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Abstract

In this letter, we study a two-user downlink asynchronous non-orthogonal multiple access (ANOMA) with limited feedback.
We employ the max-min criterion for the power allocation and derive the closed-form expressions for the upper and lower bounds
of the max-min rate. It is demonstrated that ANOMA can achieve the same or even higher average max-min rate with a lower
feedback rate compared with NOMA. Moreover, we propose a quantizer optimization algorithm which applies to both NOMA
and ANOMA. Simulation results show that the optimized quantizer significantly improves the average max-min rate compared
with the conventional uniform quantizer, especially in the scenario with a low feedback rate.

Index Terms

Asynchronous non-orthogonal multiple access, limited feedback, quantizer optimization

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been regarded as one of the key technologies to meet the challenges of the next
generation wireless communications. The key feature of NOMA is that different users’ signals can share the same time and
frequency resources. The NOMA consists of power-domain NOMA, code-domain NOMA, and the joint design of both [1]. In
power-domain NOMA, the superposition coding and the successive interference cancellation (SIC) are utilized for multi-user
transmission and detection, respectively.

Recently, a novel scheme called asynchronous NOMA (ANOMA) has been proposed to further improve the performance
of NOMA, for example, in the uplink system [2] and the cooperative network [3]. In ANOMA, the intentional introduction
of timing mismatch at the transmitter and the oversampling technique at the receiver result in the sampling diversity [2–4]. It
has been demonstrated that ANOMA outperforms NOMA in terms of the throughput performance, the power consumption,
etc. Moreover, the time asynchrony has also been exploited in multi-user transmit beamforming [5].

The channel state information (CSI) plays a critical role in optimizing the system performance. At the transmitter side, the
CSI is employed to conduct the adaptive power/rate allocation and generate the beamforming vectors in multiple-input multiple-
output (MIMO) systems. In time-division duplexing (TDD) systems, the channel reciprocity is exploited by the base station
(BS) to utilize the CSI estimated via the uplink training. In frequency-division duplexing (FDD) systems, a prevailing technique
is using the limited feedback from users. The NOMA with limited feedback has been studied in the existing literature, for
example, the one-bit feedback scheme in the massive MIMO NOMA systems [6] and the multi-user single antenna systems [7],
and the scalar quantizer design in downlink power-domain NOMA [8]. To the best of our knowledge, the analysis of limited
feedback schemes in ANOMA systems and the optimal quantizer design for NOMA/ANOMA are still absent. In fact, the
limited feedback design in NOMA/ANOMA systems is more challenging compared with that in the orthogonal multiple access
(OMA) scenario, e.g., in [9]. It is because the CSI of each user not only affects its own but also other users’ performance
due to the inter-user interference (IUI) ingrained in the non-orthogonal transmission. In more details, the CSI is used for both
allocating powers and determining the SIC order, which further complicates the rate expressions and the system design.

In this letter, we consider a downlink ANOMA system with limited feedback. We employ the max-min criterion for the
power allocation and the scalar quantizer for channel quantization, respectively. We derive the closed-form expressions for the
upper and lower bounds of the max-min rate. It is manifested that ANOMA can achieve the same or even higher average
max-min rate with a lower feedback rate compared with NOMA. Moreover, we propose a quantizer optimization method which
applies to both NOMA and ANOMA systems. A gradient descent algorithm is designed to optimize the quantization levels.
Simulation results show that a higher average max-min rate is achieved by using the optimized quantizer compared with the
conventional uniform quantizer in [8], especially for the low-rate feedback scenario.

II. PRELIMINARIES

A. NOMA and ANOMA

In this letter, we consider a two-user downlink system shown in Fig. 1 where the signals for Users 1 and 2 are superimposed
and then transmitted by the BS. Both BS and users are equipped with a single antenna. As shown in Fig. 2, a timing mismatch
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Fig. 1: Downlink scenario with limited feedback.

