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a b s t r a c t

In this paper we present an error analysis for a second order accurate numerical

scheme for the 2-D and 3-D Cahn–Hilliard (CH) equation, with an improved convergence

constant. The unique solvability, unconditional energy stability, and a uniform-in-time

H2 stability of this numerical scheme have already been established. However, a standard

error estimate gives a convergence constant in an order of exp(CTε−m0 ), with m0 a

positive integer and the interface width parameter ε being small, which comes from

the application of discrete Gronwall inequality. To overcome this well-known difficulty,

we apply a spectrum estimate for the linearized Cahn–Hilliard operator (Alikakos and

Fusco, 1993; Chen, 1994; Feng and Prohl, 2004), perform a detailed numerical analysis,

and get an improved estimate, in which the convergence constant depends on 1
ε
only

in a polynomial order, instead of the exponential order.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Suppose that Ω = (0, Lx) × (0, Ly) × (0, Lz). For any φ ∈ H1
per(Ω), we define an energy of the form

E(φ) =

∫

Ω

{

ε−1

(

1

4
φ4 −

1

2
φ2

)

+
ε

2
|∇φ|2

}

dx, (1.1)

where the interface width parameter ε > 0 is a small constant. See [1] for a detailed derivation of E. The conserved

gradient dynamics on Ω is given by

∂tφ = ∇ · (M(φ)∇µ) , µ := δφE = ε−1
(

φ3 − φ
)

− ε∆φ, (1.2)

where M(φ) > 0 is a mobility, and µ is the chemical potential. Periodic boundary conditions are imposed for both the

phase field, φ, and the chemical potential, µ, as well as the higher order derivatives. It is easy to see that Eq. (1.2) is mass

conservative, and the energy (1.1) is non-increasing in time along the solution trajectories of (1.2).

There have been a great deal of existing numerical works for the CH equations and related physical models, and many

of them have been analyzed at a mathematical level; see the related Refs. [2–13], et cetera. In particular, it is observed
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that, in the numerical error analysis for this nonlinear gradient flow, the convergence constant is independent of the time
step s and spatial grid size h; while it usually depends on the final time T and on the interface parameter ε in a singular
way. A careful calculation reveals its dependence on T and ε in the form of exp

(
Cε−m0T

)
, with m0 an integer, which

comes from the application of a discrete Gronwall inequality in the analysis.
Meanwhile, there have been a few recent works on the improved convergence constant for the CH equation (1.2).

Specifically, Feng and Prohl [14] proved – for a first-order in time, fully discrete finite element scheme – that the
convergence constant is of order O(eC0Tε−m0 ), for some positive integer m0 and a constant C0 > 0 that is independent of ε.
Two more recent work of Feng, Li and Xing [15,16] apply a similar technique to analyze a first-order in time, discontinuous
Galerkin (DG) scheme for the Allen–Cahn/Cahn–Hilliard equations. Such an elegant improvement was based on a subtle
spectrum analysis for the linearized Cahn–Hilliard operator (with certain given structure assumptions of the solution),
provided in earlier PDE analysis literature [17–21], et cetera.

On the other hand, all these existing works dealt with a first order temporal discretization. A direct extension of this
numerical analysis technique to a second order (in time) scheme poses a serious challenge, due to the complicated form
of the nonlinear terms and lack of a uniform-in-time estimate for the higher order Hm norms of the numerical solution.

In this paper we provide such an improved error estimate for a second order scheme to the CH equation, which has
been introduced in a recent article [22]. For simplicity of presentation, we focus on the semi-discrete case, without spatial
discretization; an extension to the fully discrete scheme could be carried out in an appropriate manner. The energy
stability turns out to play an important role in the long time numerical simulation of the gradient flows. Among the
numerical approaches to ensure the energy stability, the convex-splitting idea, originated by Eyre’s pioneering work [23],
has attracted a great deal of attention. See the related works for the phase field crystal (PFC) equation and the modified
version [24–30], epitaxial thin film growth models [31–36], ternary system [37], the Cahn–Hilliard–Hele–Shaw (CHHS)
and related models [38–46].

Among these energy stable works, extensive numerical experiments have shown a great advantage of the second
order temporal splitting over the standard first order one in terms of numerical efficiency and accuracy. In addition, the
second order energy stable scheme for the CH equation, as reported in [22,42,47,48], enjoys many advantages over the
standard second order temporal approximations [8,49–52], in particular in terms of the unconditional energy stability,
unconditionally unique solvability, the availability of a uniform-in-time H2 numerical stability, et cetera.

On other hand, a careful calculation reveals that, for the error estimate reported in [22,42,47,48], the convergence
constant depends on 1

ε
in an exponential growth form, which comes from the application of discrete Gronwall inequality

in the analysis. To overcome this difficulty, we have to derive a uniform-in-time (discrete) Hm0 (for m0 ≥ 3) bound for the
numerical solution. In more detail, these bounds are dependent upon the initial Hm0 data, 1

ε
(in a polynomial form), and

independent of T . Since this bound is available for any m0 ≥ 3, a subtle observation implies that ‖φm+1 − φm‖Hℓ (with φ
the numerical solution, ℓ an integer) is of order O(s), with the constant independent of T , using certain discrete Hölder and
Sobolev estimates. In other words, we are able to derive a uniform-in-time O(s) estimate for ‖φm+1 −φm‖Hℓ , independent
of the convergence analysis. Moreover, we observe that, a difference analysis between φm+1 − φm and φm − φm−1 leads
to a uniform-in-time O(s2) estimate for ‖φm+1 − 2φm + φm−1‖Hℓ , and the constant is dependent upon 1

ε
in a polynomial

form, independent of T .
Such a refined estimate is crucial to the improved error analysis in an H−1 norm. Both the error function for the

chemical potential and the numerical error function are evaluated at the time instant tm+1/2, and their differences with
the exact numerical forms are analyzed with the help of ‖φm+1 − 2φm + φm−1‖Hℓ estimate (for certain integer ℓ), which
has been proved to be of order O(s2). Consequently, with all these preliminary estimates at hand, we could apply the
spectrum analysis for the linearized Cahn–Hilliard operator [17–19], and arrive at an H−1 error estimate of order O(s2),
with the convergence constant in the form of O(eC0Tε−m0 ), with C0 independent of ε.

To simplify the presentation greatly, we employ no spatial discretization and work on a periodic domain. We deal only
with the temporal discretization herein. In Section 2 we review the numerical scheme and its mathematical properties,
such as the unique solvability, unconditional energy stability, and a uniform-in-time (discrete) H2 stability. The higher
order Hm0 (for m0 ≥ 3) numerical stability analysis is presented in Section 3. Subsequently, a uniform-in-time estimate
for both ‖φm+1 − φm‖Hℓ and ‖φm+1 − 2φm + φm−1‖Hℓ is provided in that section. In Section 4 we present the primary
result of the paper, namely, an H−1 error estimate of order O(s2), with the convergence constant dependent on 1

ε
in a

polynomial form. Finally, some concluding remarks are made in Section 5.

