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Abstract It is well understood that boundary conditions (BCs) may cause global
radial basis function (RBF) methods to become unstable for hyperbolic conser-
vation laws (CLs). Here we investigate this phenomenon and identify the strong
enforcement of BCs as the mechanism triggering such stability issues. Based on
this observation we propose a technique to weakly enforce BCs in RBF methods.
In the case of hyperbolic CLs, this is achieved by carefully building RBF methods
from the weak form of the CL, rather than the typically enforced strong form.
Furthermore, we demonstrate that global RBF methods may violate conservation,
yielding physically unreasonable solutions when the approximation does not take
into account these considerations. Numerical experiments validate our theoretical
results.

Keywords hyperbolic conservation laws - radial basis functions - conservation -
(energy) stability - spectral methods - method of lines
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1 Introduction

RBF's have become powerful tools in multivariate interpolation and approximation
theory, since they are easy to implement, allow arbitrary scattered data, and can be
spectrally accurate. They are also often used to solve numerical partial differential
equations (PDEs) [66,22,62,56,65,71,82,53,54]. In this regard, although RBFs
are considered to be a viable alternative to traditional methods such as finite
difference (FD), finite element (FE) and spectral methods, investigations into their
stability are still underdeveloped and/or unsatisfactory. For instance, L? (energy)
stability has not been thoroughly studied. Moreover, for time-dependent PDEs,
differentiation matrices for RBF methods often have eigenvalues with positive
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2 J. Glaubitz and A. Gelb

real parts, [84,89]. Hence due to rounding errors RBFs can become increasingly
unstable in time unless a dissipative time integration method [84,89,76], artificial
dissipation [25,43,87,41,80], or some other stabilizing technique [90,33,40,51,44,
34,37,19], is employed. Such stabilizing techniques often result in reduced accuracy,
however, [65,82,92].

This investigation seeks to increase the understanding of the stability require-
ments for RBF methods, especially as they relate to hyperbolic conservation laws
(CLs). In one dimension, we therefore consider

ut+ f(u)e =0, z€2=][a,bCR, t>0, (1)

equipped with an appropriate initial condition (IC) u(0,z) = wuo(z) and BCs
u(t,a) = gr(t), u(t,b) = gr(t). In [76], eigenvalue analysis was used to show that
in order to guarantee stability for the usual RBF methods, that is those using
conditionally positive definite kernels, no BCs could be imposed on the problem.
We note that the analysis was restricted to scalar linear advection, i.e. f(u) = u
in (1). Starting from these results, this investigation pinpoints the root of stability
issues not to be the existence of BCs, but rather how they are implemented within
the RBF framework. In particular we demonstrate that the BCs should be weakly
enforced. This is consistent with stable boundary treatment in FD methods [69,
49,48,97,24], as well as FE [58,102,63,88,2,3] and spectral [52] methods.
Our analysis involves using the weak form to solve (1) given by (see e. g. [86])

/utvdm—/f(u)vwdx—i—f(u)vyaﬁz(L t>0, (2)
2 02

with test function v € C*(£2). Recall that (2) is constructed from (1) by multiplying
each term by v, integrating over (2, and applying integration by parts. Observe that
for (2) less regularity is required for the solution w. This is important since even
for smooth initial conditions solutions of (1) can develop jump discontinuities [72,
16]. Thus by using (2) we permit the more general class of weak solutions, where
(1) is satisfied in the sense of distribution theory, see [72,16]. To distinguish the
physically reasonable weak solution from all of the other possible weak solutions,
(1) is augmented with an additional entropy condition

U(u); + F(u)z < 0. (3)

Here U is an entropy function and F is a corresponding entropy flux satisfying
U'f' = F'. A strict inequality in (3) reflects the presence of a physically reason-
able shock wave. For scalar conservation laws in one dimension, the square entropy
U(u) = 2u? is often a valid entropy function. In this case, from the entropy in-
equality (3), we immediately get

d, 2
Gz =2 [ vide < 2P, 0

for entropy solutions of (1). In particular, the entropy should not increase over
time for an isolated physical system, and a physically reasonable weak solution of
(1) should therefore satisfy

Dz, <o (5)
dt
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Stabilizing Global RBF Methods 3

for periodic BCs. We refer to (4) as L? or energy stability. Together with the
property of conservation, given by

%/Qudm:—f(u)}ém, (6)

energy stability often is considered an important design criteria for a numerical
method to produce physically reasonable solutions.

In what follows we show that it can be beneficial to build RBF methods from
the weak form (2) instead of the strong form (1), which is the usual approach.
We prove that RBF methods based on the weak form, which we will refer to as
weak RBF methods, are conservative as long as constants are included in the RBF
approximation, which will be explained in §2. They are also energy stable when
appropriate numerical fluxes are used for the (weak) treatment of BCs. In contrast,
we also demonstrate that usual RBF methods based on the strong form, which
we will refer to as strong RBF methods, violate conservation as well as energy
stability and might produce physically unreasonable solutions. Our approach is
closely related to the idea behind discontinuous Galerkin (DG) methods [14,13,
12,11,15,55]. For these, a resembling but different energy stability analysis was
performed in [64]. Details on energy stability for DG methods and related schemes
can be found in, e.g., [32,97,9,87,79,41,42] and references therein. To the best of
our knowledge, none of these investigations prove energy stability properties for
RBF methods for hyperbolic CLs.

The rest of this work is organized as follows. In Section 2, we collect all nec-
essary preliminaries on RBF approximations. The heart of this investigation is
Section 3, where we prove that the weak RBF method for CLs is conservative and
energy stable. We further describe two different realizations of the resulting weak
RBF methods, the weak RBF analytical method and the more efficient weak RBF
collocation method. In Section 4 we provide a comparison of the weak RBF method
with some commonly used techniques. Section 6 compares numerical results for
our new method with the traditional RBF method, and some concluding remarks
are offered in Section 7.

The MATLAB code corresponding to this manuscript can be found at [36].

2 Preliminaries

This section collects all necessary concepts and results regarding RBF approxima-
tions. More details may be found in the survey articles [92,93,94].