Fig. 2: Illustration of the superimposed signal in ANOMA.

of τT is intentionally added between the superimposed signals, where 0 < τ < 1 and T is the symbol interval. Let p(t)
represent the pulse shape. The transmitted signal is given by S1[i]p(t − iT ) + S2[i]p(t − iT − τT ) where Su[i], u = 1, 2, is
the ith symbol transmitted to User u. We assume that users know τ perfectly since it can be decided a priori, for example,
to be the asymptotically optimal value of τ = 0.5 [2, 3]. The block fading channel model is employed. At the receiver, the
composite signal is sampled at iT and (i + τ)T after matched filtering. This sampling method is called “oversampling” and
the details have already been presented in [2, 3]. For the sake of brevity, we omit it in this work. If τ = 0, ANOMA degrades
to NOMA and the received samples at iT and (i+ τ)T are identical. The number of received samples is doubled in ANOMA
(τ 6= 0) compared with NOMA, which then results in sampling diversity [2–4].

We assume that Users 1 and 2 denote the strong and weak users, respectively, i.e., |h1|2 > |h2|2. User 1 employs the
block-wise SIC [3], i.e., first detects the block of the signal for User 2, removes it, and then detects its own signal. As shown
in [3], for a relatively large block length and the rectangular pulse shape, the rates of Users 1 and 2 with perfect CSI are given
by

Rstrong(H1) = log2 (1+αPH1) , (1)

and (2) at the bottom of this page, Hi = |hi|2 is the channel gain of User i, Q = 2τ(1− τ), P is the total transmit power of
BS, α ∈ (0, 1) is the power coefficient for the strong user (User 1 in this case), i.e., the powers allocated to Users 1 and 2 are
αP and (1 − α)P , respectively. Note that NOMA can be considered as a special case of ANOMA, simply by setting τ = 0
in (2). It has been shown that Rweak in ANOMA is higher than that in NOMA while Rstrong is the same for ANOMA and
NOMA [3].

B. Limited Feedback

In this letter, we assume that CSI is perfectly estimated by users and fed back to the BS via an error and delay-free link.
For example, in Fig. 1, User 1 knows h1 and quantizes the channel gain H1 as H̃1 = q(|h1|2) using a scalar quantizer q, and
then sends it back to the BS. The BS determines the power coefficient α and the order of SIC according to the feedback. If
H̃1 > H̃2 (H̃1 < H̃2), User 1 (User 2) is notified to conduct SIC. If H̃1 = H̃2, BS can randomly assign one user to utilize
SIC. Without loss of generality, we assume that User 1 will be notified to conduct SIC if H̃1 = H̃2.

Rweak(H2) = log2

(
1 + PH2 + α(1− α)P 2H2

2Q+
√

[1 + PH2 + α(1− α)P 2H2
2Q]2 − α2(1− α)2P 4H4

2Q
2

2(1 + αPH2)

)
. (2)
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Fig. 3: Illustration of a scalar quantizer.
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As shown in Fig. 3, we employ a scalar quantizer with N = 2b quantization levels, q0, · · · , qN−1, where b is the number
of bits used in a quantization codeword. b is also defined as the feedback rate per user. The quantized value for a given x is
calculated by

q(x) =

{
qi, qi ≤ x < qi+1, i = 0, · · · , N − 2,
qN−1, x ≥ qN−1.

(3)

For example, in Fig. 3, x0 and x1 are quantized as q0 and qN−1, respectively. In this work, the quantizer is used to quantize
the positive channel gain. Thus, we set q0 = 0.

The BS transmits the signals to users based on the rates which are calculated according to the quantized channel gains.
For example, if H̃1 > H̃2, the BS transmits to User 1 with the rate of Rstrong(H̃1) while the actual channel capacity is
Rstrong(H1). Note that the proposed quantizer is designed to satisfy q(x) ≤ q in order to avoid outage, i.e, to guarantee that
the transmission rates do not exceed the channel capacities. It is trivial to derive that Rstrong(H̃1) ≤ Rstrong(H1) if H̃1 ≤ H1

and Rweak(H̃2) ≤ Rweak(H2) if H̃2 ≤ H2, which indicates that the quantizer in (3) avoids outage.

