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Abstract It is well understood that boundary conditions (BCs) may cause global7

radial basis function (RBF) methods to become unstable for hyperbolic conser-8

vation laws (CLs). Here we investigate this phenomenon and identify the strong9

enforcement of BCs as the mechanism triggering such stability issues. Based on10

this observation we propose a technique to weakly enforce BCs in RBF methods.11

In the case of hyperbolic CLs, this is achieved by carefully building RBF methods12

from the weak form of the CL, rather than the typically enforced strong form.13

Furthermore, we demonstrate that global RBF methods may violate conservation,14

yielding physically unreasonable solutions when the approximation does not take15

into account these considerations. Numerical experiments validate our theoretical16

results.17
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1 Introduction22

RBFs have become powerful tools in multivariate interpolation and approximation23

theory, since they are easy to implement, allow arbitrary scattered data, and can be24

spectrally accurate. They are also often used to solve numerical partial differential25

equations (PDEs) [66,22,62,56,65,71,82,53,54]. In this regard, although RBFs26

are considered to be a viable alternative to traditional methods such as finite27

difference (FD), finite element (FE) and spectral methods, investigations into their28

stability are still underdeveloped and/or unsatisfactory. For instance, L2 (energy)29

stability has not been thoroughly studied. Moreover, for time-dependent PDEs,30

differentiation matrices for RBF methods often have eigenvalues with positive31
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real parts, [84,89]. Hence due to rounding errors RBFs can become increasingly32

unstable in time unless a dissipative time integration method [84,89,76], artificial33

dissipation [25,43,87,41,80], or some other stabilizing technique [90,33,40,51,44,34

34,37,19], is employed. Such stabilizing techniques often result in reduced accuracy,35

however, [65,82,92].36

This investigation seeks to increase the understanding of the stability require-37

ments for RBF methods, especially as they relate to hyperbolic conservation laws38

(CLs). In one dimension, we therefore consider39

ut + f(u)x = 0, x ∈ Ω = [a, b] ⊂ R, t > 0, (1)

equipped with an appropriate initial condition (IC) u(0, x) = u0(x) and BCs40

u(t, a) = gL(t), u(t, b) = gR(t). In [76], eigenvalue analysis was used to show that41

in order to guarantee stability for the usual RBF methods, that is those using42

conditionally positive definite kernels, no BCs could be imposed on the problem.43

We note that the analysis was restricted to scalar linear advection, i. e. f(u) = u44

in (1). Starting from these results, this investigation pinpoints the root of stability45

issues not to be the existence of BCs, but rather how they are implemented within46

the RBF framework. In particular we demonstrate that the BCs should be weakly47

enforced. This is consistent with stable boundary treatment in FD methods [69,48

49,48,97,24], as well as FE [58,102,63,88,2,3] and spectral [52] methods.49

Our analysis involves using the weak form to solve (1) given by (see e. g. [86])50 ∫
Ω

utv dx−
∫
Ω

f(u)vx dx+ f(u)v
∣∣
∂Ω

= 0, t > 0, (2)

with test function v ∈ C1(Ω). Recall that (2) is constructed from (1) by multiplying51

each term by v, integrating over Ω, and applying integration by parts. Observe that52

for (2) less regularity is required for the solution u. This is important since even53

for smooth initial conditions solutions of (1) can develop jump discontinuities [72,54

16]. Thus by using (2) we permit the more general class of weak solutions, where55

(1) is satisfied in the sense of distribution theory, see [72,16]. To distinguish the56

physically reasonable weak solution from all of the other possible weak solutions,57

(1) is augmented with an additional entropy condition58

U(u)t + F (u)x ≤ 0. (3)

Here U is an entropy function and F is a corresponding entropy flux satisfying59

U ′f ′ = F ′. A strict inequality in (3) reflects the presence of a physically reason-60

able shock wave. For scalar conservation laws in one dimension, the square entropy61

U(u) = 1
2u

2 is often a valid entropy function. In this case, from the entropy in-62

equality (3), we immediately get63

d

dt
‖u‖2L2 = 2

∫
Ω

U(u)t dx ≤ −2F (u)
∣∣
∂Ω

(4)

for entropy solutions of (1). In particular, the entropy should not increase over64

time for an isolated physical system, and a physically reasonable weak solution of65

(1) should therefore satisfy66

d

dt
‖u‖2L2 ≤ 0 (5)
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for periodic BCs. We refer to (4) as L2 or energy stability. Together with the67

property of conservation, given by68

d

dt

∫
Ω

udx = −f(u)
∣∣
∂Ω
, (6)

energy stability often is considered an important design criteria for a numerical69

method to produce physically reasonable solutions.70

In what follows we show that it can be beneficial to build RBF methods from71

the weak form (2) instead of the strong form (1), which is the usual approach.72

We prove that RBF methods based on the weak form, which we will refer to as73

weak RBF methods, are conservative as long as constants are included in the RBF74

approximation, which will be explained in §2. They are also energy stable when75

appropriate numerical fluxes are used for the (weak) treatment of BCs. In contrast,76

we also demonstrate that usual RBF methods based on the strong form, which77

we will refer to as strong RBF methods, violate conservation as well as energy78

stability and might produce physically unreasonable solutions. Our approach is79

closely related to the idea behind discontinuous Galerkin (DG) methods [14,13,80

12,11,15,55]. For these, a resembling but different energy stability analysis was81

performed in [64]. Details on energy stability for DG methods and related schemes82

can be found in, e. g., [32,97,9,87,79,41,42] and references therein. To the best of83

our knowledge, none of these investigations prove energy stability properties for84

RBF methods for hyperbolic CLs.85

The rest of this work is organized as follows. In Section 2, we collect all nec-86

essary preliminaries on RBF approximations. The heart of this investigation is87

Section 3, where we prove that the weak RBF method for CLs is conservative and88

energy stable. We further describe two different realizations of the resulting weak89

RBF methods, the weak RBF analytical method and the more efficient weak RBF90

collocation method. In Section 4 we provide a comparison of the weak RBF method91

with some commonly used techniques. Section 6 compares numerical results for92

our new method with the traditional RBF method, and some concluding remarks93

are offered in Section 7.94

The MATLAB code corresponding to this manuscript can be found at [36].95

2 Preliminaries96

This section collects all necessary concepts and results regarding RBF approxima-97

tions. More details may be found in the survey articles [92,93,94].98

2.1 Method of Lines99

In this investigation we consider only spatial discretization of the hyperbolic CL100

(1), so that the problem remains continuous in time. The resulting system of101

ordinary differential equations (ODEs), often referred to as the semi-discrete for-102

mulation, is given by103

d

dt
u = L(u), (7)
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where L(u) is a discretization of the spatial operator. This approach, i. e. where104

time dependent PDEs are reduced to a system of ODEs, is often called the method105

of lines, see [73, Chapter 10.4]. Time integration techniques used for solving (7)106

will be further discussed in Section 3.4.107

2.2 RBF Approximations108

We now consider approximations of a function u : Rd ⊇ Ω → R by RBF interpolants109

110

uN (x) =
N∑
n=1

αnϕ (ε‖x− xn‖) , (8)

where ϕ : R → R is a basis function (kernel) and the coefficients αk are calculated111

such that the interpolation condition112

uN (xn) = u(xn), n = 1, . . . , N, (9)

holds. The interpolation points xn ∈ Ω are called centers and ε > 0 is the shape113

parameter. The interpolation condition (9) yields a system of linear equations,114 
ϕ (ε‖x1 − x1‖) . . . ϕ (ε‖x1 − xN‖)

...
...