2. Review of the numerical scheme and a few stability results

For simplicity, we assume that Ω = (0, 1)3. Let M ∈ Z
+, and set s := T/M , where T is the final time. For simplicity

of presentation, we take M ≡ 1. The second order accurate, semi-discrete numerical scheme can be expressed in weak
form as follows [22]: for 1 ≤ m ≤ M − 1, given φm, φm−1 ∈ H1

per(Ω), find φm+1, µm+1/2 ∈ H1
per(Ω), such that

(
φm+1 − φm, ν

)
+ s

(
∇µm+1/2,∇ν

)
= 0,

∀ ν ∈ H1
per(Ω), (2.1)

ε−1
(
χ
(
φm+1, φm

)
− φ̆m+1/2, ψ

)
+ ε

(
∇φ̂m+1/2,∇ψ

)
−
(
µm+1/2, ψ

)
= 0,

∀ ψ ∈ H1
per(Ω), (2.2)
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where

χ
(
φm+1, φm

)
:=

1

4

(
φm+1 + φm

) ((
φm+1

)2
+
(
φm
)2)

, (2.3)

φ̆m+1/2 :=
3

2
φm −

1

2
φm−1, (2.4)

φ̂m+1/2 :=
3

4
φm+1 +

1

4
φm−1. (2.5)

Meanwhile, ours is a two-step method, requiring either a special starting strategy or two starting values. For simplicity of
presentation, we will assume that both φ0, φ1 ∈ H1

per(Ω) are given and correspond to the true PDE solution, Φ . In other
words,

φ0 := Φ( · , 0) and φ1 := Φ( · , s), (2.6)

so that, among other properties,

E(φ1) +

∫ s

0

‖∇µ(t)‖2 dt = E(φ0) and (φ1 − φ0, 1) = 0,

where µ is the exact (true) chemical potential of the PDE. The local truncation error of the proposed scheme is
second-order with respect to time.

Meanwhile, as demonstrated in [22,42], the original energy functional E is not guaranteed to be non-increasing in time;
however, we can guarantee the dissipation of another modified energy. To be precise, for all ψ, φ ∈ H1

per(Ω), define an
alternate numerical energy via

Ẽ(φ,ψ) := E(φ) +
1

4ε
‖φ − ψ‖2 +

ε

8
‖∇h (φ − ψ)‖2 . (2.7)

Note that this energy is consistent with the energy (1.1). For example, suppose that u : Ω × [0, T ] → R is a sufficiently
regular, Ω-periodic function and set us := u( · , t0 + s). Then, clearly, Ẽ(u0, us) → E(u( · , t0)), as s → 0.

The unique solvability and unconditional energy stability for the second order scheme (2.1) have been established for
the fully discrete case [22]; the analysis for the semi-discrete scheme is even simpler, and we recall it in the next theorem.

Theorem 2.1. The second-order scheme (2.1) is uniquely solvable for any time step-size s > 0, and it is mass conserving, i.e.,(
φm+1 − φm, 1

)
= 0, for all 0 ≤ m ≤ M − 1. In addition, suppose that φm+1, φm, φm−1 ∈ H1

per(Ω) are solutions to (2.1). The
second-order scheme (2.1) is unconditionally energy stable with respect to (2.7), meaning that for any time step-size s > 0 and

any 1 ≤ m ≤ M − 1, Ẽ(φm+1, φm) ≤ Ẽ(φm, φm−1). More precisely,

Ẽ(φm+1, φm) + s
∥∥∇µm+1/2

∥∥2 + R
(
∆̃sφ

m
)

= Ẽ(φm, φm−1), (2.8)

where

R
(
∆̃sφ

m
)

:=
ε

8

∥∥∇
(
∆̃sφ

m
)∥∥2 +

1

4ε

∥∥∆̃sφ
m
∥∥2 , (2.9)

and

∆̃sφ
m := φm+1 − 2φm + φm−1.

If φ0, φ1 ∈ H1
per(Ω) are given as in (2.6), where the exact PDE solution, Φ is sufficiently regular, then we have the following

stabilities

‖∇φ‖2
L∞(0,T ;L2)

:= max
0≤m≤M

∥∥∇φm
∥∥2 ≤ C1,ε =: C1ε

−k1 , (2.10)

‖φ‖2
L∞(0,T ;L4)

:= max
0≤m≤M

∥∥φm
∥∥2
L4

≤ C1,ε =: C1ε
−k1 , (2.11)

‖φ‖2
L∞(0,T ;H1)

:= max
0≤m≤M

∥∥φm
∥∥2
H1 ≤ C1,ε =: C1ε

−k1 , (2.12)

where k1 is a positive integer and C1 > 0 is a constant that is independent of s, T , and ε.

A uniform-in-time L∞(0, T ;H2) bound of the numerical solution has also been established in [22] at the fully discrete
level. Using similar techniques, the estimate can be established at the semi-discrete level:

Theorem 2.2. Assume that the hypotheses of Theorem 2.1 hold. Then, if s ≤ Cε−1, where C > 0 is a certain constant that is
independent of ε, we have

‖φ‖2
L∞(0,T ;H2)

:= max
0≤m≤M

∥∥φm
∥∥2
H2 ≤ C2,ε =: C2ε

−k2 , (2.13)

where k2 is a positive integer and C2 > 0 is a constant that is independent of s, T , and ε.

3
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Remark 2.3. We shall assume, from this point forward, that φ0, φ1 ∈ H1
per(Ω) have sufficient additional spatial regularity

to guarantee that φk ∈ H
m0
per(Ω), for all k = 2, . . . ,M , for m0 ∈ N as large as desired.

3. Some estimates of the numerical scheme

3.1. L∞ (0, T ;Hm0) (m0 ≥ 3) bound of the scheme

The uniform-in-time H1 and H2 bound of the numerical solution have been demonstrated in [22]. Meanwhile, these
two bounds are not sufficient to assure an error estimate with the desired improved convergence constant. In this section,
we establish the uniform-in-time Hm0 bound, for any m0 ≥ 3, of the numerical solution. We will see that such a bound
depends on ε−1 to some integer power.

Theorem 3.1. Assume that the hypotheses of Theorem 2.1 hold. Then, if s ≤ 176C2
R/45ε, where CR > 0 is a constant of elliptic

regularity, used below, we have

‖φ‖L∞(0,T ;H3) := max
0≤m≤M

∥∥φm
∥∥
H3 ≤ C3,ε =: C3ε

−k3 , (3.1)

where k3 is a positive integer and C3 > 0 is a constant that is independent of s, T , and ε.

Proof. Taking ν = ∆3φm+1 in (2.1) gives

−
(
φm+1 − φm,∆3φm+1

)
− ε−1s

(
∆3φm+1,∆φ̆m+1/2

)

+ ε−1s
(
∆3φm+1,∆χ (φm+1, φm)

)
− εs

(
∆3φm+1,∆2φ̂m+1/2

)
= 0. (3.2)

An application of integration-by-parts using periodic boundary conditions yields

−
(
φm+1 − φm,∆3φm+1

)
=
(
∇∆(φm+1 − φm),∇∆φm+1

)

=
1

2

(∥∥∇∆φm+1
∥∥2 −

∥∥∇∆φm
∥∥2
2

)

+
1

2

∥∥∇∆(φm+1 − φm)
∥∥2 . (3.3)

For the concave diffusion term, we have
(
∆3φm+1,∆φ̆m+1/2

)
= −

(
∇∆2φm+1,∇∆φ̆m+1/2

)

≤ α
∥∥∇∆2φm+1

∥∥2 +
1

4α

∥∥∇∆φ̆m+1/2
∥∥2

≤ α
∥∥∇∆2φm+1

∥∥2 +
9

8α

∥∥∇∆φm
∥∥2 +

1

8α

∥∥∇∆φm−1
∥∥2 , (3.4)

for any α > 0. Meanwhile, the quantities ‖∇∆φm‖2,
∥∥∇∆φm−1

∥∥2 can be controlled by

∥∥∇∆φℓ
∥∥2 ≤

1

4α2

∥∥∇φℓ
∥∥2 + α2

∥∥∇∆2φℓ
∥∥2 ≤

C1,ε

4α2
+ α2

∥∥∇∆2φℓ
∥∥2 , (3.5)

for any α > 0, for ℓ = m,m − 1. A combination of (3.4) and (3.5) shows that
(
∆3φm+1,∆φ̆m+1/2

