher memory pressure), we

would like to be more aggressive in determining the utility
of a page as opposed to when page faults are rare. Similarly,
proactive page management actions like prefetching need
to be more careful and/or even turned off when memory
pressure is high. Employing a static/single threshold value
(i) across all applications (may suffice for NN as depicted
in Figure 5a but not for PageRank) and (ii) for their entire
execution, to determine the eagerness factor for migration
to GPU memory, can be highly sub-optimal.

5 DynaMap

We use the following guidelines in building our UVM
system for over-subscription: (i) We should not be too eager
in migrating pages on the first reference; (ii) the migration
should be done for more spatially useful/utilized pages; (iii)
specifically even if a small part of a page is reused multiple
times (temporal locality) we should simply fetch those cache
lines into the GPU cache rather than the page into the GPU
memory, and reserve GPU memory for those pages with
higher distinct cache lines referenced (spatial locality); (iv)
this utilization should be tracked at a page granularity rather
than at a macro (64 KB in NVIDIA’s hardware solution) level;
(v) we can reuse prior utilization history of a page to predict
future utilization; and (vi) a static threshold of this utilization
will not suffice to determine the migration since there is
dynamic variability in memory pressure.

We next design and develop a complete UVM runtime
system, called DynaMap, using these guidelines to be read-
ily deployed on current NVIDIA GPUs, to accommodate
applications out-of-the-box without any programmer inter-
vention. It should also be easy to port to other GPUs. Our
system has 3 main parts: (i) a compiler pass over the applica-
tion sources to insert instrumentation code to track spatial
locality within pages, (ii) a cost model that dynamically de-
termines threshold for page utilization to trigger migration,
and (iii) a runtime modification to the NVIDIA device driver
that gathers page utilization (from (i)) to predict future uti-
lization, and dynamic thresholds (from (ii)), and accordingly
decides whether or not to migrate each page upon a fault.

5.1 Compiler-inserted instrumentation to

track utilization

To calculate the spatial utilization for each page during
execution, we need to track the addresses accessed by each
load or store - at the cache line granularity. However, the
hardware itself tracks accesses at only higher granularities
(in NVIDIA [28] this is done at 64KB or 16 page granularity).
Even on host CPUs, accesses (using reference bits in the page
table) are tracked at only a page granularity, not providing
utilization within the page. Setting permissions to trap on
every page access to track cache lines can lead to considerable
overheads - it takes roughly 20us to simply invoke and return
from a page fault handler with no data transfer.

Instead, we employ an instrumentation approach to per-
form access tracking at a cache line granularity. This instru-
mentation has to be extremely efficient so as to not introduce
significant overheads that defeat its purpose. We use the com-
piler for the GPU to insert highly optimized instrumentation
code for this purpose. We add a LLVM middle-end [19] pass
to patch instrumentation code after each load and store in-
struction to track the addresses that are accessed. This code
stores the information onto a set of data-structures that we
call as the page statistics table (PST), which is itself allocated
and pinned to the host memory. The GPU runtime system
is informed of the address of the PST at the start of pro-
gram execution. The PST is composed of two tables. The
first table tracks data structure level allocations as defined
by the programmer. It contains the start-address, end-address,
size, cache-table-ptr of each data region. Each row in this
table points (cache-table-ptr) to a secondary table that tracks
the usage of each cache line allocated within every page
accessed by this data region. The secondary table is simply
a list of elements (one per cache line) counting their usage.
Size of each row in the primary table is 32 bytes, and the
size of each row in the secondary table is 1 byte. After each
load/store operation, the inserted instrumentation code first
looks up the first level table based on the data region ac-
cessed and determines the pointer to the secondary table. It
then sets the corresponding entry byte of the cache line in
the secondary table. The runtime system can subsequently
examine this secondary table to determine the utilization of
each page before deciding its placement. As observed earlier,
if we have done this before, we have good predictability of
future utilization, to avoid the re-tracking of these accesses.
Optimizations: In order to minimize the instrumentation over-
heads, we have implemented several optimizations:

e pin-to-cpu: Pinning and allocating the PST on the CPU
memory allows precious GPU memory to be com-
pletely used by the application to not worsen the over-
subscription.

o read-and-bypass: Since writes are costlier than reads,
rather than just overwriting (setting) the secondary ta-
ble byte upon an access of the corresponding cache line,
we first check if it is already set and, if so, we avoid the
subsequent write.

o early-stop: Once the runtime has determined where a cer-
tain page has to be mapped, it sets a flag for the instrumen-
tation code to skip tracking for those pages. This avoids
incurring the tracking costs for those pages.

