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The classical Perceptron algorithm provides a simple and elegant procedure for learning a linear classifier. In

each step, the algorithm observes the sample’s position and label and updates the current predictor accordingly
if it makes a mistake. However, in presence of strategic agents that desire to be classified as positive and

that are able to modify their position by a limited amount, the classifier may not be able to observe the true

position of agents but rather a position where the agent pretends to be. Unlike the original setting with

perfect knowledge of positions, in this situation the Perceptron algorithm fails to achieve its guarantees, and

we illustrate examples with the predictor oscillating between two solutions forever, making an unbounded

number of mistakes even though a perfect large-margin linear classifier exists. Our main contribution is

providing a modified Perceptron-style algorithm which makes a bounded number of mistakes in presence of

strategic agents with both ℓ2 and weighted ℓ1 manipulation costs. In our baseline model, knowledge of the

manipulation costs (i.e., the extent to which an agent may manipulate) is assumed. In our most general model,

we relax this assumption and provide an algorithm which learns and refines both the classifier and its cost

estimates to achieve good mistake bounds even when manipulation costs are unknown.
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1 INTRODUCTION
In machine learning, strategic classification deals with the problem of learning a classifier when the

learner relies on data that is provided by strategic agents [4, 10]. For example, consider deciding

eligibility of individuals for employment or education. In order to be considered eligible, individuals

may engage in activities that do not truly change their qualifications, but affect the decision made.
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In the aforementioned settings, these activities include job or college applicants carefully crafting

their application materials and investing in interview or test preparations. In these scenarios, by

using information about the classifier, individuals alter their features artificially by a limited amount

to achieve their desirable outcome.

Strategic classification is particularly challenging in the online setting, where data points arrive

in an arbitrary sequence, because the way that points manipulate may depend (in a discontinuous

way) on the current classifier, and there is no useful source of unmanipulated data. More specifically,

consider a standard online learning setting as follows. Individuals arrive one at a time, and based on

the individual’s features, the classifier predicts the individual as positive or negative. The learner is

then told the correct classification and may update its classifier for the next round. The learner’s

goal is to minimize the number of mistakes made. Performing the same procedure in the strategic

setting brings in several challenges. First, since the learner does not observe the true features,
the update is done based on the individual’s manipulated features. Therefore, at each point in

time, the current classifier is built from manipulated data the learner has observed in the past.

Second, each individual reacts to the current classifier. This means that the individuals’ behaviors

change over time and may be different from behavior of previous individuals with similar features.

Moreover, because data arrives in an arbitrary order, there is no way to collect a “representative

sample” of unmanipulated data by, say, classifying all examples as negative for an initial period.

Finally, manipulation behavior may be a discontinuous function of the classifier’s parameters: if an

individual’s cost to manipulate is slightly less than the benefit of being classified as positive then it

will do so, but if it is slightly greater then it will not. Due of these issues, as we will show, standard

learning algorithms that would make a limited number of mistakes in non-strategic settings may

end up cycling and making unbounded number of mistakes; even if there exists a perfect classifier

they may not find one.

Another challenge in online strategic classification is when the learner is unaware of the manipu-

lation costs, which determine the extent to which agents will manipulate their features to achieve a

positive classification. In this case, on top of estimating the individuals’ real attributes based on the

observed data, the learner also needs to estimate the costs. Unreasonable estimate of costs may lead

to poor performance by the learner as the learner may not be able to distinguish if a classification

mistake is due to an improper classifier or improper estimate of costs. This failure to distinguish

correctly may lead to deterioration of the classifier and divergence from the optimal solution.

We study an online linear classification problem when the individuals are strategic. To isolate

the effect of manipulation, we focus on finding a linear classifier when the unmanipulated data is

linearly separable; i.e., the feature space is divided into two half spaces: with positive data points in
one and negative data points in the other, and a nonzeromargin between them.When individuals can

manipulate, in each step, the arriving individual wishes to be classified positively. If the individual’s

feature vector z is not classified as positive with the true attributes, they may choose to suffer

a cost and pretend to have a feature vector x. More specifically, we consider utility-maximizing

individuals, where utility is defined as value minus cost, who receive value 1 for being classified as

positive and 0 for being classified as negative. We then consider two classes of cost functions: ℓ2
costs (where cost is proportional to the Euclidean distance moved) and weighted ℓ1 costs (where
the cost of reaching a destination is the sum of separate costs paid in each coordinate direction).

The ℓ2 case represents settings where individuals when manipulating can take actions that affect

multiple attributes. The ℓ1 case represents settings where there is a specific action associated with

each attribute. Note that in both cases, even though the unmanipulated data is linearly separable,

the observed manipulated data points may no longer be separable.
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Our Techniques and Results. The main contribution of this paper is solving the problem of online

learning of linear separators in the strategic setting, making a bounded number of mistakes when

the unmanipulated data is linearly separable by a nonzero margin. To do this, we build on and

adapt the classic Perceptron algorithm [16], redesigning it to work in various strategic settings.

This classic algorithm makes a bounded number of mistakes in the nonstrategic case when positive

and negative data points are linearly separable. However, as mentioned earlier, in the strategic case

it may cycle indefinitely (much like gradient descent for finding a Nash equilibrium) and make an

unbounded number of mistakes; see Examples 1 and 2. Our main technique is to carefully design

surrogate data points and feed them as the observed data to the algorithm. The role of the surrogate

is to ensure that the algorithm is able to make positive progress each time it makes a mistake;

however, defining it requires extra care. In particular, while it is not hard to show we can compute

the direction that data points may have manipulated in, we can never be sure exactly how far (and

we are particularly interested in the case that the amount by which data points can manipulate is

large compared to the margin of separation). Another adaptation is to use a positive threshold for

the dot product with the classifier’s weight vector for a point to be classified positive.

Making use of the Perceptron algorithm, surrogate data points, and a positive linear threshold is

central in all the algorithms designed in this paper. However, additional ideas are needed to handle

subtleties of each specific setting. For example, for weighted ℓ1 costs we need to take extra steps to

make the manipulation direction unique and in line with the true classifier’s weight vector, and

in the unknown costs setting, we need to distinguish if the cost estimates are above or below the

true costs. Another case is when the separating hyperplane does not cross the origin. In this case,

the classic approach is to just add a fake coordinate in which each example has value 1, and then

apply the Perceptron algorithm to those extended data points. However, when data is given by

strategic agents, this reduction breaks down and we need to apply different ideas. There are also

some results that hold for the non-strategic case that we do not know how to achieve, such as

obtaining a mistake bound proportional to the hinge-loss of the best separator when data is not

perfectly separable; for this setting we show examples where our algorithm fails and propose it as

an open problem.