)
≤ α

∥∥∇∆2φm+1
∥∥2 +

9α

8

∥∥∇∆2φm
∥∥2

+
α

8

∥∥∇∆2φm−1
∥∥2 +

5C1,ε

16α3
, (3.6)

for any α > 0.
The bi-harmonic diffusion term can be analyzed as follows:

−
(
∆3φm+1,∆2φ̂m+1/2

)
=

3

4

∥∥∇∆2φm+1
∥∥2 +

1

4

(
∇∆2φm+1,∇∆2φm−1

)

≥
3

4

∥∥∇∆2φm+1
∥∥2 −

1

8

(∥∥∇∆2φm+1
∥∥2 +

∥∥∇∆2φm−1
∥∥2
)

≥
5

8

∥∥∇∆2φm+1
∥∥2 −

1

8

∥∥∇∆2φm−1
∥∥2 . (3.7)

As one might expect, all of the difficult work is in dealing with the nonlinear term. Regarding this, we begin with the
following inequality:

−
(
∆3φm+1,∆χ (φm+1, φm)

)
=
(
∇∆2φm+1,∇∆χ (φm+1, φm)

)

≤
∥∥∇∆2φm+1

∥∥ ·
∥∥∇∆χ (φm+1, φm)

∥∥ . (3.8)

4
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The rest work is focused on obtaining a useful estimate for
∥∥∇∆χ (φm+1, φm)

∥∥. To this end, a detailed expansion and
repeated application of Hölder’s inequality implies that

∥∥∇∆χ (φm+1, φm)
∥∥ ≤ C

{(∥∥φm+1
∥∥2
L∞

+
∥∥φm

∥∥2
L∞

)
·
(∥∥φm+1

∥∥
H3 +

∥∥φm
∥∥
H3

)

+
(∥∥φm+1

∥∥2
W1,∞ +

∥∥φm
∥∥2
W1,∞

)
·
(∥∥φm+1

∥∥
H2 +

∥∥φm
∥∥
H2

)

+
(∥∥∇φm+1

∥∥3
L6

+
∥∥∇φm

∥∥3
L6

)}
. (3.9)

Meanwhile, based on the uniform-in-time H2 bound (2.13) for the numerical solution, the following Sobolev inequalities
are available:

∥∥φℓ
∥∥
H2 ≤ C2,ε, (3.10)∥∥φℓ

∥∥
L∞

+
∥∥∇φℓ

∥∥
L6

≤ C
∥∥φℓ

∥∥
H2 ≤ CC2,ε, (3.11)

∥∥φℓ
∥∥
W1,∞ ≤ C‖φℓ‖

3
4

H2 ·
∥∥φℓ

∥∥ 1
4

H4

≤ C

(
‖φℓ‖

3
4

H2 ·
∥∥∆2φℓ

∥∥ 1
4 +

∥∥φℓ
∥∥
H2

)

≤ C

(∥∥φℓ
∥∥ 5

6

H2 ·
∥∥∇∆2φℓ

∥∥ 1
6 +

∥∥φℓ
∥∥
H2

)

≤ C

(
C

5
6
2,ε ·

∥∥∇∆2φℓ
∥∥ 1

6 + C2,ε

)
, (3.12)

∥∥φℓ
∥∥
H3 ≤ C

∥∥φℓ
∥∥ 2

3

H2 ·
∥∥φℓ

∥∥ 1
3

H5

≤ C

(∥∥φℓ
∥∥ 2

3

H2 ·
∥∥∇∆2φℓ

∥∥ 1
3 +

∥∥φℓ
∥∥
H2

)

≤ C

(
C

2
3
2,ε ·

∥∥∇∆2φℓ
∥∥ 1

3 + C2,ε

)
, (3.13)

for ℓ = m,m + 1, where the Gagliado–Nirenberg inequality [53] has been extensively used. In more details, the first
step of (3.12) stands for an application of Gagliado–Nirenberg inequality, while the second step is based on the following
elliptic regularity

‖φℓ‖H4 ≤ C(‖φℓ‖H2 + ‖∆2φℓ‖),

which is always valid for φℓ satisfying periodic boundary condition, i.e, both φℓ, ∆φℓ and ∆2φℓ are periodic. The third
step of (3.12) is based on the following inequalities

∥∥∆2φℓ
∥∥2 = (∆2φℓ,∆2φℓ) = −(∇∆φℓ,∇∆2φℓ) ≤ ‖∇∆φℓ‖ · ‖∇∆2φℓ‖,∥∥∇∆φℓ
∥∥2 = (∇∆φℓ,∇∆φℓ) = −(∆φℓ,∆2φℓ) ≤ ‖∆φℓ‖ · ‖∆2φℓ‖,

so that
∥∥∆2φℓ

∥∥ ≤ ‖∆φℓ‖
1
3 · ‖∇∆2φℓ‖

2
3 ≤ ‖φℓ‖

1
3

H2 · ‖∇∆2φℓ‖
2
3 ,

in which the integration by parts and periodic boundary conditions have been extensively used. Inequality (3.13) could be
derived in a similar manner. The first step stands for an application of weighed interpolation inequality, while the second
step is based on the following elliptic regularity

‖φℓ‖H5 ≤ C(‖φℓ‖H2 + ‖∇∆2φℓ‖),

which is always valid for φℓ satisfying periodic boundary condition, i.e, both φℓ, ∆φℓ and ∆2φℓ, ∇∆2φℓ are periodic. In
turn, a substitution of (3.11)–(3.13) into (3.9) yields

∥∥∇∆χ (φm+1, φm)
∥∥ ≤ C

(
C

8
3
2,ε

(∥∥∇∆2φm+1
∥∥ 1

3 +
∥∥∇∆2φm

∥∥ 1
3

)
+ C3

2,ε

)
. (3.14)

Going back to (3.8), we arrive at

−
(
∆3φm+1,∆χ (φm+1, φm)

)
≤ CC

8
3
2,ε

(∥∥∇∆2φm+1
∥∥ 4

3 +
∥∥∇∆2φm+1

∥∥ ·
∥∥∇∆φm

∥∥ 1
3

)

+ CC3
2,ε

∥∥∇∆2φm+1
∥∥

≤
ε2

16

(∥∥∇∆2φm+1
∥∥2 +

∥∥∇∆2φm
∥∥2
)

+ Cε−4C8
2,ε + Cε−2C6

2,ε, (3.15)

in which the Young’s inequality was repeatedly applied in the last step.

5
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A combination of (3.2), (3.3), (3.6), (3.7) and (3.15) results in

∥∥∇∆φm+1
∥∥2 −

∥∥∇∆φm
∥∥2 +

(9ε
8

−
2α

ε

)
s
∥∥∇∆2φm+1

∥∥2

≤
(9α
4ε

+
ε

8

)
s
∥∥∇∆2φm

∥∥2 +
( ε
4

+
α

4ε

)
s
∥∥∇∆2φm−1

∥∥2 + sĈ3,ε, (3.16)

with

Ĉ3,ε := C(ε−5C8
2,ε + ε−3C6

2,ε) +
5C1,ε

8α3ε
.