ϕ (ε‖xN − x1‖) . . . ϕ (ε‖xN − xN‖)


︸ ︷︷ ︸

=:Φ


α1

...
αN


︸ ︷︷ ︸

=:α

=


u(x1)

...
u(xN )


︸ ︷︷ ︸

=:u

, (10)

which can be solved for the vector of coefficients α ∈ RN if the matrix Φ is115

invertible. Popular examples for basis functions (kernels) ϕ are116

ϕ(r) = e−r
2

(Gaussian), (11)

ϕ(r) =
√

1 + r2 (multiquadric), (12)

ϕ(r) =
1

(1 + r2)
(inverse quadratic), (13)

ϕ(r) =

{
rk ; k ∈ 2N + 1,

rk log r ; k ∈ 2N,
(polyharmonic splines), (14)

More details may be found in [91,5,103,94,83,29] and references therein.117

2.3 Stability of RBF Methods for Time-Dependent Problems118

Experience suggests that RBF approximations will produce discretizations that119

are unstable in time unless highly dissipative time stepping is used. It was shown120

in [84] that under a variety of conditions, differentiation matrices obtained with121

RBF collocation methods have eigenvalues with positive real parts. In particular,122

this was demonstrated for a simple one-dimensional linear advection equation,123

suggesting its unsuitability for nonlinear hyperbolic CLs. A related observation124

was made in [27], where it was proposed that one source of instability might125
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be inaccuracy of RBF approximations near boundaries. On the flip side it was126

also proved in [84] that RBF collocation methods are time-stable (in the sense of127

eigenvalues for linear problems) for all conditionally positive definite RBFs and128

node distributions when no BCs are needed. Hence while RBFs perform well in129

periodic domains, such as circles or unit spheres, they are evidently not suitable in130

applications where periodicity of the computational domain cannot be assumed.131

In Section 6 we will also demonstrate that conservation and energy stability are132

both violated by usual RBF methods when applied to hyperbolic CLs, possibly133

leading to physically irrelevant solutions.134

2.4 RBF Approximations With Polynomials135

RBF interpolants (8) are often modified to include polynomials along with match-136

ing constraints on the expansion coefficients, [92,4,26,25]. For example, for Ω ⊂ Rd,137

let us define {pk}Kk=1 as a basis for the space of polynomials of degree at most P−1138

in d variables, denoted by PP−1(Rd), where K = (P−1+d
d ). The resulting RBF in-139

terpolants for polynomials of degree up to P − 1 are then140

uN (x) =
N∑
n=1

αnϕ (ε‖x− xk‖) +
K∑
k=1

βkpk(x) (15)

with constraints141

N∑
n=1

αnpk(xn) = 0, k = 1, . . . ,K. (16)

Let us also define142

P =


p1 (x1) . . . p1 (xN )

...
...

pK (x1) . . . pK (xN )

 , β =


β1
...
βK

 . (17)

Then, given the interpolation condition (9), the counterpart to (10) is143 (
Φ PT

P 0

)
︸ ︷︷ ︸

=:V

(
α

β

)
=

(
u

0

)
. (18)

There are various reasons for including polynomials in RBF interpolants [92,144

4,26,25]:145

1. Polynomial terms can ensure that (18) is uniquely solvable when working with146

conditionally positive definite basis functions (kernels), assuming the set of147

centers {xk}Nk=1 is PP−1(Rq)-unisolvent. See for instance [23, Chapter 7].148

2. Numerical tests demonstrate that including a constant improves the accuracy149

of derivative approximations. In particular, adding a constant avoids oscillatory150

representations of constant functions.151

3. Including polynomial terms of low order can also improve the accuracy of RBF152

interpolants near domain boundaries due to regularizing the far-field growth153

of RBF interpolants [27].154
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For our purposes, the main advantage in including polynomials in the RBF155

interpolants is that the constraints in (16) enforce the RBF interpolants (15) to156

reproduce polynomials up to degree P − 1:157

uN = u ∀u ∈ PP−1(Rd)

For example, Figure 1 demonstrates in one dimension (d = 1) that constant func-158

tions can be reconstructed exactly by RBF interpolants for P ≥ 1. This property159

will be crucial to prove conservation for the stable RBF methods proposed in160

Section 3.161
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1

1.02
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1.06

(a) RBF approx. (ε = 6) of u(x) = 1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b) RBF approx. (ε = 10) of u(x) = x

Fig. 1: RBF approximations including polynomials up to different degrees. In both cases Gaus-
sian kernels were used.

Remark 1 We stress that the above discussion is specific to global RBFs. Polyno-162

mials play a different role in local RBF (RBF-FD) methods, [26]163

3 Energy Stable RBF Methods164

RBF methods typically use collocation to discretize (1). That is, u and f are165

both approximated by RBF interpolants with respect to the same set of centers166

xn, n = 1, . . . , N . As discussed in Section 2.3, this yields unstable methods in the167

presence of BCs. Here, however, we prove that stability as well as conservation can168

be ensured if RBF methods are built from the weak form. For ease of presentation,169

we perform our analysis in one dimension (d = 1). As will be demonstrated in170

Section 5.1, the method can be implemented in higher dimensions. No attempt171

has been made to prove stability for d > 1, however.172

In one dimension, the weak form (2) is equivalent to173 ∫
Ω

utv dx−
∫
Ω

f(u)vx dx+ f(u(t, b))v(b)− f(u(t, a))v(a) = 0 (19)

with v ∈ C1(Ω) and t > 0. In what follows we describe two different RBF methods174

built from (19). In both cases the solution u is approximated by an RBF interpolant175

(15), which as we noted earlier can include polynomials.176
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The method described in Section 3.1 uses the analytical flux function f ap-177

plied to the RBF interpolant uN . As a consequence, the resulting approximation178

f(un) ≈ f(u) still satisfies the interpolation condition but is no longer an RBF179

approximation. By contrast, the technique described in Section 3.2 utilizes the180

idea of collocation, where u and the flux f(u) are both approximated by RBF181

interpolants.182

3.1 Weak RBF Analytical Methods183

Let u and v in the weak form (19) be replaced by RBF approximations uN , vN ∈ VN,P184

with185

VN,P :=


N∑
n=1

αnϕ (ε‖x− xn‖) +
K∑
k=1

βkpk(x) | α ∈ RN ,β ∈ RK , and (16) holds

 , (20)

where K = (P−1+1
1 ) = P . Note that for P = 0 no polynomials are included in the186

