2020 IEEE 36th International Conference on Data Engineering (ICDE)

Task Deployment Recommendation with Worker
Availability

Dong Wei Senjuti Basu Roy
NJIT NJIT
New Jersey, USA New Jersey, USA
dw277 @njit.edu senjutib @njit.edu

Abstract—We study recommendation of deployment strategies
to task requesters that are consistent with their deployment
parameters: a lower-bound on the quality of the crowd contri-
bution, an upper-bound on the latency of task completion, and
an upper-bound on the cost incurred by paying workers. We
propose BatchStrat, an optimization-driven middle layer that
recommends deployment strategies to a batch of requests by
accounting for worker availability. We develop computationally
efficient algorithms to recommend deployments that maximize
task throughput and pay-off, and empirically validate its quality
and scalability.

I. INTRODUCTION

In crowdsourcing, task deployment is an important process
that requesters undertake with very little help. Task deploy-
ment requires to specify not only the tasks, but also identify
appropriate deployment strategies. A strategy involves the
interplay of 3 dimensions: Structure (whether to solicit the
workforce sequentially or simultaneously), Organization (to
organize it collaboratively or independently), and Style (to rely
on the crowd alone or on a combination of crowd and machine
algorithms). A strategy needs to be commensurate to de-
ployment parameters that are typically provided as thresholds
on quality (lower-bound), latency (upper-bound), and budget
(upper-bound). For example, for a sentence translation task, a
task designer wants the translated sentences to be at least 80%
as good as the work of a domain expert, in a span of at most 2
days, and at a maximum cost of 100$. Till date, the burden is
entirely on requesters to design deployment strategies that are
consistent with desired deployment parameters. Our effort in
this paper is to present a formalism and a computationally
efficient algorithm to assist requesters by recommending k
strategies that best achieve the desired deployment parameters.

A recent work [1] has empirically investigated the de-
ployment of text creation tasks in Amazon Mechanical Turk
(AMT). The authors validated the effectiveness of different
strategies for different types of tasks such as text summariza-
tion and text translation, and provided empirical evidence for
the need to guide requesters in choosing the right strategy.
In this paper, we propose to automate this strategy recom-
mendation process. This is particularly challenging because
the estimation of the cost, quality and latency of a strategy

The work of Dong Wei and Senjuti Basu Roy are supported by the National
ScienceFoundation under Grant No.: 1814595 and Office of Naval Research
under Grant No.: N0O00141812838

Sihem Amer-Yahia
CNRS, Univ. Grenoble Alpes
Grenoble, France
sihem.amer-yahia@cnrs.fr

must account for worker availability on the platform. Our
contributions are: we express deployment strategies as a func-
tion of worker availability, we formalize optimization problems
to enable recommendation to a batch of requests, present
principled algorithms, and validate them experimentally.

We propose BatchStrat that consumes a batch of de-
ployment requests, coming from different requesters and
recommends strategies to them to optimize different goals.
BatchStrat studies these incoming requests to obtain best
deployment strategies given worker availability. If the platform
does not have enough workers for all requests, it triages
them by optimizing platform-centric goals, i.e., to maximize
throughput or pay-off.

II. DATA MODEL AND PROBLEM

Deployment Strategies: A deployment strategy [4] in-
stantiates three dimensions: Structure (sequential or simulta-
neous), Organization (collaborative or independent), and Style
(crowd-only or crowd and algorithms). We rely on common
deployment strategies [1], [4] and refer to them as S. Figure 1
enlists some strategies that are suitable for text translation
tasks (from English to French in this example). For instance,
SEQ-IND-CRO in Figure 1(a) dictates that workers complete
tasks sequentially (SEQ), independently (IND) and with no
help from algorithms (CRO). In SIM-COL-CRO (Figure 1(b)),
workers are solicited in parallel (SIM) to complete a task
collaboratively (COL) and with no help from algorithms
(CRO). The last strategy SIM-IND-HYB dictates a hybrid work
style (HYB) where workers are combined with algorithms, for
instance with Google Translate. We assume that for a given
platform, the set of strategies is given and bounded by |S].