2.1 Method of Lines

In this investigation we consider only spatial discretization of the hyperbolic CL
(1), so that the problem remains continuous in time. The resulting system of
ordinary differential equations (ODEs), often referred to as the semi-discrete for-
mulation, is given by

—u = L(u), (7)
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4 J. Glaubitz and A. Gelb

where L(u) is a discretization of the spatial operator. This approach, i.e. where
time dependent PDEs are reduced to a system of ODEs, is often called the method
of lines, see [73, Chapter 10.4]. Time integration techniques used for solving (7)
will be further discussed in Section 3.4.

2.2 RBF Approximations

We now consider approximations of a function u : R? D £2 — R by RBF interpolants

N
un (@) =Y ane (ell@ = xnl)) (®)
n=1

where ¢ : R — R is a basis function (kernel) and the coefficients oy, are calculated
such that the interpolation condition

uy(xn) =u(xn), n=1,...,N, (9)

holds. The interpolation points x, € (2 are called centers and € > 0 is the shape
parameter. The interpolation condition (9) yields a system of linear equations,

e (ellxi —xal]) ... e (elxi—xnl) | o u(x1)
_ . =l ] w
e ellxy —xal]) ... ¢ (ellxy —xn|) /) \an u(xn)
=P = =:u

which can be solved for the vector of coefficients o € R if the matrix & is
invertible. Popular examples for basis functions (kernels) ¢ are

p(ry=e¢" (Gaussian), (11)
p(r)y=+v1+1r2 (multiquadric), (12)
1 . .
w(r) ) (inverse quadratic), (13)
k
. r s ke 2N+ 1, . .
o(r) = {rk logr - k € 2N, (polyharmonic splines), (14)

More details may be found in [91,5,103,94,83,29] and references therein.

2.3 Stability of RBF Methods for Time-Dependent Problems

Experience suggests that RBF approximations will produce discretizations that
are unstable in time unless highly dissipative time stepping is used. It was shown
in [84] that under a variety of conditions, differentiation matrices obtained with
RBF collocation methods have eigenvalues with positive real parts. In particular,
this was demonstrated for a simple one-dimensional linear advection equation,
suggesting its unsuitability for nonlinear hyperbolic CLs. A related observation
was made in [27], where it was proposed that one source of instability might
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Stabilizing Global RBF Methods 5

be inaccuracy of RBF approximations near boundaries. On the flip side it was
also proved in [84] that RBF collocation methods are time-stable (in the sense of
eigenvalues for linear problems) for all conditionally positive definite RBFs and
node distributions when no BCs are needed. Hence while RBFs perform well in
periodic domains, such as circles or unit spheres, they are evidently not suitable in
applications where periodicity of the computational domain cannot be assumed.
In Section 6 we will also demonstrate that conservation and energy stability are
both violated by usual RBF methods when applied to hyperbolic CLs, possibly
leading to physically irrelevant solutions.

2.4 RBF Approximations With Polynomials

RBF interpolants (8) are often modified to include polynomials along with match-
ing constraints on the expansion coefficients, [92,4,26,25]. For example, for 2 C R,
let us define {pk}iil as a basis for the space of polynomials of degree at most P—1
in d variables, denoted by Pp_; (R?), where K = (P_;er). The resulting RBF in-
terpolants for polynomials of degree up to P — 1 are then

N K
N(@) =) ang (el —xil)) + > Bpr(x) (15)
n=1 k=1
with constraints
N
Z anpr(xn) =0, k=1,...,K. (16)
n=1
Let us also define
p1(x1) ... p1(xn) b1
P= : : , B=1 |- (17)
Pr (x1) ... pK (XN) B

Then, given the interpolation condition (9), the counterpart to (10) is

) E)-6)

=V

There are various reasons for including polynomials in RBF interpolants [92,
4,26,25]:

1. Polynomial terms can ensure that (18) is uniquely solvable when working with
conditionally positive definite basis functions (kernels), assuming the set of
centers {x;}i_, is Pp_; (RY)-unisolvent. See for instance [23, Chapter 7].

2. Numerical tests demonstrate that including a constant improves the accuracy
of derivative approximations. In particular, adding a constant avoids oscillatory
representations of constant functions.

3. Including polynomial terms of low order can also improve the accuracy of RBF
interpolants near domain boundaries due to regularizing the far-field growth
of RBF interpolants [27].
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6 J. Glaubitz and A. Gelb

For our purposes, the main advantage in including polynomials in the RBF
interpolants is that the constraints in (16) enforce the RBF interpolants (15) to
reproduce polynomials up to degree P — 1:

uy =u Yu € Pp_l(Rd)

For example, Figure 1 demonstrates in one dimension (d = 1) that constant func-
tions can be reconstructed exactly by RBF interpolants for P > 1. This property
will be crucial to prove conservation for the stable RBF methods proposed in
Section 3.

1.06

......... ref
1.04 — RBF,P=0
RBF, P =1
102 ---RBF,P=2
s 3
VYV
0.98 \/ \/ 1
0.96
-1 -0.5 0 0.5 1
xT T
(a) RBF approx. (¢ =6) of u(z) =1 (b) RBF approx. (¢ = 10) of u(z) ==

Fig. 1: RBF approximations including polynomials up to different degrees. In both cases Gaus-
sian kernels were used.

Remark 1 We stress that the above discussion is specific to global RBFs. Polyno-
mials play a different role in local RBF (RBF-FD) methods, [26]

3 Energy Stable RBF Methods

RBF methods typically use collocation to discretize (1). That is, v and f are
both approximated by RBF interpolants with respect to the same set of centers
xn,n =1,...,N. As discussed in Section 2.3, this yields unstable methods in the
presence of BCs. Here, however, we prove that stability as well as conservation can
be ensured if RBF methods are built from the weak form. For ease of presentation,
we perform our analysis in one dimension (d = 1). As will be demonstrated in
Section 5.1, the method can be implemented in higher dimensions. No attempt
has been made to prove stability for d > 1, however.
In one dimension, the weak form (2) is equivalent to

/ v da — / Fwvs dz + f(ult, b)) — f(u(t,a)v(@) =0 (19)
2 2
with v € C'(2) and ¢ > 0. In what follows we describe two different RBF methods

built from (19). In both cases the solution u is approximated by an RBF interpolant
(15), which as we noted earlier can include polynomials.
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Stabilizing Global RBF Methods 7

The method described in Section 3.1 uses the analytical flux function f ap-
plied to the RBF interpolant uy. As a consequence, the resulting approximation
f(un) =~ f(u) still satisfies the interpolation condition but is no longer an RBF
approximation. By contrast, the technique described in Section 3.2 utilizes the
idea of collocation, where u and the flux f(u) are both approximated by RBF
interpolants.