The main contributions of this paper are:

- We give an online learning algorithm robust to manipulation that finds a linear classifier in a

bounded number of mistakes with the knowledge of costs. The number of mistakes is not

much larger than the standard Perceptron bound in the non-strategic case for ℓ2 costs and is

reasonably bounded in other settings as well, see Theorems 1, 2 and 4.

- We give an online learning algorithm that generalizes the previous algorithm to unknown

costs with a bounded number of mistakes. See Theorem 3.

- We generalize the algorithm for known ℓ2 costs to the case of heterogeneous agents whose

utility functions differ by a limited amount and give an online learning algorithm with

bounded number of mistakes. See Corollary 1.

Related Work. The first studies on strategic classification focused on the offline setting; i.e., where

the agents’ true features come from a distribution. Brückner and Scheffer [4] and later Hardt et

al. [10], formalized the strategic classification problem as a Stackelberg competition between a

learner and an agent. They assume the learner has access to the distribution of agents’ true features

and their cost functions; and use this information to design near-optimal classifiers.

Dong et al. [8] initiated the study of strategic classification in the online setting where the learner

does not know the distribution of agents’ true features or their cost functions. A key difference

between [8] and this paper is the assumption on the objective of the agents: we consider agents that

wish to be classified as positive, whereas [8] considers agents that wish to increase their dot-product
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with the hypothesis vector no matter how they are classified. Based on this assumption, in [8] the

agents’ behaviors are continuous in the hypothesis vector. However, in our model, a small change

in the hypothesis vector can cause a drastic (discontinuous) change in agents’ behavior. More

particularly, as a consequence of agents’ objective and utility structure, each agent can manipulate

by a limited amount. If the classification hyperplane is closer than this amount, the agent would

manipulate to be classified as positive; however, if it is slightly farther, the agent stays stationary.

This discontinuity in the agent’s behavior is common in mechanism design and occurs in other

problems such as pricing and auction design.

Chen et al. [5] also study an online learning problem where agents can manipulate by a bounded

distance. However, while there are similarities between the setting studied in [5] and our ℓ2 cost
model, explained in more detail in Section 2, [5] does not consider a fixed utility model and instead

considers a regret term that is worst-case over agents that can manipulate by some bounded

distance. As a result, their regret term may be arbitrarily high when the observed positions of

positive and negative data points are inseparable, even if the unmanipulated points are linearly

separable. Our algorithms, in contrast, can handle this inseparability during the learning procedure

and make a bounded number of mistakes.

The goal of the papers mentioned so far is accuracy or minimizing loss. There are also papers

that consider other objectives. Hu et al. [11] focus on a fairness objective and raise the issue that

different populations of agents may have different manipulation costs. Braverman and Garg [3], by

introducing noise in their classification, design algorithms where agents with different costs are

better off not manipulating which tackles the fairness issue. Milli et al. [15] state that the accuracy

that strategic classification seeks leads to a raised bar for agents who naturally are qualified and

puts a burden on them to prove themselves. Kleinberg and Raghavan [12], Haghtalab et al. [9],

Alon et al. [1], Bechavod et al. [2], Shavit et al. [17], and Miller et al. [14] focus on models in which

the policy maker is interested in choosing a rule which incentivizes agent(s) to invest their effort

into features that truly improve their qualification. Other papers considering incentives in machine

learning include [6, 7, 13].

Organization of the Paper. Section 2 introduces the model and provides examples where the

original Perceptron algorithm makes an unbounded number of mistakes. Sections 3 and 4 study

the case where the cost of manipulation is known: Section 3 focuses on ℓ2 costs and Section 4 on

weighted ℓ1 costs. Section 5 studies the unknown costs model. Section 6 studies the generalization

of known manipulation costs to heterogeneous agents that have slightly different costs. Section 7

extends the results of Sections 3 and 4 where the separator of the unmanipulated data points

crosses the origin to the general case. Finally, conclusions and some open problems are presented

in Section 8.

2 MODEL AND PRELIMINARIES
In Section 2.1, we formally define our model. In Section 2.2, we overview the non-strategic setting.

In Section 2.3, we provide examples where the original Perceptron algorithm makes an unbounded

number of mistakes.

2.1 Model
We study an online classification problem in which a series of examples in Rd arrive one at a time.

We think of examples as corresponding to d observable features of individuals who wish to be

classified as positive. They have the ability to manipulate their observable features at some cost. Let

zt denote the t th example before manipulation, and xt denote the observed t th example. We assume

there exists a vector w∗, such that for each unmanipulated positive example zt we have zTt w
∗ ≥ 1,
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and for each unmanipulated negative example zt we have zTt w
∗ ≤ −1; i.e., a linear separator of

margin γ = 1/|w∗ |. We use |w| to indicate the ℓ2 norm of w.

We assume individuals are utility maximizers, where utility is defined as value minus cost.

Individuals have value 1 for being classified as positive, and 0 for being classified as negative. More

formally, an agent with true coordinates zt will move to xt = argmaxx [value (x) − cost (zt , x)]
where value (x) = 1 if x is classified positive by the current classifier and value (x) = 0 if x is

classified negative, and cost (zt , x) refers to the cost of manipulation from zt to x. This implies if the

agent can manipulate their features at cost at most 1 to change their classification from negative to

positive, then they will do so in the cheapest way possible, otherwise they will not.

We consider two settings for cost of manipulation. In the first setting, cost (zt , x) is proportional

to the ℓ2 distance of the two points zt and x; i.e., cost (zt , x) = c
√∑d

i=1 (xi − zt,i )2, where c is the
cost per unit of movement. We define α = 1/c as the maximum amount data points would be willing

to move to achieve a positive classification.
1
We assume 0 ≤ α ≤ R where R = maxt |zt |. In the

second setting, cost (zt , x) is a weighted ℓ1 metric, such that cost (zt , x) =
∑d

i=1 ci |xi − zt,i |. Similarly

we define αi = 1/ci as the maximum amount data points would move along the ith coordinate

vector ei , where 0 ≤ αi ≤ R. We consider both scenarios of known and unknown costs. In the

unknown ℓ2 costs we don’t assume knowledge of c , and in unknown weighted ℓ1 costs we do not

assume knowledge of c1, . . . , cd .

Generalizations. For the majority of the paper we study the above model. In Sections 6 and 7, we

then present and analyze several generalizations. Section 6 studies heterogeneous agents with ℓ2
costs where the costs per unit of movement (defined previously as c) for agents are slightly different.
More particularly, we study the case where the maximum amount the agent arriving at time t
can move, αt (i.e. 1/ct , where ct is the cost per unit of movement for agent t ), is in the interval

[αmin,αmax] where 0 ≤ αmax − αmin ≤ γ/2. The algorithm does not have access to αt but knows the
interval. Section 7 studies the case where the separating hyperplane of the unmanipulated data

does not cross the origin. More particularly, there exists a separator zTw∗ + b = 0, such that for a

positive example zt , zTt w
∗ + b ≥ 1 and for a negative example zt , w∗T zt + b ≤ −1.