Choosing α = 1
16ε

2 fixes Ĉ3,ε and yields
∥∥∇∆φm+1

∥∥2 −
∥∥∇∆φm

∥∥2 + εs
∥∥∇∆2φm+1

∥∥2

≤
17ε

64
s

(∥∥∇∆2φm
∥∥2 +

∥∥∇∆2φm−1
∥∥2
)

+ sĈ3,ε. (3.17)

Now, adding 7ε
16

∥∥∇∆2φm
∥∥2 to both sides of the last inequality gives

∥∥∇∆φm+1
∥∥2 + εs

∥∥∇∆2φm+1
∥∥2 +

7εs

16

∥∥∇∆2φm
∥∥2

≤
∥∥∇∆φm

∥∥2 +
45εs

64

∥∥∇∆2φm
∥∥2 +

17εs

64

∥∥∇∆2φm−1
∥∥2 + sĈ3,ε. (3.18)

We define a modified ‘‘energy’’

Gm :=
∥∥∇∆φm

∥∥2 +
45εs

64

∥∥∇∆2φm
∥∥2 +

17εs

64

∥∥∇∆2φm−1
∥∥2 . (3.19)

Then, it follows that

Gm+1 +
19εs

64

∥∥∇∆2φm+1
∥∥2
2
+

11εs

64

∥∥∇∆2φm
∥∥2
2

≤ Gm + sĈ3,ε. (3.20)

Meanwhile, with the help of the elliptic regularity estimate ‖∇∆f ‖ ≤ CR‖∇∆
2f ‖, the following inequality could be

derived:

19ε

64
s
∥∥∇∆2φm+1

∥∥2 +
11εs

64

∥∥∇∆2φm
∥∥2 ≥

εs

16

∥∥∇∆2φm+1
∥∥2 +

ε2s

16C2
R

Gm+1, (3.21)

provided that

s ≤
176C2

R

45ε
. (3.22)

The details are left for interested readers. Note that the condition in (3.22) is very easily satisfied, as the bound on the
right-hand-side will typically be greater than 1. As a result, we arrive at

(
1 +

εs

16C2
R

)
Gm+1 +

εs

16

∥∥∇∆2φm+1
∥∥2 ≤ Gm + sĈ3,ε. (3.23)

Applying an induction argument with the last estimate, we get

Gm+1 ≤

(
1 +

εs

16C2
R

)−(m+1)

G0 +
16C2

R Ĉ3,ε

ε
≤ G0 +

16C2
R Ĉ3,ε

ε
. (3.24)

Finally, (3.1) is a direct consequence of (3.24) and the elliptic regularity:
∥∥φm+1

∥∥
H3 ≤ C

(∥∥φm+1
∥∥+

∥∥∇∆φm+1
∥∥)

≤ C
(
C2,ε +

∥∥∇∆φm+1
∥∥)

≤ C
(
C2,ε + (Gm+1)1/2

)

≤ C

(
C2,ε + (G0)1/2 +

4CRĈ
1/2
3,ε

ε1/2

)
:= C3,ε. (3.25)

Note that C3,ε depends on ε−1 in a polynomial form, since Ĉ3,ε does. The proof of Theorem 3.1 is complete. �

Using similar tools, a uniform-in-time Hℓ bound for the numerical solution could be established, for any ℓ ≥ 3, by
setting ν = ∆ℓφm+1 in (2.1). The details are left for interested readers.
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Theorem 3.2. Assume that the hypotheses of Theorem 2.1 hold. Then, if s ≤ Cε−1, where C > 0 is a certain constant, we

have

‖φ‖L∞(0,T ;Hℓ) := max
0≤m≤M

∥∥φm
∥∥
Hℓ

≤ Cℓ,ε := Cℓε
−kℓ , (3.26)

where kℓ is a positive integer, which increases as ℓ increases, and Cℓ > 0 is a constant independent of s, T , and ε.

Remark 3.3. The global-in-time H3 bound for the numerical solution, C3,ε in (3.25), depends singularly on ε. In more
details, we have

C1,ε = O(ε−1), (3.27)

C2,ε = O(ε−13), (for the 3-D case, as derived in [22]), (3.28)

Ĉ3,ε = O(ε−109), (3.29)

C3,ε = O(ε−55), (3.30)

so that k3 = 55.
In comparison, for the 2-D case, the corresponding index increases at a much lower rate; a careful analysis reveals

that C1,ε = O(ε−1), C2,ε = O(ε−(7+δ)), C3,ε = O(ε−(9+δ′)), (with δ > 0, δ′ > 0), so that k3 = 10. This in turn shows that, the
higher order Hℓ norm grows at a much faster rate for the 3-D CH flow than the 2-D version, which comes from different
Sobolev inequalities.

3.2. Estimates for
∥∥φm+1 − φm

∥∥
Hℓ

and
∥∥φm+1 − 2φm + φm−1

∥∥
Hℓ

The following estimate is needed in later analysis.

Theorem 3.4. Assume that the hypotheses of Theorem 3.2 hold. Then we have

max
0≤m≤M−1

∥∥φm+1 − φm
∥∥
Hℓ

≤ sDℓ,ε := Dℓε
−nℓ , (3.31)

where nℓ is a positive integer, which increases as ℓ increases, and Dℓ > 0 is a constant independent of s, T , and ε.

Proof. The numerical scheme (2.1) shows that
∥∥φm+1 − φm

∥∥
Hℓ

= s
∥∥∆µm+1/2

∥∥
Hℓ
. (3.32)

By the expansion (2.2) for µm+1/2, the following estimates could be derived, helped by repeated applications of the Hölder
inequality and Sobolev embedding:

∥∥∆
(
χ
(
φm+1, φm

))∥∥
Hℓ

≤ C
∥∥χ
(
φm+1, φm

)∥∥
Hℓ+2

≤ C

(∥∥φm+1
∥∥3
Hℓ+2 +

∥∥φm
∥∥3
Hℓ+2

)

≤ CC3
ℓ+2,ε, (3.33)∥∥∆φ̆m+1/2

∥∥
Hℓ

≤ C
(∥∥φm

∥∥
Hℓ+2 +

∥∥φm−1
∥∥
Hℓ+2

)

≤ CCℓ+2,ε, (3.34)∥∥∥∆2φ̂m+1/2
∥∥∥
Hℓ

≤ C
(∥∥φm+1

∥∥
Hℓ+4 +

∥∥φm−1
∥∥
Hℓ+4

)

≤ CCℓ+4,ε, (3.35)

with the uniform-in-time estimates (3.26) used. Consequently, a substitution of (3.33)–(3.35) into (3.32) yields
∥∥φm+1 − φm

∥∥
Hℓ

≤ sDℓ,ε, Dℓ,ε := C
(
ε−1

(
C3
ℓ+2,ε + Cℓ+2,ε

)
+ εCℓ+4,ε

)
. (3.36)

Note that Dℓ,ε depends on ε−1 in a polynomial form, since both Cℓ+2,ε and Cℓ+4,ε do as well. This completes the proof of
Theorem 3.4. �

In addition, to analyze the second order accurate (in time) scheme, we need the following estimate.