RBF interpolant and the approximation space reduces to187

VN,0 = span
{
ϕ(ε‖x− xn‖) | n = 1, . . . , N

}
. (21)

Next observe that while one or both BCs may be given as part of (1), i. e.188

u(t, a) = gL(t) and u(t, b) = gR(t), it is also possible to assign these values with189

the RBF approximations evaluated there as190

u(t, a) = uR := uN (b), u(t, b) = uL := uN (a). (22)

Hence to ensure well-defined boundary terms, we compute a single valued numer-191

ical flux at the boundaries as192

fnumL = fnum
(
gL(t), uL

)
, fnumR = fnum

(
uR, gR(t)

)
, (23)

and therefore enforce the BCs in a weak sense. The numerical flux is chosen to193

be (i) consistent, that is we require fnum(u, u) = f(u); (ii) Lipschitz continuous;194

and (iii) monotone, meaning that fnum is nondecreasing in the first argument195

and nonincreasing in the second argument. Examples of commonly used numerical196

fluxes can be found in [13,100]. We are now ready to define the weak RBF analytical197

method as198

Definition 2 (Weak RBF analytical method) Determine uN ∈ VN,P such that199

all vN ∈ VN,P satisfies200 ∫
Ω

(uN )tvN dx−
∫
Ω

f(uN )(vN )x dx+
(
fnumR vR − fnumL vL

)
= 0, (24)

where vL and vR respectively denote vN (a) and vN (b).201

Note that in (24) all integrals as well as the flux f(uN ) are assumed to be202

evaluated exactly. Next we consider the properties of the weak RBF analytical203

method (24) for the one-dimensional CL (1).204
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3.1.1 Conservation205

The rate of change of the total amount of the conserved variable u is given by (6),206

which establishes that the total amount of change in u is due to the flux across207

the domain boundaries. For periodic BCs conservation implies that208

d

dt

∫
Ω

udx = 0. (25)

The highly celebrated Lax Wendroff theorem states that if a conservative numerical209

scheme converges, then it will converge toward a weak solution, [86]. To prove210

conservation for (24), we choose P ≥ 1 in order to include polynomials of degree211

P − 1 in the approximation space VN,P defined by (20). Thus 1 ∈ VN,P , and since212

(24) holds for vN = 1, we have213

d

dt

∫
Ω

uN dx =

∫
Ω

(uN )t dx = −
(
fnumR − fnumL

)
, (26)

which is the discrete counterpart to (6). Note that for periodic BCs, the numerical214

fluxes are given by fnumL = fnum(uR, uL) and fnumR = fnum(uR, uL), yielding215

d

dt

∫
Ω

uN dx = 0. (27)

Observe that for periodic BCs, conservation of the continuous equation (1) is exact.216

3.1.2 Energy Stability217

Recall that (4) implies that the rate of change of the squared L2 norm is given by218

d

dt
‖u‖2L2 = 2

∫
Ω

utudx. (28)

Hence by choosing vN = uN in (24) we obtain219

1

2

d

dt
‖uN‖2L2 =

∫
Ω

f(uN )(uN )x dx−
(
fnumR uR − fnumL uL

)
=−

∫
Ω

f(uN )xuN dx+
(
f(uR)uR − f(uL)uL

)
−
(
fnumR uR − fnumL uL

)
,

(29)
with the second equality resulting from applying integration by parts. Observe that220

for the square entropy U(u) = u2

2 with corresponding entropy flux F (u) satisfying221

U ′f ′ = F ′ we have222

F (u)x = F ′(u)ux = uf ′(u)ux = uf(u)x, (30)

yielding223

1

2

d

dt
‖uN‖2L2 =−

(
F (uR)− F (uL)

)
+
(
f(uR)uR − f(uL)uL

)
−
(
fnumR uR − fnumL uL

)
.

(31)



Stabilizing Global RBF Methods 9

Further, by defining224

γ(u) :=

∫ u

f(v) dv, (32)

the entropy flux F (u) can be written as (see [64])225

F (u) =

∫ u

f ′(v)v dv = f(u)u−
∫ u

f(v) dv = f(u)u− γ(u) (33)

so that (31) becomes226

1

2

d

dt
‖uN‖2L2 =

(
γ(uR)− γ(uL)

)
−
(
fnumR uR − fnumL uL

)
=
(
γ(uR)− γ(gR)

)
−
(
γ(uL)− γ(gL)

)
+
(
γ(gR)− γ(gL)

)
−
(
fnumR uR − fnumL uL

)
,

(34)

where gL and gR are the BCs given as part of (1). By the mean value theorem,227

there exists a u∗L between uL and gL as well as a u∗R between uR and gR such that228

229

γ(uL)− γ(gL) = (uL − gL) f(u∗L),

γ(uR)− γ(gR) = (uR − gR) f(u∗R).
(35)

In this case we have230

1

2

d

dt
‖uN‖2L2 = (uR − gR) f(u∗R)− (uL − gL) f(u∗L) +

(
γ(gR)− γ(gL)

)
−
(
fnumR uR − fnumL uL

)
= (gR − uR)

(
fnumR − f(u∗R)

)
+ (uL − gL)

(
fnumL − f(u∗L)

)
+
(
γ(gR)− γ(gL)

)
−
(
gRf

num
R − gLfnumL

)
,

(36)

where the numerical fluxes are given respectively by231

fnumL = fnum(gL, uL), fnumR = fnum(uR, gR). (37)

Thus, by employing an E-Flux (see [81]) so that232

(b− a)
(
fnum(a, b)− f(u)

)
≤ 0 (38)

for all u between a and b, we have233

1

2

d

dt
‖uN‖2L2 ≤

(
γ(gR)− γ(gL)

)
−
(
gRf

num
R − gLfnumL

)
(39)

Finally, utilizing (33) results in234

d

dt
‖uN‖2L2 ≤ −2F (uN )

∣∣
∂Ω

+ 2gR
(
f(gR)− fnumR

)
− 2gL

(
f(gL)− fnumL

)
, (40)

which is consistent with (4) since the numerical flux fnum is consistent with the235

flux f . In particular, the above inequality implies (5) for periodic BCs. This yields236

a conservative and energy stable RBF method for general one dimensional scalar237

CLs.238
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3.2 Weak RBF Collocation Methods239