2.2 Non-Strategic Setting and the Perceptron Algorithm
As a reminder for the reader we provide the classical Perceptron algorithm here. This algorithm

classifies all points with xTt w ≥ 0 as positive, and the rest as negative; updating w when it makes a

mistake. The total number of mistakes made by the algorithm is upper bounded by R2 |w∗ |2.

Algorithm 1: Perceptron Algorithm

w← 0;
for t = 1, 2, · · · do

Given example xt, predict sдn(xTt w);

if the prediction was a mistake then
if xt was + then w← w + xt ;
if xt was − then w← w − xt ;

1
For convenience we assume that if an agent is indifferent, i.e., its distance to the decision boundary is exactly α , then it

will manipulate. Note that Chen et al. [5] also consider a model where individuals can move in a ball of fixed radius from

their real position. However, they do not focus on a specific utility model.
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Extension 1 (Perceptron with separator not crossing the origin). A classic extension of Algorithm 1

to the case where examples are linearly separable, but not by a separator passing through the origin,

is to create an extra “fake" coordinate. Specifically, assume there exists a separator xTw∗ + b = 0,

such that for a positive example xt , xTt w
∗ + b ≥ 1 and for a negative example xt , w∗T xt + b ≤ −1.

Then Algorithm 1 is extended by adding an extra coordinate of value 1 to each example xt , replacing
xt with (xt , 1). The bias term b is absorbed into w∗ by adding an additional coordinate to w∗, i.e.
replacingw∗ with (w∗,b). Now, for the positive examples, xTt w

∗ ≥ 1, and for the negative examples

xTt w
∗ ≤ −1, and Algorithm 1 can be used as before.

2.3 Failure of the Perceptron Algorithm in Strategic Settings
The Perceptron algorithm may make unbounded number of mistakes in the models considered in

this paper even when a perfect classifier exists. The following example illustrates this in a setting

with ℓ2 cost.

Example 1. Consider three examples A = (−1, 0), B = (0,−1), and C = (−0.5,−1) where A is

negative, B is positive, and C is negative. Suppose that α = 0.5. The following scenario of arrival

of these examples makes the standard Perceptron algorithm (Algorithm 1) cycle between two

classifiers and make an unbounded number of mistakes. Suppose A is the first example to arrive,

then individuals B and C arrive respectively and repeatedly. After arrival of A, w = (1, 0). B does

not need to manipulate as it is classified positive with the current classifier. HoweverC manipulates

to point (0,−1) and the algorithm mistakenly classifies it as positive. As a consequence, w will be

updated to (1, 0) − (0,−1) = (1, 1). With the new classifier, B cannot manipulate to be classified

positive because it has distance

√
2/2 from the decision boundary. So, B is misclassified as negative,

causing an update to w = (1, 1) + (0,−1) = (1, 0) and the scenario repeats.
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(a) Classic Perceptron correctly classifies B after
update of w to (1, 0). However, C now manipu-
lates to the same location as B, which will cause a
mistake and an update.
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(b) After C manipulates to C ′ = (0,−1), it is mis-
classified as positive and w is updated to (1, 1). B
cannot manipulate with current classifier because
it is at distance

√
2/2 from the boundary.

Fig. 1. Example 1 shows the classic Perceptron algorithm can make an unbounded number of mistakes in
the strategic setting.
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Note that Example 1 shows that the standard Perceptron algorithm can fail even if there exists a

classifier that is perfect in the presence of manipulation.ÂăIn this example, the classifier given by

w = (1, 0.5) works perfectly for the three points as B can manipulate to be classified positive but A
and C cannot. The main reason the algorithm fails despite existence of a perfect classifier, is that

the behavior of individuals depends on the classifier we are currently using and this can cause the

algorithm to cycle indefinitely.

The failure of the Perceptron algorithm is not restricted to the ℓ2 costs model. Example 1 with

α = (0.6, 0) makes an unbounded number of mistakes in the ℓ1 costs model as well.

The Perceptron algorithm as described above uses a threshold of 0. One may wonder if the

usual extension to non-zero thresholds (Extension 1) might solve the strategic learning problem. In

particular, any linearly separable dataset is still linearly separable in the presence of manipulation,

by simply shifting the target separator by α . However, the example below shows that this extension

also fails when the data points are strategic.

Example 2. Consider three examples A = (−1, 0), B = (1, 0), and C = (0.5, 0) where A and C are

negative and B is positive. Let α = 0.5. Suppose A is the first example to arrive, then individuals

B and C arrive respectively and repeatedly. After arrival of A, the separator is 1x1 + 0x2 − 1 ≥ 0.

B does not need to manipulate as it is classified positive with the current classifier as shown in

Figure 2a. However C = (0.5, 0) manipulates to (1, 0) and the algorithm mistakenly classifies it as

positive as shown in Figure 2b. As a consequence, the separator is updated to 0x1 + 0x2 − 2 ≥ 0.

With the new classifier, B is misclassified as negative but does not manipulate. The separator is

then updated to 1x1 + 0x2 − 1 ≥ 0, and the process repeats indefinitely. Therefore the classifier

keeps cycling and never correctly classifies the data even when a linear separator exists.
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(a) The Perceptron algorithm updates w after mis-
classifying A. When B arrives it correctly classifies
it.
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(b) After C manipulates to C ′ = (1, 0), it is now
misclassified as positive by the current classifier
and w and bias are updated accordingly.

Fig. 2. Example 2 shows the non-zero threshold Perceptron algorithm can make an unbounded number of
mistakes in the strategic setting.
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𝛼

𝑤
𝑤∗

Fig. 3. Strategic Perceptron with known manipulation cost. The dashed line represents the manipulation
hyperplane discussed in Observation 1. The margin of width α is the forbidden region, discussed in Observa-
tion 2.

3 KNOWN ℓ2 COSTS
In this section, we provide an algorithm for the ℓ2 costs setting. At a high level, there are two main

ideas to modify and generalize the Perceptron algorithm for this setting. The first modification is

raising the bar for a point to be classified as positive. Previously, a nonnegative dot product with

the current classifier (a threshold of 0), sufficed for positive classification. However, in the new

algorithm, the threshold is a strictly positive value depending on the cost of manipulation. The

second modification is using a surrogate for the data points when the classifier updates. Interestingly,
we only need to use a surrogate for negative points, and in this case the surrogate is a projection of

the point in the opposite direction of manipulation, detected by the algorithm.