Theorem 3.5. Assume that the hypotheses of Theorem 3.2 hold. Then we have

max
1≤m≤M−1

∥∥φm+1 − 2φm + φm−1
∥∥
Hℓ

≤ Qℓ,εs
2, Qℓ,ε := Qℓε

−mℓ , (3.37)

where mℓ is a positive integer, which increases as ℓ increases, and Qℓ > 0 is a constant independent of s, T and ε.
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Proof. Taking a difference between φm+1 − φm and φm − φm−1, we have
∥∥φm+1 − 2φm + φm−1

∥∥
Hℓ

= s
∥∥∆(µm+1/2 − µm−1/2)

∥∥
Hℓ
, (3.38)

with

µm+1/2 − µm−1/2 = ε−1
(
χ
(
φm+1, φm

)
− χ

(
φm, φm−1

)

−
3

2
(φm − φm−1) +

1

2
(φm−1 − φm−2)

)

−ε∆

(
3

4
(φm+1 − φm) +

1

4
(φm − φm−1)

)
, (3.39)

and

χ
(
φm+1, φm

)
− χ

(
φm, φm−1

)
=

1

4

(
((φm+1)2 + (φm)2)(φm+1 − φm + φm − φm−1)

+ (φm+1 + φm)2(φm+1 − φm)

+ (φm+1 + φm)(φm + φm−1)(φm − φm−1)
)
. (3.40)

In more detail, we observe that all the right-hand-side terms in (3.39) contain a factor of φi − φi−1, m − 1 ≤ i ≤ m + 1.
With the help of (3.26) and (3.31), we are able to derive (3.37) in a similar manner as in Theorem 3.4. The details are
skipped for simplicity of presentation. �

Remark 3.6. A uniform bound for ‖φm+1 − 2φm + φm−1‖Hℓ , given by (3.37), will play an essential role to establish an
improved convergence analysis for a second order accurate (in time) scheme, as will be demonstrated in later sections.
In comparison, Such a uniform estimate is not needed in the corresponding error analysis for the first order (accurate) in
time schemes, as reported in [14–16,54].

3.3. Some related estimates for the exact solution

As before, by Φ(x, y, z, t) we denote as the exact solution of the CH equation (1.2), with sufficiently regular, periodic
initial data. The following estimates could be derived by performing a standard energy estimate and Sobolev analysis. The
details are skipped for brevity.

Lemma 3.7. The following estimates are valid for the exact solution Φ:

‖Φ‖L∞(0,T ;Hℓ) ≤ C∗
ℓ,ε := C∗

ℓ ε
−kℓ , ∀ ℓ ≥ 1, (3.41)

‖∂tΦ‖L∞(0,T ;Hℓ) ≤ D∗
ℓ,ε := D∗

ℓε
−nℓ , ∀ℓ ≥ 0, (3.42)

∥∥∂2t Φ
∥∥
L∞(0,T ;Hℓ)

≤ Q ∗
ℓ,ε := Q ∗

ℓ ε
−mℓ , ∀ℓ ≥ 0, (3.43)

where kℓ, nℓ and mℓ are increasing sequences of positive integers – not necessarily the same as those specified before – and

C∗
ℓ , D

∗
ℓ , and Q ∗

ℓ are positive constants that are independent of T , and ε.

Remark 3.8. The derivation of (3.42) and (3.43) is based on applying the original CH equation (1.2) and taking its temporal
derivative, combined with the L∞(0, T ;Hℓ) estimate (3.41), so that the Hℓ norm of the first and second order temporal
derivatives are converted into certain spatial Hm norms of the exact solution.

The following result is a consequence of Lemma 3.7.

Lemma 3.9. Denote Φm+1/2 = 1
2 (Φ

m+1 + Φm) and Φ̂m+1/2 = Φ( · , tm+1/2). The following estimates are valid for the exact

solution Φ:

max
0≤m≤M−1

∥∥Φm+1 −Φm
∥∥
Hℓ

≤ D̂∗
ℓ,εs, D̂∗

ℓ,ε := D̂∗
ℓε

−nℓ , (3.44)

max
1≤m≤M−1

∥∥Φm+1 − 2Φm +Φm−1
∥∥
Hℓ

≤ Q̂ ∗
ℓ,εs

2, Q̂ ∗
ℓ,ε := Q̂ ∗

ℓ ε
−mℓ , (3.45)

max
1≤m≤M−1

∥∥∥Φm+1 − 2Φ̂m+1/2 +Φm
∥∥∥
Hℓ

≤
1

4
Q̂ ∗
ℓ,εs

2, (3.46)

for any ℓ ≥ 1, where kℓ, nℓ and mℓ are increasing sequences of positive integers – not necessarily the same as those specified

before – and D̂∗
ℓ and Q̂ ∗

ℓ are positive constants that are independent of T , and ε.
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Remark 3.10. The derivation of (3.44)–(3.46) is based on the following Taylor expansions (in time)

Φm+1 −Φm = s∂tΦ(ξ1), ∃ ξ1 ∈ (tm, tm+1), (3.47)

Φm+1 − 2Φm +Φm−1 =
s2

12
∂2t Φ(ξ2), ∃ ξ2 ∈ (tm−1, tm+1), (3.48)

Φm+1 − 2Φ̂m+1/2 +Φm =
s2

48
∂2t Φ(ξ3), ∃ ξ3 ∈ (tm, tm+1), (3.49)

combined with the established estimates (3.42) and (3.43).

As a direct consequence, the following L∞ bound could be derived; this estimate will be used in the improved error
analysis in the next section.

Corollary 3.11. We have the following estimate
∥∥∥(Φm+1/2)2 − (Φ̂m+1/2)2

∥∥∥
L∞

≤ Cs2E1,ε, with E1,ε = E1ε
−j1 , (3.50)

where j1 is a positive integer and E1 is a positive constant that is independent of s, T , and ε.

Proof. First, we observe that
∥∥∥(Φm+1/2)2 − (Φ̂m+1/2)2

∥∥∥
L∞

=
∥∥∥(Φm+1/2 + Φ̂m+1/2) · (Φm+1/2 − Φ̂m+1/2)

∥∥∥
L∞

≤
(∥∥Φm+1/2

∥∥
L∞

+
∥∥∥Φ̂m+1/2

∥∥∥
L∞

)
·
∥∥∥Φm+1/2 − Φ̂m+1/2

∥∥∥
L∞
. (3.51)

The first two terms can be controlled via Sobolev inequality:
∥∥Φm+1/2

∥∥
L∞

≤ C
∥∥Φm+1/2

∥∥
H2 ≤ CC∗

2,ε,∥∥∥Φ̂m+1/2
∥∥∥
L∞

≤ C ‖Φ‖L∞(0,T ;H2) ≤ CC∗
2,ε, (3.52)

with (3.41) recalled. The second term appearing in (3.52) can be analyzed as follows:
∥∥∥Φm+1/2 − Φ̂m+1/2

∥∥∥
L∞

≤ C

∥∥∥Φm+1/2 − Φ̂m+1/2
∥∥∥
H2

= C

∥∥∥∥
1

2
(Φm+1 − 2Φ(·, tm+1/2) +Φm)

∥∥∥∥
H2

≤ C
∥∥Φm+1 − 2Φ(·, tm+1/2) +Φm

∥∥
H2

≤ CQ̂ ∗
2,εs

2, (3.53)

with the estimate (3.46) applied. As a result, a substitution of (3.52) and (3.53) implies (3.50), with

E1,ε ≥ CC∗
2,εQ̂

∗
2,ε,

and its dependence on ε−1 is clearly in a polynomial pattern. This completes the proof of the corollary. �

4. Error analysis with an improved convergence constant

The numerical error functions are defined as

φ̃k := Φk − φk, φ̃k+1/2 :=
1

2
(φ̃k+1 + φ̃k), ˘̃

φk+1/2 :=
3

2
φ̃k −

1

2
φ̃k−1. (4.1)

Since the exact solution to the CH equation (1.2) is mass conservative, we have
∫

Ω

Φ(·, t) dx =

∫

Ω

Φ(·, 0) dx := β0, ∀ t > 0. (4.2)

On the other hand, the numerical scheme is also mass conservative:
∫

Ω

φm dx =

∫

Ω

φ0 dx = β0, ∀ m ≥ 0. (4.3)

As a result, we get
∫

Ω

φ̃m dx = 0, ∀ m ≥ 0. (4.4)

9
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Here we use the notation H−1
per(Ω) =

(
H1

per(Ω)
)∗
, and 〈 · , · 〉 is the duality pairing between H−1

per(Ω) and H1
per(Ω). We

need a norm on a subspace of H−1
per(Ω). With L20(Ω) denoting those function in L2(Ω) with zero mean, we set

H̊1
per(Ω) = H1

per(Ω) ∩ L20(Ω), H̊−1
per(Ω) :=

{
v ∈ H−1

per(Ω) | 〈v, 1〉 = 0
}
, (4.5)

We define a continuous linear operator T : H̊−1
per(Ω) → H̊1

per(Ω) via the following variational problem: given ζ ∈

H̊−1
per(Ω), find T(ζ ) ∈ H̊1

per(Ω) such that

(∇T(ζ ),∇χ) = 〈ζ , χ〉 ∀χ ∈ H̊1(Ω). (4.6)

T is uniquely defined, as is guaranteed by the Riesz Representation Theorem. The following facts are easily established.