Deployment Parameters: A deployment request d has
three parameters, d.cost, d.quality, and d.latency. Using
Example 1, the minimum quality of request is 40%, the latency
2 days, and the budget $100. These thresholds are referred
to as deployment parameters. The goal is find one or more
strategies (notationally &, a small integer) for each d, such that,
for each strategy s, when d is deployed using s, it satisfies the
deployment parameters.

Worker Availability: Worker availability/ available work-
force W is a value in [0, 1] which represents the proportion
of workers who are available to undertake a task deployed by
a requester within the specified time d.latency.

2375-026X/20/$31.00 ©2020 IEEE 1806

IEEE
DOI 10.1109/ICDE48307.2020.00175 (@ computer
soclety

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 02,2021 at 19:03:09 UTC from IEEE Xplore. Restrictions apply.

English¢Text %:—:S

Worker-1

English Text =,

French Text

[aWorker—l &Worker—n]

‘ wWorker-n J

Fren(ih Text
Final French Tex French Texl
(b) SIM-COL-CRO

(a) SEQ-IND-CRO

English Text Englishf‘ext
" Automatic Translation
(French Text)
Worker-1 Worker-n
Worker-1 Worker-n
French Text French Text
S French Text French Text
[Evaluation] -
¢ [Evaluation]
Best Fre"‘:h Best French
Translation Translation E

(¢) SIM-IND-CRO (d) SIM-IND-HYB

Figure 1: Deployment Strategies

Quality | Cost | Latency
di | 0.4 0.17 | 0.28
da | 0.8 0.2 0.28
dz | 0.7 0.83 | 0.28
s1 | 0.5 0.25 | 0.28
s2 | 0.75 0.33 | 0.28
s3 | 0.8 0.5 0.14
sq4 | 0.88 0.58 | 0.14

Table I: Deployment Requests and Strategies

Modeling Strategy Parameters: The deployment recom-
mendation process must be capable to estimate the parameters
of a strategy s (cost, quality, latency if s is used to deploy
d) to check if it is suitable for a deployment d. Since the
deployed tasks are to be done by workers who are available
and qualified to undertake the deployed tasks, the estimated
strategy parameters, i.e., (estimated) quality, cost and latency
of a strategy is a function of worker availability and task type.

Example 1: Assume there are 3 (m = 3) task deployment
requests for different types of text editing tasks. Requester-1
dy is interested in deploying sentence translation tasks for 2
days (out of 7 days), at a cost up to $100 (out of $600 max),
and expects the quality of the translation to reach at least 40%
of domain expert quality. Table I presents all 3 deployment
requests after normalization between [0 — 1]. For the purpose
of this example, we assume worker availability W to be 0.8
for the next 7 days and set & = 3.

For the purpose of illustration, S consists of the set of
4 deployment strategies, as shown in Figure 1: SIM-COL-
CRO, SEQ-IND-CRO, SIM-IND-CRO, SIM-IND-HYB. To ease
understanding, we name them as si, So, S3, S4, respectively.
s1 costs $150 and takes 2 days (out of 7 days) and ensures at
least a 50% quality. s, s3, s4 have corresponding parameters.
Strategy parameters are normalized and presented in the last

column of Table I.

Problem 1: Batch Deployment Recommendation: Given
an optimization goal F', a set S of strategies, a batch of m
deployment requests from different requesters, where the i-th
task deployment d; is associated with parameters d;.quality,
d;.cost and d;.latency, and worker availability W, distribute
W among these requests by recommending & strategies for
each request such that F' is optimized as follows:

Maximize F = Z fi
st i <W AND 1)

d; is successful

fi is the optimization value of deployment d; and wj; is
the workforce required to successfully recommend k strategies
it. A deployment request d; is successful, if for each of the
k strategies in the recommended set of strategies S9, the
following three criteria are met: s.cost < d;.cost, s.latency <
d;.latency and s.quality > d;.quality.

