
Task Deployment Recommendation with Worker
Availability

Dong Wei
NJIT

New Jersey, USA
dw277@njit.edu

Senjuti Basu Roy
NJIT

New Jersey, USA
senjutib@njit.edu

Sihem Amer-Yahia
CNRS, Univ. Grenoble Alpes

Grenoble, France
sihem.amer-yahia@cnrs.fr

Abstract—We study recommendation of deployment strategies
to task requesters that are consistent with their deployment
parameters: a lower-bound on the quality of the crowd contri-
bution, an upper-bound on the latency of task completion, and
an upper-bound on the cost incurred by paying workers. We
propose BatchStrat, an optimization-driven middle layer that
recommends deployment strategies to a batch of requests by
accounting for worker availability. We develop computationally
efficient algorithms to recommend deployments that maximize
task throughput and pay-off, and empirically validate its quality
and scalability.

I. INTRODUCTION

In crowdsourcing, task deployment is an important process

that requesters undertake with very little help. Task deploy-

ment requires to specify not only the tasks, but also identify

appropriate deployment strategies. A strategy involves the

interplay of 3 dimensions: Structure (whether to solicit the

workforce sequentially or simultaneously), Organization (to

organize it collaboratively or independently), and Style (to rely

on the crowd alone or on a combination of crowd and machine

algorithms). A strategy needs to be commensurate to de-
ployment parameters that are typically provided as thresholds

on quality (lower-bound), latency (upper-bound), and budget

(upper-bound). For example, for a sentence translation task, a

task designer wants the translated sentences to be at least 80%

as good as the work of a domain expert, in a span of at most 2
days, and at a maximum cost of 100$. Till date, the burden is

entirely on requesters to design deployment strategies that are

consistent with desired deployment parameters. Our effort in

this paper is to present a formalism and a computationally

efficient algorithm to assist requesters by recommending k
strategies that best achieve the desired deployment parameters.

A recent work [1] has empirically investigated the de-

ployment of text creation tasks in Amazon Mechanical Turk

(AMT). The authors validated the effectiveness of different

strategies for different types of tasks such as text summariza-

tion and text translation, and provided empirical evidence for

the need to guide requesters in choosing the right strategy.

In this paper, we propose to automate this strategy recom-
mendation process. This is particularly challenging because

the estimation of the cost, quality and latency of a strategy

The work of Dong Wei and Senjuti Basu Roy are supported by the National
ScienceFoundation under Grant No.: 1814595 and Office of Naval Research
under Grant No.: N000141812838

must account for worker availability on the platform. Our

contributions are: we express deployment strategies as a func-
tion of worker availability, we formalize optimization problems
to enable recommendation to a batch of requests, present
principled algorithms, and validate them experimentally.

We propose BatchStrat that consumes a batch of de-

ployment requests, coming from different requesters and

recommends strategies to them to optimize different goals.

BatchStrat studies these incoming requests to obtain best

deployment strategies given worker availability. If the platform

does not have enough workers for all requests, it triages

them by optimizing platform-centric goals, i.e., to maximize

throughput or pay-off.

II. DATA MODEL AND PROBLEM

Deployment Strategies: A deployment strategy [4] in-

stantiates three dimensions: Structure (sequential or simulta-

neous), Organization (collaborative or independent), and Style
(crowd-only or crowd and algorithms). We rely on common

deployment strategies [1], [4] and refer to them as S. Figure 1

enlists some strategies that are suitable for text translation

tasks (from English to French in this example). For instance,

SEQ-IND-CRO in Figure 1(a) dictates that workers complete

tasks sequentially (SEQ), independently (IND) and with no

help from algorithms (CRO). In SIM-COL-CRO (Figure 1(b)),

workers are solicited in parallel (SIM) to complete a task

collaboratively (COL) and with no help from algorithms

(CRO). The last strategy SIM-IND-HYB dictates a hybrid work

style (HYB) where workers are combined with algorithms, for

instance with Google Translate. We assume that for a given

platform, the set of strategies is given and bounded by |S|.
Deployment Parameters: A deployment request d has

three parameters, d.cost, d.quality, and d.latency. Using

Example 1, the minimum quality of request is 40%, the latency

2 days, and the budget $100. These thresholds are referred

to as deployment parameters. The goal is find one or more

strategies (notationally k, a small integer) for each d, such that,

for each strategy s, when d is deployed using s, it satisfies the

deployment parameters.

Worker Availability: Worker availability/ available work-

force W is a value in [0, 1] which represents the proportion

of workers who are available to undertake a task deployed by

a requester within the specified time d.latency.

1806

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00175

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 02,2021 at 19:03:09 UTC from IEEE Xplore. Restrictions apply.