Lemma 4.1. Let ζ , ξ ∈ H̊−1
per(Ω) and, for such functions, set

(ζ , ξ)H−1 := (∇T(ζ ),∇T(ξ )) = 〈ζ , T(ξ )〉 = 〈ξ, T(ζ )〉. (4.7)

Then, ( · , · )H−1 defines an inner product on H̊−1
per(Ω), and the induced norm is equivalent to the operator norm:

‖ζ‖H−1 :=
√
(ζ , ζ )H−1 = sup

06=χ∈H̊1
per

〈ζ , χ〉

‖∇χ‖L2
. (4.8)

Consequently, for all χ ∈ H1
per(Ω) and all ζ ∈ H̊−1

per(Ω), |〈ζ , χ〉| ≤ ‖ζ‖H−1 ‖∇χ‖L2 . Furthermore, for all ζ ∈ L20(Ω), we have

the Poincare type inequality: for some C > 0, ‖ζ‖H−1 ≤ C ‖ζ‖L2 .

The zero-mean property (4.4) shows that, the H−1 norm for the numerical error function, ‖φ̃k‖H−1 , is well defined.

4.1. Statement of the main theorem

The following theorem is the main result of this paper.

Theorem 4.2. Suppose that the initial data Φ( · , 0) = φ0 ∈ H8
per(Ω) and that s satisfies the scaling law

s ≤ CεJ1 , (4.9)

where J1 is a sufficiently large positive integer and C is some positive constant. Also assume that ε ∈ (0, ε0), with ε specified

in Proposition 4.6. Then the following convergence result is valid:

max
1≤m≤M

∥∥φ̃m
∥∥
H−1 ≤ R̂∗

εs
2, with R̂∗

ε = R̂∗eC
∗
0 Tε−J0 , (4.10)

where J0 is a positive integer, C∗
0 and R̂∗ are positive constants that are independent of s and ε.

4.2. Consistency analysis and the equation for the error function

With a second order temporal approximation taken, the following consistency estimate could be derived:

Φm+1 −Φm

s
= ∆

(
ε−1

(
(Φm+1/2)3 −Φm+1/2

)
− ε∆Φm+1/2

)
+ τ

m+1/2

2 , (4.11)

where

Φm+1/2 =
1

2

(
Φm+1 +Φm

)
,

∥∥∥τm+1/2

2

∥∥∥
H−1

≤ Cs2ε−j3 .

For the numerical scheme (2.1), we rewrite it in an alternate form, to facilitate the error analysis presented later. The
following estimate could be derived:

φm+1 − φm

s
= ∆

(
ε−1

(
(φm+1/2)3 − φm+1/2

)
− ε∆φm+1/2

)
+ τ

m+1/2

3 , (4.12)

where

φm+1/2 =
1

2

(
φm+1 + φm

)
,

∥∥∥τm+1/2

3

∥∥∥
H−1

≤ Cs2ε−j4 . (4.13)

Remark 4.3. We note that the temporal discretization for both the approximate projection solution (4.11) and the
numerical solution (4.12) is very different from the original numerical scheme (2.1). The purpose for these forms is for
the simplicity of an error analysis with an improved convergence constant, as will be observed later.

10
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The temporal truncation error estimate (4.11) is based on the following transformations

Φm+1/2 −Φ(tm+1/2) =
1

2

(
Φm+1 − 2Φ(tm+1/2) +Φm

)
, (4.14)

(Φm+1/2)3 − (Φ(tm+1/2))3 =
1

2

(
Φm+1 − 2Φ(tm+1/2) +Φm

)

·
(
(Φm+1/2)2 +Φm+1/2ΦN (t

m+1/2) + (Φ(tm+1/2))2
)
, (4.15)

combined with the established estimates (3.41) and (3.46) for Φ .
Similarly, the temporal truncation error estimate (4.12) is based on the following transformations

φm+1/2 − φ̆m+1/2 =
1

2

(
φm+1 − 2φm + φm−1

)
, (4.16)

φm+1/2 − φ̂m+1/2 = −
1

4

(
φm+1 − 2φm + φm−1

)
, (4.17)

χ
(
φm+1, φm

)
− (φm+1/2)3 =

1

8
(φm+1 + φm)(φm+1 − φm)2, (4.18)

combined with the established estimates (3.26), (3.31) and (3.37) for the numerical solution.

Subtracting (4.11) from the reformulated numerical scheme (4.12) yields

φ̃m+1 − φ̃m

s
= ∆

(
ε−1

(
(Φm+1/2)3 − (φm+1/2)3 − φ̃m+1/2

)
− ε∆φ̃m+1/2

)

+ τm+1/2, (4.19)

where
∥∥τm+1/2

∥∥
H−1 ≤ Cs2ε−j5 . (4.20)

4.3. A preliminary estimate for the numerical error term

By a comparison between (3.26) (in Theorem 3.2), (3.31) (in Theorem 3.4), (3.37) (in Theorem 3.5) and (3.41)–(3.46)
(for the exact solution) in Lemma 3.7, the following estimates are straightforward.

Lemma 4.4. For the numerical error function, we have

max
0≤n≤M

∥∥φ̃m
∥∥
Hℓ

≤ Ĉ∗∗
ℓ,ε := Cε−kℓ , (4.21)

max
0≤m≤M−1

∥∥φ̃m+1 − φ̃m
∥∥
Hℓ

≤ D∗∗
ℓ,εs, D∗∗

ℓ,ε := Cε−nℓ , (4.22)

max
1≤m≤M−1

∥∥φ̃m+1 − 2φ̃m + φ̃m−1
∥∥
Hℓ

≤ Q ∗∗
ℓ,εs

2, Q ∗∗
ℓ,ε := Cε−mℓ , (4.23)

for any ℓ ≥ 1 and m ≥ 0, where kℓ, nℓ and mℓ are increasing sequences of positive integers and C is a constant independent

of s, T and ε.

Remark 4.5. Note that these bounds for the numerical error function do not rely on the error and convergence analysis;
all of them are final time independent.

4.4. Review of the spectrum estimate for the linearized Cahn–Hilliard operator

The following linearized spectrum estimate has been established in [14,17–19]. We recall it here.

Proposition 4.6 ([14]). There exist 0 < ε0 ≪ 1 and another positive constant C0 such that the principle eigenvalue of the

linearized Cahn–Hilliard operator satisfies

λCH := inf
ψ∈H1

per(Ω)

ψ 6=0

ε−1
((
3Φ2(t) − 1

)
ψ,ψ

)
+ ε ‖∇ψ‖2

‖ψ‖2
H−1

≥ −C0, (4.24)

for any t ≥ 0, ε ∈ (0, ε0), where Φ is the exact solution to the Cahn–Hilliard problem.