Overview of Algorithm 2. This algorithm is a generalization of the Perceptron algorithm which

we call strategic Perceptron. The algorithm starts by predicting all points as positive until it makes

a mistake. Note that during this period, individuals do not have incentive to manipulate. From

that point on, the algorithm classifies all points with xTt w/|w| − α ≥ 0 as positive, and the rest as

negative. Whenever the algorithm makes a mistake, the predictor w is updated with a surrogate

value, x̃t , defined below.

Definition 1 (x̃t , surrogate data point in ℓ2 setting). We define surrogate data point, x̃t , as follows.

x̃t =




xt − α w
|w | , if xt is − and

xTt w
|w | = α ;

xt , if xt is + and
xTt w
|w | = α ;

xt , if
xTt w
|w | > α or

xTt w
|w | ≤ 0.

Observation 1 (manipulation hyperplane). In Algorithm 2, xt is a manipulated example only if

xTw/|w| = α . The reason is as follows. In order to maximize utility, individuals move data points

in direction of w and move the point the minimum amount to be classified as positive. Therefore,

if with true features they are classified as negative, they only need to move to the line with dot

product equal to α and moving to any other location contradicts with utility maximizing. In other

words:

xt =



zt +
(
α −

zTt w
|w |

)
w
|w | , if 0 ≤

zTt w
|w | ≤ α ;

zt , otherwise.
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Algorithm 2: Strategic Perceptron for ℓ2 costs

w← 0;
for t = 1, 2, · · · do

Given example xt :
if |w| is 0 then

predict +;

if the prediction was a mistake then w← w − xt ;
else

predict sдn(
xTt w
|w | − α );

if the prediction was a mistake and xt was + then w← w + x̃t ;
if the prediction was a mistake and xt was − then w← w − x̃t ;

Observation 2 (forbidden region). No observed data point xt will satisfy 0 < xTt w/|w| < α , and
therefore x̃t does not need to be defined for 0 < xTt w/|w| < α . The reason is that any such data

point must either have manipulated to that position or not. If it manipulated, the manipulation was

not rational since it did not help the data point to get classified as positive. If it did not manipulate,

this was not rational either since the data point has a distance less than α from the classifier.

We show Algorithm 2 makes at most (R+α )2 |w∗ |2 mistakes. First, we need to prove the following

lemmas hold.

Lemma 1. For any positive data point xt , x̃Tt w
∗ ≥ 1, and for any negative data point xt , x̃Tt w

∗ ≤ −1.

Also, throughout the execution of Algorithm 2, wTw∗ ≥ 0.

Proof. The proof uses induction. First, we show after the first update of the algorithmwTw∗ > 0.

Second, we show if at the end of step t − 1, wTw∗ ≥ 0, then at step t , x̃Tt w
∗ ≥ 1 for positive points,

and x̃Tt w
∗ ≤ −1 for negative points. Finally, we show if wTw∗ ≥ 0 at the end of step t − 1, and

x̃Tt w
∗ ≥ 0 for positive points, and x̃Tt w

∗ ≤ 0 for negative points, then wTw∗ ≥ 0 at the end of step

t .
The first step is straight-forward. Initially, w = 0. While w = 0, we have xTt w = 0, and arriving

examples get classified positively. The first mistake occurs when a negative example xt arrives and
gets classified as positive. In this case, w gets updated to w − xt . Since xTt w

∗ ≤ −1, we conclude

(w − xt )w∗ > 0.

The second step is more involved. By definition of the surrogate values, for any points such that

xTt w/|w| , α , we have x̃t = xt . By Observation 1, these points are not manipulated, i.e., xt = zt .
This implies x̃t = zt and therefore the claim holds. Thus, we only need to argue for the points on

the hyperplane xTt w/|w| = α . Consider such data points. For the positive data points, we have,

x̃t = xt = zt + β ·w/|w|, where 0 ≤ β ≤ α . Therefore, x̃Tt w
∗ = zTt w

∗ + β ·wTw∗/|w| ≥ zTt w
∗ ≥ 1.

The first inequality holds since by assumption of this step, wTw∗ ≥ 0. On the other hand, for the

negative data points we have x̃t = xt − α ·w/|w|, where xt = zt + β ·w/|w| and 0 ≤ β ≤ α . This
implies x̃t = zt+(β−α ) ·w/|w|. Bymultiplying withw∗, we get x̃Tt w

∗ = zTt w
∗+(β−α ) ·wTw∗/|w| ≤

zTt w
∗ ≤ −1.

The final step is again straight-forward. Whenever w is updated, for positive points, w gets

updated to w + x̃t , where both w and x̃t have nonnegative dot product with w∗. For negative
points, w gets updated to w − x̃t , where w has a nonnegative and x̃t has a negative dot product
with w∗. □
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Lemma 2. When Algorithm 2 makes a mistake on a positive example xt , x̃Tt w ≤ 0; and when it

makes a mistake on a negative example xt , x̃Tt w ≥ 0.

Proof. The algorithm makes a mistake on a positive example only if xTw/|w| < α . By Obser-

vation 2, for no points, 0 < xTw/|w| < α . Therefore, for any positive example that the algorithm

makes a mistake on, xTw ≤ 0. By Definition 1, x̃t = xt for all positive examples. Therefore, xTw ≤ 0

implies x̃Tw ≤ 0. For negative examples, the algorithm makes a mistake only if xTw/|w| ≥ α .
If the inequality is strict, i.e., xTw/|w| > α , by Definition 1, x̃t = xt , and therefore x̃Tt w ≥ 0. If

xTw/|w| = α , again using Definition 1, we have x̃Tw = 0. □

Next, we show the following theorem holds which gives a bound on the number of mistakes.

Proof of the following theorem is along the lines of the proof of the classic Perceptron algorithm.

Theorem 1. Algorithm 2 makes at most (R + α )2 |w∗ |2 mistakes in the strategic setting with

known ℓ2 costs, when the unmanipulated data points zt satisfy zTt w
∗ ≥ 1 for positive examples

and zTt w
∗ ≤ −1 for negative examples, and R = maxt |zt |.

Proof. We keep track of two quantities, wTw∗ and |w|2. First, we show that each time we make

a mistake, wTw∗ increases by at least 1. If we make a mistake on a positive example then,

(w + x̃t )Tw∗ = wTw∗ + x̃Tt w
∗ ≥ wTw∗ + 1;

where the last inequality holds by Lemma 1. Similarly, if we make a mistake on a negative example,

(w − x̃t )Tw∗ = wTw∗ − x̃Tt w
∗ ≥ wTw∗ + 1.

Next, on each mistake we claim that |w|2 increases by at most (R + α )2. If we make a mistake on a

positive example xt , then we have:

(w + x̃t )T (w + x̃t ) = |w|2 + 2x̃Tt w + |x̃t |
2 ≤ |w|2 + |x̃t |2 ≤ |w|2 + (R + α )2.

