

The FASEB Journal / Volume 35, Issue S1

The impediment of sex on taxonomy: A case study in macaque monkeys

Brittany Kenyon-Flatt, Amandine Eriksen, Evan Simons, Noreen von Cramon-Taubadel

First published: 14 May 2021

https://doi.org/10.1096/fasebj.2021.35.S1.02081

This research is supported by the National Science Foundation Grants (BCS-1945735, BCS-1830745, DBI-2010844), Field Museum Visiting Researcher Fellowship, Primate Research Institute Cooperative Research Grant, and the Mark Diamond Research Fund (SP-18-13).

Abstract

Previous work indicates that the taxonomic signal of a given skeletal element largely depends on the degree of sexual dimorphism present. In other words, it may be the case that sexual dimorphism confounds taxonomy. Here, we investigate this phenomenon in the relatively specious and sexually dimorphic macaque (*Macaca*) monkey, testing whether there was a significant interaction between sex and species throughout the skeleton. If such interaction were found, we explored how to control the effects of sex on morphology for more accurate taxonomic assessment.

Data included 3D scans from wild, adult males and females for nine representative species (n=297): M. arctoides (17 M, 20 F), M. fascicularis (21 M, 20 F), M. fuscata (20 M, 20 F), M. mulatta (14 M, 25 F), M. nemestrina (21 M, 23 F), M. nigra (9 M, 15 F), M. radiata (11 M, 13 F), M. sylvanus (4 M, 4 F) and the outgroup Trachypithecus cristatus (20 M, 20 F). 293 fixed and semilandmarks were applied to eight skeletal elements for each individual (sylvanus), sylvanus), sylvanus0 (sylvanus1), sylvanus2), sylvanus3, sylvanus3, sylvanus3, sylvanus4, sylvanus6, sylvanus6, sylvanus6, sylvanus7, sylvanus8, sylvanus8, sylvanus8, sylvanus9, sylvanu

of Variance (ANOVA); results that reported a significant interaction term (p<0.05) between the two main variables, sex and species, suggested that taxonomy was impacted by sexual dimorphism. All bones tested except for the radius and tibia reported p<0.05, indicating that the majority of bones exhibit differing patterns of sexual dimorphism among species. This means that methods for controlling for sexual dimorphism such as a multivariate regression, where the independent variables are shape and the dependent variable is sex, may not be sufficient to control for the effects of sexual dimorphism across all taxa. Hence, additional methods for controlling for species-specific patterns of sexual dimorphism may be required when attempting to reconstruct taxonomic affiliation from skeletal morphological data.

Thus, here we demonstrate the strong effect of sex on morphology in sexually dimorphic species like macaques. Given that the majority of bones returned a significant interaction term, we suggest that any future study investigating taxonomic valence first test for the effect of sex on species. Moreover, we recommend that future work focus on methods to best to control for the impact of sex on morphology, specifically in taxonomic studies.

© 2021 Federation of American Societies for Experimental Biology (FASEB)

About Wiley Online Library

Privacy Policy Terms of Use Cookies Accessibility

Help & Support

Contact Us
Training and Support
DMCA & Reporting Piracy

Opportunities

Subscription Agents Advertisers & Corporate Partners

Connect with Wiley

The Wiley Network Wiley Press Room

Copyright © 1999-2021 John Wiley & Sons, Inc. All rights reserved