o batch update: Multiple updates to the PST can be batched
together to reduce the number of operations and thereby
amortize the costs. At the instruction level the compiler
can identify load and store instructions that access the
same memory address to batch those updates in the PST,

eliminating some of the redundant updates to those en-
tries [8]. Further, by exploiting conventional latency hid-
ing techniques of the GPU, updates to the PST can also be
batched at the warp/block level. CUDA kernels are usually
written in a form where global memory is accessed based
on offsets of block and thread indices. The compiler can
identify such access patterns and tweak the instrumenta-
tion code to make a single warp / block / thread perform
the update for a bunch of neighboring warps / blocks /
threads. Other warps need not be blocked consequently,
and can continue their execution meanwhile. A decrease
in accuracy is expected by batching in-flight instructions

/ warps that are not yet complete. To minimize this, we

find that a small batch size of 4 warps provides good per-

formance outweighing its deficiencies.

The instrumentation costs can still be considerable, 40 PTX
instructions and 10 LD/ST instructions for a single update
to the PST and taking around 6000 cycles, but note that (i)
they will be incurred only in over-subscribed scenarios and
(ii) the benefits can overshadow these overheads in such
situations as will be shown in our evaluation. The size of
PST is D/L bytes (D: data-set size, L: cache line size) and is
always allocated on the host memory. Allocations range up
to 192 MB for the applications that we evaluated.

5.2 Light-weight runtime system

Degree of thrashing \

,
D\g‘a""c ! AccPST PageMap | |
age Pin the
Ma . ing 1 Calculate page Update page Et:‘CP: ;ages |
pping : utilization rate for ———{ mapping based on > Update GPU |
1 faulting pages the Cost Model cpu p:ge table !
. !
Normal | True !
Procedure - - - - o= 4= - - mmmmmm e ’
! ~

/ El Fetch content from

hardware buffer

The faulting pages have

been evicted or not False
1 i g '
Invalidate TLB & update GPU Migrate & prefetching pages

Pick pages from the
LRU list and evict
\ .
\'[able for the evicted pages Update GPU page table _/

Migrate & Prefetch

True

1
1
1
1
1
1
1
1
1
I

Figure 6: Enhancements in nvidia-uvm for DynaMap

There are 2 main functionalities in this system: (i) log-
ging and collecting the page access statistics recorded by
the instrumentation code, and (ii) using the statistics to per-
form adaptive page migration/replacement. We have imple-
mented this in the kernel module called nvidia-uvm as part
of the NVIDIA GPU driver (v440.33). The basic flow of han-
dling a page fault inside nvidia-uvm is as shown in Figure 6
(highlighted by a red-box). When a page-fault is raised on
a page group (2MB granularity), the ISR for the page fault
migrates and prefetches neighboring pages. If there is no
free memory available, the runtime system picks the LRU
page group and evicts pages that are present in the GPU
memory. More details regarding this can be found in the
uvm_va_block_service_locked function in the driver.

Two interfaces are added to this kernel module (shown
in blue) - (i) AccPST: to access the PST, and (ii) PageMap:

to update page mapping. The AccPST interface looks up
the PST and calculates the spatial utilization of a page. The
PageMap interface updates the page mappings of any page
as determined by the dynamic thresholds described next.

5.3 Adaptive Eagerness Threshold

The decision to migrate a page (to GPU memory) must
also be cognizant of the dynamic pressure experienced by
the memory system due to over-subscription. We use the
dynamic page-fault rate (foyrrent), at any time, as tracked
by the device driver as a direct measure of this memory
pressure/over-subscription. We need to weigh the costs of
leaving a page on the host memory vs. the costs of bringing in
that page to the GPU memory in order to determine whether
to migrate the page to the latter. The table below defines
the terms and the corresponding values on the experimental
platform, that we will use in the discussion.

Variable Description Value

x Number of bytes accessed 0-4096 bytes
L Cache line size in bytes 128 bytes
Sfover Expected number of evictions eq.(2)

P Page size 4096 bytes
Be Bandwidth of CPU memory 12.8 GB/s
Bg Bandwidth of GPU memory 336 GB/s
Bpcr Bandwidth of PCI-e bus 16 GB/s

H Page fault handling time 20 us

The cost of accessing x bytes in a “faulting” page that is
left on the host memory (and not brought into the GPU) can

be expressed as:

Cory = [x/LT1+«L [x/L]=*L N |_£_| o H (1)

Be Bpcr L

The first 2 terms represent the costs of reading the x bytes
from the host memory and transferring them over the PCI
bus respectively. The third term represents the cost of page
fault handling H, where 7 represents the number of faults
that would be incurred to this page (since we are bringing
cache lines at a time into the GPU caches).