To understand the middle inequality note that by Lemma 2, when a mistake is made on a positive

example xt , x̃Tt w ≤ 0. The last inequality comes from R = maxt |zt | implies maxt |x̃t | ≤ R + α .
Similarly, if we make a mistake on a negative example xt , then we have:

(w − x̃t )T (w − x̃t ) = |w|2 − 2x̃Tt w + |x̃t |
2 ≤ |w|2 + |x̃t |2 ≤ |w|2 + (R + α )2.

By Lemma 2, when a mistake is made on a negative example xt , x̃Tt w ≥ 0, which implies the

middle inequality.

Finally, if the algorithm makesM mistakes, then wTw∗ ≥ M and |w|2 ≤ M (R + α )2, or equiva-

lently, |w| ≤ (R + α )
√
M . Using Cauchy-Schwartz inequality, wTw∗/|w∗ | ≤ |w|, we have

M/|w∗ | ≤ (R + α )
√
M =⇒

√
M ≤ (R + α ) |w∗ | =⇒ M ≤ (R + α )2 |w∗ |2.

□

4 KNOWNWEIGHTED ℓ1 COSTS
In this section, we provide an algorithm for the weighted ℓ1 costs setting. Unlike the ℓ2 case, the
modifications to the classical Perceptron algorithm in Algorithm 2 do not suffice; and our algorithm

for this setting is more involved. Here is the key difference: In the ℓ2 costs setting, the individuals
always manipulate in direction of the current classifier w. However, in the weighted ℓ1 setting
this is no longer the case. This brings up two challenges to our approach. First, there may be

multiple utility maximizing manipulation directions. Second, the manipulation direction may have

a negative dot product with w∗. We overcome these two challenges and provide an algorithm for

this setting.
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As a reminder, in the weighted ℓ1 costs setting, there are coordinate unit vectors {e1, · · · , ed }
with cost of manipulation 1/αi along ei . We need to make one further assumption for this setting.

We assume for all 1 ≤ i ≤ d , eTi w
∗ ≥ 0. In other words, we assume that each feature is defined so

that larger is better. This is natural for settings such as hiring, admissions, loan applications, etc.

Overview of Algorithm 3. The algorithm starts by predicting all points as positive until it makes

a mistake. Note that during this period, individuals do not have incentive to manipulate. From that

point on, the algorithm classifies all points xt such that xTt w/|w| −αiw
T ei/|w| ≥ 0 as positive, and

the rest as negative; where ei is the manipulation direction which will be defined later. Similar to

Algorithm 2, whenever the algorithm makes a mistake, the predictor w is updated with a surrogate

value, x̃t , in Definition 2.

Compared to Algorithm 2, we have two further steps. As discussed above, the first challenge with

weighted ℓ1 costs is that with an arbitraryw, there may be multiple utility maximizing manipulation

directions, and we may not be able to distinguish along which vector individuals manipulated. Since

in the weighted ℓ1 costs setting, the cost of manipulation can be written as a convex combination of

costs in coordinate vectors, there always exists a coordinate vector, ei , such that manipulating along

that is utility maximizing. Consider all the coordinate vectors like ej that are utility maximizing, i.e.,

have the highest α j ·wT ej/|w|. To make the manipulation direction unique, we add a tie-breaking
step to the algorithm. This step adds a small multiple η > 0, of an arbitrary utility maximization

coordinate vector ei , to w to break the tie. Note that any positive value of η breaks the tie. We set

this value in our analysis purposes in Theorem 2 in a way to make sure the number of mistakes

our algorithm makes does not increase much.

We need to add another step to address the second challenge: With an arbitrary w the direction

that the individuals manipulate along may not have a positive dot product with w∗, i.e., the
individuals may choose to move along one of the vectors {−e1, · · · ,−ed }. In order to incentivize

individuals to only manipulate along {e1, · · · , ed }, and not {−e1, · · · ,−ed }, we do the following

correction step after each update. If eTj w < 0 for any ej ∈ {e1, · · · , ed }, we set the jth coordinate

of w to 0 by adding the smallest multiple of ej , denoted by µ j , to w to make eTj w nonnegative.

Therefore, µ j = 0 if eTj w ≥ 0, and µ j = −eTj w, otherwise; implying ∀j µ j ≥ 0.

With the unique manipulation direction, similar to the ℓ2 costs setting, we are now able to choose

a surrogate value along the manipulation direction.

Definition 2 (x̃t , surrogate data point in weighted ℓ1 setting). Let ei be the unique utility max-

imizing coordinate vector, i.e., i = argmaxj α jw
T ej/|w|. We define surrogate data point, x̃t , as

follows.

x̃t =



xt − ei · αi , if xt is − and
xTt w
|w | = αi ·

wT ei
|w | ;

xt , otherwise.

Lemma 3. µ j ≤ R + α j .

Proof. We can show at the end of each round, eTj w ≥ 0. Initially, w = 0, therefore eTj w = 0.

Suppose at the end of round t − 1, eTj w ≥ 0. Assume in round t , w gets updated by adding or

subtracting x̃t or xt . By assumption, the jth coordinate of xt is in [−R,R], and therefore the jth

coordinate of x̃t is in [−R − α j ,R + α j ]. Taken together, µ j ≤ R + α j . Note that by adding ηei to w,

eTj w remains nonnegative. □

The following theorem upper bounds the number of mistakes made by Algorithm 3.

Theorem 2. Consider a sequence of examples before manipulation z1, z2, · · · , which are observed

as x1, x2, · · · . Consider vector w∗ such that zTt w
∗ ≥ 1 for positive examples, and zTt w

∗ ≤ −1
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Algorithm 3: Strategic Perceptron for weighted ℓ1 costs

w← 0;
for t = 1, 2, · · · do

Given example xt :
if |w| is 0 then

predict +;

if the prediction was a mistake then
w← w − xt ;
/* Correction Step */

for j = 1, 2, · · · ,d do
w← w + µ jej , where µ j = max(0,−eTj w);

/* Tie-breaking Step */

i ← argmaxj α j ·
wT ej
|w | ;

w← w + ηei ;
else

predict sдn(
xTt w
|w | − αi ·

wT ei
|w | );

if the prediction was a mistake and xt was + then w← w + x̃t ;
if the prediction was a mistake and xt was − then w← w − x̃t ;
/* Correction Step */

for j = 1, 2, · · · ,d do
w← w + µ jej where µ j = max(0,−eTj w);

/* Tie-breaking Step */

i ← argmaxj α j ·
wT ej
|w | ;

w← w + ηei ;

for negative examples. Algorithm 3 makes at most (1 + (d + 1) (R + α )2) |w∗ |2 mistakes, where

R = maxt |zt |, and α = max{α1, · · · ,αd }.