(a) SEQ-IND-CRO (b) SIM-COL-CRO (c) SIM-IND-CRO (d) SIM-IND-HYB

Figure 1: Deployment Strategies

Quality Cost Latency
d1 0.4 0.17 0.28
d2 0.8 0.2 0.28
d3 0.7 0.83 0.28

s1 0.5 0.25 0.28
s2 0.75 0.33 0.28
s3 0.8 0.5 0.14
s4 0.88 0.58 0.14

Table I: Deployment Requests and Strategies

Modeling Strategy Parameters: The deployment recom-

mendation process must be capable to estimate the parameters

of a strategy s (cost, quality, latency if s is used to deploy

d) to check if it is suitable for a deployment d. Since the

deployed tasks are to be done by workers who are available

and qualified to undertake the deployed tasks, the estimated

strategy parameters, i.e., (estimated) quality, cost and latency

of a strategy is a function of worker availability and task type.
Example 1: Assume there are 3 (m = 3) task deployment

requests for different types of text editing tasks. Requester-1

d1 is interested in deploying sentence translation tasks for 2
days (out of 7 days), at a cost up to $100 (out of $600 max),

and expects the quality of the translation to reach at least 40%
of domain expert quality. Table I presents all 3 deployment

requests after normalization between [0− 1]. For the purpose

of this example, we assume worker availability W to be 0.8
for the next 7 days and set k = 3.

For the purpose of illustration, S consists of the set of

4 deployment strategies, as shown in Figure 1: SIM-COL-
CRO, SEQ-IND-CRO, SIM-IND-CRO, SIM-IND-HYB. To ease

understanding, we name them as s1, s2, s3, s4, respectively.

s1 costs $150 and takes 2 days (out of 7 days) and ensures at

least a 50% quality. s2, s3, s4 have corresponding parameters.

Strategy parameters are normalized and presented in the last

column of Table I.
Problem 1: Batch Deployment Recommendation: Given

an optimization goal F , a set S of strategies, a batch of m
deployment requests from different requesters, where the i-th
task deployment di is associated with parameters di.quality,
di.cost and di.latency, and worker availability W , distribute
W among these requests by recommending k strategies for
each request such that F is optimized as follows:

Maximize F =
∑

fi

s.t.
∑

�wi ≤ W AND

di is successful

(1)

fi is the optimization value of deployment di and �wi is

the workforce required to successfully recommend k strategies

it. A deployment request di is successful, if for each of the

k strategies in the recommended set of strategies Si
d, the

following three criteria are met: s.cost ≤ di.cost, s.latency ≤
di.latency and s.quality ≥ di.quality.

Using Example 1, d3 is successful for k = 3, as it will return

S3
d = {s2, s3, s4}, such that d3.cost ≥ s4.cost ≥ s3.cost ≥

s2.cost and d3.latency ≥ s4.latency ≥ s3.latency ≥
s2.latency and d3.quality ≤ s4.quality ≤ s3.quality ≤
s2.quality, because it could be deployed with the available

workforce W = 0.8.

In this work, F is designed to maximize one of two different

platform centric-goals: task throughput and pay-off.

• Throughput: It maximizes the total number of successful

strategy recommendations without exceeding W . For-

mally speaking,

Maximize

m∑
i=1

xi

s.t.
∑

xi × �wi ≤ W

xi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 di.cost ≤ sj .cost AND

di.latency ≤ sj .latency AND

di.quality ≥ sj .quality AND

|Si
d| = k, ∀i = 1..m, j = 1, . . . , |S|

0 otherwise

(2)

• Pay-off: It maximizes di.cost, if di is a successful de-

ployment request without exceeding W . The rest of the

formulation is akin to Equation 2.

III. BATCH DEPLOYMENT RECOMMENDATION

Before getting into the details, we provide an abstraction

which serves the purpose of designing BatchStrat, our pro-

posed solution: given m deployment requests and W work-

force availability, Problem 1 could be modeled in the form

of a two dimensional matrix W , where there are |S| columns

that map to available deployment strategies and m rows of

different deployment requests.

A particular cell wij ∈ W corresponds to how much

workforce is needed to deploy request i with strategy j.

The challenge, however, is that each d has three different

requirements of quality, cost, and latency. Therefore, it has

to estimate workforce requirement per (deployment, strategy)

1807

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 02,2021 at 19:03:09 UTC from IEEE Xplore. Restrictions apply.

pair first. That constitutes step-1 of BatchStrat. Once for every

(i, j), a (deployment, strategy) workforce requirement wi,j is

computed, step-2 estimates the aggregated workforce require-

ment per deployment, since it has to recommend k different

strategies to each deployment. To do that, it aggregates over

each deployment request and produces a vector �W of length

m that estimates the workforce requirement for each strategy

to be deployed successfully, meeting the quality, cost, latency

thresholds as well as k. Finally, step-3 invokes an optimizer

that determines how to allocate the available workforce W
among competing deployment requests to optimize different

platform-centric goals. The pseudo-code of BatchStrat is

presented in Algorithm 1. We now present the details.