On the other hand, if the entire page was brought into
the GPU memory, the cost of accessing those bytes would
have taken H + BL + Bi + BL, barring other issues. The

G C PCI
last two terms are the cost of moving the entire P bytes
of the page to the GPU, the second term representing the
cost of accessing x bytes from GPU memory, and H denotes
the single page fault cost. However, this would be the case
only if there is no eviction of another useful page in GPU
memory (premature eviction) caused by this migration. Early
on, when the application starts on the GPU, its page faults
will not cause any evictions from its memory. Let us denote
this as f,n4er, 1.€. page fault rate before evictions start. We
would like page fault rate at any subsequent time, foyrrent
to be close to fynder, implying that we are not incurring
excessive capacity-related faults (i.e. evictions are not signifi-
cant). However, over-subscription to GPU memory can cause
evictions to increase, and this increase at any time (foper),
relative to the base page fault rate (f;nqer), can be estimated

as follows.

fover = (fcurrent _ﬁnder)/ﬁmder (2)
fover 1S thus an estimation of the number of additional
faults/migrations due to premature eviction induced by de-
mand migrating the currently referenced page from the CPU
to the GPU. Hence, such a migration effectively results in
1 + fover faults, and the total effective cost of migrating that

page to the GPU can be calculated as:
Cor = 2=+ (14 fouer) # [H+ P+ (2= + =)] ()

B Be Bper

To dynamically determine whether to migrate the faulting
page or not, we simply chose the option that has the lower
cost (i.e. Ccpy or Cgpy). The importance of tracking and
accounting for all these factors is depicted in Figure 7 which
plots Ccpy and Cgpy as a function of spatial utilization x,
for different levels of over-subscription.

As can be seen, when there is no thrashing/over-
subscription, it makes sense to be more aggressive to-
wards migrating the page from the CPU to the GPU.
However, as over-subscription levels increase (foper),
the cross-over point of costs shifts more to the right.
This clearly shows the need to track these dynam-
ically and accordingly make the migration decision.

On a page fault to a page s
that has already been evicted .o — cou fowmo — oty
before, we determine the spa- Corv Torer™2 —— Corurfo
tial usage (in bytes) x for that Em
faulting page using the AccPST
interface. In addition, the dri- ™ —]_,_

ver continuously measures the %z w0 | o we o0
page fault rate (fyrrens) and cal- Figure 7: Ccpy vs. Copu
culates the f5,er metric to ascer- COS"S' for x bytes accessed
tain the current pressure on the for different fooer rates.
memory system. It can then calculate the two costs, Ccpy
and Cgpy, and decide whether to migrate the page.

6 Evaluation

Application | Description

BFS (G) Breadth First Search

SSSP (G) Single-Source Shortest Path

NW (R) Needleman-Wunsch, DNA sequence alignment
Gaussian (R) | Gaussian Elimination

ATAX (P) Matrix Transpose and Vector Multiplication
PageRank (H) | Websites ranking algorithm

BST (H) Binary Search Tree

Table 1: Benchmark (G: graphBIG [22], R: Rodinia [5], P:
PolyBench [13], H: HeteroMark [30])
GPU CPU
GeForce RTX 2060 Intel Core i7
Cores 30 SMs, 64 CUDA cores/SM 4 cores, 2 threads/core
Clock Max clock 1680 MHz 3.4 GHz
Memory | 5935 MB GDDR6, 336 GB/s 32 GB DDR3, 12.8 GB/s
Cache L2: 3 MB, L1: 96 KB/4 Blocks 32/256/8192 KB
Bus PCle 3.0 x16, 16 GB/s
Table 2: System Configurations

6.1 Experimental Setup
Workloads: We evaluate our proposal, together with cur-
rent approaches, on some well-known irregular applications
as listed in Table 1.
Platform: Table 2 describes the actual GPU platform run-
ning Ubuntu 18.04.4 (Linux 4.15.0) on which our evaluations
are performed. The default nvidia-uvm kernel module is re-
placed by the modified one running DynaMap.
Methodology: We target off-the-shelf CUDA applications
and modify them to use cudaMallocManaged. We compile
these applications using LLVM to incorporate the instru-
mentation code for tracking spatial usage. Since our goal is
to reduce thrashing under over-subscription, unless speci-
fied otherwise, we set the memory over-subscription ratio
at 200%. We also vary over-subscription ratios.