Remark 4.7. The spectrum analysis that established the estimate (4.24) was derived for the linearized Cahn–Hilliard
operator [17–19], under a homogeneous Neumann boundary condition. An extension of this analysis to the one with the
periodic boundary condition is straightforward, and the details are skipped for the sake of brevity.

11
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4.5. Error analysis: Proof of Theorem 4.2

Since both φ̃m+1 and φ̃m have zero-mean, we introduce

w̃ℓ := Tφ̃ℓ = (−∆)−1φ̃ℓ, ℓ = m,m + 1.

Taking an inner product with (4.19) by w̃m+1/2 = 1
2 (w̃

m+1 + w̃m) gives

1

2

(
φ̃m+1 − φ̃m, w̃m+1 + w̃m

)
− ε−1

((
(Φm+1/2)3 − (φm+1/2)3 − φ̃m+1/2

)
,∆w̃m+1/2

)

+ε
(
∆φ̃m+1/2,∆w̃m+1/2

)
=
(
τm+1/2, w̃m+1/2

)
, (4.25)

with the integration-by-parts formula applied.
The subsequent estimates are standard:
(
φ̃m+1 − φ̃m, w̃m+1 + w̃m

)
= −

(
∆(w̃m+1 − w̃m), w̃m+1 + w̃m

)

=
(
∇(w̃m+1 − w̃m),∇(w̃m+1 + w̃m)

)

=
∥∥∇w̃m+1

∥∥2 −
∥∥∇w̃m

∥∥2

=
∥∥φ̃m+1

∥∥2
H−1 −

∥∥φ̃m
∥∥2
H−1 , (4.26)

(
φ̃m+1/2,∆w̃m+1/2

)
= −

(
φm+1/2, φ̃m+1/2

)
= −

∥∥φ̃m+1/2
∥∥2 , (4.27)

−
((
(Φm+1/2)3 − (φm+1/2)3

)
,∆w̃m+1/2

)

=
((
(Φm+1/2)3 − (φm+1/2)3

)
, φ̃m+1/2

)

=
((
(Φm+1/2)2 +Φm+1/2φm+1/2 + (φm+1/2)2

)
, (φ̃m+1/2)2

)
, (4.28)

(
∆φ̃m+1/2,∆w̃m+1/2

)
= −

(
∆φm+1/2, φ̃m+1/2

)
=
∥∥∇φ̃m+1/2

∥∥2 , (4.29)

and, finally,

−(τm+1/2, w̃m+1/2) ≤
∥∥τm+1/2

∥∥
H−1 ·

∥∥∇w̃m+1/2
∥∥
2

≤
∥∥τm+1/2

∥∥
H−1 ·

∥∥φ̃m+1/2
∥∥
H−1

≤
1

2
‖τm+1/2‖2

H−1 +
1

4

(
‖φm+1‖2

H−1 + ‖φ̃m‖2
H−1

)
. (4.30)

The rest work is focused on the nonlinear estimates. The following a-priori assumption is made.

An a-priori assumption up to time step tm. We assume a-priori that the numerical error function has the desired
convergence as given by (4.10), at time steps up to tm.

‖φ̃ℓ‖H−1 ≤ R̂∗
εs

2, R̂∗
ε = CeC

∗
0 Tε−J0 , ℓ ≤ m. (4.31)

For the nonlinear inner product (4.28), we begin with the following identity:

(Φm+1/2)2 + Φm+1/2φm+1/2 + (φm+1/2)2

= 3(Φm+1/2)2 − 3Φm+1/2φ̃m+1/2 + (φ̃m+1/2)2. (4.32)

As a result, we get

I1 :=
((
(Φm+1/2)2 +Φm+1/2φm+1/2 + (φm+1/2)2

)
, (φ̃m+1/2)2

)

≥ 3
(
(Φm+1/2)2, (φ̃m+1/2)2

)
− 3

(
Φm+1/2φ̃m+1/2, (φ̃m+1/2)2

)

= 3
(
(Φ̂m+1/2)2, (φ̃m+1/2)2

)
+ E1 + E2, (4.33)

where

E1 := 3
(
(Φm+1/2)2 − (Φ̂m+1/2)2, (φ̃m+1/2)2

)
,

E2 := −3

∫

Ω

Φm+1/2(φ̃m+1/2)3dx.

12
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The first term can be controlled as follows.

|E1| ≤ 3
∥∥∥(Φm+1/2)2 − (Φ̂m+1/2)2

∥∥∥
L∞

·
∥∥φ̃m+1/2

∥∥2

≤ Cs2Ê1,ε
∥∥φ̃m+1/2

∥∥2 , (4.34)
∥∥φ̃m+1/2

∥∥2 ≤
∥∥φ̃m+1/2

∥∥
H1 ·

∥∥φ̃m+1/2
∥∥
H−1 ≤ CĈ∗∗

1,ε

∥∥φ̃m+1/2
∥∥
H−1 , (4.35)

|E1| ≤ Cs2Ĉ∗∗
1,ε Ê1,ε

∥∥φ̃m+1/2
∥∥
H−1

≤ R̂∗
1,εs

4 + ε
(
‖φ̃m+1‖2

H−1 + ‖φ̃m‖2
H−1

)
, (4.36)

with R̂∗
1,ε = Cε−1

(
Ĉ∗∗
1,ε Ê1,ε

)2
, in which the L∞ estimate (3.50) (in Corollary 3.11) was applied in the second step of (4.34).

For the second nonlinear error term appearing in (4.33), we begin with

|E2| ≤ 3
∥∥Φm+1/2

∥∥
L∞

·
∥∥φ̃m+1/2

∥∥3
L3

≤ C
∥∥Φm+1/2

∥∥
H2 ·

∥∥φ̃m+1/2
∥∥3
L3

≤ CC∗
2,ε

∥∥φ̃m+1/2
∥∥3
L3
, (4.37)

with the estimate (3.41) applied in the last step. Meanwhile, the following observation is made:

φ̃m+1/2 = ˘̃
φm+1/2 +

1

2
(φ̃m+1 − 2φ̃m + φ̃m−1), so that

∥∥φ̃m+1/2
∥∥3
L3

≤ C

(
‖ ˘̃
φm+1/2‖3

L3
+ ‖φ̃m+1 − 2φ̃m + φ̃m−1‖3

L3

)

≤ C

(
‖ ˘̃
φm+1/2‖3

L3
+ ‖φ̃m+1 − 2φ̃m + φ̃m−1‖3

H1

)

≤ C

(
‖ ˘̃
φm+1/2‖3

L3
+ s6(Q̂ ∗∗

1,ε)
3
)
, (4.38)

with the preliminary estimate (4.23) applied in the last step. Moreover, the Sobolev inequalities indicate that
∥∥∥ ˘̃
φm+1/2

∥∥∥
L3

≤ C

∥∥∥ ˘̃
φm+1/2

∥∥∥
H1/2

≤ C

∥∥∥ ˘̃
φm+1/2

∥∥∥
3
4

H−1
·
∥∥∥ ˘̃
φm+1/2

∥∥∥
1
4

H5

≤ C(Ĉ∗∗
5,ε)

1
4
(
‖φ̃m‖H−1 + ‖φ̃m−1‖H−1

) 3
4

≤ C(Ĉ∗∗
5,ε)

1
4 (R̂∗)

3
4 s

3
2 . (4.39)

The preliminary estimate (4.21) was applied in the third step and the a-priori assumption (4.31) was recalled in the

last step, due to the fact that ˘̃
φm+1/2 is only involved with the error function at tm and tm−1. Subsequently, a substitution

of (4.38) and (4.39) into (4.37) yields

|E2| ≤ R̂∗
2,εs

9/2 + R̂∗
3,εs

6, (4.40)

with

R̂∗
2,ε = CC∗

2,ε(Ĉ
∗∗
5,ε)

3
4 (R̂∗)

9
4 , R̂∗

3,ε = CC∗
2,ε(Q̂

∗∗
1,ε)

3.