3.1 Weak RBF Analytical Methods

Let u and v in the weak form (19) be replaced by RBF approximations uy,vy € Vi p
with

N K
Vpi= {Z ang (elz —znl) + Y Bepr(z) | @ € RV, B € R, and (16) holds} , (20)
n=1 k=1

where K = (P_11+1) = P. Note that for P = 0 no polynomials are included in the
RBF interpolant and the approximation space reduces to

Vn,o =span{g(ellz — an|) |n=1,...,N}. (21)

Next observe that while one or both BCs may be given as part of (1), i.e.
u(t,a) = gr(t) and wu(t,b) = gr(t), it is also possible to assign these values with
the RBF approximations evaluated there as

u(t,a) = ugr :=un(b), u(t,b) =ur :=uy(a). (22)

Hence to ensure well-defined boundary terms, we compute a single valued numer-
ical flux at the boundaries as

PR = M (g (8 u) . FRT = M (upogr (1) | (23)

and therefore enforce the BCs in a weak sense. The numerical flux is chosen to
be (i) consistent, that is we require f™™(u,u) = f(u); (ii) Lipschitz continuous;
and (iii) monotone, meaning that f™™ is nondecreasing in the first argument
and nonincreasing in the second argument. Examples of commonly used numerical
fluxes can be found in [13,100]. We are now ready to define the weak RBF analytical
method as

Definition 2 (Weak RBF analytical method) Determine uy € Vy p such that
all vy € Vi p satisfies

/ (un)tvy do — / flun)(vy)z da + (fR™ v — fL"™vr) =0, (24)
(9] 2

where vy, and vg respectively denote vy (a) and vy (b).

Note that in (24) all integrals as well as the flux f(upy) are assumed to be
evaluated exactly. Next we consider the properties of the weak RBF analytical
method (24) for the one-dimensional CL (1).
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8 J. Glaubitz and A. Gelb

3.1.1 Conservation

The rate of change of the total amount of the conserved variable u is given by (6),
which establishes that the total amount of change in u is due to the flux across
the domain boundaries. For periodic BCs conservation implies that

d
E.Qudx—o. (25)

The highly celebrated Lax Wendroff theorem states that if a conservative numerical
scheme converges, then it will converge toward a weak solution, [86]. To prove
conservation for (24), we choose P > 1 in order to include polynomials of degree
P —1 in the approximation space Vy p defined by (20). Thus 1 € Vi p, and since
(24) holds for vy = 1, we have

%/ uNd:c:/ (uN)tdx:—(f}%“m—fE‘lm), (26)
2 2

which is the discrete counterpart to (6). Note that for periodic BCs, the numerical
num

fluxes are given by ff"™ = f*""(ug,ur) and fE*™ = P (ug,uy), yielding

d

— dz = 0. 27

dt /Q e 27
Observe that for periodic BCs, conservation of the continuous equation (1) is exact.

3.1.2 Energy Stability

Recall that (4) implies that the rate of change of the squared L? norm is given by

d, 2
EH“HL“’ —2/Qutuda:. (28)

Hence by choosing vy = uy in (24) we obtain

%%HUN”%Q :Af(uN)(uN)m dz — (fl%umuR _ fzumuL)
=— /Qf(UN)xuN dz + (fur)ur — flur)ur) — (FB"™ur — fE " uz),

(29)
with the second equality resulting from applying integration by parts. Observe that
2
for the square entropy U(u) = ‘& with corresponding entropy flux F'(u) satisfying
U'f' = F' we have

F(u)e = F'(wus = uf (u)uz = uf (u)a, (30)

yielding

Sl = (Flur) — F(ur)) + (f () — f(uJur)

(B R )

N =

(31)



224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

Stabilizing Global RBF Methods 9

Further, by defining
1w = [ s (32)

the entropy flux F(u) can be written as (see [64])

Fu) = /u Fo)odo = f(u)u— /u F)dv = F(w)u — ~(u) (33)

so that (31) becomes

3l I3s = () = 2(wn) — (FR™ur — 72"

= (v(ur) —¥(gr)) — (v(ur) —(gr)) (34)
+ (V(QR) - V(QL)) - (f}%umuR — fimmuL) ,

where gr, and ggr are the BCs given as part of (1). By the mean value theorem,
there exists a u}, between uy, and gy, as well as a uj; between ur and gg such that

v(ur) —v(9z) = (ur — gr) f(uL),

. (35)
v(ur) —v(9r) = (ur — gr) f(uRr).
In this case we have
1d 2 * *
EEHUN”LZ’ =(ur —gr) f(uRr) — (ur —gr) f(ul) + (v(gr) —v(9L))
_ (fnumuR o fBumuL) (36)
=(9r —ur) (fR"™ = f(uR)) + (ur — gr) (f2"™ — f(uL))
+ (v(9r) —v(9z)) — (9rSE™ —9LfL™™),
where the numerical fluxes are given respectively by
2 =" ur), R =" (ur, gR) (37)
Thus, by employing an E-Fluz (see [81]) so that
(b—a) (f™"(a,b) = f(u)) <0 (38)
for all u between a and b, we have
1d 2 num num
s glluvlize < (vlor) = () — (9rfR"™ — gL fI™) (39)

Finally, utilizing (33) results in

d num num

EHUNHiz < =2F(un)|,g + 29r (f9r) — FR™) — 291 (f(9z) — FL™™),  (40)
which is consistent with (4) since the numerical flux f*"™ is consistent with the
flux f. In particular, the above inequality implies (5) for periodic BCs. This yields
a conservative and energy stable RBF method for general one dimensional scalar
CLs.
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10 J. Glaubitz and A. Gelb

3.2 Weak RBF Collocation Methods

Depending on the nonlinearity of f, the exact evaluation of f(up) and resulting
integrals may be impractical or even impossible. We therefore extend our analy-
sis from Section 3.1 to a collocation based alternative to the weak RBF analytic
method given in Definition 2. As before, we replace v and v with their RBF approx-
imations un, vy € Vy,p for P > 1. In the collocation case, f(u) is approximated
using an RBF interpolant fy € Viy p such that

fn(en) = flun(zn)), n=1,...,N. (41)
We can now proceed as in the weak RBF analytical method and define

Definition 3 (Weak RBF collocation method) Find uy € Vi, p such that

/ (un o do - / Fx(on)e da + (FE™op — f20;) =0 (42)
2 (9]
for all vy € Vi p.