Depending on the nonlinearity of f , the exact evaluation of f(uN ) and resulting240

integrals may be impractical or even impossible. We therefore extend our analy-241

sis from Section 3.1 to a collocation based alternative to the weak RBF analytic242

method given in Definition 2. As before, we replace u and v with their RBF approx-243

imations uN , vN ∈ VN,P for P ≥ 1. In the collocation case, f(u) is approximated244

using an RBF interpolant fN ∈ VN,P such that245

fN (xn) = f(uN (xn)), n = 1, . . . , N. (41)

We can now proceed as in the weak RBF analytical method and define246

Definition 3 (Weak RBF collocation method) Find uN ∈ VN,P such that247 ∫
Ω

(uN )tvN dx−
∫
Ω

fN (vN )x dx+
(
fnumR vR − fnumL vL

)
= 0 (42)

for all vN ∈ VN,P .248

3.2.1 Conservation249

As in the weak RBF analytical case, conservation follows by including constants250

in the RBF interpolants, i. e. by choosing P ≥ 1.251

3.2.2 Energy Stability252

For the weak RBF collocation method, we can only prove energy stability for the253

linear advection equation, given by254

ut + λux = 0. (43)

From (30) we obtain the entropy flux F (u) = (λ/2)u2. Here we pick constant255

velocity λ > 0 and note that the case for λ < 0 can be treated analogously. By256

choosing vN = uN in (42), we obtain257

1

2

d

dt
‖uN‖2L2 =

∫
Ω

(uN )tuN dx

= λ

∫
Ω

uN (uN )x dx−
(
fnumR uR − fnumL uL

)
= −λ

∫
Ω

(uN )xuN dx+ λ
(
u2R − u

2
L

)
−
(
fnumR uR − fnumL uL

)
,

(44)

where we have used integration by parts. Summing up the second and third equa-258

tions above yields259

d

dt
‖uN‖2L2 = λ

(
u2R − u

2
L

)
− 2

(
fnumR uR − fnumL uL

)
, (45)

which can be rewritten as260

d

dt
‖uN‖2L2 = −2F (uN )

∣∣
∂Ω

+ 2λuR
(
uR − fnumR

)
− 2λuL

(
uL − fnumL

)
. (46)
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By now employing a simple upwind flux, fnum(a, b) = λa, we have261

fnumL = fnum(gL, uL) = λgL,

fnumR = fnum(uR, gR) = λuR,
(47)

and therefore262

d

dt
‖uN‖2L2 = −2F (uN )

∣∣
∂Ω
− 2λuL (uL − gL) . (48)

The above equation is consistent with (4). Note that for the linear advection equa-263

tion (43) no shock waves arise and the inequalities (3) and (4) become equalities.264

Moreover, for periodic BCs, (45) reduces to265

d

dt
‖uN‖2L2 = λ

(
u2R − u

2
L

)
− 2

(
fnum(uR, uL)uR − fnum(uR, uL)uL

)
= −λu2R + 2λuLuR − λu2L
= −λ(uR − uL)2

≤ 0.

(49)

Remark 4 Recall that for general CLs ut + f(u)x = 0, L2 stability for the weak266

RBF analytical method in Definition 2 was shown by utilizing the relation267

F (uN )x = (uN )xF
′(uN ) = (uN )xU

′(uN )f ′(uN ) = uNf(uN )x, (50)

for the square entropy U(u) = u2

2 . For the weak RBF collocation method in Def-268

inition 3, f(uN ) in (50) is replaced by fN and the final equality does not hold.269

Thus we are unable to prove energy stability for general nonlinear CLs.270

3.3 Numerical Fluxes271

There are several options for choosing numerical fluxes that result in energy stable272

weak RBF methods for one-dimensional scalar CLs. Some examples include273

1. Upwind flux: For linear advection, ut+λux = 0, with constant velocity λ 6= 0,274

the general upwind flux, given by275

fnum(a, b) =

{
λa ; λ > 0,

λb ; λ < 0,
, (51)

yields energy stability for both the analytical and collocation forms.276

2. E-Flux: For the nonlinear case we can use an E-Flux as defined in [81] (see277

also [13] and references therein). For example, the Godunov flux is given by278

fnum(a, b) =

{
mina≤u≤b f(u) ; a ≤ b,
maxa≥u≥b f(u) ; a > b.

(52)
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3.4 Time Integration279

Once we obtain the spatial discretization for the hyperbolic CL using one of the280

above methods, we then solve the semi-discrete formulation in (7). Popular choices281

of time integration methods include explicit total variation diminishing (TVD)282

Runge–Kutta (RK) methods [95,46], also known as strong stability preserving283

(SSP) RK methods [47,67]. For our numerical experiments we will use the explicit284

TVD/SSP-RK method of third order using three stages (SSPRK(3,3)), [46]. We285

note that energy stability for SSP-RK methods is guaranteed for all time if it286

holds for the standard first order explicit Euler method, [46]. In [74] it was shown287

in the case of linear CLs that the energy stability is preserved in time for some288

choices of SSP-RK methods, including SSPRK(3,3).1 Thus we see that at least in289

the case of linear advection, both the weak RBF analytical method as well as the290

weak RBF collocation method can be used with SSPRK(3,3) and have guaranteed291

energy stability. For the time step ∆t we use292

∆t = C · |Ω|
N max |f ′(u)|

(53)

with C = 0.1 in the later numerical tests. Here, max |f ′(u)| is calculated for all293

u between minx∈Ω u0(x) and maxx∈Ω u0(x). Note that for the linear advection294

equation we simply have max |f ′(u)| = |λ|.295

3.5 Implementation296

Since the implementation mainly consists of standard techniques, we omit any297

detailed discussion. Additional information may be found in [37, Chapter 7.2.7].298

4 Relationship to Other Methods299

For additional context, we now provide some comparisons to some techniques300

commonly used for solving hyperbolic conservation laws.301

4.1 DG Methods302

DG methods, see [55] and references therein, are perhaps the most obviously com-303

parable. DG methods use a partition of the domain Ω into smaller elements Ωi304

with
⋃
iΩi = Ω. In each element the problem is discretized in a weak form similar305

to (20), where the numerical solution u and the test functions v are typically re-306

placed by polynomials in every element Ωi. These polynomials are allowed to be307

discontinuous at the element interfaces and numerical fluxes are utilized to couple308

neighboring elements and to weakly enforce BCs. In this context, the proposed309

weak RBF method might be interpreted as a DG method in which a single big310

element Ωi = Ω is used and the polynomial approximations are replaced with RBF311