A. Computing Workforce Requirement per Deployment

Given W , for each deployment request di and strategy

sj , the workforce requirement is the maximum of workforce

requirement to satisfy the quality, cost, and latency threshold.

However, to find k strategies for a deployment di, we turn

our attention back to matrix W again and investigate how to

compute workforce requirement for all k strategies for di.
The objective here is to produce a vector �W of length

m, where the i-th value represents the aggregated workforce

requirement for request di. To understand how to compute �W ,

we need to consider the sum-case: where the task designer

intends to perform the deployment using all k strategies, in

which case, the minimum workforce (wi) needed to satisfy

cardinality constraint ki is Σk
y=1wiy (where wiy is the y-th

smallest workforce value in row i of matrix W; and the max-
case: where the designer intends to only deploy one of the k
strategies, in which case, wi = wiy , (where wiy is the k-th

smallest workforce value in row i of matrix W).

Running Time: The running time of computing the aggre-

gated workforce requirement of the i-th deployment request

is |S| k log|S|, if we use min-heaps to retrieve the k smallest

numbers. The overall running time is again O(m× k log|S|).
B. Optimization-Guided Batch Deployment

Since W is limited, it may not be possible to successfully

satisfy all deployment requests in a single batch. This requires

distributing W judiciously among competing deployment re-

quests and satisfying the ones that maximize platform-centric

optimization goals, i.e., throughput or pay-off.

At this point, a keen reader may notice that the batch

deployment problem bears resemblance to a well-known dis-

crete optimization problem that falls into the general category

of assignment problems, specifically, Knapsack-type of prob-

lems [2]. The objective is to maximize a goal (in this case,

throughput or pay-off), subject to the capacity constraint of

worker availability W . In fact, depending on the nature of the

problem, the optimization-guided batch deployment problem

could become intractable.

Intuitively, when the objective is only to maximize through-

put (i.e., the number of satisfied deployment requests), the

problem is polynomial-time solvable. However, when there is

an additional dimension, such as pay-off, the problem becomes

NP-hard problem, as we shall prove next.

Theorem 1: The decision version of the Pay-Off maximiza-

tion problem is NP-Complete.

Proof 1: (sketch): An instance of the famous 0/1 Knapsack

problem could be reduced to the decision version of the Pay-

off Maximization problem.

Our solution bears similarity to the greedy algorithm of the

Knapsack problem [3]. The objective is to sort the deploy-

ment strategies in non-increasing order of fi
�wi

. The algorithm

greedily adds deployments based on this sorted order until it

hits a deployment di that can no longer be satisfied by W ,

that is, Σx=1..idi > W . At that step, it chooses the best of

{d1, d2, di−1} and di and the process continues until no further

deployment requests could be satisfied for W (lines 4-8 in

Algorithm BatchStrat).
Running Time: This step is dominated by the sorting time

of the deployment requests, which is O(m log m).

Algorithm 1 Algorithm BatchStrat
1: Input: m deployment requests, S, objective function F , available

workforce W
2: Output: recommendations for a subset of deployment requests.
3: Compute Workforce Requirement Matrix W
4: Compute Workforce Requirement per Deployment Vector �W
5: Compute the objective function value fi of each deployment

request di
6: Sort the deployment strategies in non-increasing order of fi

�wi

7: Greedily add deployments until we hit di, such that Σx=1..idi >
W

8: Pick the better of {d1, d2, di−1} and di

1) Maximizing Throughput: When task throughput is max-

imized, the objective function F is computed simply by

counting the number of deployment requests that are satisfied.

Therefore, fi, the objective function value of deployment

di is the same for all the deployment requests and is 1.

Our solution, BatchStrat-ThroughPut, sorts the deployment

requests in increasing order of workforce requirement �wi

to make 1
�wi

non-increasing. Other than that, the rest of the

algorithm remains unchanged.

Theorem 2: Algorithm BatchStrat-ThroughPut gives an

exact solution to the problem.

2) Maximizing Pay-Off: Unlike throughput, when pay-off

is maximized, there is an additional dimension involved that

is different potentially for each deployment request. fi for

deployment request di is computed using di.cost, the amount

of payment deployment di is willing to expend. Other than

that, the rest of the algorithm remains unchanged.

Theorem 3: Algorithm BatchStrat-PayOff has a 1/2-

approximation factor.