III. POWER ALLOCATION

To attain fairness among users, we employ the max-min criterion for the power allocation, i.e., the power is allocated to
users such that the minimum rate is maximized. The optimal power coefficient α∗ is given by

α∗ = arg
α

max min {Rstrong, Rweak} . (4)

According to (1) and (2), it is trivial to show that Rstrong is an increasing function of α and Rweak is a decreasing function
of α. Intuitively, if User 1 is the strong user, by increasing α (i.e., allocating more power to User 1 and less power to User 2),
Rstrong increases and Rweak decreases, and vice versa. As a result, the optimal power coefficient α∗ can be obtained by solving
Rstrong = Rweak. According to [8], the optimal α in NOMA is given by

α∗N =
2H̃min√

(H̃1+H̃2)2+4PH̃1H̃2H̃min+H̃1+H̃2

, (5)

where H̃min = min
{
H̃1, H̃2

}
is defined to incorporate the rate expressions for both H̃1 ≥ H̃2 and H̃1 < H̃2. If User 1 employs

SIC, the max-min rate of NOMA is given by log
(

1 + α∗NPH̃1

)
according to (1). If User 2 employs SIC, the max-min rate is

given by log
(

1 + α∗NPH̃2

)
. To summarize, the max-min rate of NOMA is expressed by R∗N(H̃1, H̃2) = log

(
1 + α∗NPH̃max

)
where H̃max = max

{
H̃1, H̃2

}
.

The optimal power coefficient for ANOMA, α∗A, is presented in the following theorem.
Theorem 1: The optimal power coefficients of NOMA and ANOMA, α∗N and α∗A, respectively, satisfy the following inequality

α∗N ≤ α∗A(0.5) ≤ α∗A ≤ α∗A(1), (6)

where the equal sign is achieved when τ = 0. The expression for α∗A(z) is given by

α∗A(z) =
2H̃min√

(H̃1+H̃2 − zPH̃2
minQ)2+4H̃min(PH̃1H̃2 + zPH̃2

minQ)+H̃1+H̃2 − zPH̃2
minQ

. (7)

Proof: See Appendix A.
Since the general expression for α∗A is intractable for further analysis, α∗A(0.5) and α∗A(1) provide the simple lower

and upper bounds of α∗A, respectively. Compared with (5), (7) introduces an extra term zPH̃2
minQ. By setting τ = 0,

Q = 0 and then (7) coincides with (5). The max-min rate of ANOMA is given by R∗A(H̃1, H̃2) = log
(

1 + α∗APH̃max

)
∈[

log
(

1 + α∗A(0.5)PH̃max

)
, log

(
1 + α∗A(1)PH̃max

)]
.

The average max-min rate is expressed by

E [R∗] =

N1−1∑
i=0

N2−1∑
j=0

∫ qi+1,1

qi,1

∫ qj+1,2

qj,2

R∗(qi,1, qj,2) · f1(H1)f2(H2)dH1dH2, (8)

where fi(Hi) is the distribution function of User i’s channel gain, qj,i represents the jth quantization level of the quantizer
used by User i, and R∗ can be R∗N or R∗A. Note that the average max-min rate for the limited feedback is upper bounded by
that for the full-CSI case, i.e.,

E [R∗]<R
∗ 4

=

∫ ∞
0

∫ ∞
0

R∗(H1,H2)f1(H1)f2(H2)dH1dH2. (9)



4

Let us define the quantization distortion as D [R∗] = R
∗ − E [R∗].