Using Example 1, d3 is successful for k = 3, as it will return
S3 = {s2, 83,54}, such that ds.cost > s*.cost > s3.cost >
s2.cost and ds.latency > 34.latency > si.latency >
s2.latency and ds.quality < s*.quality < s3.quality <
s2.quality, because it could be deployed with the available
workforce W = 0.8.

In this work, F' is designed to maximize one of two different
platform centric-goals: task throughput and pay-off.

o Throughput: It maximizes the total number of successful
strategy recommendations without exceeding W. For-
mally speaking,

Maximize Z Ti
i=1
S.t.Zl’Z‘ X Wi <W
1 di.cost < s7.cost AND)
d;.latency < s7.latency AND
T = d;.quality > s7 .quality AND
IS4 = k,Vi=1.m,j=1,...,|S|
0 otherwise

e Pay-off: It maximizes d;.cost, if d; is a successful de-
ployment request without exceeding W. The rest of the
formulation is akin to Equation 2.

III. BATCH DEPLOYMENT RECOMMENDATION

Before getting into the details, we provide an abstraction
which serves the purpose of designing BatchStrat, our pro-
posed solution: given m deployment requests and W work-
force availability, Problem 1 could be modeled in the form
of a two dimensional matrix ¥V, where there are |S| columns
that map to available deployment strategies and m rows of
different deployment requests.

A particular cell w;; € W corresponds to how much
workforce is needed to deploy request ¢ with strategy j.
The challenge, however, is that each d has three different
requirements of quality, cost, and latency. Therefore, it has
to estimate workforce requirement per (deployment, strategy)

1807

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 02,2021 at 19:03:09 UTC from IEEE Xplore. Restrictions apply.

pair first. That constitutes step-1 of BatchStrat. Once for every
(4,7), a (deployment, strategy) workforce requirement wj ; is
computed, step-2 estimates the aggregated workforce require-
ment per deployment, since it has to recommend % different
strategies to each deployment. To do that, it aggregates over
each deployment request and produces a vector W of length
m that estimates the workforce requirement for each strategy
to be deployed successfully, meeting the quality, cost, latency
thresholds as well as k. Finally, step-3 invokes an optimizer
that determines how to allocate the available workforce W
among competing deployment requests to optimize different
platform-centric goals. The pseudo-code of BatchStrat is
presented in Algorithm 1. We now present the details.

A. Computing Workforce Requirement per Deployment

Given W, for each deployment request d; and strategy
s7, the workforce requirement is the maximum of workforce
requirement to satisfy the quality, cost, and latency threshold.
However, to find k strategies for a deployment d;, we turn
our attention back to matrix ¥V again and investigate how to
compute workforce requirement for all £ strategies for d;.

The objective here is to produce a vector W of length
m, where the i-th value represents the aggregated workforce
requirement for request d;. To understand how to compute W,
we need to consider the sum-case: where the task designer
intends to perform the deployment using all k strategies, in
which case, the minimum workforce (w;) needed to satisfy
cardinality constraint k; is Eﬁj:lwiy (where w;y is the y-th
smallest workforce value in row i of matrix VV; and the max-
case: where the designer intends to only deploy one of the k
strategies, in which case, w; = w;,, (where w;, is the k-th
smallest workforce value in row 4 of matrix W).

Running Time: The running time of computing the aggre-
gated workforce requirement of the ¢-th deployment request
is |S| k log|S|, if we use min-heaps to retrieve the k smallest
numbers. The overall running time is again O(m x k log|S|).

B. Optimization-Guided Batch Deployment

Since W is limited, it may not be possible to successfully
satisfy all deployment requests in a single batch. This requires
distributing W judiciously among competing deployment re-
quests and satisfying the ones that maximize platform-centric
optimization goals, i.e., throughput or pay-off.