1 This is unfortunately generally not true in the nonlinear case, as the energy might increase
after one iteration of the explicit Euler method if no dissipation is added to the numerical
solution.
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interpolants. In a nodal approach this allows the use of more sophisticated sets312

of interpolation points, especially in higher dimensions (although these are not313

considered in this work). Note that by the Mairhuber–Curtis theorem [60, The-314

orem 2] polynomial interpolation in general is not well-defined in more than one315

dimension.316

4.2 Spectral Galerkin Tau Methods317

Spectral Galerkin methods solve the PDE in form of an integral equation as well,318

only without including the BCs in the integral equation. The BCs can, for instance,319

be enforced directly by choosing suitable trial functions to span the approxima-320

tion space, e. g. by choosing VN = span{ sin(πnx) | n = 1, . . . , N } in case of homo-321

geneous Dirichlet BCs on Ω = [0, 1]. The so-called spectral Galerkin tau methods,322

see [7] and references therein, use trial functions that do not have to individu-323

ally satisfy the BCs, but rather some additional equations are imposed to ensure324

the numerical solution satisfies BCs. To maintain a well-posed discretization, i. e.,325

the number of equations being equal to the number of degrees of freedom, some326

of the integral integrations corresponding to the highest order test functions are327

dropped in favor of the BC equations. In the weak RBF method, on the other328

hand, these BC equations include numerical flux functions and are incorporated329

into the integral equations corresponding to the test functions. As a consequence,330

we do not need to remove any test functions from the integral equations, yielding331

higher order of accuracy.332

4.3 Penalty-Type Boundary Treatment in Pseudospectral Methods333

As with strong RBF methods, classical pseudospectral methods typically are built334

from bases of Fourier, Chebyshev or Legendre polynomials, and require that the335

BCs are strongly (exactly) imposed, see [45] and references therein. Penalty meth-336

ods, i. e. using a penalty term for treating BCs, have been used both for spectral337

methods in the weak [8] and strong [30,31] forms. The basic idea behind penalty338

methods is that it suffices to impose the BCs to the order of the given scheme,339

which can be done by introducing a penalty term into the discretized equation. In340

particular, the BCs have to be satisfied exactly by the numerical solution only in341

the limit of infinite order. Depending on the method and problem under consider-342

ation it may be challenging to construct suitable penalty terms.343

In the weak RBF method, such penalty terms are derived somewhat naturally344

by utilizing numerical flux functions. As a consequence, a large class of penalty345

terms may be available for practical use. Future work will address the development346

of stable RBF methods in strong form. As discussed above, a bottleneck for such an347

investigation will be the development of suitable penalty terms for the boundary348

treatment in a strong RBF method. This is consistent with the observation that349

classic strong RBF methods (in which BCs are imposed strongly), so far, have350

only been observed to be stable if no BCs were present [84].351
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5 Possible Extensions for the Proposed Boundary Treatment352

We now address some possible extension of the proposed boundary treatment in353

global RBF methods.354

5.1 Formulation in Multiple Dimensions355

Let Ω ⊂ Rm be a bounded region with piecewise smooth boundary ∂Ω. The m356

dimensional equivalent of the one dimensional CL (1) is given by357

ut +∇ · F (u) = 0, x ∈ Ω, t > 0, (54)

where F : R→ Rm, ∇ = (∂x1 , . . . , ∂xm) is the formal nabla operator, and · denotes358

their inner product. We also assume we are given suitable IC and BCs. After359

applying the divergence theorem, the weak form of (54) reads360 ∫
Ω

utv dV −
∫
Ω

F (u) · ∇v dV +

∮
∂Ω

vF (u) · n dS = 0

with test function v ∈ C1(Ω). It should be stressed that the closed manifold ∂Ω is361

assumed to be oriented by outward pointing normals, and n denotes the outward362

pointing unit normal at each point on the boundary ∂Ω.363

Following the ideas discussed in §3, the corresponding (m dimensional) weak364

RBF collocation method is defined as follows: Find uN ∈ VN,P such that365 ∫
Ω

(uN )tvN dV −
∫
Ω

FN · ∇vN dV +

∮
∂Ω

vNFnum · n dS = 0 (55)

for all vn ∈ VN,P . Note that in this case uN and vN still denote scalar-valued RBF366

approximations. At the same time FN denotes a vector-valued function for which367

every component has been replaced by an RBF approximation. Consequently,368

Fnum also denotes an m-dimensional numerical flux function.369

5.2 Stability in Multiple Dimensions370

A similar analysis to the one in §3.2 can be used in the linear case, that is for371

F (u) = λu with λ ∈ Rm. In particular, by choosing vN = uN in (55) and applying372

Gauss’s divergence theorem, we obtain373

d

dt
‖uN‖2L2 =

∮
∂Ω

uN
[
uNλ− 2Fnum] · n dS. (56)

This equation can be considered as the m-dimensional analogue of (45). It is374

unfortunately less clear in general how the boundary contributions sum up in the375

higher-dimensional setting. Indeed, the boundary integral in (56) strongly depends376

on the bounded region Ω as well as the sign of the different components of the377

constant velocity vector λ ∈ Rm. That said, Example 5 suggests that in theory378

similar stability results as in §3.2 are also obtainable in multiple dimensions. They379

might be more cumbersome to formulate, however.380
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Example 5 Suppose we are given the two-dimensional cube Ω = [a, b]2 and a non-381

negative velocity vector λ = (λ1, λ2)T with λ1, λ2 ≥ 0. In this case the boundary382

∂Ω can be partitioned into the four following lines:383

∂ΩW = { (a, y)T ∈ R2 | a ≤ y ≤ b }, ∂ΩE = { (b, y)T ∈ R2 | a ≤ y ≤ b },

∂ΩS = { (x, a)T ∈ R2 | a ≤ x ≤ b }, ∂ΩN = { (x, b)T ∈ R2 | a ≤ x ≤ b }.

Observe that ∂ΩE and ∂ΩN are the outflow part of the boundary (no BC is given384

there), while ∂ΩW and ∂ΩS are the inflow part (BCs are given there). Focusing385

on periodic BCs, for which know that the energy should not increase over time,386

we have387

u(t, x, y) = u(t, x+ b− a, y) for (x, y) = (a, y) ∈ ∂ΩW ,

u(t, x, y) = u(t, x, y + b− a) for (x, y) = (x, a) ∈ ∂ΩS .
(57)

For simplicity we choose the upwind flux Fnum = Fnum(a, b), satisfying388

Fnum(a, b) · n =

{
(λ · n)a ; λ · n ≥ 0,

(λ · n)b ; λ · n < 0.
(58)

Substituting (57) and (58) into (56) we obtain389

d

dt
‖uN‖2L2 =

∫
∂ΩW

uN (t, a, y)
[
uN (t, a, y)− 2uN (t, b, y)

]
λ · n dS

+

∫
∂ΩS

uN (t, x, a)
[
uN (t, x, a)− 2uN (t, x, b)

]
λ · n dS

−
∫
∂ΩE

u2N (t, b, y)λ · n dS −
∫
∂ΩE

u2N (t, x, b)λ · n dS

=− λ1
∫ b

a

u2N (t, a, y)− 2uN (t, a, y)uN (t, b, y) dy

− λ2
∫ b

a

u2N (t, x, a)− 2uN (t, x, a)uN (t, x, b) dx

− λ1
∫ b

a

u2N (t, b, y) dy − λ2
∫ b

a

u2N (t, x, b) dx

=− λ1
∫ b

a

[
uN (t, a, y)− uN (t, b, y)

]2
dy

− λ2
∫ b

a

[
uN (t, x, a)− uN (t, x, b)

]2
dx

≤0.