Corollary 1: ANOMA can achieve the average max-min rate of NOMA with a lower feedback rate.
Proof: Let us define q and q′ as two quantizers which can be given by (3) but with different quantization levels. According

to Theorem 1, ANOMA achieves a higher max-min rate compared with NOMA. Thus, R
∗
N < R

∗
A and E [R∗N] < E [R∗A] by

using the quantizer q. The quantizer q′ is designed such that the ANOMA using q′ achieves the same average max-min rate
as the NOMA using q, i.e., E [R∗A]

′
= E [R∗N] < E [R∗A]. For ANOMA, using the quantizer q′ results in a higher distortion

compared with using q, i.e., D [R∗A]
′

= R
∗
A−E [R∗A]

′
> D [R∗A] = R

∗
A−E [R∗A]. According to the rate-distortion theory, there

is a trade-off between the distortion and the quantization rate (equivalent to the feedback rate in this work). A lower distortion
can be achieved by using a quantizer with a higher feedback rate and vice versa. As a result, the quantizer q′ can have a lower
feedback rate compared with q. ANOMA using q′ can achieve a lower feedback rate while keeping the same average max-min
rate as NOMA using q. The proof is complete.

IV. SCALAR QUANTIZER OPTIMIZATION

The scalar quantizer shown in (3) is completely characterized by the quantization levels. Our goal is to optimize the
quantization levels to maximize the average max-min rate E [R∗], i.e.,

[q∗1,q
∗
2] = arg

[q1,q2]

maxE [R∗] ,

s.t. q0,i < q1,i < · · · < qNi−1,i, i = 1 or 2. (10)

Since R
∗

is not a function of quantization levels, (10) is equivalent to minimizing the distortion D[R∗]. In what follows, we
propose a gradient descent algorithm to optimize the quantization levels. Let E [R∗]i,j denote the (i, j)th term of E [R∗] in (8),
i.e., E [R∗]i,j = R∗(qi,1, qj,2)

∫ qi+1,1

qi,1

∫ qj+1,2

qj,2
f1(H1)f2(H2)dH1dH2. E [R∗]i,j is a function of qi,1, qi+1,1, qj,2, and qj+1,2. The

gradients of E [R∗]i,j in terms of qi,1 and qi+1,1 are calculated by

∂E [R∗]i,j
∂qi,1

=

[
∂R∗(qi,1, qj,2)

∂qi,1

∫ qi+1,1

qi,1

f1(H1)dH1 −R∗(qi,1, qj,2)f1(qi,1)]

∫ qj+1,2

qj,2

f2(H2)dH2, (11)

∂E [R∗]i,j
∂qi+1,1

=R∗(qi,1, qj,2)f1(qi+1,1)

∫ qj+1,2

qj,2

f2(H2)dH2, (12)

respectively. Similarly, we can derive
∂E[R∗]i,j
∂qj,2

and
∂E[R∗]i,j
∂qj+1,2

. Based on the gradients, we propose the quantizer optimization
algorithm in Algorithm 1. At each iteration, E [R∗] does not decrease which is guaranteed by the gradient descent. Besides,
E [R∗] is upper bounded by a constant as shown in (9). Hence, Algorithm 1 converges as the number of iterations increases.

Algorithm 1 Algorithm to optimize the scalar quantizer.

1: Initialize the step size ∆, the maximum number of iterations Imax, the number of quantization levels for User 1 N1 and
that for User 2 N2, the iteration count I = 0.

2: Initialize the quantization levels q1 = [0, q1,1, · · · , qN1−1,1,∞], q2 = [0, q1,2, · · · , qN2−1,2,∞]
3: while I < Imax do
4: Initialize ER = 0, dq1 = [0, · · · , 0]1×(N1+1), dq2 = [0, · · · , 0]1×(N2+1).
5: for i = 2, · · · , N1 do
6: for j = 2, · · · , N2 do
7: ER = ER +R∗(q1[i], q2[j])

∫ q1[i+1]

q1[i]

∫ q2[j+1]

q2[j]
·f1(H1)f2(H2)dH1dH2.

8: dq1[i] = dq1[i] +
∂E[R∗]i,j
∂qi,1

.

