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In this paper, we construct and test a class of linear numerical schemes for the Func-
tionalized Cahn-Hilliard (FCH) equation with a symmetric double-well potential function
by using a stabilized scalar auxiliary variable (SAV) method. To get a fair assessment of
these new SAV-type schemes, we compare output with numerical solutions obtained by
the classical, fully-implicit BDF1 and BDF2 schemes. We prove the unconditional unique
solvability of the SAV systems and demonstrate the detailed steps used for finding the
solutions to these systems. Two sixth-order constant-coefficient linear equations need to
be solved at each time step for every SAV scheme. We also provide a theoretical analy-
sis of the unconditional modified-energy stability for the schemes using the usual tools.
The Fourier pseudo-spectral method is used as the spatial discretization. Several numeri-
cal tests are performed to verify the theoretical analyses and to compute some interesting
problems that are physically relevant. Simulations of phase separation in 2D and 3D show
the schemes can capture the correct qualitative dynamical behavior and, at the same time,
the original physical FCH free energy is dissipated. The classical BDF1 (backward Euler)
and BDF2 fully implicit methods, which have significantly smaller local truncation errors
(LTEs), are used to repeat several numerical calculations and give a more objective mea-
sure of the accuracy and efficiency of the SAV schemes. To keep things simple and fair, for
this preliminary battery of comparison tests, we use only fixed, uniform time step sizes. In
this setting, the SAV schemes often have an advantage in terms of computational efficiency,
being up to three times faster in CPU time when a relatively large time step size is used.
However, when accuracy is counted in the measures of computational efficiency, the clas-
sical BDF methods often perform better than the linear SAV methods, with an advantage of
up to three digits of precision. If the final target of a computation is a relatively high global
accuracy, then the method with the least computational time to achieve that accuracy is
very often classical BDF2. But, these conclusions are not universal; some test results are
subtle and ambiguous. In any case, while SAV methods can be constructed in such a way
that they are both energy stable and accurate, they are, however, not always a good choice
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in practical, real-world computations, because their large LTEs can severely limit their true
efficiency.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

An amphiphilic molecule is a compound whose head has a high affinity for a polar fluid (such as water) and whose
tail has a high affinity for a non-polar fluid (like oil). Amphiphilic molecules can be added to an emulsion (a mixture of
two immiscible fluids) to give the substance new properties, for example, to stabilize the mixture against coarsening. In this
three-component system, the amphiphilic substance is often termed as an emulsifier. A common example is sodium stearate,
a soap molecule, which when added to an oil-water emulsion, can trap oil droplets inside roughly spherical structures
called micelles. This effectively makes the oil droplets water soluble, so that they can be washed away [11]. In this setting,
each amphiphilic molecule, like the sodium stearate soap of the last example, resides on the interface separating the two
immiscible fluids with its body aligned so that its head is adjacent to the polar fluid (water, e.g.) and its tail is adjacent to
the non-polar fluid (oil, e.g.). Near equilibrium, the molecules pack tightly together to form a closed (edgeless), connected,
single-layer sheet separating two immiscible fluids. Let us call this the monolayer case, for short.

Certain amphiphilic molecules can give rise to even more exotic structures. Some can produce a bilayer structure sep-
arating two miscible fluids. In particular, the fluids can be the same on either side of the interface, in which case the
background fluid is simply termed as the solvent. This binary mixture of solvent and amphiphilic molecules is what we will
be interested in modeling in the present paper, the bilayer case, for short. A prominent example is a vesicle, a biological
structure where a lipid bilayer encloses the cytoplasm (internal fluid), separating it from the external fluid, which in our
simple thought experiment is comprised of the same fluid.

In the bilayer case, the amphiphilic molecules form two distinct sheets or layers. The tail sides of the two sheets attract
each other and stick together forming a two-layer sandwich, the bilayer. In contrast to the monolayer case, it is not necessary
that the amphiphilic-molecule-populated interface is closed in the bilayer case. It can have edges or holes, at least in
some reasonable sense. In general, the phase separation of an amphiphilic mixture can present a rich family of interface
morphologies [32].

The functionalized Cahn-Hilliard (FCH) equation is a popular and important model for describing the diffusion and self-
assembly of amphiphilic molecules in the bilayer case. The free energy for the model originated in [27] as a tool for
characterizing phase separation of amphiphilic compounds in a background fluid (the solvent). The model was extended in
[26,37] for capturing the dynamic formation of amphiphilic interface structures in a solvent. The FCH equation is the H !
gradient flow with respect to the appropriate free energy, like that proposed in [27], so that the number of amphiphilic
molecules is conserved and the free energy is dissipated as the simulation advances in time.

The FCH equation is a sixth-order nonlinear parabolic equation. Naive explicit or semi-implicit time stepping schemes
may suffer from a truly severe time step restriction for the sake of numerical stability, in the worst case, 8t < ChS, for some
constant C > 0, where §t is the time step size and h is the space step size. For such schemes, an extremely small time step
must often be used, even if a much larger time step would be allowed based on the consideration of accuracy alone.

In order to overcome this difficulty, many numerical schemes have been proposed for solving the FCH equation. A simple
but efficient linear stabilization technique [12,34,36,41,43] was employed in [5] for solving the FCH equation. That method,
which was also adopted in [31], was designed with two tunable stabilization parameters that must be selected through error
trial. Choosing the stabilization parameters too large can lead to significant local truncation error, but the resulting semi-
discrete system is a linear system that is easy to solve. Moreover, there is no theoretical justification to demonstrate this
scheme is energy stable, although typically the total free energy from numerical calculations decays monotonically [5,31].
A fully implicit (essentially backward Euler) approach was adopted in [8]. The difficulty with methods of this type (that is,
fully implicit BDF methods) is that a large nonlinear system of equations must be solved at each time step, and they require
very sophisticated, efficient nonlinear solvers. Moreover, it is difficult to characterize the energy stability of such schemes
rigorously, unless the time step size is very small. On the plus side, the schemes are very simple to state and, typically, the
local truncation error is much smaller for classical (fully implicit) BDF methods than for semi-implicit methods of the same
order of accuracy.

Another attractive technique is the so-called convex splitting approach [2,20,29,30,42,44], which is widely used for solv-
ing a variety of bistable gradient equations. In [21], the authors utilize this method to design a first-order convex splitting
scheme for the FCH equation; it was proved that the method is both unconditionally energy stable and unconditionally
uniquely solvable. Moreover, the energy stability in [21] is primitive, in the sense that it is with respect to the original
(primitive) free energy of the system. This allows for the establishment of an optimal-order convergence result, which has
also been proven in the paper. The downsides of the convex splitting method are (1) the local truncation error is signifi-
cantly larger than that for BDF1 (backward Euler) and (2) a large nonlinear system must again be solved at each time step.
An efficient solver was established in [21] for the scheme, based on the preconditioned steepest descent (PSD) method [22].
We will use a version of that method here but with the classical BDF time discretizations. In addition, we will show how to
accelerate the performance of the solver compared to the computations in [21].
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In this paper, we consider the scalar auxiliary variable (SAV) [28,38,40,39] method to construct some efficient, uncondi-
tionally modified-energy stable, linear schemes so that relatively large time steps can be used in the computation. The SAV
method was first introduced in [39]. The main idea is to introduce a new (auxiliary) variable by adding an appropriate posi-
tive constant to the nonlinear part of the energy. This requires that the nonlinear energy part must be bounded from below
so that the sum is not less than zero. The advantages of the SAV method have been pointed out in [40], including (1) it can
be used to deal with a large class of gradient flows, (2) the resulting schemes (first- or second-order in time) are uncon-
ditionally modified-energy stable and linear, and (3) BDF1-like (BDF1-SAV), BDF2-like (BDF2-SAV), and Crank-Nicolson-like
(CN-SAV) schemes are available in the methodology. The numerical error will become large if we use large time steps in
the actual calculation, although we can choose any time step for the unconditionally modified-energy stable schemes. In
this situation, the primal free energy of the system may not monotonically decrease, even though the modified free energy
is dissipated. Fortunately, this numerical difficulty can be effectively overcome by adding stabilization terms, which will
not cause any essential difficulties to the theoretical analysis of stability. An introduction of stabilization terms requires a
delicate balance; they should be large enough to effect energy stability, but not so large that the local truncation error (LTE)
is unacceptably inflated.

Speaking of local truncation error, the LTE for an SAV scheme is expected to be significantly larger than that of the
corresponding purely implicit scheme, due to the auxiliary variables introduced. In other words, the LTE for BDF2-SAV
is much greater than of the pure BDF2 method, et cetera. Thus, an important question arises: Is an SAV scheme more
efficient than the corresponding purely implicit method to achieve a certain level of desired accuracy? On one hand the SAV
scheme is linear, but it has a large LTE. The purely implicit scheme has a relatively smaller LTE, but requires a (potentially)
complicated nonlinear equation to solve. In the case of the FCH problem, the nonlinear terms can be very complicated,
which makes this problem a good one for computing such benchmarks. Coupled with a very efficient solver, like that used
herein, it is possible that, contrary to expectations, the pure BDF schemes can win out. In fact, we will show some cases
where this is the case. Here we focus only on the case of fixed, uniform time stepping. This gives a fair starting point for
comparisons, since the SAV schemes are derived under such assumptions. However, since FCH problems have solutions that
exhibit a rich diversity of time scales, ultimately adaptive time stepping algorithms should be compared. This is the subject
of current work that is reported elsewhere.

We will observe that the SAV schemes often have an advantage in terms of computational efficiency, being up to three
times faster in CPU time when a relatively large time step size is used. However, when accuracy is counted in the measures
of computational efficiency, the classical BDF methods will often perform better than the linear SAV methods, with an
advantage of up to three digits of precision. If the final target of a computation is relatively high global accuracy, then the
method (of those tested) with the least computational time to achieve that desired accuracy is typically classical BDF2. But,
these conclusions are not universal; some test results are subtle and ambiguous, as the reader will see. Still, our preliminary
results should serve as a caution to those looking for the “best” methods. Stable and efficient does not always mean accurate.

The rest of the paper is organized as follows. In Section 2, we introduce the FCH free energy and the FCH equation. In
Section 3, we reformulate the FCH energy using an auxiliary variable. This allows us to present a formally equivalent FCH
dynamical system, with one additional equation for the auxiliary variable. In Section 4, we construct three uncondition-
ally modified-energy stable schemes with first and second-order accuracy and show that each scheme is unconditionally
uniquely solvable and unconditionally modified-energy stable. In Section 5, we apply our schemes to perform some nu-
merical tests. First we demonstrate the expected temporal accuracies are achieved with some toy problems. Then we carry
out some benchmark computations and make detailed comparisons of the solutions computed by the SAV schemes with
the classical nonlinear, fully-implicit BDF1 and BDF2 schemes. Some conclusions are given in Section 6. The proofs of the
modified-energy stabilities for the SAV schemes are left for Appendices A, B, and C.