3.2.1 Conservation

As in the weak RBF analytical case, conservation follows by including constants
in the RBF interpolants, i.e. by choosing P > 1.

3.2.2 Energy Stability

For the weak RBF collocation method, we can only prove energy stability for the
linear advection equation, given by

ut + dug = 0. (43)

From (30) we obtain the entropy flux F(u) = (\/2)u®. Here we pick constant
velocity A > 0 and note that the case for A < 0 can be treated analogously. By
choosing vy = uy in (42), we obtain

1d
salonte = [ n)eudo

— /Q un(un)e dz — (FE™up — f20y) (44)
=-A /Q(UN)SCUN dz + A (u?«z - U%) — (fR™ur — fL"™ur)

where we have used integration by parts. Summing up the second and third equa-
tions above yields

d num num
EHUNHQB :A<U2R_U2L) =2 (fR" M up — fL"ur), (45)
which can be rewritten as

d num num
E”“NH%2 = —2F(uy)|p + 2Mur (ur — fR™) — 2Mug (ug — f2) (46)
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By now employing a simple upwind fluz, ™™ (a,b) = Aa, we have

fr™ = """ gr,ur) = Agr,

47
fR™ = """ (ur,9r) = MuR, (47)

and therefore

d
aHuNHQL2 = —2F(un)| 5 — 2L (ur —9gz) - (48)

The above equation is consistent with (4). Note that for the linear advection equa-
tion (43) no shock waves arise and the inequalities (3) and (4) become equalities.
Moreover, for periodic BCs, (45) reduces to

d num num

EHUN”%? =A (UQR - U%) =2 (™ (up,ur)ug — """ (up, ur)ur)
= —)\u% + 2 \upur — )\u% (49)
= —Mug —up)?
<0.

Remark 4 Recall that for general CLs u; + f(u)z = 0, L? stability for the weak
RBF analytical method in Definition 2 was shown by utilizing the relation

Flun)e = (un)2F' (un) = (un)U'(un) f'(un) = un fun)e, (50)

for the square entropy U(u) = “72 For the weak RBF collocation method in Def-
inition 3, f(upy) in (50) is replaced by fy and the final equality does not hold.
Thus we are unable to prove energy stability for general nonlinear CLs.

3.3 Numerical Fluxes

There are several options for choosing numerical fluxes that result in energy stable
weak RBF methods for one-dimensional scalar CLs. Some examples include

1. Upwind flux: For linear advection, ut + Aug; = 0, with constant velocity A # 0,
the general upwind flux, given by

Aa ; A>0,

, 51
b5 A<, (51)

yields energy stability for both the analytical and collocation forms.
2. E-Flux: For the nonlinear case we can use an E-Flux as defined in [81] (see
also [13] and references therein). For example, the Godunov flux is given by
i ;a<b
fnum (a7 b) _ MiNg <y <b f(u) y >0, (52)
maxg>y>p f(u) 3 a>b
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3.4 Time Integration

Once we obtain the spatial discretization for the hyperbolic CL using one of the
above methods, we then solve the semi-discrete formulation in (7). Popular choices
of time integration methods include explicit total variation diminishing (T'VD)
Runge—Kutta (RK) methods [95,46], also known as strong stability preserving
(SSP) RK methods [47,67]. For our numerical experiments we will use the explicit
TVD/SSP-RK method of third order using three stages (SSPRK(3,3)), [46]. We
note that energy stability for SSP-RK methods is guaranteed for all time if it
holds for the standard first order explicit Euler method, [46]. In [74] it was shown
in the case of linear CLs that the energy stability is preserved in time for some
choices of SSP-RK methods, including SSPRK(3,3).! Thus we see that at least in
the case of linear advection, both the weak RBF analytical method as well as the
weak RBF collocation method can be used with SSPRK(3,3) and have guaranteed
energy stability. For the time step At we use

|£2]

A=C N nax [F(w)]

(53)
with C = 0.1 in the later numerical tests. Here, max|f’(u)| is calculated for all
u between minge o uo(z) and max,c o uo(z). Note that for the linear advection
equation we simply have max |f'(u)| = ||

3.5 Implementation

Since the implementation mainly consists of standard techniques, we omit any
detailed discussion. Additional information may be found in [37, Chapter 7.2.7].

4 Relationship to Other Methods

For additional context, we now provide some comparisons to some techniques
commonly used for solving hyperbolic conservation laws.

4.1 DG Methods

DG methods, see [55] and references therein, are perhaps the most obviously com-
parable. DG methods use a partition of the domain 2 into smaller elements §2;
with (J; £2; = £2. In each element the problem is discretized in a weak form similar
to (20), where the numerical solution » and the test functions v are typically re-
placed by polynomials in every element (2;. These polynomials are allowed to be
discontinuous at the element interfaces and numerical fluxes are utilized to couple
neighboring elements and to weakly enforce BCs. In this context, the proposed
weak RBF method might be interpreted as a DG method in which a single big
element (2; = 2 is used and the polynomial approximations are replaced with RBF

1 This is unfortunately generally not true in the nonlinear case, as the energy might increase
after one iteration of the explicit Euler method if no dissipation is added to the numerical
solution.
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interpolants. In a nodal approach this allows the use of more sophisticated sets
of interpolation points, especially in higher dimensions (although these are not
considered in this work). Note that by the Mairhuber—Curtis theorem [60, The-
orem 2] polynomial interpolation in general is not well-defined in more than one
dimension.