Schemes: We evaluate the following:

e Eager is the default on-demand paging system inside
NVIDIA UVM with prefetching enabled.

e Eager-woPref is the default on-demand paging system
inside UVM with prefetching disabled.

e |azyGrpHW is the state-of-the-art on NVIDIA GPUs. This
uses hardware access counters to track pages at 64KB
granularity (16 pages) and migrates pages when the count
goes beyond a fixed threshold value of 256.

e PinHost wherein all the allocated data is pinned to the
CPU memory using cudaMemAdvise.

e LazyPgStatSWis a policy similar to LazyGrpHW with the
tracking and migration done for individual pages at 4K
granularity. We fix the threshold value statically at the
best performing value for each application after varying
them for 2, 8, 32, 64, 256. This is emulated in software
since page level tracking is lacking in hardware today.

o LazyPgDynSW is the policy proposed in [11] with granu-
larity of page tracking at 4KB and migration based on
dynamic thresholds as determined by equation (1) in [11].
This is also emulated in software.

e StaticMap is a static policy that tracks spatial usage and
migrate pages with a specified threshold (=0.5).

e DynaMap is our proposed solution which (i) tracks page
accesses at cache block granularity, and (ii) dynamically
adapts to memory pressure as described in Section 5 to
perform page level migration.

6.2 Comparing the Schemes
Figure 8 shows the speed up of the applications for the

considered schemes, over LazyGrpHW.

Improvement over Baselines: The possible mechanisms in to-

day’s systems are Eager, Eager-woPref and the more recent

LazyGrpHW. Of these, due to the thrashing effects we ob-

served earlier in section 3, the Eager and the Eager-woPref

policies perform the worst of the lot as they eagerly migrate
pages, leading to early evictions, without being aware of

Now
w (-}
e
z.l'sza.SZ

Eager N LazyPgStatSW
Eager-woPref EEE LazyPgDynSW
LazyGrpHW = DynaMap

= PinHost

Speed up
= = N
o & o

e
n

38
&8 % & 58
BFS SSSP NwW Gaussian ATAX PageRank BST

Figure 8: Normalized Speedup of UVM applications with
200% over-subscription ratio (normalized to LazyGrpHW)
their spatial utility for the GPU. In fact, in a few applica-
tions, these two policies do not even run to completion - we
mark such cases by <0.01 in Figure 8. On average, DynaMap
outperforms Eager by 197% across all the applications which
run to completion.

To better understand the performance of DynaMap over
the state-of-the-art LazyGrpHW, we compare the rate of mi-
grations/evictions of pages in these two schemes for the
PageRank application in Figure 9 during its execution Re-
call that there are two key differences between these two
schemes. First, the granularity of tracking in LazyGrpHW is
at a coarse 64KB granularity, while in our scheme we track
pages at finer 4KB sizes. Second, LazyGrpHW tracks the
temporal use of the 64KB unit and migrates it when it goes
beyond a threshold - regardless of cache blocks accessed
(possibly could be a small number that are repeatedly ac-
cessed) - as opposed to our scheme where we migrate based
on the spatial usage of a page. As we can see, under Lazy-
GrpHW, once the GPU memory is oversubscribed, there is
frequent migration of pages into the GPU. Not only are units
being constantly fetched, these fetched units are much larger
(64KB) as opposed to our DynaMap policy where small 4KB
pages are trickling in based on their predicted spatial use.
Apart from the cost of migrating much larger volumes of
data, such migration also leads to more frequent early evic-
tions. Upon measuring the average number of evictions per
page, we see that under LazyGrpHW every page is evicted 508
times, as opposed to DynaMap where they are evicted only 21
times, making DynaMap achieve a speedup that is on average
34% higher across the 7 applications.

Spatial utilization vs. Access counts Thrashing in LazyGrpHW
may be due to the large tracking granularity or due to having
a static threshold for access counts. Digging deeper, we com-
pare it against LazyPgStatSW where the tracking of pages
is at 4KB while still using access count thresholds. Compar-
ing the two, we see no clear winner - LazyPgStatSW does
better than LazyGrpHW in NW, but much worse in Gaussian,
and comparable in others. More importantly, in Figure 10
compared to DynaMap, the page fault rate of LazyPgStatSW
is higher, indicating significant page migrations/evictions
even with fine-grained tracking of pages. One may then
wonder whether a dynamic threshold for the count would

—— LazyGrpHW ---- DynaMap

Avg number of evictions for DynaMap: 21
104 Avg number of evictions for LazyGrpHW: 508

Number of 4K pages migrated

10°
00 05 10 15 20 25 3.0 35 4.0

Figure 9: Migration / Eviction rate for Paglglz&{ank
provide the same benefits as DynaMap. We have implemented
LazyPgDynSW from a recent work [11] where page migration
is based on a dynamic threshold of access counts. Though
this does somewhat better than choosing static thresholds,
DynaMap still performs significantly better, with a speedup
that is 37% higher (compare page fault rates in Figure 10).