2. The functionalized Cahn-Hilliard equation
A detailed derivation of the Functionalized Cahn-Hillard equation can be found in [33]. Here, we give a brief recapitula-
tion in the simplest setting, namely, where the homogeneous free energy density, F below, is symmetric, with equal well

depths. It helps to begin with the classical Cahn-Hilliard (CH) equation, which models the phase separation and coarsening
of a conserved binary mixture. This is the conserved (H~!) gradient flow of the free energy functional

1
ECH[¢>]=/ (562|V¢|2+F(¢)> dx, (21)
Q

where F is the symmetric double-well function

F(¢) = }l(qﬂ —1)? and, therefore, F'(¢)=¢> — ¢; (2.2)

¢(x) is the phase field variable, which represents the scaled volume fraction of one component; and € > 0 is a parameter
that characterizes the thickness of the diffuse interface. The minima of F are, of course, located at ¢ = 41, which represent
the pure states of the binary mixture. The classical Cahn-Hilliard equation is
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¢ = Aich,

where pcy is the chemical potential, that is, the variational derivative of Ecy with respect to ¢:

pen = —€*A¢ + F'(¢). (23)

Here, and throughout the text, we assume that ¢ satisfies periodic boundary conditions on the rectangular domain Q c R¢,
d =2,3. The FCH free energy takes the form [27,33]

1 %
E[¢] =/ IEM%H - (7 VeI + F(¢>))} dx, (24)
Q
where 7 is a parameter which describes the properties of amphiphilic polymer phase at the interface. Here, the phase field
variable ¢ (x,t) is used to distinguish different components of a binary mixture. More specifically, ¢ (x,t) = +1 is associated
to the solvent phase and ¢(x,t) = —1 is associated to the amphiphilic polymer phase. For the parameter 7, when n > 0,
(2.4) is the so-called FCH energy; when n < 0, (2.4) is the well-known Cahn-Hilliard-Willmore (CHW) energy (see a more
recent work [7] for the numerical analysis of the energy stability for the CHW model). In this paper, we focus only on the
FCH energy, i.e., n > 0.
The FCH equation is the H~! gradient flow of the free energy E[¢]:

é=MApu, (2.5)
w=e’*Aw— F'($p)o+ nw, (2.6)
w=€e>Ap — F(¢), (2.7)

where p is the chemical potential; M is the mobility constant; and

F"(¢) =3¢* — 1. (2.8)

While we assume that periodic boundary conditions are enforced, for simplicity, other boundary conditions may be used. In
the present case, the FCH equation is free energy dissipated, that is,

E[¢p]= (MAp, )2 = —M||V |7, <0. (2.9)

Our desire is to construct numerical schemes that can inherit this property, at least in some sense.
3. An auxiliary variable reformulation for the FCH equation

In order to construct unconditionally energy stable numerical schemes for the FCH equation by using the standard SAV
method, the first thing that we need to do is to introduce an auxiliary variable in the free energy. Let us rewrite the free
energy functional E[¢] in the following equivalent way:

1
E[¢>]:/ {564(A¢)2 - (1 + g) 62|V¢>|2+G(¢)} dx, (3.1)
Q

where

1
G(@#) :=3€2¢* Vo> + 5<F’<¢>>)2 — nF(®).

Then we have

Lemma 3.1. There is a finite real number C1 = C1(n), such that, for every ¢ € le,er,

Gp®)>C, VxeRY

2

There is a finite real number C, = C,(n), such that, for every ¢ € Hye,

E[¢] > Ca.
In short, both G(¢) and E[¢] are bounded from below.
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Proof. By using Young’s inequality, we have

—e2Ap- (1 n g)qb < %(E2A¢)2 n % (1 n g)2¢2.

Then, rewriting E[¢], we have

E[4] :f [%e“(mﬂ + (1 n g) 2pAp + G(¢)} dx

Q
1 2
z/{c(¢>—§(1+g) ¢2}dx.
Q

Defining

._1 ’ 2 . 1 2,
H@):= S (F'(#)* = nF(¢) and S(9) ._H(¢)—5<1+§) 2,

and using equation (2.2), we find that
H@) =295 — (14 20) ot + (2 + 1n) o= Ln=c
=2 4" 2 72" gm="r
1 1 n? 1
S@)==¢%— 1+~ AL’ —n=>Cs,
(®) 4 < +4n)¢> g? —71=G
for some finite constants C; and C3 that clearly depend upon 7. Finally,

G(®) =3€%¢* Vo[> + H(g) > (1,

E[¢]z/ 36262 |VI? + S(¢) dx zf@ dx= |9ICs = Cs,
Q Q

and the results are proven. O

We now introduce an auxiliary variable

U=J/G(¢>)dx+3=\lf[362¢>2|V¢|2+;(F’(tﬁ))z—nF(d))} dx+ B,
Q

Q

where B is a positive constant that ensures that

/G(q&)dx—i—B > 0.

Q

This allows one to redefine the total free energy (3.1) as

E[¢, U] :/ {%e‘l(A@z - (1 + g) €2 |v¢>|2} dx+U? — B.
Q

Journal of Computational Physics 423 (2020) 109772

(3.5)

(3.6)

(3.8)

We call this the modified free energy. The original FCH dynamical equation (2.5)-(2.7) transforms into the following equiv-

alent PDE system:
d=MAp,
w=e*A2p+ 2+ ne*Ap + UX(e),
0= [X@)bax
Q

where
6€2(¢ |VP|> — V - (¢92V)) + F'($)F"(¢) — nF'(¢)

X(¢) =
VIa 36262 Vo2 + L(F'@))2 — nF(¢)) dx+ B

5

(3.9)
(3.10)

(3.11)

(312)
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The corresponding initial conditions of the new system are

pt=0)=¢° and U(t:O):U(¢°), (3.13)

with the periodic boundary conditions imposed. The scalar variable U requires no boundary condition.
This new system also admits an energy law, as we now show. Observe that

E[¢,U]:/{64A¢Aq'>—2(1+g) ezv¢v¢]dx+2uu,
and ’
11

— | %G(p)dx

o=1
2U

—

=3 E {66200 1V9 12 + 66297V - Vo + F'(9)F"($)d — nF ($)¢ | dx
Q

/ X (@) dx.

l\JI'—*

Therefore, we conclude that

El¢. U] = f Mti)dX=/uMAudx: —M||Vpu|}, <0, (3.14)
Q Q
where E[¢, U] is the modified free energy (3.8).

Remark 3.2. At the continuous time and continuous space levels, the energy law (3.14) of the auxiliary variable system is
equivalent to the energy law (2.9) for the original system. The original physical energy of the system will be guaranteed
to be dissipated (non-increasing) in time using either system. We can use the present auxiliary variable formulation to
construct first- and second-order, linear, constant-coefficient, unconditionally modified-energy stable numerical schemes.
But, while the SAV numerical schemes will admit some forms of energy dissipation laws, we will not be able to guarantee
that the original physical (primal) energy (the energy written only in the primal variable ¢) will be dissipated in time. This
is one notable downside of the SAV methodology.

Computational experience has shown that the dissipation property for the original energy functional is preserved for
the SAV schemes when the time step and stabilization parameters are chosen correctly. Meanwhile, many other standard
and classical numerical schemes, such as linear implicit-explicit (IMEX) schemes, with appropriately chosen time step sizes,
could also be able to preserve such a property. Moreover, it would be expected that the IMEX schemes would also have
significantly smaller LTEs compared to the corresponding SAV schemes.

Remark 3.3. The auxiliary variable is introduced into the new equivalent PDE system (3.9)-(3.11) in order to overcome the
difficulty of dealing directly with the nonlinear part within the FCH equation. However, this comes at a price. The discretized
version of equation (3.11) will give rise, potentially, to extra terms in the local truncation error.

4. SAV and fully implicit schemes for the FCH equation

In this section, we present three unconditionally modified-energy stable numerical schemes for solving the FCH equation
by using the SAV method. We also present the simple, but elegant, classical, fully implicit BDF1 (Bacward-Euler) and BDF2
schemes. These fully implicit schemes are nonlinear, requiring sophisticated solvers to make these schemes efficient. Luckily,
such nonlinear solvers are available, and we give the details of one, the PSD algorithm, herein.

Like the Invariant Energy Quadratization (IEQ) method, the SAV schemes will be linear, and will be stable in terms of
some consistent modified energy. The advantage of the SAV over IEQ is that the equations defining the scheme will be linear
with constant coefficients, and thus efficiently invertible using FFT methods. In contrast with convex splitting methods, such
an energy stability is not primal. The energy that is dissipated for the SAV schemes is a modified, but consistent form of
the free energy. On the other hand, SAV schemes are defined by linear constant-coefficient operators, whereas the convex
splitting schemes are generally nonlinear and generally of low order.

In general, one can use the SAV method to design the first- and second-order unconditionally energy stable schemes
for the phase field equations. And higher-order schemes can also be designed by using this method in some cases, and we
refer the readers to [40] for more details. Here we use the SAV method to construct a first-order scheme and two different
numerical schemes with second-order-in-time accuracy.
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It should be noted that we add stabilization terms in each of the SAV schemes, which means that these schemes are not
of standard SAV type. These additional stabilization terms will not cause any difficulty in the theoretical analysis of stability.
We will explain the reasoning for adding the stabilization terms in the discussions of the numerical results in Section 5. No
stabilization terms are needed for the fully implicit BDF schemes.

4.1. A BDF1-SAV scheme

Now we present an SAV scheme that is related to the backward Euler (BDF1) method. We refer to this method by the
acronym BDF1-SAV. Assuming that ¢™ and U" are known, we update the value of ¢"*! and U™*! according to the following
first order numerical scheme:

n+1 _ 4n
% =MAp™1, (4.1a)
Mn+1 — E4A2¢n+l + (2 + n)EZAd)n +XnUn+1 _ SA(¢”+1 _ ¢n), (4lb)
yntt _gyn 1 ¢n+1 — "
— = | X" dx, 41
5t 2 f se (410
Q

where S > 0 is a stabilization parameter.

There are two main advantages of the SAV method: (1) this method is easy to implement; (2) systems to be inverted in
the scheme are linear, positive, and have constant coefficients. Now we will explain the main points involved in solving the
semi-discrete linear system (4.1). For more details, see [39] and [40]. The method described here to solve the scheme (4.1)
can be modified for the other two forthcoming second-order schemes that we will propose in Sections 4.2 and 4.3.