Therefore, a combination of (4.33), (4.36) and (4.40) results in

I1 ≥ 3
(
(Φ̂m+1/2)2, (φ̃m+1/2)2

)
− ε

(
‖φ̃m+1‖2

H−1 + ‖φ̃m‖2
H−1

)

−R̂∗
1,εs

4 − R̂∗
2,εs

9/2 − R̂∗
3,εs

6. (4.41)

Finally, a combination of (4.25)–(4.30), (4.33) and (4.41) leads to

‖φ̃m+1‖2
H−1 − ‖φ̃m‖2

H−1 + 2ε−1s

(
3(Φ̂m+1/2)2 − 1, (φ̃m+1/2)2

)
+ 2εs‖∇φ̃m+1/2‖2

≤ 3s
(
‖φ̃m+1‖2

H−1 + ‖φ̃m‖2
H−1

)
+ Csh4

(
(Ĉ∗∗

5,ε)
2 + ε−4k4

)
+ s‖τm+1/2‖2

H−1

+2R̂∗
1,εε

−1s5 + 2R̂∗
2,εε

−1s11/2 + 2R̂∗
3,εε

−1s7. (4.42)

By the linearized spectrum estimate (4.24) (reviewed in Proposition 4.6, by [14]), we conclude that

2ε−1
(
3(Φ̂m+1/2)2 − 1, (φ̃m+1/2)2

)
+ 2ε‖∇φ̃m+1/2‖2

≥ 2C0‖φ̃
m+1/2‖2

H−1

≥ C0

(
‖φ̃m+1‖2

H−1 + ‖φ̃m‖2
H−1

)
. (4.43)

13
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Going back to (4.42), we arrive at

‖φ̃m+1‖2
H−1 − ‖φ̃m‖2

H−1 ≤ (C0 + 3)s
(
‖φ̃m+1‖2

H−1 + ‖φ̃m‖2
H−1

)

+ R̂∗
4,εs

5 + 2R̂∗
2,εε

−1s11/2, (4.44)

with

R̂∗
4,ε = C

(
(Ĉ∗∗

5,ε)
2 + ε−4k4 + ε−2j5 + 2R̂∗

1,εε
−1 + 2R̂∗

3,εε
−1
)
. (4.45)

Under the condition that

R̂∗
2,εε

−1s1/2 ≤
1

4
, i.e. s ≤

ε2

16
(R̂∗

2,ε)
−2, (4.46)

we get

‖φ̃m+1‖2
H−1 − ‖φ̃m‖2

H−1 ≤ (C0 + 3)s
(
‖φ̃m+1‖2

H−1 + ‖φ̃m‖2
H−1

)
+ R̂∗

5,εs
5, (4.47)

where

R̂∗
5,ε = R̂∗

4,ε + 1.

Note that C0 + 3 is a constant independent of ε, and R̂∗
5,ε is independent on R̂∗ appearing in (4.31). Clearly, R̂∗

5,ε depends
on ε−1 in a polynomial form. An application of discrete Gronwall inequality to (4.47) yields the desired error analysis:

‖φ̃m+1‖2
H−1 ≤ Ce(2C0+7)T R̂∗

5,εs
4. (4.48)

Recovery of the a-priori assumption (4.31) In turn, we can take C∗
0 = C0 + 7

2 , and the integer index J0 could be chosen

according to the form of R̂∗
5,ε , to recover the a-priori assumption (4.31) at time step tm+1.

Moreover, R̂∗ is determined by this convergence result, so is R̂∗
2,ε , given by R̂∗

2,ε = CC∗
2,ε(Ĉ

∗∗
5,ε)

3
4 (R̂∗)

9
4 . As a result, the

condition (4.46) for s could be converted into the form of (4.9). The proof of Theorem 4.2 is complete.

Remark 4.8. The H8
per regularity requirement for the initial data, as stated in Theorem 4.2, is quite strong. Meanwhile,

the Cahn–Hilliard flow is a parabolic equation with a very strong smoothing property; it has been proved in an earlier
work [55] that, any H1

per initial data would lead to a real analytic solution for the Cahn–Hilliard equation, with a global-
in-time Gevrey regularity. In other words, even if the initial data is not in the class of H8

per, the PDE solution will become
real analytic (henceforth C∞

per) at any finite time. This article is more concerned with the Cahn–Hilliard flow with certain
structures; in fact, the linearized spectrum analysis (4.24) in Proposition 4.6 has to be based on such a structure for the
exact solution Φ , and it may not be valid for a rough initial data. As a result, we could take the real analytic initial
data, after a positive time evolution of the Cahn–Hilliard flow. Moreover, this initial data regularity requirement does not
cause any conflict with the spatial discretization. For a fully discrete scheme, with either finite difference or finite element
spatial approximation, the corresponding analysis could be carried out in a similar fashion. The technical details are left
to interested readers.

Remark 4.9. The time step has to satisfy the scaling law as indicated in (4.9): s ≤ CεJ1 . A preliminary calculation shows
that J1 has to be greater than 40 for the 3-D CH flow, to make the theoretical analysis available.

Note that these two integer numbers have larger values than the ones reported in [14,15], for a few reasons. The
Allen–Cahn model covered in [15] has a well-known maximum principle, which in turn would greatly simplify the
corresponding analysis. The numerical scheme for the Cahn–Hilliard model analyzed in [14] is first order accurate; in
comparison, a second order accurate (in time) scheme is considered in our work, so that higher order temporal derivatives
have to be involved in the analysis, which in turn leads to much higher spatial norms to be uniform-in-time bounded.

On the other hand, such a restrictive requirement for s is only associated with a theoretical justification of the improved
convergence estimate. In the practical computations, as have been reported in [22], this scaling law requirement is not
needed for small ε. And also, for the 2-D case, the scaling law index J1 could be much more reduced, to approximately
15.

Remark 4.10. The techniques presented in this article could be similarly applied to many other second order accurate
energy stable schemes for 2-D and 3-D Cahn–Hilliard models, such as the finite element method [42], the Fourier pseudo-
spectral version [56], an alternate second order scheme based on the BDF temporal stencil [47,48], et cetera. The technical
details are expected to be very involved and are left to interested readers.

5. Concluding remarks

An improved error analysis is provided for a second order accurate in time, energy stable numerical scheme to the
2-D and 3-D Cahn–Hilliard equation. A uniform-in-time Hm0 bound of the numerical solution, for any m0 ≥ 3, is obtained
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through Sobolev estimates at a discrete level. Moreover, to analyze the second order scheme with an improved constant,
we have also obtained uniform-in-time Hm0 bounds for the first and second order temporal difference stencil, namely
‖φm+1 − φm‖Hℓ and ‖φm+1 − 2φm + φm−1‖Hℓ , respectively. In the error estimate, we apply a spectrum estimate for the
linearized Cahn–Hilliard operator, so that an application of the discrete Gronwall inequality avoids a convergence constant
of the form exp(CTε−m0 ); instead, the constant turns out to be dependent on ε−1 only in a polynomial order.
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