4.2 Spectral Galerkin Tau Methods

Spectral Galerkin methods solve the PDE in form of an integral equation as well,
only without including the BCs in the integral equation. The BCs can, for instance,
be enforced directly by choosing suitable trial functions to span the approxima-
tion space, e.g. by choosing Viy = span{sin(rnz) |n =1,..., N } in case of homo-
geneous Dirichlet BCs on 2 = [0,1]. The so-called spectral Galerkin tau methods,
see [7] and references therein, use trial functions that do not have to individu-
ally satisfy the BCs, but rather some additional equations are imposed to ensure
the numerical solution satisfies BCs. To maintain a well-posed discretization, i.e.,
the number of equations being equal to the number of degrees of freedom, some
of the integral integrations corresponding to the highest order test functions are
dropped in favor of the BC equations. In the weak RBF method, on the other
hand, these BC equations include numerical flux functions and are incorporated
into the integral equations corresponding to the test functions. As a consequence,
we do not need to remove any test functions from the integral equations, yielding
higher order of accuracy.

4.3 Penalty-Type Boundary Treatment in Pseudospectral Methods

As with strong RBF methods, classical pseudospectral methods typically are built
from bases of Fourier, Chebyshev or Legendre polynomials, and require that the
BCs are strongly (exactly) imposed, see [45] and references therein. Penalty meth-
ods, i.e. using a penalty term for treating BCs, have been used both for spectral
methods in the weak [8] and strong [30,31] forms. The basic idea behind penalty
methods is that it suffices to impose the BCs to the order of the given scheme,
which can be done by introducing a penalty term into the discretized equation. In
particular, the BCs have to be satisfied exactly by the numerical solution only in
the limit of infinite order. Depending on the method and problem under consider-
ation it may be challenging to construct suitable penalty terms.

In the weak RBF method, such penalty terms are derived somewhat naturally
by utilizing numerical flux functions. As a consequence, a large class of penalty
terms may be available for practical use. Future work will address the development
of stable RBF methods in strong form. As discussed above, a bottleneck for such an
investigation will be the development of suitable penalty terms for the boundary
treatment in a strong RBF method. This is consistent with the observation that
classic strong RBF methods (in which BCs are imposed strongly), so far, have
only been observed to be stable if no BCs were present [84].
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14 J. Glaubitz and A. Gelb

5 Possible Extensions for the Proposed Boundary Treatment

We now address some possible extension of the proposed boundary treatment in
global RBF methods.

5.1 Formulation in Multiple Dimensions

Let 2 C R™ be a bounded region with piecewise smooth boundary 92. The m
dimensional equivalent of the one dimensional CL (1) is given by

u+V-Fu)=0, €, t>0, (54)

where FF: R —» R™, V = (94,,...,0z,) is the formal nabla operator, and - denotes
their inner product. We also assume we are given suitable IC and BCs. After
applying the divergence theorem, the weak form of (54) reads

/utvde/F(uvadV—l—?{ vF(u)-ndS=0
2 2 s

with test function v € C*(£2). It should be stressed that the closed manifold 92 is
assumed to be oriented by outward pointing normals, and n denotes the outward
pointing unit normal at each point on the boundary 912.

Following the ideas discussed in §3, the corresponding (m dimensional) weak
RBF collocation method is defined as follows: Find uwy € Vy p such that

/(UN)tUN dV—/ FN-VUN dV+]{ ’UNFnum-l’ldS:O (55)
2 0] o

for all v, € Viy p. Note that in this case uy and vy still denote scalar-valued RBF
approximations. At the same time F ) denotes a vector-valued function for which
every component has been replaced by an RBF approximation. Consequently,
F"™ also denotes an m-dimensional numerical flux function.

5.2 Stability in Multiple Dimensions

A similar analysis to the one in §3.2 can be used in the linear case, that is for
F(u) = Au with A € R™. In particular, by choosing vy = uy in (55) and applying
Gauss’s divergence theorem, we obtain

d num
d—HuNHiz :?{ uy [uyA — 2F™™"] . ndS. (56)
¢ 290

This equation can be considered as the m-dimensional analogue of (45). It is
unfortunately less clear in general how the boundary contributions sum up in the
higher-dimensional setting. Indeed, the boundary integral in (56) strongly depends
on the bounded region {2 as well as the sign of the different components of the
constant velocity vector A € R™. That said, Example 5 suggests that in theory
similar stability results as in §3.2 are also obtainable in multiple dimensions. They
might be more cumbersome to formulate, however.
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Ezample 5 Suppose we are given the two-dimensional cube 2 = |[a, b]2 and a non-
negative velocity vector A = (A1, /\g)T with A1, A2 > 0. In this case the boundary
952 can be partitioned into the four following lines:

02w = {(a,y9)" €R*|a<y<b}, 925 ={(by)" €R®|a<y<b},
g ={(z,a)T eR? |[a<z<b}, 02y={(z,b)T eR?*|a<z<b

Observe that 2 and 92y are the outflow part of the boundary (no BC is given
there), while 02y and 02g are the inflow part (BCs are given there). Focusing
on periodic BCs, for which know that the energy should not increase over time,
we have

u(t,z,y) = u(t,z +b—a,y) for (z,y) = (a,y) € 2,

57
u(t..9) = ultzy+b—a) for (a.y) = (r.a) € 9. o7
For simplicity we choose the upwind flux F™™ = F*"""(q, b), satisfying
A cA-n>0
(A-n)b ; A-n<0.

Substituting (57) and (58) into (56) we obtain

d
EHU’NH%Q :/ uN(t,avy) [uN(tz a, y) - 2UN(t7 b7 y)} A ) ndS
ONw
—I—/ un(t,z,a) [uN(t,x,a)—2uN(t,:r,b)])\-ndS
0Ns
—/ u?v(t,b,y)A-ndS—/ ui (t,z,b)A - ndS
ONE Ok
b
— [ k(ta) - 2un(tap)un(e b, dy
a
b
- /\2/ ud(t,x,a) — 2upn (¢, z, a)un (t,z,b) dz
a
b b
- >\1/ uly (t,b,y) dy — AQ/ uyy (t,z,b) dz
a a

b
:_Al/ [UN(t,a»y) _UN(t7 b7 y)]2 dy

b
_)\2/ [uN(t,@a)—uN(tw,b)]Q dz

<0.

Hence we observe from Example 5 that linear stability for the weak RBF method
might also hold in higher dimensions as well as more general domains.?