First, (4.1c) implies that

1 1
Un+1 :UH+E(XH,¢H+1)—E(XH,¢H). (42)
Substituting (4.2) into equation (4.1b) and eliminating the auxiliary variable U"*1, we get

Mﬂ+1 :€4A2¢n+1 _ SA(¢”+1 _¢n) +(2+ n)€2A¢n

1 1
+UTXT 4 S (X, gMDXT = (X", ¢MX" (43)
In combination with (4.1a) and (4.3) and regrouping the result, we are left with
¢n+1 423 n+1 2 n+1 1 n ,n+l n n
— €A+ SAY"TT — (X", p"THAX" = f", (44)
Mét 2
where
n
1
fim e S+ 2 A% 4 UTAXT — (X T AX", (45)
Next, defining a linear, positive, constant-coefficient differential operator
14 4,3 2
E = — —€ A SA >
14 Vot ¥+ SA%Y

assuming periodic boundary conditions, as usual, we find

L™ — %(Xn’¢n+1)AXn — fn. (4.6)
By applying operator £~ to the above equation, we get

P = 4 %(Xn’¢n+1)£71 (AX™). (4.7)
The most straightforward way to calculate (X", ¢"*1) is to take the L? inner product of (4.7) with X":

(X", ") — %(X", XM LTI AXM) = (X" L7 M. (48)
We then obtain from (4.8) that

(xm, L' fm
1+ 32X, L1 (—=A)Xm)

(Xn’ ¢n+1) — (49)

which is well-defined since £~'(—A) is a positive, symmetric operator. By substituting formula (4.9) into equation (4.7),
we finally get an explicit expression for ¢"*1. We have proven the following:

7
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Theorem 4.1. The scheme (4.1) is unconditionally uniquely solvable.

We now recap the implementation procedure to solve the linear and coupled system (4.1). If the values of ¢" and U"
have been known, we will determine ¢"*! in the following steps:

Step 1. Compute X" via (3.12) and f" via (4.5).

Step 2. Compute (X", £71f") and (X", L~'AX"). This can be done by solving two sixth-order equations with constant
coefficients.

Step 3. Compute (X", #"1). This can be done easily by using (4.9).

Step 4. Compute ¢! by (4.7).

The procedure described above for solving ¢"*! is straightforward to implement, though it does involve a number of
FFT/IFFT applications in practice. Specifically, at each time step, we invert two linear, positive, sixth-order operators with
constant coefficients and periodic boundary conditions.

Theorem 4.2. The scheme (4.1) is unconditionally modified-energy stable in the sense that it satisfies the following discrete modified-
energy law:

E1(@"™, U™ < E1(¢",U™), V¥n=>0, (4.10)

where
1 2
is the modified energy at time level t"*1,

The proof is given in Appendix A. See our earlier remark, Remark 3.2, regarding the context of this “energy stability”
result.

4.2. The BDF2-SAV scheme

One second-order accurate scheme that we describe is based on a combination of the second-order backwards-difference
formula (BDF2) approximation for the time derivative and the SAV methodology. We refer to this method by the acronym
BDF2-SAV. Assuming that ¢"~1, ¢", U"~! and U™ are known, we update ¢™t! and U"*! according to the following BDF2-
SAV scheme:

3¢n+1 _ 4¢n +¢n—1

=MAp"1 411
o me (4.11a)
Wt = A2¢™ L 24 e gt 4 XYL gA (@™ — 29" 4 9", (4.11b)
3un+1 —4yn Unfl 1 3 n+1 _ 4" n—1
* S f x>t ¢ o t+¢ dx, (411c)
25t 2 25t
Q

where the extrapolated variables are defined via
¢*.n+1 — 2¢n _ d)n—l and X*.n+1 —X" — Xn—],
and S > 0 is a stabilization parameter.

Theorem 4.3. The scheme (4.11) is unconditionally uniquely solvable and unconditionally modified-energy stable in the sense that it
satisfies the following discrete modified-energy law:

Ex(¢"t1, o™, UM, U™ < Ex(¢", 9", U™, U™, Vn>0, (4.12)

where

1 A2 2A"MT — AG™|12 Vortl — von |2
a7, Ur, Uy s 1120+ 1200 oI° IV 9"l

2 2
240 5 IV + |2V — g2
2 2
Un+1 2 2Un+1 _yn 2 2

is the modified energy at time level t"*1,
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The theorem, whose proof is given in Appendix B, guarantees that the modified energy is dissipated. But, recalling our
earlier remark, Remark 3.2, it may be that the original primal energy can actually increase if the time step is large enough.
In fact, our own experiments show that this can be the case. Ultimately, the reader should keep in mind that, while stability
is important, stability without accuracy, is typically numerically meaningless. Accuracy and stability are what is desired.

4.3. The CN-SAV scheme

The next second-order accurate scheme is based on the Crank-Nicolson approach in combination with the SAV strategy.
We refer to this method by the acronym CN-SAV. Assuming that ¢!, ¢", U"! and U™ are known, we update ¢"*! and
U™ according to the following CN-SAV scheme:

n+1 _ 4n
% - MA,U,""'%, (4.13a)
n+1 n Un+1 yn
Wt = et a ¢—2+ P @t el ageTtE 4 xort 7; — SA@" —2¢" + 4", (4.13b)
Un+1 _yn 1 n+1 _ 4n
- f xon+ %d& (413¢)
Q

where the extrapolated variables are defined via
3 1 1

3
ontl 24" _ Z" 1 and Xo,n+% — 2xn _ Zxn-1.
¢ 2¢ 2¢ 2 2 ’

and S > 0 is a stabilization parameter.
The proof of the following result is similar to those already encountered and is given in Appendix C.

Theorem 4.4. The scheme (4.13) is unconditionally uniquely solvable and unconditionally energy stable in the sense that it satisfies
the following discrete modified-energy law:

E3(¢™!, 9", U™ < E3(¢", 9", U™, V¥n>0, (4.14)
where
[Vgt! — ven |2
2

1
€? (||V¢>”+1 12— 5||V¢”+1 - V¢"||2) -B

1
Eg(¢n+1’¢n,Un+l):564”A¢n+1”2+5 +|Uﬂ+1|2

B 247
2
is the modified energy at time level t"*1,

4.4. Fully implicit BDF1 and BDF2 schemes

The Backward-Euler (BDF1) scheme and the pure second-order Backward Differentiation Formula (BDF2) scheme are
very easy to construct. In general, they are not provably unconditionally energy stable nor are they provably unconditionally
uniquely solvable, that is, these properties may not hold for all possible times step sizes. However, if the time step size,
8t, is sufficiently small, both stability and solvability will hold. See, for example, the classical textbook [1] and a few other
related works [3,13-19]. This lack of unconditional solvability/stability is not a big issue in practice, since, in our experience,
the time step size restrictions for these properties to hold are less “restrictive” than those for accuracy. In addition, a
few modified BDF schemes have been proposed for various gradient flows, such as Cahn-Hilliard and epitaxial thin film
growth [23,35,45], in which certain artificial regularization is added so that an unconditional energy stability could be
theoretically proved.

For the FCH equation, the BDF1 scheme [8] is

¢n+1 _¢I’l
St
'un+1 — (GZA _ F//(¢n+1) + n)(62A¢n+1 _ F/(¢n+1)). (4.l5b)

=MAp™I, (4.15a)

The related fully implicit BDF2 scheme is

3¢n+1 _ 4¢n +¢n—1
268t

=MAp™, (4.16a)
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Mn+1 — (GZA _ F//(¢n+1) + n)(€2A¢n+1 _ F/(¢n+1))' (4.16b)

Both the BDF1 and BDF2 schemes result in highly nonlinear sixth-order elliptic equations that are difficult to solve. The
preconditioned steepest descent (PSD) algorithm, which was introduced in [22], is employed in this paper to solve all the
nonlinear equations and is very easy to implement. For more details about the PSD algorithm, refer to [21-23]. There are
some other efficient methods that can also be used to solve these nonlinear equations. For example, the Newton-Raphson
method is applied in [8] to solve the BDF1 scheme.

Here, we take the BDF1 scheme as an example to show the implementation of the PSD iterative algorithm. We first
rewrite scheme (4.15) as

Nig"'1:=0, (417)
where
1
NIgli= (=07 (9 = ¢") + (€A = F'(@) + (€* Ap — F(9)). (4.18)
The mean-zero projection operator, (- )g, is defined as
1
(U)o :=u — @ J udx. (4.19)

Clearly, (u)o is a mean zero function for any u. We next choose a linear, positive, and symmetric preconditioner operator, P,
and we obtain the (mean zero) search direction, dj by solving

Pldid = (-NTep 1), (4.20)

where q&}(’“ (k=0,1,---) is the k-th iterative approximation of ¢"*! with ¢3“ = ¢". For the FCH equation we choose the
preconditioner

Ply] ::—LA—1w+w+e4A2w, (4.21)
MSét
which is well-defined for any mean zero function, .
Note that equation (4.20) can be solved efficiently by using the FFT when periodic boundary conditions are enforced.
Once we get the mean-zero search direction, di, we update the (k + 1)-st approximation of ¢"*! according to the formula
o =t +ady. (4.22)
Choosing « by line search [22] - in other words, line optimization - one obtains the preconditioned steepest descent (PSD)
method. If the 8t is sufficiently small, we can prove that limy_, ¢p 7' = ¢"*'.
In order to speed up the PSD solver, we use a constant, invariant step size, & = 0.72, in equation (4.22), which avoids
a costly line search. This value is obtained after much numerical experimentation. It can be proven that the method still
converges with a fixed step size o at a geometric rate, but slightly more slowly that with exact line search. However, the
savings incurred by avoiding the line search more than makes up the difference, in most cases. The solver algorithm detailed
here has the more appropriate name preconditioned steepest descent with approximate line search (PSD-ALS). We will just refer
to it as the PSD solver, for brevity, but see, for example, [6].
For the BDF2 scheme (4.16), we choose the preconditioner

3 Ay 452
Ply]i= oo (=0 + v +etay, (4.23)

and compute the search direction d, by the counterpart of (4.20) appropriate for the BDF2 scheme. Finally, according to
expression (4.22), one can get the solution of scheme BDF2 at time level n + 1.