9: dq2[j] = dq2[j] +
∂E[R∗]i,j
∂qj,2

.
10: if i 6= N1 then
11: dq1[i+ 1] = dq1[i+ 1] +

∂E[R∗]i,j
∂qi+1,1

.
12: end if
13: if j 6= N2 then
14: dq2[j + 1] = dq2[j + 1] +

∂E[R∗]i,j
∂qj+1,2

.
15: end if
16: end for
17: end for
18: q1 = q1 + ∆ ∗ dq1, q2 = q2 + ∆ ∗ dq2, I = I + 1.
19: end while
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The computation complexity of Algorithm 1 is O(N1N2) where N1 and N2 are the number of quantization levels for
Users 1 and 2, respectively. Furthermore, the maximum quantization level of the conventional uniform quantizer is set manually
according to certain criterion. For example, in [8], the maximum quantization level is determined by considering the quantization
loss. The advantage of optimizing the quantization levels is that the maximum quantization level can also be optimized using
Algorithm 1 with no manual intervention, which will be shown in the next section.
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Fig. 4: The average max-min rate vs. the number of feedback bits per channel for NOMA and ANOMA systems.

V. SIMULATION RESULTS

In this section, we present simulation results for NOMA/ANOMA systems with limited feedback. In our simulations, we
employ the complex Gaussian channel model. Therefore, the channel gain follows the exponential distribution. We assume that
H1 ∼ Exp(0.5) and H2 ∼ Exp(1). We set the total transmit power of the BS P = 10 and τ = 0.5 since it has been proved
in [2, 3] that τ = 0.5 is the asymptotically optimal value to maximize the user throughput. For comparison, we employ the
uniform quantizer proposed in [8] where the maximum quantization level L is derived by solving L = 1

λ∆ log
(

1
∆

)
, λ is the

parameter of the exponential distribution, and ∆ is the quantization bin width.
Fig. 4 shows how the average max-min rate changes as a function of the number of feedback bits per user using the uniform

quantizer. As the number of feedback bits increases, the average max-min rate converges to the full-CSI rate calculated by (9).
Besides, using the same number of feedback bits, the upper bound of the max-min rate for ANOMA is always higher than its
lower bound, which is then higher than that for NOMA. Equivalently, to achieve the same or even higher average max-min
rate, ANOMA needs less feedback bits compared with NOMA, which verifies Corollary 1.

Fig. 5 shows how the average max-min rate in NOMA and ANOMA systems changes as the quantizer optimization algorithm
runs. We employ the 3-bit quantizer for each channel and the lower bound of the max-min rate for ANOMA as an example.
As the number of iterations increases, the average max-min rate converges. For the full-CSI case, the optimized quantizer, and
the uniform quantizer, the average max-min rate for ANOMA is always higher than that for NOMA.
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Fig. 6: The quantization levels for NOMA and ANOMA systems when 3 bits are used to quantize the channel gain.

Fig. 6 presents the optimal quantization levels when 3 bits (i.e., 23 = 8 quantization levels) are used. First, it is shown that
the optimal quantization levels are non-uniform. The range of the quantization levels for User 1 with a larger mean channel
gain is wider than that of User 2. Furthermore, the quantization levels optimized using the upper and lower bounds of the
max-min rate for ANOMA are very similar to each other and also close to those for NOMA.

VI. CONCLUSION

In this letter, we considered a two-user downlink ANOMA system with limited feedback. We reveal the advantage of
ANOMA over NOMA in terms of the feedback rate. Furthermore, the quantizer optimization method is proposed for both
ANOMA and NOMA to further improve the average max-min rate. Considering more than two users in the ANOMA systems
is an interesting topic for the future work.