2 A more rigorous study is clearly needed and will be included in future investigations.
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16 J. Glaubitz and A. Gelb

5.3 Numerical Integration

Constructing the mass and stiffness matrices requires computing integrals which
may be costly depending on the number of degrees of freedom and the dimen-
sion. Preliminary tests presented in §6 indicate that it is possible to increase ef-
ficiency without reducing accuracy, either by using trapezoidal, Gauss-Legendre,
or Gauss-Lobatto rules (in one dimension), and their tensor products in higher
domains when a rectangular domain is assumed, see for example [50,96,21,17,
101] for general discussions on numerical quadrature. Such techniques are not
readily available for non-standard (non-rectangular) domains. In this case an al-
ternative might be to use classical (quasi-)Monte Carlo methods, [77,78,6,18], or
more recently developed high-order least squares cubature rules, [38,35], which are
based on one-dimensional approaches developed in [105,104,57,39]. Future work
will address the advantages and potential difficulties in replacing these integrals
by various numerical formulas.

5.4 Local Radial Basis Function Methods

We have thus far only considered global RBF methods. One obvious concern in
using global RBF's is the associated computational cost. Specifically, determining
a global RBF interpolant as well as calculating the corresponding differentiation
matrix each cost O(N?) operations for N nodes. While for the discussed methods
this can be done offline, that is once before time stepping commences (assuming
the nodes do not change over time), there are additional O(N?) operations to be
performed each time a differentiation matrix is applied during time stepping. Local
RBF-FD are designed to remedy this problem.® Conceptually, these methods can
be interpreted as an extreme case of overlapping domain decomposition, with a
separate domain surrounding each node. The basic idea is to center a local RBF-
FD stencil at each of the N global nodes, and let it include the n — 1 nearest
neighbors, where n < N. For every node, and based on its surrounding stencil, a
local FD formula that is exact for all RBF interpolants on that stencil—potentially
including polynomials—is then derived from a system of linear equations similar
to (10). The main difference is that the right hand side of the linear system is
replaced by the nodal values of a linear differentiation operator. For more details,
see [28, Chapter 5] and references therein.

We note that going from the strong to weak formulation of the underlying
conservation law is also possible for local RBF-FD methods. Although the conser-
vation and energy stability proofs do not immediately follow, such results may be
possible at least in the linear case when replacing exact integrals and differenti-
ation operators by their discrete counterparts, as long as certain summation-by-
parts (SBP) properties are satisfied, [97,24]. In this case, many stability properties
which are based on integration by parts, i.e. the continuous analogue of SBP, would
still be satisfied in a discrete norm. This idea is also left for future investigations.

3 The conference presentation [99] by Tolstykh in 2000 seems to be the earliest reference to
RBF-FD methods.
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6 Numerical Results

We now demonstrate our theoretical findings for the weak RBF analytical and col-
location methods. In most tests we focus on the cubic and quintic kernel, ¢(r) = rs
and o(r) = r°, which belong to the class of polyharmonic splines (PHSs). Al-
though they yield algebraic rather than spectral accuracy?, there are several ad-
vantages associated with PHSs, see [59,28,61]. In particular, PHSs satisfy certain
optimality results [20,85] that can be interpreted as multidimensional scattered
node analogues of the one-dimensional result that the natural cubic spline, among
all possible interpolants s, minimizes [[s”(z)]? dz over the interval spanned by
the nodes. Essentially this means that PHSs interpolate scattered data with the
fewest spurious oscillations. Finally, PHSs do not require a (sometimes cumber-
some) selection of the shape parameter e. The MATLAB code used to generate
the subsequent numerical tests can be found at [36].

6.1 Linear Advection Equation

Let us consider the linear initial value problem (IVP)

ut +ue =0, u(0,x) = exp (—20&) (59)
with z € 2 = [-1,1] and ¢ > 0. We will also consider periodic and inflow BCs
given respectively by

u(t,—1) = u(t, 1), (periodic BC) (60)
u(t,—1) = u(0,1 — mod(t,2)) (inflow BC) (61)

Note that both BCs yield the same exact solution.

6.1.1 Solution, Momentum and Energy Profiles

We start by comparing numerical solutions given by the weak RBF methods for
P =0 (no polynomials included) and P =1 (constants included) to the standard
RBF collocation method. The latter will be subsequently referred to as the strong
or standard RBF (collocation) method. Note that in the linear advection case the
weak RBF analytical and collocation methods are the same.

Figure 2 illustrates results of the standard as well as the weak RBF method for
the linear advection equation with periodic BCs at time ¢ = 10. Different kernels
are compared, including the cubic, quintic, Gaussian (G), inverse quadratic (I1Q)
and multiquadric (MQ) kernel. For the latter three a shape parameter of ¢ = 5 was
used. Furthermore, all tests were performed for N = 20 equidistant nodes. From
Figure 2 it is apparent that in all cases the weak RBF method yields visibly more
accurate results than the standard (strong) RBF method. In accordance with our
previous investigations on conservation and energy stability, we also observe that
momentum, [wdz, is preserved by the weak RBF method and energy, l|lul3, is
nonincreasing. This is independent of whether P = 0 or 1. For the the standard

4 For a discussion on the accuracy of infinitely smooth kernels as well as the role of the
shape parameter € see for instance [75,92,5,28] and references therein.
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Fig. 2: Numerical solutions at ¢t = 10 (left); their momentum (middle); and energy (right) over

time for u; + ug = 0 with periodic BC (60). In all cases, N = 20 equidistant nodes and shape
parameter € = 5 were used.
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RBF method, on the other hand, unphysical profiles for momentum and energy
are evident. Henceforth we only focus on the cubic and quintic kernel which allows
us to eliminate the potential effects from poorly chosen shape parameters.

6.1.2 Error Analysis

We now provide a more detailed comparison between the standard and weak RBF
method for periodic as well as inflow BCs for the cubic and quintic kernel.

1004 10°
(N-20)2
B
E
7107
- - usual RBF
weak RBF (P =0)
» weak RBF (P =1)
102
20 40 60 80 100
N
(b) Cubic, inflow BC
0 - usual RBF
10 weak RBF (P = 0)
+ weak RBF (P =1)

- usual RBF

weak RBF (P = 0)
+ weak RBF (P =1)
102 107

20 40 60 80 100 20 40 60 80 100
N N
(¢) Quintic, periodic BC (d) Quintic, inflow BC
Fig. 3: || - ||co-errors of the numerical solutions at ¢ = 10 for the linear text problem (59) with

(left) periodic and (right) inflow BC.