Remark 4.5. We wish to point out that we have not gone to great lengths in this manuscript to optimize the PSD solver.
It is possible, we now know, to significantly improve the performance of the PSD solver for the present FCH problem by
choosing a more general preconditioner (for the BDF1 case)

.__L -1 452
Plyli=— o AT + By + 'A%y, (4.24)

where 8 > 0 is a tunable parameter, and optimizing the performance of the solver (for particular fixed values of 8t and
M) over reasonable values of the PSD step size o and the preconditioning parameter 8. This optimization/tuning will be
reported in a subsequent work and will make the BDF1-PSD and BDF2-PSD algorithms even more competitive.
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Table 1

The L2 errors at t = 0.1 for the given exact solution (5.2) with parameters (5.1) calcu-
lated respectively by BDF1-SAV, BDF2-SAV and CN-SAV. The expected global accuracies
are achieved, on the assumption that there is negligible spatial error.

st BDF1-SAV  Order  BDF2-SAV  Order  CN-SAV Order
2.00000 x 1072 7.93e-4 - 2.41e-4 - 141e-4 -
1.00000 x 1072 4.38¢-4 0.86 6.98e-5 179 2.69e-5 2.39
5.00000 x 1073 2.48e-4 0.82 2.23e-5 1.65 9.10e-6 1.56
2.50000 x 1073 1.40e-4 0.82 6.63e-6 175 3.00e-6 1.60
1.25000 x 1073 7.72e-5 0.86 1.78e-6 1.90 8.71e-7 1.78
6.25000 x 107%  4.14e-5 0.90 4.56e-7 1.96 2.32e-7 191
3.12500 x 1074 2.16e-5 0.94 1.15e-7 1.99 5.98e-8 1.96
156250 x 1074 111e-5 0.96 2.87e-8 2.00 151e-8 1.99
7.81250 x 107> 5.61e-6 0.98 7.18e-9 2.00 3.81e-9 1.99
3.90625 x 107> 2.82e-6 0.99 1.80e-9 2.00 9.55e-10  2.00
195313 x 107 1.42e-6 0.99 451e-10 2.00 2.38e-10  2.00
9.76563 x 1076 7.10e-7 1.00 1.15e-10 197 5.76e-11  2.05

5. Numerical simulations

In this section, we test our SAV and classical BDF schemes. For simplicity and for minimizing the errors caused by
spatial discretization, we adopt the highly accurate Fourier spectral method with N2 (or N3) Fourier modes to perform
spatial discretization in 2D space (or in 3D space). Certainly, other spatial discretization methods, such as finite difference
method [21], finite element method [24], and finite volume method [46], also can be used. We perform these simulations
in Q=10,L]% (d =2,3) and use periodic boundary conditions. The following parameters will be used for our numerical
schemes in most cases.

M=1,€e=01, n=€2 L=4r, N=28 B=1°. (5.1)

For the SAV stabilization parameters, S = €2 is used in the BDF1-SAV scheme and S = 3¢2 is used in the BDF2-SAV and
CN-SAV schemes, for all tests in this paper. Some of the above parameters (5.1) may change for some special cases, which
we mention, as appropriate.

5.1. SAV accuracy and stabilization tests

Since the SAV schemes are new, we test them on toy problems to confirm the expected orders of accuracy. In particular,
these schemes need some calibration due to the use of the stabilization terms. We use the function

¢ (x, y,t) = sin(x) cos(y) cos(t) (5.2)

as the exact solution of the FCH equation (3.9)-(3.11) by adding appropriate forcing terms to the equations. In Table 1, we
list the L? errors at t = 0.1 and convergence orders of the above three energy stable numerical schemes (i.e., BDF1-SAV,
BDF2-SAV and CN-SAV). Table 1 shows that BDF1-SAV can attain first order accuracy and BDF2-SAV as well as CN-SAV can
attain second order accuracy in time, respectively. Further, we find that the L? errors resulting from CN-SAV are slightly
smaller than that of BDF2-SAV, as may be expected, although both of them are second-order accurate.

Table 1 shows us good accuracy and convergence order of each SAV scheme, which should be credited to the introduction
of the appropriate stabilization parameter, S. The exact profile (5.2) is used to do some studies on the stabilization parameter
S. In the BDF1-SAV scheme, we use the different values S =0, €2, 3€2, 5¢2, 10€2, to test the effect of the stabilization term
on the accuracy for FCH equation. The L? errors calculated using different S in the BDF1-SAV scheme at t = 0.1 are presented
in Fig. 1. Obviously, the stabilization term can improve the numerical stability of the BDF1-SAV scheme when the large time
step is used. However, the effects are subtle for the BDF1-SAV scheme, because the pure un-stabilized BDF1-SAV scheme
(i.e., S =0) also has good accuracy when 8t < 1.0 x 1073.

Next, we apply the two second-order schemes, BDF2-SAV and CN-SAV, to perform the same test. In Fig. 2, the role of the
stabilization term on accuracy is pretty obvious for both the BDF2-SAV and CN-SAV schemes. In the BDF2-SAV scheme with
$ =0, we cannot get accurate numerical results for time step size 8t > 5.0 x 10~%. But, the stabilization term can help us
get good approximate solutions for the FCH equation, and it doesn’t increase the errors significantly when small time steps
are used. As can be seen from Fig. 2(c), the pure un-stabilized CN-SAV scheme (S = 0) doesn’t work, and the approximations
given by it are non-physical, even when a very small time step is used although the scheme itself is unconditionally energy
stable. However, when the stabilization term is added to this scheme, its accuracy becomes satisfactory and is a little better
than the BDF2-SAV scheme under the same conditions, according to Table 1.

We find that the BDF1-SAV scheme can show the best accuracy when S = €2 and that both the BDF2-SAV and CN-SAV
schemes can show the best accuracy when S = 3€2. Hence, the following computations are going to be based on these
values.

11
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Fig. 1. The L2 errors corresponding to different values of S at time t = 0.1 computed by using the BDF1-SAV scheme.

Table 2

The L? errors at t =4 and t = 10 calculated by schemes BDF1-SAV, BDF2-
SAV, CN-SAV, BDF1 and BDF2, and the corresponding total CPU time of each
scheme, by using the fixed time step 8t = 1 x 10~ with the initial condition
(5.3) and parameters (5.4). See Fig. 4.

Scheme t=4 t=10

Error CPU Time Error CPU Time
BDF1-SAV 4.99e-3 15.12 4.03e-3 3721
BDF2-SAV 8.77e-5 15.36 7.42e-5 3733
CN-SAV 5.26e-5 16.97 4.29e-5 41.68
BDF1 8.81e-5 56.73 7.65e-5 105.62
BDF2 5.70e-7 53.12 2.07e-7 99.21

Remark 5.1. The main reason that large time steps can be used in all the above SAV schemes is due to the introduction
of the stabilization term. It is well known that we can not use any time step size 5t we want in the actual calculations,
because accuracy concerns limit the size. Larger numerical errors will be introduced by larger time steps. In any case, the
stabilization term is quite useful for allowing us to use large time steps if needed. This becomes more of an issue in adaptive
time stepping, which we have chosen to ignore in the present manuscript for the sake of simplicity and brevity.

Remark 5.2. Extra numerical error is introduced by adding the stabilization term in the SAV scheme. Large stabilization
parameters generally lead to large local truncation errors (LTEs). Therefore, the user must be careful to strike a balance
between stability and accuracy.

5.2. Sample computations and benchmark problems

We use a benchmark problem to demonstrate the efficiency and accuracy of our schemes, especially the second order
schemes. The initial condition, which can be found in [4,8,21], is specified as follows,

¢(x,y,t =0)=2exp(sinx+siny — 2) + 2.2exp(—sinx —siny — 2) — 1, (5.3)

and we use the following parameters for this problem:

M=1,€e=0.18, n=€?, L=2w, N=27, B=1°. (5.4)

For the initial condition (5.3) and parameters (5.4), we compare the different calculation results at t =4 and t = 10 by
using our three schemes (i.e., BDF1-SAV, BDF2-SAV and CN-SAV), and the classical BDF1 and BDF2 schemes with the same
time step sizes 8t = 1.0 x 1073 and §t = 1.0 x 10~%, respectively. Since the exact solution of this problem is unknown, we
use the solution calculated by the BDF2 scheme (4.16) with a very small time step size §t = 1.0 x 10~ as the exact solution
att=4 and t =10.

The L? errors and the total CPU usage time of all schemes are listed in Tables 2 and 3. We draw the following conclusions
from this test.

12
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Fig. 2. The L? errors corresponding to different values of S at t = 0.1 computed by using the BDF2-SAV scheme (top) and CN-SAV scheme (bottom)
respectively. The right-hand figure in each row is a zoom-in of the figure on the left.

Table 3

The L2 errors at t =4 and t = 10 calculated by schemes BDF1-SAV, BDF2-
SAV, CN-SAV, BDF1 and BDF2, and the corresponding total CPU time of each
scheme, by using the fixed time step 8t = 1 x 10~* with the initial condi-
tion (5.3) and parameters (5.4). See Fig. 4. In this case, the BDF1 and BDF2
computations (to t = 10) are slightly less expensive than the SAV compu-
tations. But, note that numerical saturation seems to have occurred for the
BDF2 scheme, and, in fact, the errors seem to be slightly larger, inexplicably,
than for the case with larger time step size.

Scheme t=4 t=10

Error CPU Time Error CPU Time
BDF1-SAV 5.07e-4 142.71 411e-4 35753
BDF2-SAV 1.14e-6 143.45 1.06e-6 357.64
CN-SAV 7.68e-7 157.79 7.31e-7 390.28
BDF1 9.07e-6 200.80 7.80e-6 302.89
BDF2 8.36e-7 207.81 1.01e-6 314.37

1) The accuracy of BDF1-SAV is the worst, but the CPU time it takes is the least of all SAV schemes and is much less than

BDF1 and BDF2 for §t =

1 x 1073 in Table 2.
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Fig. 3. The energy evolution curves of the modified energy for different time steps of 8t =1 x 1074, 5x 1074, 1 x 1073, 2 x 10~2 and 5 x 10~ by using
BDF2-SAV scheme along with the initial condition (5.3) and the parameters (5.4). (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

2) The L2 errors of all the SAV schemes are larger than the pure implicit schemes, BDF1 and BDF2, but the CPU time
consumed by them are less for §t =1 x 1073, See Table 2.

3) The L? errors of all the SAV schemes reduce when using the time step §t =1 x 10~%. And the CPU time consumed by
them are ten times as much as that of 8t =1 x 103 respectively for the same stopping time by comparing Table 2
with Table 3. The CPU time consumed should increase by a factor of 10 when the time step is reduced by a factor of
10, since the amount of work solving the SAV schemes is always fixed.