At this point, a keen reader may notice that the batch
deployment problem bears resemblance to a well-known dis-
crete optimization problem that falls into the general category
of assignment problems, specifically, Knapsack-type of prob-
lems [2]. The objective is to maximize a goal (in this case,
throughput or pay-off), subject to the capacity constraint of
worker availability W. In fact, depending on the nature of the
problem, the optimization-guided batch deployment problem
could become intractable.

Intuitively, when the objective is only to maximize through-
put (i.e., the number of satisfied deployment requests), the
problem is polynomial-time solvable. However, when there is
an additional dimension, such as pay-off, the problem becomes
NP-hard problem, as we shall prove next.

Theorem 1: The decision version of the Pay-Off maximiza-
tion problem is NP-Complete.

Proof 1: (sketch): An instance of the famous 0/1 Knapsack
problem could be reduced to the decision version of the Pay-
off Maximization problem.

Our solution bears similarity to the greedy algorithm of the
Knapsack problem [3]. The objective is to sort the deploy-
ment strategies in non-increasing order of 7{—7 The algorithm
greedily adds deployments based on this sorted order until it
hits a deployment d; that can no longer be satisfied by W,
that is, >,—1.;d; > W. At that step, it chooses the best of
{d1,d2,d;—1} and d; and the process continues until no further
deployment requests could be satisfied for W (lines 4-8 in
Algorithm BatchStrat).

Running Time: This step is dominated by the sorting time
of the deployment requests, which is O(m log m).

Algorithm 1 Algorithm BatchStrat

1: Input: m deployment requests, S, objective function F, available
workforce W

: Output: recommendations for a subset of deployment requests.

: Compute Workforce Requirement Matrix W .

: Compute Workforce Requirement per Deployment Vector W

: Compute the objective function value f; of each deployment
request d;

: Sort the deployment strategies in non-increasing order of %

7: Greedily add deployments until we hit d;, such that Ezzl_ic?i, >

w
8: Pick the better of {d1,d2,d;—1} and d;

[V I SRS I o

N

1) Maximizing Throughput: When task throughput is max-
imized, the objective function F' is computed simply by
counting the number of deployment requests that are satisfied.
Therefore, f;, the objective function value of deployment
d; is the same for all the deployment requests and is 1.
Our solution, BatchStrat-ThroughPut, sorts the deployment
requests in increasing order of workforce requirement wj;
to make w% non-increasing. Other than that, the rest of the
algorithm remains unchanged.

Theorem 2: Algorithm BatchStrat-ThroughPut gives an
exact solution to the problem.

2) Maximizing Pay-Off: Unlike throughput, when pay-off
is maximized, there is an additional dimension involved that
is different potentially for each deployment request. f; for
deployment request d; is computed using d;.cost, the amount
of payment deployment d; is willing to expend. Other than
that, the rest of the algorithm remains unchanged.

Theorem 3: Algorithm BatchStrat-PayOff has a 1/2-
approximation factor.

Proof 2: (sketch): The proof directly follows from [5].

IV. EXPERIMENTS

A. Batch Deployment Recommendation

We compare differnet algorithms. All algorithms are imple-
mented in Python 3.6 on Ubuntu 18.10. Intel Core 19 3.6 GHz
CPU, 16GB of memory.

Brute Force: An exhaustive algorithm which compares

1808

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 02,2021 at 19:03:09 UTC from IEEE Xplore. Restrictions apply.

all possible combinations of deployment requests and returns
the one that optimizes the objective function.

BaselineG: This algorithm sorts the deployment requests
in decreasing order of 1{% and greedily selects requests until
worker availability W is exhausted.

BatchStrat: Our proposed solution described in Section IIL

Observation 1: Our solution BatchStrat returns exact
answers for throughput optimization, and the approximation
factor for pay-off maximization is always above 90%, signif-
icantly surpassing its theoretical approximation factor of 1/2.
Observation 2: Our solution BatchStrat is highly scalable
and takes less than a second to handle millions of strategies,
and hundreds of deployment requests, and k.

B. Quality

Goal: We aim to validatedow does BatchStrat fare to
optimize different platform-centric goals?