Figures 3 and 4 illustrate the || - ||oo- and || - ||2-errors of both methods corre-
sponding to the linear IVP

ut +uz =0, u(0,z) = cos” (47z) (62)

with z € 2 = [—1, 1] and periodic as well as inflow BC at ¢ = 2. These error norms
are respectively given by

[u—unlloc = max |u(zn) —uy(zn)l,
n=1,...,N

N
= unllz = | S Julzn) — un(zn)]2,
n=1
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Fig. 4: || - ||2-errors of the numerical solutions at ¢ = 10 for the linear text problem (59) with
(left) periodic and (right) inflow BC
where u denotes the exact solution, u) the numerical solution, and z1,...,x N are

the nodes. Figures 3 and 4 consider the errors using equidistant nodes. It is clear
that the weak RBF method yields more accurate results than the standard RBF
method in all cases, and that the standard RBF method does not even seem to
converge for the quintic kernel case. This may be due to rising instability in com-
bination with the resulting numerical artifacts never leaving the computational
domain in case of periodic BCs. The weak RBF method, on the other hand, is ob-
served to have a convergence rate of 2.5 in the periodic case, regardless of whether
the cubic or quintic kernel is used. We note that the local approximation orders of
the cubic and quintic kernel are respectively 2 and 3, [59,61]. For the inflow BC,
the rate of convergence of the weak RBF method is observed to decrease to 2 for
both kernels. Moreover, for the inflow BC, the standard RBF method displays a
similar rate of convergence. It might be that this increase of stability (and there-
fore accuracy) for the standard RBF method is related to numerical artifacts being
allowed to leave the computational domain while only exact information (due to
the inflow BC) flows into the computational domain from the left hand side. This
behavior will be considered more in future investigations.

6.1.8 Equidistant vs Nonequidistant Points

As demonstrated in §3.1 and §3.2, neither conservation nor energy stability of the
weak RBF method depend on the choice of the nodes. However accuracy of the
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weak RBF method might suffer from poor distributions of the nodes. Below we
further investigate the potential implication of different nodal distributions.

048 029
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Fig. 5: Numerical solutions at ¢ = 20 (left); momentum (middle); and energy (right) over
time for u¢ + uz = 0 with periodic BCs. N = 20 equidistant (top) and randomly uniformly
distributed (bottom) nodes are compared for a cubic kernel.
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Fig. 6: Numerical solutions at ¢ = 20 (left); momentum (middle); and energy (right) over
time for us + ugy = 0 with periodic BCs. N = 20 equidistant (top) and randomly uniformly
distributed (bottom) nodes are compared for a quintic kernel.
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Figures 5 and 6 illustrate this potential decrease in accuracy but preserved
conservation and stability properties for the weak RBF method. The results for
N = 20 equidistant and randomly (uniformly distributed) nodes are compared for
the cubic and quintic kernel. In all cases, the linear IVP (59) with periodic BC is
considered at time ¢ = 20. While the weak RBF method yields consistent results
for all cases, the standard RBF method varies considerably, and essentially blew
up when the quintic kernel was employed before the final time was reached (see
the energy profile).

6.1.4 Ezact vs Numerical Integration

As discussed in §5.3, to increase efficiency and reduce runtimes, an exact integra-

. . . . . 5
tion is often replaced by a numerical approximation.
0.396333} [
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= i
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0.39633275
0.3963327 0276 -
- 05 0 05 1 0 50 100 0 20 40 60 80 100
T t t
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Ll Ty 0.396332728 | _ 0.28
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08| . trapezoidal 0.3963327275 0.278
0.6 | Gauss 5 . 0396332727 0.276
204 = 0.3963327265 =274
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Obrartbogeg” Npperaang 0.3963327255 ) _,.evssror 027
0.396332725
4 05 0 05 1 0 50 100 0 2 40 60 8 100
x t t
(d) Solution, quintic (e) Momentum, quintic (f) Energy, quintic

Fig. 7: Numerical solutions at ¢ = 100 (left); their momentum (middle); and energy (right)
over time for us +uz; = 0 with periodic BCs. Different integration techniques, all using J = 100
quadrature points, are compared for a cubic and quintic kernel as well as N = 20 equidistant
nodes.

Figure 7 illustrates the numerical solution by the weak RBF method (P = 1)
together with the corresponding momentum and energy over time for the linear
IVP (59) with periodic BC and end time ¢ = 100. Here we compare “exact”
integration (employing the MATLAB function integral) with simple trapezoidal
and Gauss(—Legendre) quadratures. The results demonstrate that even when only
J = 100 quadrature points are used, the numerical solution as well as the momen-
tum are essentially the same for all integration techniques. This is also true for
the energy in case of the quintic kernel. For the cubic kernel, there are noticeable

5 In our implementation we are using the MATLAB function integral for their computation
so that strictly speaking, none of our integration is exact. This MATLAB function uses global
adaptive quadrature and certain (default) error tolerances.
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differences in the energy for the different integration techniques, however. It is
possible to overcome such discrepancies by increasing the number of quadrature
points J so that it is proportional to the number of nodes N. It is interesting to
note that the trapezoidal rule yields more dissipation (lower energy profiles) than
both the Gauss rule and “exact” integration. While the reasons for this should
be investigated further, for now we simply note that the trapezoidal rule allows
an efficient implementation of the weak RBF method while still preserving energy
stability.