4) For all the second-order schemes, the error of BDF2 is obviously the best for large time step 8t =1 x 10~3 according to
Table 2, however, the error of our CN-SAV scheme becomes the smallest for §t =1 x 10~% according to Table 3.

5) What'’s the most surprising is the accuracy of BDF1 scheme. The errors of BDF1 are of nearly the same order as those
of the BDF2-SAV scheme for time step 8t =1 x 10~3 and 8§t =1 x 10~%.

6) We can see that in Table 3 the CPU time spent by BDF2-SAV and CN-SAV are less than BDF1 and BDF2 at t = 4, however
the situation is reversed at t = 10. The main reason is that the values of ¢ change slowly when t > 4 for this problem
such that the solution resulting from BDF1 or BDF2 can be obtained by only one or two PSD iterations with time step
8t =1 x 104, which means only one six-order equation needs to be solved, while the SAV schemes still need to solve
two six-order equations at each time step.

Although the BDF2-SAV scheme is unconditionally modified-energy stable in theory, it will introduce larger local trunca-
tion error (LTE) if a larger time step is used in the computation, as shown in Tables 2 and 3. Considering both accuracy and
stability, it is necessary to find a reasonable range of the time step size. In Fig. 3, we plot the evolution curves of the modi-
fied energy by using different time step sizes 8t =1 x 1074, 5x 1074, 1 x 1073, 2 x 10~3 and 5 x 10~3. We observe that all
the energy evolution curves falling even for the largest time step size 8t = 5.0 x 10~3, which means our schemes are energy
stable. Furthermore, the curves for 5t =2 x 10~ and 8t =5 x 10~3 are away from other curves, which means the larger
time step will introduce larger error, even though the energy is dissipated. As a result, in order to obtain good accuracy,
the time step size should not be more than §t =1 x 10~3 for this problem. Here, we choose the time step §t =1 x 1073 to
perform this simulation. In Fig. 4, we present the simulation results at a sequence of time instants. They are highly similar
to those in [4]. As can be seen, the amphiphilic material will form the expected network morphology.

Of course, in addition to the fully implicit BDF schemes (utilizing a PSD-type solver) and the linear SAV schemes, other
schemes are possible for the FCH problem. In particular, standard implicit-explicit (IMEX) schemes for which only the posi-
tive, constant-coefficient linear terms are treated implicitly would be natural to compare against the SAV schemes. Arguably,
SAV schemes are of the linear IMEX class. In fact, in a recently submitted arXiv manuscript [9], benchmark computations
of morphological complexity in the FCH flow have been conducted that compare in detail BDF2/PSD, SAV, and linear IMEX
schemes, in an adaptive time step setting. The authors of [9] show that, like the SAV schemes, the linear IMEX schemes re-
quire subtle stabilization/preconditioning to achieve robust performance; such stabilization can enhance efficiency by several
orders of magnitude. More importantly, it is discovered that the nonlinear BDF2/PSD scheme achieves the smallest global
discretization error at “target” LTE. However, the linear IMEX scheme is the most computationally efficient as measured by
the number of FFT calls required to achieve a desired global error. The performance of the SAV scheme mirrors that of linear
IMEX, but with slightly higher LTE and roughly half the computational efficiency (due to the auxiliary variables introduced
in the SAV approach). See [9] for details.
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(a) (b)

(2) (h)

Fig. 4. The snapshots for the simulation of a benchmark problem, which starts with the initial condition (5.3) and parameters (5.4) by using the BDF2-SAV
scheme with t =1 x 1073, at t =0, 1, 5, 20, 400, 500, 600 and 1000.

5.3. Meandering instability

For a bilayer with any shape, the interface can be lengthened under the action of the meandering instability [10] when
there is too much mass (thickness) thereupon. To verify the validity of our schemes, we simulate the meandering instability
phenomenon by setting the initial condition to be a smooth approximation of

—1, x>sin(y)+L/2+0.34,
o, y,t=0=1-1, x<sin(y)+L/2—0.34, (5.5)
1, otherwise.

We take 1 =0.2 in the FCH equation (3.9)-(3.11) and the other parameters are the same as (5.1).

Typically, Fourier pseudo-spectral methods may have some difficulties in dealing with discontinuous functions, owing to
the Gibbs phenomenon. Furthermore, to make fair comparisons for different methods with different spatial mesh sizes, h,
we want to smooth this initial data in such a way that it is still periodic. Thus, we seek a filter F : L*(Q) — ngr(Q), which
is defined as follows.

1. Suppose that ¢ € L2(2) is piecewise continuous, for simplicity. Project ¢ into a grid of size N x N with mesh spacing
h= ﬁ
Pi@ij=¢&.yj), 1<i j<N.
2. Compute the discrete Fourier coefficients, ¢, using the N x N discrete Fourier transform of the grid function Pr(e).
3. Define “filtered” Fourier coefficients via
¢’ =a M9,

where a(l_é) is the Gaussian filter:

45k
o (k1,ka) :=exp (— Jk| ) (5.6)

N2
and
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Fig. 5. The snapshots for the simulation of meandering instability at t =0, 10, 15, 20, 30, 50, 75 and 100. We start this simulation from the filtered version
of (5.5), that is ¢g = Flg], with N =1024 and A =50In(10) in (5.6). The other parameters are given by M =1, € = 0.1 and n = 0.2. This simulation
is performed by using the BDF2-SAV scheme with 8t = 1.0 x 10~3, and 256% Fourier modes are adopted to discrete the spatial variables in domain
Q =10,4m] x [0,4m].

A A

km € N+1 N+2
m 2 ’ 2 El El

N =

4. Finally, get the filtered approximation

2
Flplx,y)= Y (ﬁ/(khkz)eXP(%(){h+yk2)>7 t=v-1),

k1'k261N

which is both smooth and periodic.

In Fig. 5(a), we plot the filtered initial data ¢9 = F[¢] with N =1024 and A =501n(10) in (5.6). We apply the BDF2-SAV
scheme in the numerical test with time step 8t = 1.0 x 103. The results captured at the sequence of time instants, t = 0,
10, 15, 20, 30, 50, 75 and 100, are plotted in Fig. 5. The meandering instability phenomenon can be observed by using our
BDF2-SAV scheme. We also observe that the shape of the curve changes slowly in later stages, only gradually elongated in
the horizontal direction.

To measure the accuracy of the new SAV schemes (BDF1-SAV, BDF2-SAV, and CN-SAV) along with large time step size,
we take a uniform time step size §t = 1.0 x 103 and compare with the classical BDF methods. The numerical solution
computed by the standard BDF2 scheme (4.16) with time step 8t = 1.0 x 10~ is treated as a reference solution at each
moment, since an exact solution is not available for this problem. The comparison results of level set ¢ = 0 between different
schemes are plotted in Fig. 6. As can be seen, the curves of BDF2-SAV and CN-SAV fit very well with the reference solution,
some parts even overlap perfectly. We have computed approximations of L and L? error norms of each scheme using
the reference solution at the exact same time in every time frame of Fig. 6, so that we are able to visualize the difference
according to the errors. We observe that the second-order schemes can show high numerical accuracy and the errors of the
CN2-SAV scheme are smaller than that of the BDF2-SAV scheme, in both L® and L? norms. We also find that the accuracy
of the BDF2 scheme is extraordinarily high for §t =1 x 10~3 in this problem, which is consistent with the results shown in
Table 2.

Additionally, we list, in Table 4, the CPU time used by the above schemes for simulating the meandering instability.
We observe that all the SAV schemes spend less CPU time than the BDF2 schemes if the large time step 8t = le — 3 is
employed. Specifically, for t < 30, the BDF2 scheme spends three times as much CPU time as all SAV schemes do. In fact,
in the early stage of this evolutionary process, i.e., t <30, many drastic topological changes are involved in the process, so
that the PSD solver requires more iterations to converge, i.e., using more CPU time; while in the SAV schemes only two
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Fig. 6. The detailed comparison results for the BDF1-SAV, BDF2-SAV, CN-SAV and BDF2, at a sequence of time instants ¢t = 10, 30, 50 and 100, with the
same time step 5t = 1.0 x 10~3. The “Ref” represents the reference solution computed by the BDF2 scheme (4.16) with time step size 8t = 1.0 x 10~>. The

L> and L? errors are plotted in these pictures.

sixth-order equations need to be solved for finding the numerical solution at each time step. By the end of the simulation,
the evolution is slower so that the convergence speed of the PSD solver is accelerated. This makes the BDF2/PSD scheme
more competitive in solve-time. In terms of error, the BDF2 method is the clear winner, at approximately one to two orders
of magnitude more accurate.

5.4. Phase separation in 2D and 3D

One of the main purposes of the FCH equation is to investigate the process of the phase separation of an amphiphilic
binary mixture. The FCH free energy considered so far is the most basic one, while it can simulate the formation of inter-
esting structures (for example, the bi-layer structure). Here we use it to simulate the bi-layer network structure and set the

initial condition as follows:
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Table 4

The CPU time used by schemes BDF1-SAV, BDF2-SAV, CN-SAV, and BDF2
for different times in the simulation of meandering instability, see Fig. 6.
The fixed time step 5t =1 x 1072 is used for all the simulations.

Scheme t=10 t=30 t =50 t=100
BDF1-SAV 124.36 368.85 612.73 1215.46
BDF2-SAV 125.65 376.58 62491 1244.72
CN-SAV 133.73 399.31 666.24 1355.55
BDF2 488.39 1330.09 1611.76 2139.08
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Fig. 7. The snapshots of the 2D phase separation computed by the BDF2-SAV scheme with initial condition (5.7) at a sequence of time instants, t = 0.2, 10,
50, 100, 300, 500, 1000 and 5000. The parameters are given by M =1, € =0.1, n = €2, L =47, and N? = 2562,

¢(x,y,t=0)=0.5+0.001 x rand(x, y), (5.7)

where the function rand(x, y) generates random numbers uniformly distributed in [—1, 1]. The parameters involved are
listed in (5.1) and the BDF2-SAV scheme with the time step 8t = 1.0 x 1073 is adopted to perform this simulation.

The 2D simulation results of the phase variable ¢ (x, y,t) at a sequence of time instants, t = 0.2, 10, 50, 100, 300, 500,
1000, and 5000, are displayed in Fig. 7. The blue domains are the amphiphilic polymers corresponding to ¢ = —1, while the
yellow domains are the solvent phase corresponding to ¢ = +1. Many pore structures rapidly formed at t = 0.2 and some of
them then merged into worm-like structures over time. At t = 10, the narrow worm-like bi-layers merge to form enclosed
regions. At t =10, t =50 and 100, some interesting structures are captured, which are also observed by using the convex
splitting method in [21], like Y-junctions, antennae, and so on. Finally, amphiphilic polymers form the bi-layer structures
and the interfaces elongate and merge with each other to form a network structure after a long period evolution. The final
near-equilibrium solution at t = 5000 shows us the network structure. See also results observed in [21,25,31].