This clearly shows that under over-subscription, (i) page
level policies are better than those with higher granularities,
and (ii) solutions that are based on temporal locality have
considerable thrashing even with dynamic thresholds, justi-
fying our motivation to track and migrate based on spatial
usage of pages.

Better than pinning always on host: One may wonder if the
over-subscription is so bad, then we may have as well left
all pages on the host memory, never migrating them. Such
an approach, denoted as PinHost, does significantly better
than the 2 always migrate baselines considered above (Eager
and Eager-woPref). It is also comparable to the LazyGrpHW
mechanism, doing better than the latter in some cases and
vice-versa in others. For a few applications (BFS, SSSP),
PinHost comes quite close in performance to our DynaMap.
However, on the average, DynaMap still beats PinHost by
about 21%. The performance variance across the applications
for this behavior can be explained by the differences in the
sparsity of accesses across these application. In BFS and SSSP,
as opposed to applications like PageRank and BST, most of
the pages have low spatial use. Consequently, it is not a bad
choice to keep all the pages on the CPU memory. In fact for
BFS and SSSP the DynaMap policy also chooses to keep most
of the pages on the CPU memory. However, for other applica-
tions, keeping all pages on the CPU can be more expensive as
there are quite a few pages with significantly higher spatial
usage. This clearly shows the value of allowing pages with
high spatial use to be brought into the faster GPU memory.

The above results reaffirm our view that we need to be
defensive in allowing pages to flow into GPU memory espe-
cially when it starts to be over-subscribed. Instead of having
policies that allow all pages to come into the GPU or pins all
pages in the CPU memory, our adaptive strategy brings in
pages with good spatial utility.

Adaptive vs. Static utilization threshold: While DynaMap
uses a dynamic spatial utilization threshold, a natural
question is whether a static threshold value would suffice.
To demonstrate the need for an adaptive threshold, we

— DynaMap
—:- LazyPgStatSW
i -~ LazyPgDynSW

Fault Rate
BoR
o a
S o

o
°

1
W N RE
T ‘..MH. Time(ms)
5000 10000 15000 20000 25000 30000 35000 40000

Figure 10: Page fault rate for DynaMap and LazyPgStatSW

3.0

0

v
n i -
o

2.5

22.0
T1s
o

&1.0

0.5

BFS SSSP NW Gaussian ATAX PageRank BST

Figure 11: Comparison between DynaMap and StaticMap

3.0

100% WEm 200% WEE 300%
2.5

22.0
T1s
2

»n 1.0

0.5

00 BFS SSSP NW Gaussian ATAX PageRank BST
Figure 12: Performance of DynaMap under 100%, 200% and
300% over-subscription (normalized to LazyGrpHW)
compare DynaMap to a set of static policies (StaticMap)
parameterized by predetermined threshold values of 20%,
50%, and 90% of spatial utilization of a page. As seen in
Figure 11, the overall performance of the static and dynamic
policies are very similar for some applications like BFS,
SSSP, and Gaussian. This is because, for these applications,
most of the evicted pages have low spatial utilization
and thus all of them are prevented from coming to the
GPU whether it be dynamic or static thresholds. However,
for PageRank, StaticMap performs 76%, 89%, and 110%
worse than DynaMap for the 3 different threshold values
respectively. The performance worsens as the value of the
threshold increases, implying we should be less rigid about
migrating a page to the GPU. On the other hand, for NW,
StaticMap performance is 56%, 51%, and 41% worse than
DynaMap, implying we should be more rigid in migration as
the early eviction problem in this application is worse.
Over-subscription ratios and software-only limitations: As

shown in Figure 12, under lighter over-subscriptions (100%),
except for ATAX, access counter based LazyGrpHW shows
better performance than DynaMap (16% on average). Under
such conditions, the profiling overheads outweigh any per-
formance gains from the page placement. However, smarter
page placement outweighs the overheads under moderate to
heavy over-subscription ratios, providing 34% and 41% (on
average) improvements in speedup for 200% and 300% over-
subscription respectively. To obviate such overheads, we can
profile the application separately and use it to perform page
mapping in a subsequent execution. In such cases, DynaMap
improves performance further by 38% on average (for
200% over-subscription).