Hence we observe from Example 5 that linear stability for the weak RBF method390

might also hold in higher dimensions as well as more general domains.2391

2 A more rigorous study is clearly needed and will be included in future investigations.
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5.3 Numerical Integration392

Constructing the mass and stiffness matrices requires computing integrals which393

may be costly depending on the number of degrees of freedom and the dimen-394

sion. Preliminary tests presented in §6 indicate that it is possible to increase ef-395

ficiency without reducing accuracy, either by using trapezoidal, Gauss-Legendre,396

or Gauss-Lobatto rules (in one dimension), and their tensor products in higher397

domains when a rectangular domain is assumed, see for example [50,96,21,17,398

101] for general discussions on numerical quadrature. Such techniques are not399

readily available for non-standard (non-rectangular) domains. In this case an al-400

ternative might be to use classical (quasi-)Monte Carlo methods, [77,78,6,18], or401

more recently developed high-order least squares cubature rules, [38,35], which are402

based on one-dimensional approaches developed in [105,104,57,39]. Future work403

will address the advantages and potential difficulties in replacing these integrals404

by various numerical formulas.405

5.4 Local Radial Basis Function Methods406

We have thus far only considered global RBF methods. One obvious concern in407

using global RBFs is the associated computational cost. Specifically, determining408

a global RBF interpolant as well as calculating the corresponding differentiation409

matrix each cost O(N3) operations for N nodes. While for the discussed methods410

this can be done offline, that is once before time stepping commences (assuming411

the nodes do not change over time), there are additional O(N2) operations to be412

performed each time a differentiation matrix is applied during time stepping. Local413

RBF-FD are designed to remedy this problem.3 Conceptually, these methods can414

be interpreted as an extreme case of overlapping domain decomposition, with a415

separate domain surrounding each node. The basic idea is to center a local RBF-416

FD stencil at each of the N global nodes, and let it include the n − 1 nearest417

neighbors, where n � N . For every node, and based on its surrounding stencil, a418

local FD formula that is exact for all RBF interpolants on that stencil—potentially419

including polynomials—is then derived from a system of linear equations similar420

to (10). The main difference is that the right hand side of the linear system is421

replaced by the nodal values of a linear differentiation operator. For more details,422

see [28, Chapter 5] and references therein.423

We note that going from the strong to weak formulation of the underlying424

conservation law is also possible for local RBF-FD methods. Although the conser-425

vation and energy stability proofs do not immediately follow, such results may be426

possible at least in the linear case when replacing exact integrals and differenti-427

ation operators by their discrete counterparts, as long as certain summation-by-428

parts (SBP) properties are satisfied, [97,24]. In this case, many stability properties429

which are based on integration by parts, i.e. the continuous analogue of SBP, would430

still be satisfied in a discrete norm. This idea is also left for future investigations.431

3 The conference presentation [99] by Tolstykh in 2000 seems to be the earliest reference to
RBF-FD methods.
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6 Numerical Results432

We now demonstrate our theoretical findings for the weak RBF analytical and col-433

location methods. In most tests we focus on the cubic and quintic kernel, ϕ(r) = r3434

and ϕ(r) = r5, which belong to the class of polyharmonic splines (PHSs). Al-435

though they yield algebraic rather than spectral accuracy4, there are several ad-436

vantages associated with PHSs, see [59,28,61]. In particular, PHSs satisfy certain437

optimality results [20,85] that can be interpreted as multidimensional scattered438

node analogues of the one-dimensional result that the natural cubic spline, among439

all possible interpolants s, minimizes
∫

[s′′(x)]2 dx over the interval spanned by440

the nodes. Essentially this means that PHSs interpolate scattered data with the441

fewest spurious oscillations. Finally, PHSs do not require a (sometimes cumber-442

some) selection of the shape parameter ε. The MATLAB code used to generate443

the subsequent numerical tests can be found at [36].444

6.1 Linear Advection Equation445

Let us consider the linear initial value problem (IVP)446

ut + ux = 0, u(0, x) = exp
(
−20x2

)
(59)

with x ∈ Ω = [−1, 1] and t > 0. We will also consider periodic and inflow BCs447

given respectively by448

u(t,−1) = u(t, 1), (periodic BC) (60)

u(t,−1) = u(0, 1−mod(t, 2)) (inflow BC) (61)

Note that both BCs yield the same exact solution.449

6.1.1 Solution, Momentum and Energy Profiles450

We start by comparing numerical solutions given by the weak RBF methods for451

P = 0 (no polynomials included) and P = 1 (constants included) to the standard452

RBF collocation method. The latter will be subsequently referred to as the strong453

or standard RBF (collocation) method. Note that in the linear advection case the454

weak RBF analytical and collocation methods are the same.455

Figure 2 illustrates results of the standard as well as the weak RBF method for456

the linear advection equation with periodic BCs at time t = 10. Different kernels457

are compared, including the cubic, quintic, Gaussian (G), inverse quadratic (IQ)458

and multiquadric (MQ) kernel. For the latter three a shape parameter of ε = 5 was459

used. Furthermore, all tests were performed for N = 20 equidistant nodes. From460

Figure 2 it is apparent that in all cases the weak RBF method yields visibly more461

accurate results than the standard (strong) RBF method. In accordance with our462

previous investigations on conservation and energy stability, we also observe that463

momentum,
∫
udx, is preserved by the weak RBF method and energy, ‖u‖22, is464

nonincreasing. This is independent of whether P = 0 or 1. For the the standard465

4 For a discussion on the accuracy of infinitely smooth kernels as well as the role of the
shape parameter ε see for instance [75,92,5,28] and references therein.
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Fig. 2: Numerical solutions at t = 10 (left); their momentum (middle); and energy (right) over
time for ut + ux = 0 with periodic BC (60). In all cases, N = 20 equidistant nodes and shape
parameter ε = 5 were used.
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RBF method, on the other hand, unphysical profiles for momentum and energy466

are evident. Henceforth we only focus on the cubic and quintic kernel which allows467

us to eliminate the potential effects from poorly chosen shape parameters.468

6.1.2 Error Analysis469

We now provide a more detailed comparison between the standard and weak RBF470

method for periodic as well as inflow BCs for the cubic and quintic kernel.471
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Fig. 3: ‖ · ‖∞-errors of the numerical solutions at t = 10 for the linear text problem (59) with
(left) periodic and (right) inflow BC.