The evolution curves of the modified energy and the original primal energy are displayed in Fig. 8. It is observed that
both two energies decrease with respect to time for §t = 1.0 x 10~3, which demonstrate that the BDF2-SAV scheme, when
stabilized, is energy stable even with 8t = 1.0 x 1073,

For 3D phase separation, we use the BDF2-SAV scheme with the same parameters (5.1) as that used in 2D, except now
N =27. The time step size 8t = 1.0 x 1073 is used to perform this simulation. The initial condition is given by

¢(x,y,z,t =0)=0.540.001 x rand(x, y, 2), (5.8)

where the function rand(x, y, z) generates random numbers uniformly distributed in [—1, 1]. We present the simulation
results at a sequence of time instants, t = 20, 500 and 1000, in Fig. 9. The pictures of the first column in Fig. 9 are the
iso-surface diagrams, in which the green and purple parts represent the level sets ¢ = 0.0 and ¢ = 0.2, respectively. The
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Fig. 8. The energy evolution curves of the modified energy and the original energy for the 2D simulation of phase separation, with 8t = 1.0 x 103,
pictures of the second column in Fig. 9 correspond to slice diagrams. The pore and the bilayer structures could be clearly

observed. We find that the phase separation behavior is similar to the 2D case. The basic structures are formed in the early
stage of the phase separation process.

5.5. Pearling instability in annuli

Here, in order to demonstrate that our schemes can be used for other more complicated FCH models, we consider a
more general form of the FCH energy

- 1 . 2 2 -
Bol= [ 5 (220 -F @) - (m% Vol + nzF(¢)) dx, (5:9)
Q

in which, € is a parameter that decides the thickness of the interface, and 17 > 0 and 1, € R are also two small parameters
related to the properties of amphiphilic materials. We obtain something similar to the original energy expression (2.4) when
m=n2=n.

We get the more general FCH equation, from the general FCH energy (5.9), in the H~! gradient flow:

é=MApu, (5.10)
w= (A —F"(@) +n)wo+ 1 — n2)F (@), (5.11)
w=€e’Ap — F (). (5.12)

Periodic boundary conditions are enforced for this equation, as before. In order to capture the dynamics associated to
pearling bifurcation, we consider a double well potential function F(¢) with unequal well depths, F(¢ =1) < F(¢ = —1) =
0. Specifically, we assume

F _ ! 1)2 ! 1)2 2 2 513
(¢)—§(¢+ ) <§(¢— ) +§t(¢— )>. (5.13)
This implies that

Fg)=@+D@+1)(0—1), (5.14)
and

Flig)=@+1D(p—1)+2¢( +1). (5.15)

We cannot directly apply our SAV schemes to deal with this special FCH equation (5.10)-(5.11) because there is a
quadratic term in (5.14) that did not exist previously. However, we can use a transformation of ¢ to make the quadratic
term in the derivative disappear. The easiest method is to implement the following affine change of variables:

pi=dtg. Fui=F(v-5)=F@.
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Fig. 9. The iso-surface diagrams (left) and the slice diagrams (right) of the 3D phase separation computed by the BDF2-SAV scheme with initial condition

(5.7) at a sequence of time instants, t =20, 500 and 1000, respectively. This simulation is performed by using 128> Fourier modes, € = 0.1, n = €2 and
M =1 in domain Q= [0,47]>.
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Then we have

F/(w)=¢3—<1+%2>w—2§(1+§)(1—§). (5.16)

We have successfully eliminated the quadratic term, and the SAV schemes designed before in this paper can be used for this
more general FCH equation (5.10)-(5.11). Here, we briefly introduce the approach of applying our SAV schemes for solving
the general FCH equation (5.10)-(5.11).

In terms of ¢, the FCH free energy (5.9) can be written as

2
Ely] =f {%(ezm/nz +3e2y2 |Vy|? - (% +1>ez IVy |2
Q

(5.17)
1 2
+ E(F/(Vf))2 - <Th % IV |? + nzF(llf)> }dx-
Then, setting
1
Gy = / {Bezwz VU + S (F)? = ﬂzF(llf)} d, (518)
Q
we have
U=yGW)+B, (5.19)
and the modified FCH free energy becomes
2
E[v, U] :f {%(ezmp)z - (% + "2—1 +1e? vy 2l dx+ U2 — B, (5.20)
Q
Finally, we can rewrite the original general FCH equation (5.10)-(5.11) as follows
i =MAp, (521)
2 2
=€ Ay + Q@+ + %)GZAI/J-FUX(I/I), (5.22)
U= %/X(l/f)l/} dx, (5.23)
Q
where
2 2 _yg. 2 / " _ ’
X(y) = 6e“(Y [VY|" =V -(Y“Vy) + F(Y)F'(Y) nzF(llf)_ (5.24)

VI 13202190 P + 1(F @) — mF ()} dx+ B

Obviously, the system (5.21)-(5.23) and the system (3.9)-(3.11) are formally identical (at the PDE level), so that our SAV
schemes can be directly applied.

5.5.1. An elliptical annulus
For the first example of the pearling bifurcation, we use a special initial value, a smoothed elliptical ring, which is
obtained by applying the strategy in Section 5.3 to

-1, f&x,y)>L/4+0.2,
X, y,t=0=1-1, fkx,y)<L/4-0.2, (5.25)
1, otherwise,

where f(x, y)=+/(x—L/2)2 +0.5(y — L/2)2. In order to get an initial value with good smoothness, we filter ¢ by choosing
N =1024 and A =501In(10) in equation (5.6). Then, we first adopt the BDF2-SAV scheme to perform this simulation, where
the other necessary parameters are given by

M=1,€e=0.1, 1 =145, gy =2¢, 1 =0.125, L=47, N=28, B =15. (5.26)

The numerical simulation results from the BDF2-SAV are displayed in Fig. 10. We observe that the pearling bifurcation
occurs by time t =2 and the first place to change is located in the middle along the short axis of the elliptical ring. This is
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(e)

Fig. 10. The 2D dynamical evolution of phase variable ¢ simulated by the BDF2-SAV scheme along with &t = 1 x 10~3, which starts from the filtered version
of (5.25) as initial data. The snapshots are the simulation results of pearling bifurcation at a sequence of time instants, t =0, 2, 10, 15, 20, 30, 60 and 100.
The parameters are M =1, € = 0.1, n1 = 1.45¢, 2 =2¢ and 7 =0.125.

Table 5

The total CPU time consumption by the BDF2-SAV and the BDF2 schemes,
respectively, for 8t =1 x 1072 and 8t =1 x 107* at t =20, t = 60 and
t =100 with the initial value given as the smooth function ¢o = Fl¢],
where ¢ is given in (5.25).

St Scheme CPU Time
t=20 t=60 t=100
1.0x 1073 BDF2-SAV 251.57 754.05 1254.61
BDF2 1094.41 226734 3061.94

1.0 x 1074 BDF2-SAV 2489.41 6661.05 10627.41
BDF2 3952.33 7512.97 10248.57

likely because the bilayer is thinner in these regions. These little pearls reconnect into a line by ¢t = 20 and, subsequently, a
meandering instability occurs.

Just as before, we use the pure BDF2 numerical solution at a high temporal resolution §t = 1.0 x 10~ as the reference
solution for the comparison in terms of accuracy and computational speed. We present the comparison results by using
two level sets ¢ ==+0.2 for §t = 1.0 x 10~3 in Fig. 11 and 8t =1.0 x 10~* in Fig. 12 at t =10, t =20, t =60 and t = 100,
respectively. The L* error and L? error of each scheme (in comparison with the reference solution) are also displayed in
each picture. We observe that for the larger time step 8t = 1.0 x 1073, the accuracy of the standard BDF2 is significantly
higher than that of BDF2-SAV at any time. The accuracy of BDF2-SAV is obviously improved when the smaller time step
8t =1.0 x 10~ is taken, and its error is in the same order as that of the standard BDF2. Interestingly, the L2 (or L*) error
of BDF2-SAV scheme is slightly smaller at t =60 than that of BDF2 scheme. This reverses at t = 100.

In Table 5, we list the CPU time consumption by each numerical scheme with different time step sizes. We find that the
BDF2-SAV takes much less CPU time than the BDF2 for 8t = 1.0 x 103 at any time. However, for the smaller time step size
8t =1.0 x 10—, the CPU time consumption by the BDF2-SAV is less than that of BDF2 at t = 20. As the convergence speed
of the PSD solver is accelerated, the total CPU time consumption of BDF2 is less than that of BDF2-SAV.

Overall, the computational speed of BDF2-SAV is faster, while the accuracy is lower than that of BDF2 for the time step
size 8§t = 1.0 x 10~3. Meanwhile, the BDF2 is more efficient and consumes less CPU time than BDF2-SAV, and their accuracy
is roughly the same with the time step size §t = 1.0 x 10~4,

22



C. Zhang, J. Ouyang, C. Wang et al. Journal of Computational Physics 423 (2020) 109772

Bl BDF2-SAV | | 1ol ]
BDF2
Ref
BDF2-SAV: 1 BDF2-SAV: 1
L* = 1.57e-3 L® = 4163
o L =188e4 [P =448e4 |
8 Nt BDF2: 1 BDF2: A
/Y L* = 4.53e-5 L* = 6.83¢-5
o
7t N [ =387e6 L? =9526 |
/f;-;§'1N
L L 11 LY - L L L L
7 8 9 10 1 12 1 12
(a) t=5
12 |- BDFZ'SAV 4 12 |- 4
BDF2
Ref
BDF2-SAV: ] BDF2-SAV: ]
L% = 9.64e-3 L® = 2.07e-3
[P =888ed L =3424 |
] BDF2: ]
L® = 9.97e5
] L =166e5 |
1 12

Fig. 11. The detailed comparison results for the BDF2-SAV and BDF2 schemes at a sequence of time instants, t = 10, 20, 60, and 100, with the same time
step size 8t = 1.0 x 103, The “Ref” represents the reference solution computed by the BDF2 scheme with time step 8t = 1.0 x 107>, The L> and L? errors
are presented in these pictures. The BDF2 solution has an error that is about 20 to 30 times smaller than that of the BDF2-SAV scheme.