6.3 Summary
DynaMap establishes the need to track sub-page spatial us-

age and set thresholds dynamically in performing the page
migration. The results clearly suggest the need for exploit-
ing spatial utilization within a page, and dynamically setting
a threshold for this based on current memory pressure, to
determine page migration as done in DynaMap. DynaMap is
implemented in software only because current hardware
does not expose the facility to track fine-grained accesses,
making a compelling case for incorporating such tracking
information in future hardware, e.g. using a bit map of ref-
erenced cache blocks in page table entries/TLBs that would
take 32 bits per page, which is not very expensive.

7 Related Work
Ganguly et al.[10] propose locality-and-prefetcher-aware

pre-eviction policies to deal with over-subscription. ETC [17]
improves GPU performance under over-subscription using
proactive eviction, memory-aware throttling, and capacity
compression. Li et al.[18] develop compiler-runtime collab-
orative strategies to adaptively choose implicit and explicit
data transfer to deal with problems of unified memory. Kim et
al.[16] increase the batch size to amortize fault handling time
and overlaps page evictions with CPU-to-GPU migrations
to improve performance under over-subscription. Neverthe-
less, the amortized page fault handling time is still expensive
to the system and it cannot eliminate page thrashing com-
pletely. A recent work [11] proposes a dynamic threshold
based policy based on access counters. We compare and eval-
uate against a software implementation of it (LazyPgDynSW)
and show our dynamic spatial utilization based approach
provides much lower thrashing behavior.

8 Concluding Remarks

DynaMap is a novel way to migrate pages for irregular
applications that over-subscribe GPU memory. It is based on
a unique way of differentially exploiting the temporal and
spatial localities, with only the latter needing consideration
for page placement. Since there is no hardware support today
for tracking spatial locality within a page, we have resorted
to a software only instrumentation approach, which adds
considerable overheads. Though these overheads are out-
weighed by the benefits of better page placement in over-
subscribed settings, DynaMap is not meant to be a panacea for
all applications nor all over-subscription factors. This work
has also suggested the need for incorporating fine grain
access tracking and exposing appropriate interfaces to the
software, to reduce the overheads in DynaMap, and make it
applicable across more diverse scenarios.

9 Acknowledgements

This work was supported in part by CRISP, one of six
centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA and NSF grants 1909004,
1714389, 1912495, 1629915, 1629129, 1763681.

References

[1] Guru 3D. 2020.

(10

[11

[13

(14

[15

—

-

—

—_

[l

[

GDDR6 significantly more expensive than
GDDR5. https://www.guru3d.com/news-story/gddré6-significantly-
more-expensive-than-gddr5.html

Stephen Altschul, Warren Gish, Webb Miller, Eugene Myers, and David
Lipman. 1990. Basic Local Aligment Search Tool. Journal of molecular
biology 215 (11 1990), 403-10. https://doi.org/10.1016/S0022-2836(05)
80360-2

Martin Burtscher, Rupesh Nasre, and Keshav Pingali. 2012. A quanti-
tative study of irregular programs on GPUs. In 2012 IEEE Interna-
tional Symposium on Workload Characterization (ISWC). 141-151.
https://doi.org/10.1109/IISWC.2012.6402918

Calin CaBcaval and David A Padua. 2003. Estimating Cache Misses
and Locality Using Stack Distances. In Proceedings of the 17th Annual
International Conference on Supercomputing (San Francisco, CA, USA)
(ICS °03). Association for Computing Machinery, New York, NY, USA,
150-159. https://doi.org/10.1145/782814.782836

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A Bench-
mark Suite for Heterogeneous Computing. In Proceedings of IEEE In-
ternational Symposium on Workload Characterization (IISWC).
Stephen V. Cole and Jeremy Buhler. 2017. MERCATOR: A GPGPU
Framework for Irregular Streaming Applications. In 2017 International
Conference on High Performance Computing Simulation (HPCS). 727-
736. https://doi.org/10.1109/HPCS.2017.111

Thomson Comer. 2020. Accelerating Geographic Informa-
tion Systems (GIS) Data Science with RAPIDS cuSpatial and
GPUs. https://medium.com/rapids-ai/acclerating-gis-data-science-
with-rapids-cuspatial-and-gpus-{fd012b27af0a

Chandramohan A. Thekkath Daniel J. Scales, Kourosh Gharachorloo.
1996. Shasta: A Low Overhead Software-Only Approach for Support-
ing Fine-Grain Shared Memory. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems.