Figures 3 and 4 illustrate the ‖ · ‖∞- and ‖ · ‖2-errors of both methods corre-472

sponding to the linear IVP473

ut + ux = 0, u(0, x) = cos2 (4πx) (62)

with x ∈ Ω = [−1, 1] and periodic as well as inflow BC at t = 2. These error norms474

are respectively given by475

‖u− uN‖∞ = max
n=1,...,N

|u(xn)− uN (xn)|,

‖u− uN‖2 =

√√√√ N∑
n=1

|u(xn)− uN (xn)|2,
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Fig. 4: ‖ · ‖2-errors of the numerical solutions at t = 10 for the linear text problem (59) with
(left) periodic and (right) inflow BC

where u denotes the exact solution, uN the numerical solution, and x1, . . . , xN are476

the nodes. Figures 3 and 4 consider the errors using equidistant nodes. It is clear477

that the weak RBF method yields more accurate results than the standard RBF478

method in all cases, and that the standard RBF method does not even seem to479

converge for the quintic kernel case. This may be due to rising instability in com-480

bination with the resulting numerical artifacts never leaving the computational481

domain in case of periodic BCs. The weak RBF method, on the other hand, is ob-482

served to have a convergence rate of 2.5 in the periodic case, regardless of whether483

the cubic or quintic kernel is used. We note that the local approximation orders of484

the cubic and quintic kernel are respectively 2 and 3, [59,61]. For the inflow BC,485

the rate of convergence of the weak RBF method is observed to decrease to 2 for486

both kernels. Moreover, for the inflow BC, the standard RBF method displays a487

similar rate of convergence. It might be that this increase of stability (and there-488

fore accuracy) for the standard RBF method is related to numerical artifacts being489

allowed to leave the computational domain while only exact information (due to490

the inflow BC) flows into the computational domain from the left hand side. This491

behavior will be considered more in future investigations.492

6.1.3 Equidistant vs Nonequidistant Points493

As demonstrated in §3.1 and §3.2, neither conservation nor energy stability of the494

weak RBF method depend on the choice of the nodes. However accuracy of the495
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weak RBF method might suffer from poor distributions of the nodes. Below we496

further investigate the potential implication of different nodal distributions.497
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Fig. 5: Numerical solutions at t = 20 (left); momentum (middle); and energy (right) over
time for ut + ux = 0 with periodic BCs. N = 20 equidistant (top) and randomly uniformly
distributed (bottom) nodes are compared for a cubic kernel.
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Fig. 6: Numerical solutions at t = 20 (left); momentum (middle); and energy (right) over
time for ut + ux = 0 with periodic BCs. N = 20 equidistant (top) and randomly uniformly
distributed (bottom) nodes are compared for a quintic kernel.
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Figures 5 and 6 illustrate this potential decrease in accuracy but preserved498

conservation and stability properties for the weak RBF method. The results for499

N = 20 equidistant and randomly (uniformly distributed) nodes are compared for500

the cubic and quintic kernel. In all cases, the linear IVP (59) with periodic BC is501

considered at time t = 20. While the weak RBF method yields consistent results502

for all cases, the standard RBF method varies considerably, and essentially blew503

up when the quintic kernel was employed before the final time was reached (see504

the energy profile).505

6.1.4 Exact vs Numerical Integration506

As discussed in §5.3, to increase efficiency and reduce runtimes, an exact integra-507

tion is often replaced by a numerical approximation.5508
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Fig. 7: Numerical solutions at t = 100 (left); their momentum (middle); and energy (right)
over time for ut+ux = 0 with periodic BCs. Different integration techniques, all using J = 100
quadrature points, are compared for a cubic and quintic kernel as well as N = 20 equidistant
nodes.

Figure 7 illustrates the numerical solution by the weak RBF method (P = 1)509

together with the corresponding momentum and energy over time for the linear510

IVP (59) with periodic BC and end time t = 100. Here we compare “exact”511

integration (employing the MATLAB function integral) with simple trapezoidal512

and Gauss(–Legendre) quadratures. The results demonstrate that even when only513

J = 100 quadrature points are used, the numerical solution as well as the momen-514

tum are essentially the same for all integration techniques. This is also true for515

the energy in case of the quintic kernel. For the cubic kernel, there are noticeable516

5 In our implementation we are using the MATLAB function integral for their computation
so that strictly speaking, none of our integration is exact. This MATLAB function uses global
adaptive quadrature and certain (default) error tolerances.
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differences in the energy for the different integration techniques, however. It is517

possible to overcome such discrepancies by increasing the number of quadrature518

points J so that it is proportional to the number of nodes N . It is interesting to519

note that the trapezoidal rule yields more dissipation (lower energy profiles) than520

both the Gauss rule and “exact” integration. While the reasons for this should521

be investigated further, for now we simply note that the trapezoidal rule allows522

an efficient implementation of the weak RBF method while still preserving energy523

stability.524

6.2 Euler Equations525

We now address the extension of the weak RBF method to systems of nonlinear526

hyperbolic CLs. To this end, we consider the one-dimensional Euler equations527

given by528

U t + F (U)x = 0 (63)

for x ∈ Ω = [−1, 1], where U and F (U) respectively are the vector of conserved529

variables and fluxes:530

U =

u1u2
u3

 =

 ρ

ρu

E

 , F =

f1f2
f3

 =

 ρu

ρu2 + p

u(E + p)

 . (64)

Here, ρ is the density, u is the velocity, p is the pressure, and E is the total energy531

per unit volume. The Euler equations are completed by addition of an equation of532

state (EOS) with general form533

p = p(ρ, e), (65)

where e = E/ρ − u2/2 is the specific internal energy. For the case of ideal gases534

the EOS is given by535

p = (γ − 1)ρe (66)

with γ denoting the ratio of specific heats. For the subsequent numerical tests, we536

set γ = 3 and consider a smooth isentropic flow resulting from the Euler equations537

with smooth ICs538

ρ(0, x) = 1 +
1

2
sin(πx), u(0, x) = 0, p(0, x) = ρ(0, x)γ , (67)

and periodic BCs. A similar test problem has been proposed in [10] as well as in [1]539

in the context of (positivity-preserving) high-order methods. Utilizing the method540

of characteristics, the exact density ρ and velocity u are given by541

ρ(t, x) =
1

2

[
ρ0(x1) + ρ0(x2)

]
, u(t, x) =

√
3
[
ρ(t, x)− ρ0(x1)

]
, (68)

where x1 = x1(t, x) and x2 = x2(t, x) are solutions of the nonlinear equations542

x+
√

3ρ0(x1)t− x1 = 0, x−
√

3ρ0(x2)t− x2 = 0. (69)

Finally, the exact pressure p can be computed by the isentropic law p = Cργ for543

smooth flows [100, Chapter 3.1].544
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Fig. 8: Numerical results (density, velocity, and pressure at the final time t = 0.1) for the Euler
equations. The cubic and quintic kernel with N = 20 equidistant nodes were used. The weak
RBF method includes constants (P = 1).