5.5.2. Circular rings of varying thicknesses
Next we use a circular ring as the initial value:

[V &x=2m)2+(y-2m)%) -7
€-d

¢(x,y,t=0)=2cosh™ -1, (5.27)

where d > 0 is a constant parameter which can control the interface width at the initial time. This initial condition is not
smoothly periodic, but it is approximately so, provided d is not too large. We apply both the BDF2-SAV and fully implicit
BDF2 schemes to solve the general FCH equation (5.21)—(5.23) by taking time step size 8t = 1.0 x 10~3. The other parameters
are the same as (5.26) except for 71 = 2¢. For the parameter d, we choose a couple of different values, d =1.3, 1.4, 1.5, and
2.0, to observe the effect of the thickness of the initial interface on the final numerical results. The terminal time is set to
be t =100 for all the following simulations and the numerical results produced by the BDF2-SAV scheme are presented in
Figs. 14, 16, 18, and 20.
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Fig. 12. The detailed comparison results of the BDF2-SAV and BDF2 schemes at time t = 10, 20, 60, and 100, with the same time step 8t = 1.0 x 104, The
“Ref" represents the reference solution computed by the standard BDF2 scheme with time step 5t = 1.0 x 10~>. The L™ and L? errors are presented in
these pictures.

By comparing these figures, we find that different shapes form with different initial interface width, and the pearling
bifurcation appears earlier when the thickness of the initial interface is smaller. Moreover, in each case, these small pearls
on the ring appear almost at the same time. In the final time, all the shapes in Figs. 14, 16, 18, and 20 are different. For
the BDF2-SAV scheme, we also present the energy evolution curves corresponding to different values of d in Fig. 13, and we
find that every curve is monotonically decreasing.

We also take the numerical solution computed by the standard BDF2 scheme of the general FCH equation with the time
step size §t = 1.0 x 1073, to investigate the numerical accuracy of the BDF2-SAV scheme for the long time evolution. The
simulation results produced by the standard BDF2 scheme are presented in Figs. 15, 17, 19 and 21. We observe, in the
“eyeball norm”, that the results computed by these two numerical schemes are almost exactly the same.

For the above simulations, the BDF2-SAV and BDF2 schemes produce qualitatively identical numerical results for each of
the initial conditions. In order to make a quantitative comparison between them, the simulation with d = 1.4 (see Figs. 16
and 17) is selected to compute error estimates. See Fig. 22. For CPU times, see Table 6. The reference solution is obtained
by using the BDF2 scheme with a very small time step, 5t = 1.0 x 107, to solve the FCH equation (5.10)-(5.12). Here, we
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Table 6

The CPU time comparisons at t = 10, 50, and 100
between scheme BDF2-SAV and scheme BDF2 by us-
ing the same large time step 5t = 1.0 x 107> and the
same initial condition (5.27) where d = 1.4.

Scheme t=10 t =50 t=100
BDF2-SAV 129.60 643.73 1280.96
BDF2 317.73 1661.26 2688.28
1
os¢  |==-=-- d=13
d=14
o == =-=- d=15
d=2.0
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Fig. 13. The energy evolution curves of the modified energy for different values of d until t = 100 in equation (5.27) by applying the BDF2-SAV scheme.

find the same results as before: the BDF2-SAV scheme can effectively reduce the simulation time by a factor of two to three
at the price of loosing one to two digits of precision.

6. Conclusions

We designed three unconditionally modified-energy stable linear numerical schemes, BDF1-SAV, BDF2-SAV, and CN-SAV,
by using the SAV method for approximating solutions of a symmetric FCH equation. To avoid spurious oscillations of the
physical energy at modest time step sizes, we have added linear stabilization terms. We proved that each scheme admits a
corresponding discrete modified-energy dissipation law. To study pearling bifurcations, we applied our schemes to solve the
more general FCH equation (5.10)-(5.11) in which the double-well potential function is asymmetric.

Using a toy test problem, we verified the expected convergence rates of each SAV scheme. In addition, with this example,
we numerically explained the reason for adding the extra stabilization term, and we determined the specific value of the
stabilization coefficient S for a given set of parameters. We found that the introduction of the stabilization term compensates
for the fact that we can use large time steps in these schemes, especially for the two second-order schemes, BDF2-SAV and
CN-SAV. We carefully choose the stabilization parameters to balance stability and accuracy.

To ascertain the relative strengths and weaknesses of the stabilized SAV schemes, we have compared output with the
classical BDF1 and BDF2 schemes. To make these fully implicit, nonlinear BDF schemes competitive, we used an efficient PSD
solver. We gauged the accuracy and computational efficiency (CPU usage time) of the methods based on some benchmark
problems, using both symmetric and asymmetric double-well potential functions. To make the discussion and comparisons
as simple as possible, we used a fixed time step size. However, since the FCH equation, and many others like it, have
solutions that exhibit a wide variety of time scales, time adaptive schemes should be considered in the future.

For the symmetric double-well form of the FCH equation, we used an infinitely smooth function as the initial value to
compare the schemes, BDF1-SAV, BDF2-SAV, CN-SAV, BDF1, BDF2. We found that the SAV schemes can generally execute
faster than the fully implicit schemes for modest time step sizes. But, as expected, the classical BDF2 scheme is more
accurate than all the others, for 8t =1 x 1073, For §t = 1 x 10™4, the SAV schemes still run slightly faster than the fully
implicit schemes at early times, while the standard BDF schemes are the winners at the higher temporal resolution in terms
of overall efficiency. At the smaller time step size, the CN-SAV was the winner with smallest error, slightly edging out the
BDF2 method. The simulation results of this benchmark problem are qualitatively consistent with the results in [4].

For some physics problems, we must use large time steps to access later times. Such is the case for the meandering
instability, where a bilayer can lengthen over a very large time scale. For this problem, we compared the schemes, BDF1-
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Fig. 14. The 2D dynamical evolution of phase variable ¢ simulated by the BDF2-SAV scheme along with 8t =1 x 10~3, which starts from initial condition
(5.27) with d = 1.3. The snapshots are the simulation results of the pearling bifurcation at a sequence of time instants, t =0, 6.5, 7.5, 40, 43, 50, 70 and

100, respectively, along with M =1, € =0.1, n1 =2¢, 12 =2¢ and 7 =0.125.

(a) (b) (c) (d)

(e) (2) (h)

Fig. 15. The 2D dynamical evolution of phase variable ¢ simulated by the standard BDF2 scheme along with 8t = 1 x 10~3, which starts from initial
condition (5.27) with d = 1.3. The snapshots are the simulation results of pearling bifurcation a sequence of time instants, t =0, 6.5, 7.5, 40, 43, 50, 70
and 100, respectively, along with M =1, € = 0.1, 1 = 2¢, 2 = 2¢ and 7 =0.125.
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Fig. 16. The 2D dynamical evolution of phase variable ¢ simulated by the BDF2-SAV scheme along with 8t =1 x 10~3, which starts from initial condition
(5.27) with d = 1.4. The snapshots are the simulation results of pearling bifurcation at a sequence of time instants, t =0, 9, 10, 22, 25, 30, 82 and 100,
respectively, along with M =1, € =0.1, n1 =2¢, 12 = 2¢ and 7 =0.125.

(c) (d)

() () (2) (h)

Fig. 17. The 2D dynamical evolution of phase variable ¢ simulated by the standard BDF2 scheme along with 8t = 1 x 10~3, which starts from initial
condition (5.27) with d = 1.4. The snapshots are the simulation results of pearling bifurcation at a sequence of time instants, t =0, 9, 10, 22, 25, 30, 82
and 100, respectively, along with M =1, € = 0.1, 1 =2¢, 2 =2¢ and 7 =0.125.
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Fig. 18. The 2D dynamical evolution of phase variable ¢ simulated by the BDF2-SAV scheme along with 8t =1 x 10~3, which starts from initial condition
(5.27) with d = 1.5. The snapshots are the simulation results of pearling bifurcation at a sequence of time instants, t =0, 13, 15, 24, 30, 34, 70 and 100,

respectively, along with M =1, € =0.1, n1 =2¢, 12 = 2¢ and 7 =0.125.
(b) (c) (d)

(a)

(e) () (2) (h)

Fig. 19. The 2D dynamical evolution of phase variable ¢ simulated by the standard BDF2 scheme along with 8t = 1 x 10~3, which starts from initial
condition (5.27) with d = 1.5. The snapshots are the simulation results of pearling bifurcation at a sequence of time instants, t =0, 13, 15, 24, 30, 34, 70
and 100, respectively, along with M =1, € = 0.1, 71 =2¢, 2 =2¢ and 7 =0.125.
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Fig. 20. The 2D dynamical evolution of phase variable ¢ simulated by the BDF2-SAV scheme along with 8t =1 x 10~3, which starts from initial condition
(5.27) with d = 2.0. The snapshots are the simulation results of pearling bifurcation at a sequence of time instants, t = 0, 48, 50, 51, 55, 60, 70 and 100,
respectively, along with M =1, € =0.1, n1 =2¢, 12 = 2¢ and 7 =0.125.
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Fig. 21. The 2D dynamical evolution of phase variable ¢ simulated by the standard BDF2 scheme along with 8t =1 x 10~3, which starts from initial
condition (5.27) with d = 2.0. The snapshots are the simulation results of pearling bifurcation at a sequence of time instants, t =0, 48, 50, 51, 55, 60, 70
and 100, respectively, along with M =1, € = 0.1, 71 =2¢, 2 =2¢ and 7 =0.125.
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Fig. 22. The accuracy comparisons at t = 10, 50, and 100 between scheme BDF2-SAV and scheme BDF2 by using the same large time step 5t = 1.0 x 103
and the same initial condition (5.27) where d = 1.4. The level set ¢ = +0.2 are shown. The “Ref” represents the reference solution computed by the
standard BDF2 scheme with time step 8t = 1.0 x 10~>, The L> and L2 errors are presented in these pictures.

SAV, BDF2-SAV, CN-SAV, BDF2. In this case, we found that the BDF2 scheme is about 50-100 times more accurate than the
others for 8t =1 x 1073, at a cost of a little less than twice the amount of CPU time. Specifically, in the early stage of
evolution, where the interface changes drastically, the CPU time used by the BDF2 scheme is about four times that of the
SAV schemes. The convergence speed of the PSD solver is accelerated in the later stage, which makes up for a part of the
time difference. The solution speed of SAV schemes is always about the same; they each require the solution of two sixth-
order linear PDEs at each time step, which is efficiently done with FFTs here. This finding is consistent with the results of
the previous benchmark problem. If accuracy becomes an issue, it is likely that the pure BDF2 method would be the method
of choice. Finally, we studied the phase separation dynamics in both 2D and 3D spaces. We only provided output for the
BDF2-SAV scheme, and the morphologies encountered in the solutions compared well with previous findings.