Alex Fender. 2020. Tackling Large Graphs with RAPIDS cuGraph
and CUDA Unified Memory on GPUs. https://medium.com/rapids-
ai/tackling-large-graphs-with-rapids-cugraph-and-unified-virtual-
memory-b5b69a065d4

Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. 2019.
Interplay between hardware prefetcher and page eviction policy in
cpu-gpu unified virtual memory. In Proceedings of the 46th International
Symposium on Computer Architecture.

D. Ganguly, Z. Zhang, J. Yang, and R. Melhem. 2020. Adaptive Page Mi-
gration for Irregular Data-intensive Applications under GPU Memory
Oversubscription. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 451-461.

Prasun Gera, Hyojong Kim, Piyush Sao, Hyesoon Kim, and David
Bader. 2020. Traversing Large Graphs on GPUs with Unified Memory.
Proc. VLDB Endow. 13, 7 (March 2020), 1119-1133. https://doi.org/10.
14778/3384345.3384358

Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula,
and John Cavazos. 2012. Auto-tuning a High-Level Language Targeted
to GPU Codes. In Proceedings of Innovative Parallel Computing.
Kirsten Hildrum and Philip S. Yu. 2005. Focused Community Discovery.
In Proceedings of the Fifth IEEE International Conference on Data Mining
(ICDM °05). IEEE Computer Society, USA, 641-644. https://doi.org/10.
1109/ICDM.2005.70

G. Janssen, V. Zolotov, and T. D. Le. 2019. Large Data Flow Graphs in
Limited GPU Memory. In 2019 IEEE International Conference on Big
Data (Big Data). 1821-1830. https://doi.org/10.1109/BigData47090.
2019.9006198

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Hyojong Kim, Jaewoong Sim, Prasun Gera, Ramyad Hadidi, and Hye-
soon Kim. 2020. "Batch-Aware Unified Memory Management in GPUs
for Irregular Workloads". In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. 1357-1370.

Chen Li, Rachata Ausavarungnirun, Christopher J. Rossbach, Youtao
Zhang, Onur Mutlu, Yang Guo, and Jun Yang. 2019. A Framework
for Memory Oversubscription Management in Graphics Processing
Units. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems.

Lingda Li and Barbara Chapman. 2019. Compiler Assisted Hybrid
Implicit and Explicit GPU Memory Management under Unified Ad-
dress Space. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Denver,
Colorado) (SC ’19). Association for Computing Machinery, New York,
NY, USA, Article 51, 16 pages. https://doi.org/10.1145/3295500.3356141
LLVM. 2020. The LLVM Compiler Infrastructure. https://llvm.org/
devmtg/2019-04/talks.html

Inc. Micron Technology. 2019. GDDR Memory Enabling Al and High
performance Compute. https://developer.download.nvidia.com/video/
gputechconf/gtc/2019/presentation/s9968-gddr-memory-enabling-
ai-and-high-performance-compute-presented-by-micron.pdf

David S. Miller, Richard Henderson, and Jakub Jelinek. 2020. Dynamic
DMA mapping Guide. https://www.kernel.org/doc/Documentation/
DMA-API-HOWTO.txt

Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and
ChingYungLin. 2015. GraphBIG: Understanding Graph Computing
in the Context of Industrial Solutions.. In International Conference for
High Performance Computing, Networking, Storage and Analysis.
NVIDIA. 2020. CUDA TOOKIT DOCUMENTATION. https://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html

Zaid Qureshi, Vikram Sharma Mailthody, Seung Won Min, I Chung,
Jinjun Xiong, and Wen-mei Hwu. 2020. Tearning Down The Memory
Wall. In Arxiv pre-print.

Bin Ren, Tomi Poutanen, Todd Mytkowicz, Wolfram Schulte, Gagan
Agrawal, and James R. Larus. 2013. SIMD Parallelization of Appli-
cations That Traverse Irregular Data Structures. In Proceedings of
the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO) (CGO ’13). IEEE Computer Society, USA, 1-10.
https://doi.org/10.1109/CG0O.2013.6494989

Adrien Rémy. 2015. Solving dense linear systems on accelerated mul-
ticore architectures. (07 2015).