Figure 8 illustrates the numerical results at time t = 0.1 comparing the strong545

and weak RBF collocation method using the cubic and quintic kernel. For the546

weak RBF method, constants have been included (P = 1). As in the case for547

linear advection, we observe that the weak RBF collocation method for is more548

accurate than the strong RBF.549

6.3 Extension to Two Dimensions550

To conclude our numerical experiments we apply the weak RBF method to a551

two-dimensional problem and consider552

ut + ux = 0,

u(0, x, y) = sin(2πx)

(
1

2
sin(2πy)− 1

)
,

(70)

on Ω = [−1, 1]2 ⊂ R2 with periodic BCs. This test is designed to demonstrate the553

validity of conservation and energy stability of the weak RBF method in higher554

dimensions, as discussed in §5.2. In addition, it is once more illustrated that these555

properties are not affected by using a nonequidistant distribution of nodes, in556

this case random uniformly distributed. Finally, this example also illustrates the557

limitations of the proposed weak RBF methods for long time simulations.558

Figures 9 and 10 respectively illustrate the results for the cubic kernel and559

N = 400 equidistant and uniformly distributed nodes. Figures 11 and 12 present560

the same result for the quintic kernel. In all computations the ‘exact’ integration,561

performed by MATLAB’s integral2, was too cost prohibitive. We therefore replaced562

it by a tensor product based two-dimensional trapezoidal rule (using J = 1000563
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(a) Reference, t = 10 (b) Standard RBF, t = 10 (c) Weak RBF, t = 10

(d) Reference, t = 400 (e) Standard RBF, t = 400 (f) Weak RBF, t = 400

Fig. 9: Numerical results for the two-dimensional linear IVP with periodic BCs. The cubic
kernel with N = 400 equidistant nodes was used.

(a) Reference, t = 10 (b) Standard RBF, t = 10 (c) Weak RBF, t = 10

(d) Reference, t = 400 (e) Standard RBF, t = 400 (f) Weak RBF, t = 400

Fig. 10: Numerical results for the two-dimensional linear IVP with periodic BCs. The cubic
kernel with N = 400 random (uniformly distributed) nodes was used.

quadrature points in one dimension). Based on the results in §6.1.4, we believe that564

a significantly smaller number of quadrature points would have been sufficient. We565

used P = 1 for the weak RBF method.566

The standard RBF method blew up after comparatively small times in all test567

cases. By contrast, the weak RBF method produced highly accurate results even568

for long time simulations. This was true for both equidistant and nonequidistant569

points. After long simulation times, the weak RBF method is seen to decrease570
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(a) Reference, t = 20 (b) Standard RBF, t = 20 (c) Weak RBF, t = 20

(d) Reference, t = 1600 (e) Standard RBF, t = 1600 (f) Weak RBF, t = 1600

Fig. 11: Numerical results for the two-dimensional linear IVP with periodic BCs. The quintic
kernel with N = 400 equidistant nodes was used.

(a) Reference, t = 20 (b) Standard RBF, t = 20 (c) Weak RBF, t = 20

(d) Reference, t = 1600 (e) Standard RBF, t = 1600 (f) Weak RBF, t = 1600

Fig. 12: Numerical results for the two-dimensional linear IVP with periodic BCs. The quintic
kernel with N = 400 random (uniformly distributed) nodes was used.

in accuracy, which appears to be unrelated to instability. Rather it seems that571

dissipation introduced by the numerical (full-upwind) fluxes is blurring the solution572

over long times. The weak RBF method remained stable for computations up573

to at least t = 1600, at which we point we concluded our experiment. Future574

investigation will include using an energy conserving flux, such as a central flux,575

to determine if this will alleviate the long term dissipation.576



Stabilizing Global RBF Methods 27

7 Concluding Remarks577

In this work we investigated the conservation and energy stability properties of578

RBF methods. In the process we demonstrated that traditional RBF methods579

based on the strong form of hyperbolic CLs, including strong enforcement of BCs,580

violate these properties and might therefore produce physically unreasonable solu-581

tions. As an alternative we proposed a weak enforcement of BCs by building RBF582

schemes based on the weak form of the hyperbolic CL. We proved that the result-583

ing methods are conservative assuming that (at least) constants are included in584

the RBF space. Furthermore, these methods were also shown to be energy stable585

when appropriate numerical (E-) fluxes are included in the discretization. In case586

of the weak RBF collocation method this was shown for linear advection when ap-587

propriate numerical (E-) fluxes are included in the discretization. Thus, the weak588

RBF methods are able to provide numerical solutions with physically reasonable589

mass and energy profiles. A drawback of this approach might be potentially ill-590

conditioned mass matrices, which arise from the weak form of the CL, [37, Chapter591

7.2.7]. This may be overcome by choosing sufficiently large shape parameters. For592

more sophisticated applications requiring other kernels, it might be better to use593

orthonormal basis functions instead.594

Future work will focus on the application of the proposed weak RBF method to595

nonlinear problems and, in particular, on the adaptation of different methods [98,596

70,51,68,87,44,41,40] from DG and related methods to further stabilize the weak597

RBF method in the presence of (shock) discontinuities. Finally, in addition to the598

energy stability analysis provided here, it would be useful to perform a (linear)599

eigenvalue stability analysis.600
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88. Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction proce-826

dure via reconstruction. Journal of Computational Physics 311, 299–328 (2016)827

89. Sarra, S.A., Heryudono, A.R., Wang, C.: A numerical study of a technique for shifting828

eigenvalues of radial basis function differentiation matrices. Tech Report, MU-MTH-TR-829

2011-1 (2011)830

90. Scarnati, T., Gelb, A., Platte, R.B.: Using `1 regularization to improve numerical partial831

differential equation solvers. Journal of Scientific Computing 75(1), 225–252 (2018)832

91. Schaback, R.: Creating surfaces from scattered data using radial basis functions. In:833

Mathematical Methods for Curves and Surfaces, pp. 477–496. University Press (1995)834

92. Schaback, R.: Error estimates and condition numbers for radial basis function interpola-835

tion. Advances in Computational Mathematics 3(3), 251–264 (1995)836

93. Schaback, R.: Multivariate interpolation and approximation by translates of a basis func-837

tion. Series In Approximations and Decompositions 6, 491–514 (1995)838

94. Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Con-839

structive Approximation 21(3), 293–317 (2005)840

95. Shu, C.W.: Total-variation-diminishing time discretizations. SIAM Journal on Scientific841

and Statistical Computing 9(6), 1073–1084 (1988)842

96. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall (1971)843
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