For the last battery of tests, using the asymmetric version of the FCH equation, we apply the BDF2-SAV and the standard
BDF2 schemes to study the phenomenon of the pearling bifurcation. If the initial shape is an elliptical ring, we observed the
pearling bifurcations using both schemes. We compared the accuracies and CPU time consumptions of these two schemes,
for 5t =1x 1073 and 8t =1 x 1074, and find that the results of the standard BDF2 scheme are still more accurate than
the BDF2-SAV scheme, but slower than the latter for §t =1 x 10~3. However, for 8t =1 x 10~4, the BDF2 scheme is faster
(and more accurate) than the BDF2-SAV scheme for the same final time t = 100. But, the final numerical error of the BDF2
scheme is only slightly smaller than that of the BDF2-SAV scheme.

Finally, if a smooth circular ring is taken as the initial value, we find that both the BDF2-SAV and BDF2 schemes can
qualitatively capture the pearling bifurcation phenomenon. Both schemes give similar results for the same time step sizes.
This test suggests that both schemes are accurate. In addition, the energy evolution curves also demonstrate the energy
stability of the BDF2-SAV scheme, for §t =1 x 103. The BDF2 method was only slightly more accurate, though it cost about
twice the CPU time.

To summarize, we observed that the SAV schemes often have an advantage in terms of computational efficiency, being
up to three times faster in CPU time when a moderately large to large time step size is used. However, when accuracy is
counted in the measures of computational efficiency, the classical BDF methods often performed better than the linear SAV
methods, with an advantage of up to three digits of precision, mostly due to a smaller local truncation error. If the final
target of a computation is relatively high global accuracy, then the method with the least computational time to achieve
that desired accuracy is very often classical BDF2. But, these conclusions are not universal; some test results were subtle
and ambiguous. This may be due, in part, to our imperfect method for approximating the global numerical errors. Certainly,
more advanced testing can be done. We have shown that SAV methods can be constructed in such a way that they are both
physically energy stable and accurate. However, they are not a clear choice in practical, real-world computations, because
their large LTEs limit their true efficiency.

Finally, our preliminary computations are limited in a couple of ways. First, we have not done exhaustive comparisons
of errors for our schemes. This is for the sake of brevity and also because the SAV schemes are new, and we have spent
some time establishing their properties and highlighting their implementation issues. Second, we have ignored adaptive
time stepping, which should be invaluable at dealing with the multiple time scales in the FCH and similar models. Third,
we have only compared the SAV methods against fully implicit BDF methods. Other methods, in particular linear IMEX
methods, could and should be considered against the SAV schemes, as they may balance efficiency and accuracy better than
the BDF methods used for benchmarking herein. A recently submitted arXiv manuscript [9], addresses most of these points
directly.
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Appendix A. Proof of Theorem 4.2

Proof. By taking the L? inner product of (4.1a) with 1, we get
(" —¢n, ,un+1) _ _MM”VMnH I12. (A1)
By taking the L? inner product of (4.1b) with ¢"t! — ¢", we get
(W @M — ¢ = et(Ag™ !, A" — AP + S V(" - g™, V(@ = ¢™)
— Q+ME VP, V(@™ —¢") + UTT(X", ¢ — ™). (A2)
Multiplying (4.1c) by 2U™t1 gives
U™ — gmuTH = gt (X, g — Ty, (A3)

Then, using the identity

2a(a —b) = |a> — |b|*> + |a — b}, (A4)
we obtain
Un+1 (Xn,¢n+1 _ ¢n) — |Un+1|2 _ |Un|2 + |Un+1 _ Un|2. (A.S)

By using (A.4) again, we can also derive

208" Ap™ — A" = | AG"TZ — | AQ"IP + [[Ag"H — A" 1%, (A6)
In addition, thanks to

2b(a —b) =|a|*> — |b]®> — |a — b|?, (A7)
we easily know that

2(Ve", V" — Vo) = [ V¢"T 2 — | Ve" |2 — V" — Vo' |12, (A8)
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So, substituting (A.5), (A.6) and (A.8) into (A.2), we are able to derive the identity

1
(Ut — ") = Zet (180" 1P — 1 ag" I + 126! — A7)

2+n
= S (IVem P = V9" - V9™ - Vg1?)

Combining the above equations, i.e., (A.1) and (A.9), we obtain
—Mst| v = %e“(nAqb"“ 12— 1a¢"1?) — 2%e%nw”“ 12— 1ve"1?)
HUTTE U+ S|V @M - ¢+ %e“nA@““ - oM
+ 22yt - g Ut - Ut
Finally, if we drop some non-negative terms, we obtain the desired result (4.10). O
Appendix B. Proof of Theorem 4.3

Proof. The proof of the solvability is similar to that of the first-order scheme (4.1) and is skipped for the sake of brevity.
Regarding modified-energy stability, taking the L2 inner product of (4.11a) with u™!, we get

G — agm 4+ ¢, "y = —2Mst| V)2, (B.1)
By taking the L? inner product of (4.11b) with 3¢™t! — 4¢™ 4+ ¢"~!, we have
(Mn+1’3¢n+l —4¢" +¢n—1) — (A¢n+1’ AGP™! — 4g" +¢n—1))
+5(V(¢n+1 20" 44" ), V(3G — 4g" +¢n—1))
— 2+ (V¢*,n+1’ V(3o — 4g" +¢n—1))
4yttt (X*.n+1, 3"+ 4" + ¢n—1) ) (B.2)
Using the identity
2a3a—4b+c)=la®> + |2a—b|> — |b|*> = |2b — c|? + |a — 2b +c|?, (B.3)
we find

I] :264 (A¢n+17 A(3¢n+1 _4¢n +¢n71))

1
= e (180" 17 + 160" - M) — (1a8"12 + 1A 24" — 9"

2
+1A@"™ - 26"+ 9" I?). (B4)
Using another identity
(@—2b+c)Ba—4b+c)=la—b*>—|b—c>+2la—2b+c|, (B.5)
we obtain

I:=S(V(@"! —2¢" + "), V3™ — 49" +¢n - 1))
=51V = Vg"I? — V9" — V"2 +2[ V™! —2V9" + V" |12). (B6)
Finally, using the identity
2(2b —c)(3a — 4b +¢) = |a|® + [2a — b|> — 2Ja — b|* — (|b|* 4 |12b — c|* = 2|b — )
—3la—2b+c), (B.7)

we get
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I3:=—@2+ne* (Vo™ vEe™! — 49" +¢" 1))
=—Q2+me* (Yo" —¢" 1), V3Be" —4¢" +¢" "))
2
=202 ( (199" + 12V - Vo
—2[IVg™ — V" |12) - 3|Vg™T - 299" + V"I
= (V"I + 12vg" = Vg2 = 20" = Vg 7)), (B3)
Multiplying (4.11c) by 2U™*1 leads to
20" UM —aUT 4 UM = UM (XM 3™ — 49" "), (B.9)
and, according to (B.3), we can derive
2Un+1(3Un+1 _ 4Un + Un—l) — |Un+1|2 + |2uﬂ+1 _ Un|2 _ |Un|2 _ |2Un _ Uﬂ—]|2
+ U™ —2u™ 4 U2, (B.10)
Combining all the above equations, we obtain

1 An+12 A2n+1_n2 Anz Azn_n—lZ
—MStIIVpL”+1||2:§e4<|| "I+ 1A (29 #I° APTI7+ 1ACP" — ¢ )||>

2 2
L gIVO™ = VoI? — [Vg" - Vel
2
247 o (IVMIE 4 2Ve" — VU2 — 2 V"t — VgT|®
2 2
VNI + 112Vt — Vo2 — 2| Vet — Vo2
2
N |Un+1|2 + |2Un+1 _ Un|2 |Un|2 + |2un _ Un—] |2
2 2
|A@™! —2¢" +¢" D17

+ | + S|Vt — 2V + Vo112

2
3
+3Q+meX VYT —2Vg" + V"2
1
+ U 20"+ U,
Finally, if we drop some non-negative terms, we obtain the desired result (4.12). O

Appendix C. Proof of Theorem 4.4

Proof. We omit the proof of the existence and uniqueness of the solution to scheme CN-SAV, which is similar to that of the
first-order scheme (4.1). The following is the proof of the unconditional energy stability.
Taking the L2 inner product of (4.13a) with /L'”%, we get

@™ — ", W) = M8t V|2, (c1)

By taking the L2 inner product of (4.13b) with ¢™! — ¢, we find

1 1
(W2 gm! —g") =St (A@™ +9M. A@™ — )
+S (V@ —2¢" +¢" ), V(¢"T! — ¢™)
_ (2 + n)ez (V¢o,n+%’ V(¢n+1 _ ¢n))
1 n+1 _ gy o1 n+l _an
+5WU U)(x ¢ ¢).
By applying the point-wise identities
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2(a—b)@a—2b+c)=la—bl*> —|b—cl®+la—2b+c|? (C.3)
and
1 1 2 2 1 2 2 2
SGb—0)@—b)y==(al® = b") — Z(la —b* = |b—c* +]a—2b+c[), (C4)
we get these following identities,
1 1
o= €t (MA@ M. A@™ = ¢M) = 2t (186" 112 = [1ag" ). (€5)
I:=S(V(@" —2¢" +¢" 1), V(" —¢™)
C6
=S (IVe"™! = V"2 = V9" = V"2 4 Vg™ —2V¢" + V"2, o)
and, finally,
I3:= =2+ me* (Voo™ V(@™ — ™)
3 1 .-
= -2+ e’ (V(;p” = 59", V" - ¢”)>
C.7)
241, 412 A n+1 2 (
=—=2((Iv™ 12 = 1V9"1?) = 5 (V9™ = V'
V4" — V" P 4 [V — 29" 4+ V") ).
Multiplying (4.13c) with U1 4+ U" leads to
1
5(Un+1 + Un) (Xo,n+%, ¢n+1 _ ¢n) — (Un+1 _ Un)(Un+1 + Un) — |Un+1 |2 _ |Un|2. (C.8)
Combining all the above equations, we obtain
1 Vn+1_vn2_vn_v n—1,2
0= —Mat| V"2 = St (I1ag™ 12 = 189" 12) +S Ve il . o = Ve |
247 1
=222 ((1vem 2 - S1vemt - Ve ?)
2 2
(C.9)

1 .
—(1ve"2 = 514" — V" 1||2)> + U — U

+ s||v¢n+1 _ 2V¢n +V¢n—1”2
241 ,
4

+ € ||v¢n+1 _2V¢n+v¢n—1”2.

Finally, if we drop some positive terms, we will obtain the desired result (4.14). O
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