Nikolay Sakharnykh. 2016. Beyond GPU Memory Limits with Unified
Memory on Pascal. https://developer.nvidia.com/blog/beyond-gpu-
memory-limits-unified-memory-pascal/

N. Sakharnykh. 2017. Unified Memory on Pascal and Volta. http:
//on-demand.gputechconf.com/gtc/2017/presentation/s7285nikolay-
sakharnykh-unified-memory-on-pascal-and-volta.pdf

L. Semiconductors. 2020. Scatter-Gather DMA Con-
troller IP. http://www.latticesemi.com/Products/
DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores01/
ScatterGatherDMAController

Yifan Sun, Xiang Gong, Amir Kavyan Ziabari, Leiming Yu, Xiangyu Li,
Saoni Mukherjee, Carter McCardwell, Alejandro Villegas, and David
Kaeli. 2016. Hetero-Mark, A Benchmark Suite for CPU-GPU Collabo-
rative Computing. In Proceedings of IEEE International Symposium on
Workload Characterization (IISWC).

Stephen W. Timcheck and Jeremy D. Buhler. 2020. Reducing Queuing
Impact in Irregular Data Streaming Applications. In 2020 IEEE/ACM
10th Workshop on Irregular Applications: Architectures and Algorithms
(IA3). 22-30. https://doi.org/10.1109/IA351965.2020.00009

https://www.guru3d.com/news-story/gddr6-significantly-more-expensive-than-gddr5.html
https://www.guru3d.com/news-story/gddr6-significantly-more-expensive-than-gddr5.html
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1109/IISWC.2012.6402918
https://doi.org/10.1145/782814.782836
https://doi.org/10.1109/HPCS.2017.111
https://medium.com/rapids-ai/acclerating-gis-data-science-with-rapids-cuspatial-and-gpus-fd012b27af0a
https://medium.com/rapids-ai/acclerating-gis-data-science-with-rapids-cuspatial-and-gpus-fd012b27af0a
https://medium.com/rapids-ai/tackling-large-graphs-with-rapids-cugraph-and-unified-virtual-memory-b5b69a065d4
https://medium.com/rapids-ai/tackling-large-graphs-with-rapids-cugraph-and-unified-virtual-memory-b5b69a065d4
https://medium.com/rapids-ai/tackling-large-graphs-with-rapids-cugraph-and-unified-virtual-memory-b5b69a065d4
https://doi.org/10.14778/3384345.3384358
https://doi.org/10.14778/3384345.3384358
https://doi.org/10.1109/ICDM.2005.70
https://doi.org/10.1109/ICDM.2005.70
https://doi.org/10.1109/BigData47090.2019.9006198
https://doi.org/10.1109/BigData47090.2019.9006198
https://doi.org/10.1145/3295500.3356141
https://llvm.org/devmtg/2019-04/talks.html
https://llvm.org/devmtg/2019-04/talks.html
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9968-gddr-memory-enabling-ai-and-high-performance-compute-presented-by-micron.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9968-gddr-memory-enabling-ai-and-high-performance-compute-presented-by-micron.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9968-gddr-memory-enabling-ai-and-high-performance-compute-presented-by-micron.pdf
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1109/CGO.2013.6494989
https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/
https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://www.latticesemi.com/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores01/ScatterGatherDMAController
http://www.latticesemi.com/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores01/ScatterGatherDMAController
http://www.latticesemi.com/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores01/ScatterGatherDMAController
https://doi.org/10.1109/IA351965.2020.00009

[32] Tao Zhang, Jingjie Zhang, Wei Shu, Min-You Wu, and Xiaoyao Liang. J. Supercomput. 71, 4 (April 2015), 1563-1586. https://doi.org/10.1007/
2015. Efficient Graph Computation on Hybrid CPU and GPU Systems. $11227-015-1378-z

https://doi.org/10.1007/s11227-015-1378-z
https://doi.org/10.1007/s11227-015-1378-z

	Abstract
	1 Introduction
	2 UVM Implementation in NVIDIA GPUs
	3 UVM under memory over-subscription
	4 Requirements for Over-subscribed Scenarios
	4.1 Granularity of page tracking
	4.2 Capturing spatio-temporal access characteristics
	4.3 Predictability of Spatial Utilization
	4.4 Dynamically adapting to memory pressure

	5 DynaMap
	5.1 Compiler-inserted instrumentation to track utilization
	5.2 Light-weight runtime system
	5.3 Adaptive Eagerness Threshold

	6 Evaluation
	6.1 Experimental Setup
	6.2 Comparing the Schemes
	6.3 Summary

	7 Related Work
	8 Concluding Remarks
	9 Acknowledgements
	References