APPENDIX A
PROOF OF THEOREM 1

Proof: When τ = 0, Q = 0 which then results in α∗N = α∗A(x) for any finite x. For τ 6= 0, we first prove Theorem 1 for
the case of H̃1 ≥ H̃2. The case of H̃1 < H̃2 SIC will be discussed later. By setting Rstrong(H̃1) = Rweak(H̃2), we obtain

2[1 + α∗AP (H̃1 + H̃2) + (α∗A)2P 2H̃1H̃2]

=

√
[1+PH̃2+α∗A(1−α∗A)P 2H̃2

2Q]2−[α∗A(1−α∗A)]2P 4H̃4
2Q

2

+ 1 + PH̃2 + α∗A(1− α∗A)P 2H̃2
2Q. (13)

By cancelling out the square root, (13) becomes a quartic equation. The optimal power coefficient α∗A is one root of the quartic
equation which can be given by the general formula for quartic roots. However, it is intractable for further analysis. Therefore,
we derive the upper and lower bounds to approximate the actual value of α∗A.

For the upper bound, since [1+PH̃2+α∗A(1−α∗A)P 2H̃2
2Q]2−(α∗A)2(1−α∗A)2P 4H̃4

2Q
2 < [1+PH̃2+α∗A(1−α∗A)P 2H̃2

2Q]2,
(13) becomes

1+α∗AP (H̃1+H̃2)+(α∗A)2P 2H̃1H̃2 <1+PH̃2+α∗A(1−α∗A)P 2H̃2
2Q, (14)

which results in

α∗A<α
∗
U
4
=2H̃2/

[
H̃1+H̃2 − PH̃2

2Q +

√
(H̃1+H̃2−PH̃2

2Q)2+4H̃2(PH̃1H̃2+PH̃2
2Q)

]
. (15)

For the lower bound, as [1+PH̃2+α∗A(1−α∗A)P 2H̃2
2Q]2−(α∗A)2(1−α∗A)2P 4H̃4

2Q
2 > [1+PH̃2]2,

2[1+α∗AP (H̃1+H̃2)+(α∗A)2P 2H̃1H̃2] > 2(1+PH̃2) +α∗A(1−α∗A)P 2H̃2
2Q. (16)

Then, we obtain

α∗A> α∗L
4
= 2H̃2/

[
H̃1+H̃2 −

PH̃2
2Q

2
+

√√√√(H̃1+H̃2−
PH̃2

2Q

2

)2

+4H̃2

(
PH̃1H̃2+

PH̃2
2Q

2

) . (17)
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If H̃1 < H̃2, i.e., User 2 employs SIC, we can also derive the expressions for α∗L and α∗U by setting Rstrong(H̃2) =
Rweak(H̃1). In fact, α∗L and α∗U for H̃1 < H̃2 are given by simply switching H̃1 and H̃2 in (15) and (17). Both α∗L and α∗U
can be incorporated into a general expression in (7) by introducing a parameter z, i.e. α∗L = α∗A(0.5) and α∗U = α∗A(1).

To show the inequality in (6), let us define g(x) =
√

(H̃1+H̃2 − xPH̃2
minQ)2+4H̃min(PH̃1H̃2 + xPH̃2

minQ) + H̃1+H̃2−
xPH̃2

minQ which is the denominator in (7). Then,

∂g(x)

∂x
= −PH̃2

minQ

1 +
H̃1 + H̃2 − H̃min(2 + xPH̃minQ)√

(H̃1+H̃2−xPH̃2
minQ)2+4H̃min(PH̃1H̃2+xPH̃2

minQ)

 .

If H̃1 + H̃2 − H̃min(2 + PH̃minQx) > 0, it is obvious that ∂g(x)
∂x < 0. Otherwise,

− H̃1 − H̃2 + H̃min < 0 < PH̃1H̃2

=⇒4H̃min(−H̃1 − H̃2 + H̃min + xPH̃2
minQ) < 4H̃min(PH̃1H̃2 + xPH̃2

minQ)

=⇒|H̃1 + H̃2 − H̃min(2 + xPH̃minQ)| <
√

(H̃1+H̃2−xPH̃2
minQ)2+4PH̃min(H̃1H̃2+xH̃2

minQ),

which also results in ∂g(x)
∂x < 0. Therefore, α∗A(x) increases with x. Thus, α∗N = α∗A(0) < α∗A(0.5) < α∗A < α∗A(1). The proof

is complete.
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