Proof. Similar to the proof of Theorem 1, we keep track of two quantities wTw∗ and |w|2. First,
we show each time a mistake is made, wTw∗ increases by at least 1. Then we find an upper bound

on the increase of |w|2.
Starting from the current w, the algorithm follows three steps to update: addition/subtraction

of x̃t , the correction step, and the tie-breaking step. As in the algorithm ei is the manipulation

direction.

If the algorithmmakes a mistake on a positive example the new value ofw isw+x̃t +ηei+
∑

j µ jej .
Therefore,

*.
,
w + x̃t + ηei +

∑
j

µ jej
+/
-

T

w∗ = wTw∗ + x̃Tt w
∗ + ηeTi w

∗ +
∑
j

µ jeTj w
∗ ≥ wTw∗ + 1;

where the inequality holds because first using the ideas from Lemma 1, x̃Tt w
∗ ≥ 1 for the positive

examples the algorithmmakes a mistake on and x̃Tt w
∗ ≤ −1 for the negative examples the algorithm

makes a mistake on, and second, for all j, eTj w
∗ ≥ 0 by assumption, and µ j ≥ 0.
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Similarly, If the algorithm makes a mistake on a negative example, we have:

*.
,
w − x̃t + ηei +

∑
j

µ jej
+/
-

T

w∗ = wTw∗ − x̃Tt w
∗ + ηeTi w

∗ +
∑
j

µ jeTj w
∗ ≥ wTw∗ + 1.

Next, on each mistake we claim |w|2 increases by at most (d + 1) (R + α )2 + 1. If the algorithm
makes a mistake on a positive example, we have:

�������
w + x̃t + ηei +

∑
j

µ jej

�������

2

= ��w + x̃t + ηei ��2 +
�������

∑
j

µ jej

�������

2

+ 2
*.
,

∑
j

µ jej
+/
-

T

(w + x̃t + ηei )

= |w + x̃t + ηei |2 +
∑
j

|µ jej |2 + 2
∑
j

µ jeTj (w + x̃t + ηei )

≤ |w + x̃t + ηei |2 +
∑
j

|µ jej |2 + 2
∑
j

ηµ jeTj ei

= |w + x̃t + ηei |2 +
∑
j

|µ j |
2 + 2ηµi

= |w|2 + |x̃t |2 + |ηei |2 + 2wT x̃t + 2ηwT ei + 2ηx̃Tt ei +
∑
j

|µ j |
2 + 2ηµi

≤ |w|2 + (R + α )2 + η2 + 0 + 2η |w| + 2η(R + α ) + d (R + α )2 + 2η(R + α )

≤ |w|2 + (d + 1) (R + α )2 + η2 + η(2|w| + 4(R + α ))

≤ |w|2 + (d + 1) (R + α )2 + 1/4 + 1/2

≤ |w|2 + (d + 1) (R + α )2 + 1;

where the first equality is the result of expansion. The second uses eTj ek = 0 for j , k . The inequality

in the third row uses µ j = 0 when eTj (w + x̃t ) ≥ 0, and µ j > 0 when eTj (w + x̃t ) < 0, implying

µeTj (w + x̃t ) ≤ 0. The fourth row uses eTj ek = 0 for k , j and ejT ej = 1. The fifth row is the result

of expansion. The sixth row substitutes each term with an upper bound using |x̃t | ≤ R + α and

wT x̃t ≤ 0, similar to the arguments from Lemma 2, and µ j ≤ R + α , by Lemma 3. The eighth row

results by setting η = 1

4 |w |+8(R+α )+2 . The last row sums up and upper bounds similar terms.

Similarly, if the algorithm makes a mistake on a negative example, we have:

�������
w − x̃t + ηei +

∑
j

µ jej

�������

2

≤ |w|2 + (d + 1) (R + α )2 + 1.

Therefore, after each mistake, |w|2 increases by at most (d + 1) (R + α )2 + 1. The rest of the

proof is similar to the proof of Theorem 1, concluding that the total number of mistakes is at most

((d + 1) (R + α )2 + 1) |w∗ |2. □

5 UNKNOWN COSTS
The main result of this section is generalizing our algorithms to the unknown costs setting. The

generalization holds for ℓ2 costs . However, it does not extend fully to weighted ℓ1 costs and only
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works for a specific case. The algorithm for unknown ℓ2 costs is presented in Section 5.1. The case

of unknown ℓ1 costs is studied in Section 5.2.

5.1 ℓ2 Costs
In this section, we provide an algorithm that makes at most a bounded number of mistakes when the

manipulation cost, 1/α , is unknown. Algorithm 2 is used as a subroutine to evaluate our estimate

of α . First, we show Algorithm 2 works efficiently if the estimated value, α ′, is in proximity of the

real value (when α ′ is in the interval of length γ/2 below α ). Using this idea we can run a linear

search for α with step size γ/2. However, we show we can do better than a linear search. The

key ingredient that lets us outperform the linear search is the ability to distinguish whether the

estimate is below or above the real value. Using this idea we run a binary search to find a proper

estimate and come up with an efficient algorithm.

For convenience, we will present the algorithm assuming γ is known. At the end we show how

to remove this assumption. Below, we explain these steps more formally.

Case 1: 0 ≤ α − α ′ ≤ γ/2. First, we consider the case of 0 ≤ α − α ′ ≤ γ/2. Suppose Algorithm 2

takes α ′ instead of α as input. Also, suppose x̃t is defined with respect to α ′ instead of α . In
Proposition 1, we show if 0 ≤ α − α ′ ≤ γ/2, Algorithm 2 with these modifications, makes at most

4(R + α ′ + γ/2)2 |w∗ |2 mistakes. We need the following two lemmas for proving the proposition.

Proofs of Lemma 4 Lemma 5 are along the lines of proofs of Lemmas 1 and 2 respectively.

Lemma 4. Consider data points x̃t as defined in Definition 1 w.r.t. α ′ such that 0 ≤ α − α ′ ≤ γ/2.
These data points are 1/2-separable; i.e., for positive data points, x̃Tt w

∗ ≥ 1/2; and for negative data
points, x̃Tt w

∗ ≤ −1/2. Also, throughout the execution of Algorithm 2 with α ′, wTw∗ ≥ 0.

Proof. The proof uses the same three steps as Lemma 1. The first and the third steps are identical

to Lemma 1. Here, we argue for the second step, i.e., if at the end of step t − 1, wTw∗ ≥ 0, then at

step t , x̃Tt w
∗ ≥ 1/2 for positive points, and x̃Tt w

∗ ≤ −1/2 for negative points.
When Algorithm 2 is run with α ′, by Definition 1, for any points such that xTt w/|w| , α ′,

we have x̃t = xt . By Observation 1, these points are not manipulated, i.e., xt = zt . This implies

x̃t = zt which implies the claim for these points. Thus, we only need to argue for the data

points such that xTt w/|w| = α ′. Consider such data points. For the positive data points, we have,

x̃t = xt = zt + β ·w/|w|, where 0 ≤ β ≤ α . Therefore, x̃Tt w
∗ = zTt w

∗ + β ·wTw∗/|w| ≥ zTt w
∗ ≥ 1.