Proof 2: (sketch): The proof directly follows from [5].

IV. EXPERIMENTS

A. Batch Deployment Recommendation

We compare differnet algorithms. All algorithms are imple-

mented in Python 3.6 on Ubuntu 18.10. Intel Core i9 3.6 GHz

CPU, 16GB of memory.

Brute Force: An exhaustive algorithm which compares

1808

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 02,2021 at 19:03:09 UTC from IEEE Xplore. Restrictions apply.

all possible combinations of deployment requests and returns

the one that optimizes the objective function.

BaselineG: This algorithm sorts the deployment requests

in decreasing order of fi
�wi

and greedily selects requests until

worker availability W is exhausted.

BatchStrat: Our proposed solution described in Section III.
Observation 1: Our solution BatchStrat returns exact

answers for throughput optimization, and the approximation

factor for pay-off maximization is always above 90%, signif-

icantly surpassing its theoretical approximation factor of 1/2.

Observation 2: Our solution BatchStrat is highly scalable

and takes less than a second to handle millions of strategies,

and hundreds of deployment requests, and k.

B. Quality
Goal: We aim to validatedow does BatchStrat fare to

optimize different platform-centric goals?
Strategy Generation: The dimension values of a strategy

are generated considering uniform and normal distributions.

For the normal distribution, the mean and standard deviation

are set to 0.75 and 0.1, respectively. We randomly pick the

value from 0.5 to 1 for the uniform distribution.
Worker Availability: For a strategy, we assume there is

a linear relationship between parameters and Worker Avail-

ability. We generate the slope uniformly from an interval

[0.5, 1]. Then, we set intercept = 1 − slope to make sure

that the estimated worker availability W is within [0, 1].
These numbers are generated in consistence with our real data

experiments.
Deployment Parameters: Once W is estimated, the qual-

ity, latency, and cost - i.e., the deployment parameters, are

generated in the interval [0.625, 1]. For each experiment, 10
deployment parameters are generated, and an average of 10
runs is presented in the results.

Figure 2 shows the results of throughput of BatchStrat
by varying k compared with the two baselines (the same

could be observed when varying m and |S|). Figure 3 shows

the approximation factor of BatchStrat and BaselineG.

BatchStrat achieves an approximation factor of 0.9 most

of the time. For both experiments, the default values are

k = 10,m = 5, |S| = 30,W = 0.5 because brute force does

not scale beyond that.

(a) Varying k
Figure 2: Objective Function for Throughput

C. Scalability
Since the BaselineG has the same running time as Batch-

Strat, we only compare Brute Force and BatchStrat.
The default setting for |S|, k and W are 30, 10 and 0.75,

respectively.

(a) Varying k
Figure 3: Objective Function and Approximation Factor

for Payoff

Figure 4: Running time for Batch Deployment Varying m

Figure 4 shows that Brute Force takes exponential time

with increasing m, whereas BatchStrat scales linearly. Clearly

BatchStrat can handle millions of strategies, several hundreds

of batches, and very large k and still takes only a few fractions

of seconds to run. It is easy to notice that the running time

of this problem only relies on the size of the batch m (or the

number of deployment requests), and not on k or S.

V. FUTURE WORK

Our preliminary work opens up more than one research

directions. First and foremost, how to estimate worker avail-

ability for different types of tasks is a challenging problem

that requires deep investigation in its own merit. Then, an

interesting open problem is to come up with principled yet

practical models to establish relationship between deployment

parameters and strategy parameters. Throughout this paper, we

have assumed that the estimated quality, cost, and latency of

a set of tasks deployed using a strategy is a function of the

task type and worker availability. However, how to realistically

model such functions or learn them from historical data for

different types of tasks remains to be a part of our ongoing

investigations. Finally, an interesting extension is to explore

the recommendation of alternative deployment parameters if a

request cannot be satisfied as formulated. This would open the

possibility of recommending different deployment parameters

for which k strategies are available, thereby guiding requesters

further in task deployment.

REFERENCES

[1] R. M. Borromeo et al. Deployment strategies for crowdsourcing text
creation. Information Systems, 2017.

[2] M. R. Garey and D. S. Johnson. Computers and intractability. wh freeman
New York, 2002.

[3] O. H. Ibarra et al. Fast approximation algorithms for the knapsack and
sum of subset problems. Journal of the ACM (JACM), 1975.

[4] O. A. E. Kadi. Exploring crowdsourcing deployment strategies through
recommendation and iterative refinement. MS Research Report.

[5] E. L. Lawler. Fast approximation algorithms for knapsack problems.
Mathematics of Operations Research, 1979.

1809

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 02,2021 at 19:03:09 UTC from IEEE Xplore. Restrictions apply.