6.2 Euler Equations
We now address the extension of the weak RBF method to systems of nonlinear

hyperbolic CLs. To this end, we consider the one-dimensional Euler equations
given by

Ui +FU).=0 (63)
for z € 2 =[-1,1], where U and F(U) respectively are the vector of conserved
variables and fluxes:

u1 p f1 pu
U=|wl|=|pu|, F=|fo|l=] pu2+p |. (64)
us E f3 U(E + p)

Here, p is the density, u is the velocity, p is the pressure, and FE is the total energy
per unit volume. The Euler equations are completed by addition of an equation of
state (EOS) with general form

p :p(p7 6)7 (65)

where e = E/p — u?/2 is the specific internal energy. For the case of ideal gases
the EOS is given by
p=(y—1)pe (66)

with v denoting the ratio of specific heats. For the subsequent numerical tests, we
set v = 3 and consider a smooth isentropic flow resulting from the Euler equations
with smooth ICs

p(0,2) =1+ % sin(rz), w(0,2) =0, p(0,z)=p(0,z)", (67)

and periodic BCs. A similar test problem has been proposed in [10] as well as in [1]
in the context of (positivity-preserving) high-order methods. Utilizing the method
of characteristics, the exact density p and velocity u are given by

1
p(t,l‘) = 9 [po(:m) + po(a}z)] ’ u(t,x) =3 [p(t,x) - po(xl)} ’ (68)
where 1 = z1(¢,z) and z2 = z2(¢, z) are solutions of the nonlinear equations
x4+ V3po(z1)t —x1 =0, x—V3po(z2)t — 22 = 0. (69)

Finally, the exact pressure p can be computed by the isentropic law p = Cp” for
smooth flows [100, Chapter 3.1].
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density p

(a) Density, cubic

velocity u
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Fig. 8: Numerical results (density, velocity, and pressure at the final time ¢ = 0.1) for the Euler
equations. The cubic and quintic kernel with N = 20 equidistant nodes were used. The weak
RBF method includes constants (P = 1).

Figure 8 illustrates the numerical results at time ¢ = 0.1 comparing the strong
and weak RBF collocation method using the cubic and quintic kernel. For the
weak RBF method, constants have been included (P = 1). As in the case for
linear advection, we observe that the weak RBF collocation method for is more
accurate than the strong RBF.

6.3 Extension to Two Dimensions

To conclude our numerical experiments we apply the weak RBF method to a
two-dimensional problem and consider

ur + ug =0,

: 1. (70)
u(0,z,y) = sin(2nx) (5 sin(2my) — 1) ,
on 2 = [~1,1]> ¢ R? with periodic BCs. This test is designed to demonstrate the
validity of conservation and energy stability of the weak RBF method in higher
dimensions, as discussed in §5.2. In addition, it is once more illustrated that these
properties are not affected by using a nonequidistant distribution of nodes, in
this case random uniformly distributed. Finally, this example also illustrates the
limitations of the proposed weak RBF methods for long time simulations.
Figures 9 and 10 respectively illustrate the results for the cubic kernel and
N = 400 equidistant and uniformly distributed nodes. Figures 11 and 12 present
the same result for the quintic kernel. In all computations the ‘exact’ integration,
performed by MATLARB’s integral2, was too cost prohibitive. We therefore replaced
it by a tensor product based two-dimensional trapezoidal rule (using J = 1000
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(a) Reference, t = 10 (c) Weak RBF, t = 10

(d) Reference, ¢t = 400 (e) Standard RBF, t = 400 (f) Weak RBF, t = 400

Fig. 9: Numerical results for the two-dimensional linear IVP with periodic BCs. The cubic
kernel with N = 400 equidistant nodes was used.

(a) Reference, t = 10 (b) Standard RBF, t = 10 (c) Weak RBF, t = 10

x10'®

(d) Reference, ¢t = 400 (e) Standard RBF, t = 400 (f) Weak RBF, t = 400

Fig. 10: Numerical results for the two-dimensional linear IVP with periodic BCs. The cubic
kernel with N = 400 random (uniformly distributed) nodes was used.

quadrature points in one dimension). Based on the results in §6.1.4, we believe that
a significantly smaller number of quadrature points would have been sufficient. We
used P =1 for the weak RBF method.

The standard RBF method blew up after comparatively small times in all test
cases. By contrast, the weak RBF method produced highly accurate results even
for long time simulations. This was true for both equidistant and nonequidistant
points. After long simulation times, the weak RBF method is seen to decrease
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(a) Reference, t = 20 (b) Standard RBF, t = 20 (c) Weak RBF, t = 20

«10'73

(d) Reference, t = 1600 (e) Standard RBF, t = 1600 (f) Weak RBF, t = 1600

Fig. 11: Numerical results for the two-dimensional linear IVP with periodic BCs. The quintic
kernel with N = 400 equidistant nodes was used.

0

A\

-

(a) Reference, t = 20

(d) Reference, t = 1600 (e) Standard RBF, t = 1600 (f) Weak RBF, t = 1600

Fig. 12: Numerical results for the two-dimensional linear IVP with periodic BCs. The quintic
kernel with N = 400 random (uniformly distributed) nodes was used.

in accuracy, which appears to be unrelated to instability. Rather it seems that
dissipation introduced by the numerical (full-upwind) fluxes is blurring the solution
over long times. The weak RBF method remained stable for computations up
to at least t = 1600, at which we point we concluded our experiment. Future
investigation will include using an energy conserving flux, such as a central flux,
to determine if this will alleviate the long term dissipation.
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7 Concluding Remarks

In this work we investigated the conservation and energy stability properties of
RBF methods. In the process we demonstrated that traditional RBF methods
based on the strong form of hyperbolic CLs, including strong enforcement of BCs,
violate these properties and might therefore produce physically unreasonable solu-
tions. As an alternative we proposed a weak enforcement of BCs by building RBF
schemes based on the weak form of the hyperbolic CL. We proved that the result-
ing methods are conservative assuming that (at least) constants are included in
the RBF space. Furthermore, these methods were also shown to be energy stable
when appropriate numerical (E-) fluxes are included in the discretization. In case
of the weak RBF collocation method this was shown for linear advection when ap-
propriate numerical (E-) fluxes are included in the discretization. Thus, the weak
RBF methods are able to provide numerical solutions with physically reasonable
mass and energy profiles. A drawback of this approach might be potentially ill-
conditioned mass matrices, which arise from the weak form of the CL, [37, Chapter
7.2.7]. This may be overcome by choosing sufficiently large shape parameters. For
more sophisticated applications requiring other kernels, it might be better to use
orthonormal basis functions instead.

Future work will focus on the application of the proposed weak RBF method to
nonlinear problems and, in particular, on the adaptation of different methods [98,
70,51,68,87,44,41,40] from DG and related methods to further stabilize the weak
RBF method in the presence of (shock) discontinuities. Finally, in addition to the
energy stability analysis provided here, it would be useful to perform a (linear)
eigenvalue stability analysis.
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