The first inequality holds because by the assumption of this step, wTw∗ ≥ 0. On the other hand,

for the negative data points we have x̃t = xt − α ′ · w/|w|, where xt = zt + β · w/|w| and

𝑤
𝑤∗

𝛼

𝛼′

Fig. 4. Strategic Perceptron with unknown manipulation cost, when α ≥ α ′. The top dashed line represents
the manipulation hyperplane. The margin between the two dashed lines represents the forbidden region.
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0 ≤ β ≤ α . This implies x̃t = zt + (β − α ′) · w/|w|. By multiplying with w∗, we get x̃Tt w
∗ =

zTt w
∗ + (β −α ′) ·wTw∗/|w| ≤ zTt w

∗ + (α −α ′) ·wTw∗/|w|. Using 0 ≤ α −α ′ ≤ γ/2 and γ = 1/|w∗ |,
we have x̃Tt w

∗ ≤ zTt w
∗ +wTw∗/(2|w∗ | |w|) ≤ zTt w

∗ + 1/2 ≤ −1/2. □

Lemma 5. Suppose Algorithm 2 is run with α ′ such that 0 ≤ α − α ′ ≤ γ/2. When the algorithm

makes a mistake on a positive example xt , x̃Tt w ≤ 0; and when it makes a mistake on a negative

example xt , x̃Tt w ≥ 0.

Proof. First, we consider the positive points. The algorithm makes a mistake on a positive

example only if xTw/|w| < α ′. Similar to Observation 2, in this case there is a margin without any

observed data points. However, as illustrated in Figure 4, this margin is located differently; such

that for no points, α ′−α < xTw/|w| < α ′. Thus, for any positive example that the algorithm makes

a mistake on, xTw ≤ 0. By Definition 1, x̃t = xt for all positive examples. Therefore, xTw ≤ 0

implies x̃Tw ≤ 0. Second, we consider negative points. For negative examples, the algorithm makes

a mistake only if xTw/|w| ≥ α ′. If the inequality is strict, i.e., xTw/|w| > α ′, by Definition 1,

x̃t = xt , and therefore x̃Tt w ≥ 0. If xTw/|w| = α ′, again using Definition 1, we have x̃Tw = 0. □

Proposition 1. When 0 ≤ α −α ′ ≤ γ/2, Algorithm 2 makes at most 4(R+α ′+γ/2)2 |w∗ |2 mistakes.

Proof. Using Lemmas 4 and 5, the rest of the proof is similar to Theorem 1. □

Case 2: α < α ′. Suppose α ′ is larger than α . By Observation 2, when Algorithm 2 is run with the real

value of α , no data point is observed by algorithm in the margin 0 < xTt w/|w| < α . However, when
the estimate is larger, since we overestimate by how far individuals can manipulate, Observation 2

no longer holds. Therefore, if the algorithm observes a point in the margin 0 < xTt w/|w| < α ′, we
realize that the estimate is large, and we need to refine it. On the other hand, while we have not

observed any such points, the algorithm makes at most (R + α ′)2 |w∗ |2 mistakes. This statement is

summarized and proved below.

Proposition 2. Suppose Algorithm 2 is run with α ′, such that α ′ > α , and is halted if for a

data-point xt , 0 < xTt w/|w| < α ′. This modified algorithm makes at most (R + α ′)2 |w∗ |2 + 1

mistakes.

Proof. Similar to the proof of Theorem 1, the maximum number of mistakes Algorithm 2

with estimated manipulation cost 1/α ′ makes on observed data points xt where xTt w/|w| ≤ 0 or

xTt w/|w| ≥ α ′ is at most (R + α ′)2 |w∗ |2. If a data point xt is observed such that 0 < xTt w/|w| < α ′,
it implies α ′ > α and the algorithm halts, and at most one more mistake is made on this data point.

Therefore, the total number of mistakes is at most (R + α ′)2 |w∗ |2 + 1. □

Case 3: α ′ < α − γ/2. We infer from Propositions 1 and 2 that if the number of mistakes is greater

than max{4(R + α ′ + γ/2)2 |w∗ |2, (R + α ′)2 |w∗ |2 + 1} = 4(R + α ′ + γ/2)2 |w∗ |2 then α ′ < α − γ/2.
Note that the equality holds since the number of mistakes is an integer.

Putting Everything Together. After discussing the three cases, we are now ready to explain Algo-

rithm 4. This algorithm uses a binary search scheme to find a predictor in a bounded number of

mistakes. The algorithm starts with α ′ = 0. For each fixed α ′ we consider 4(R + α ′ + γ/2)2 |w∗ |2

as the maximum number of allowed mistakes. Whenever we exceed this bound using the discus-

sion in Section 5.1 we learn that α ′ is too small. Also whenever we see a data point xt such that

0 ≤ xTt w/|w| < α as explained above we learn that α ′ is too large. Distinguishing between the

cases where α ′ is too large or too small allows us to refine the upper bound and lower bound on α ′

until 0 ≤ α − α ′ ≤ γ/2. The following theorem shows that the total number of mistakes is bounded

during the whole process.
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Algorithm 4: Strategic Perceptron with unknown manipulation cost

α ′′ ← 0,α ′ ← 0;

while examples are arriving do
Run Algorithm 2 with estimate α ′ on the sequence of arriving examples, halt if

#mistakes > 4(R + α ′ + γ/2)2 |w∗ |2 or if for an example xt , 0 <
xTt w
|w | < α ′;

if #mistakes > 4(R + α ′ + γ/2)2 |w∗ |2 then
/* guessed value α ′ is small. */

α ′′ ← α ′;

α ′ ← min{max{2α ′,γ/2},R};

continue;

else if for an example xt , 0 <
xTt w
|w | < α ′ then

/* guessed value α ′ is large. */

α ′ ← (α ′′ + α ′)/2;

continue;

Theorem 3. Algorithm 4 makes at most O (R2 |w∗ |2 log(R |w∗ |)) mistakes.