Strategy Generation: The dimension values of a strategy
are generated considering uniform and normal distributions.
For the normal distribution, the mean and standard deviation
are set to 0.75 and 0.1, respectively. We randomly pick the
value from 0.5 to 1 for the uniform distribution.

Worker Availability: For a strategy, we assume there is
a linear relationship between parameters and Worker Avail-
ability. We generate the slope uniformly from an interval
[0.5,1]. Then, we set intercept = 1 — slope to make sure
that the estimated worker availability W is within [0, 1].
These numbers are generated in consistence with our real data
experiments.

Deployment Parameters: Once W is estimated, the qual-
ity, latency, and cost - i.e., the deployment parameters, are
generated in the interval [0.625,1]. For each experiment, 10
deployment parameters are generated, and an average of 10
runs is presented in the results.

Figure 2 shows the results of throughput of BatchStrat
by varying k& compared with the two baselines (the same
could be observed when varying m and |S|). Figure 3 shows
the approximation factor of BatchStrat and BaselineG.
BatchStrat achieves an approximation factor of 0.9 most
of the time. For both experiments, the default values are
kE =10,m = 5,|S| = 30, W = 0.5 because brute force does

not scale beyond that.
20 30
k

(a) Varying k
Figure 2: Objective Function for Throughput

1

0.8

0.6

0.4

0.2

o
10

= Brute Force
= BatchStrat

Aggregated throughput

C. Scalability

Since the BaselineG has the same running time as Batch-
Strat, we only compare Brute Force and BatchStrat.
The default setting for |S|, & and W are 30, 10 and 0.75,
respectively.

Ii 0.993 1I00I 0.989
20 30
k

(a) Varying k
Figure 3: Objective Function and Approximation Factor
for Payoff

Aggregated payoff

2.5
2 °22%. 051
1.5
1
o.s
o
= Brute Force 10

= BatchStrat
BaselineG

2.50E-02
2.00E-02
1.50E-02
1.00E-02

5.00E-03

Running Time(S)

N

200 400 600 800
—Brute Force m
——BatchStrat

0.00E+00

Figure 4: Running time for Batch Deployment Varying m

Figure 4 shows that Brute Force takes exponential time
with increasing m, whereas BatchStrat scales linearly. Clearly
BatchStrat can handle millions of strategies, several hundreds
of batches, and very large k and still takes only a few fractions
of seconds to run. It is easy to notice that the running time
of this problem only relies on the size of the batch m (or the
number of deployment requests), and not on k or S.

V. FUTURE WORK

Our preliminary work opens up more than one research
directions. First and foremost, how to estimate worker avail-
ability for different types of tasks is a challenging problem
that requires deep investigation in its own merit. Then, an
interesting open problem is to come up with principled yet
practical models to establish relationship between deployment
parameters and strategy parameters. Throughout this paper, we
have assumed that the estimated quality, cost, and latency of
a set of tasks deployed using a strategy is a function of the
task type and worker availability. However, how to realistically
model such functions or learn them from historical data for
different types of tasks remains to be a part of our ongoing
investigations. Finally, an interesting extension is to explore
the recommendation of alternative deployment parameters if a
request cannot be satisfied as formulated. This would open the
possibility of recommending different deployment parameters
for which k strategies are available, thereby guiding requesters
further in task deployment.

REFERENCES

[1] R. M. Borromeo et al. Deployment strategies for crowdsourcing text
creation. Information Systems, 2017.

[2] M.R. Garey and D. S. Johnson. Computers and intractability. wh freeman
New York, 2002.

[3] O. H. Ibarra et al. Fast approximation algorithms for the knapsack and
sum of subset problems. Journal of the ACM (JACM), 1975.

[4] O. A. E. Kadi. Exploring crowdsourcing deployment strategies through
recommendation and iterative refinement. MS Research Report.

[5]1 E. L. Lawler. Fast approximation algorithms for knapsack problems.
Mathematics of Operations Research, 1979.

1809

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 02,2021 at 19:03:09 UTC from IEEE Xplore. Restrictions apply.