Proof. In Algorithm 4, the candidates for α areγ/2 apart and the number of them is 2R |w∗ |. Since
we are doing a binary search on these candidates, the total number of iterations of binary search

is at most log(2R |w∗ |). Proposition 1, Proposition 2, and Theorem 1, show that in each iteration

the total number of mistakes is bounded by max{4(R + α ′ + γ/2)2 |w∗ |2, (R + α ′)2 |w∗ |2 + 1} ≤

4(R + α ′ + γ/2)2 |w∗ |2 + 1. Since we are assuming α ′ ≤ R, the total number of mistakes is at most

O (R2 |w∗ |2 · log(R |w∗ |)) and the proof is complete. □

Unknown γ . In the previous steps we assumed knowledge of γ . However, this assumption is not

necessary and we can remove it in the following way. Starting from a guess of |w∗ | = 1

2R (i.e., a

guess of γ = 2R), repeat the following procedure: for each guessed value of |w∗ |, Algorithm 4 is

executed and if it makes more than the mistake bound of (4(R + α ′ + γ/2)2 |w∗ |2 + 1) log(2R |w∗ |),
the guessed value for |w∗ | is doubled (i.e., the guessed value of γ is halved) and the procedure is

repeated. By putting this wrapper around Algorithm 4 with at most O (R2 |w∗ |2 log(R |w∗ |)) number

of mistakes, the total number of mistakes remains in the same order of magnitude:

log 2R |w∗ |∑
i=−1

R2

(
|w∗ |
2
i

)
2

log

(
R |w∗ |
2
i

)
= O (R2 |w∗ |2 log(R |w∗ |))

5.2 Weighted ℓ1 Costs
As observed in Section 4, in order for the strategic Perceptron algorithm to work in the weighted

ℓ1 costs model, it is necessary to identify in what direction the individuals manipulate. The tie-

breaking step in Algorithm 3, ensured that the manipulation direction is unique and identifiable.

In the unknown costs model, we need to make a guess for the cost in each direction. Since the

guessed values are not accurate, we no longer can use them for a tie-breaking step and determine

the manipulation direction. This restrains us from having an efficient algorithm for the general

case of ℓ1 costs. However, for a special case where manipulation is possible in a single direction

(finite cost in direction e1 and infinite in the others), the manipulation direction is known and the

ideas of Algorithm 4 extend to this case.
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6 DIFFERENT COSTS
In the previous sections, we assumed all individuals have the same utility function. In this section,

we show this assumption is not critical for our result and our algorithms still make a bounded

number of mistakes and perform almost as well as long as the utility functions are close enough.

More particularly, suppose in the ℓ2 costs setting, at each time t , the amount that an individual

can move, αt , is upper bounded by αmax and lower bounded by αmin such that 0 ≤ αmax−αmin ≤ γ/2.
Using the ideas presented in Section 5.1, we can show that running Algorithm 2 with αmin as the

input and the surrogate data points x̃t defined with respect to αmin makes a bounded number of

mistakes.

Corollary 1. Suppose for all t , αmin ≤ αt ≤ αmin + γ/2. Algorithm 2 by using parameter αmin

makes at most 4(R + αmin + γ/2) |w∗ |2 number of mistakes.

Proof Outline. In Section 5.1, the guessed value of α that is used as the input to Algorithm 2, is

at most γ/2 smaller than the real value. Similarly, in this case, αmin is at most γ/2 smaller than any

αt . With a small difference in the terminology of the proofs of Lemmas 4 and 5, their statements

hold and Proposition 1 directly implies this corollary. □

Weighted ℓ1 Costs. Due to similar reasons explained in Section 5.2, the previous result does not

extend to general case of weighted ℓ1 costs but extends to the special case where manipulation is

possible in a single direction.

7 TARGET CLASSIFIER NOT CROSSING THE ORIGIN
In this section, we propose an algorithm for the setting where unmanipulated data points are

linearly separable, however not by a linear separator passing through the origin. Ordinarily (in

the non-strategic setting), this would be handled by creating an extra fake coordinate, giving each

example a value of 1 in that coordinate, and thereby reducing to the case where the separator

crosses the origin, as explained in Extension 1. However, in the strategic setting, this reduction

breaks down because the condition that wTw∗ ≥ 0 (given in Lemma 1) is no longer sufficient to

guarantee the quality of x̃t , since agents cannot manipulate in this new coordinate (they are no

longer manipulating in the direction of w). Instead, we present a different reduction here that is

robust to strategic behavior.

For the case of ℓ2 costs, we provide Algorithm 5 and show that the number of mistakes it makes

is at most O (R3 |w∗ |3).

Overview of Algorithm 5. Assume the unmanipulated data points are separable by a linear

separator w∗T z + b = 0. Suppose we can find an arbitrary point p∗ such that w∗T p∗ + b = 0. If we

set the point p∗ as the new origin, i.e., replacing each example zt with zt − p∗, then in the new

coordinate system the unmanipulated data points are linearly separable by a separator that crosses

the new origin, and we can use our previous algorithms. However, we are not able to necessarily

find a point p∗ such thatw∗T p∗ +b = 0. Instead, we show how to find a point p that is close enough

to p∗.
Initially, we find an unmanipulated positive example x+, and an unmanipulated negative example

x− by starting our algorithm in the following way: First, predict positive until the first mistake

on a negative example x− is made. Next, predict negative until the next mistake is made on some

positive example x+. Consider the line segment between x− and x+. There exists a point p∗ on this

line segment where w∗T p∗ + b = 0. Consider a series of points on this line segment at distance

γ/2 apart. For one of these points, which we call p, |p − p∗ | ≤ γ/2. Lemma 6 shows if the origin

is set to p, i.e. each data point zt is replaced with zt − p, there exists a line passing through the
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Algorithm 5: Strategic Perceptron with bias for ℓ2 costs

x+, x− ← 0, 0;
while examples are arriving do

predict +;

if the prediction was a mistake on a current example xt then
x− ← xt ;
break;

while examples are arriving do
predict −;

if the prediction was a mistake on a current example xt then
x+ ← xt ;
break;

λ ← 0;

while examples are arriving do
mistakes ← 0;

/* choose a point p on the line segment between x+ and x−. */

p← (1 − λ)x− + λx+;
/* set the origin to point p. */

Run Algorithm 2 on the sequence of arriving examples in the new coordinate system, i.e.

replace each example xt with xt − p, and halt ifmistakes > 4(2R + α )2 |w∗ |2;
/* p is not close enough to p∗, i.e. |p − p∗ | > γ /2. Try a different p. */

λ ← λ + γ/2;

continue;

new origin p that separates original data points with a margin of γ/2, meaning that for each

unmanipulated positive example zt , (zt − p)Tw∗ ≥ 1/2, and for each unmanipulated negative

example zt , (zt − p)Tw∗ ≤ −1/2. When the origin is set to p, Lemma 7 shows that if Algorithm 2

is executed on the arrived examples in the new coordinate system, i.e. replacing each observed

example xt with xt − p, the number of mistakes is at most 4(2R + α )2 |w∗ |2. Putting all together, we
propose Algorithm 5 that is a generalization of Algorithm 2 for the case that original examples are

separable by a linear classifier with non-zero bias. Theorem 4 shows Algorithm 5 makes at most

O (R3 |w∗ |3) mistakes.

Lemma 6. Assume the points zt are separable by a linear separator w∗T z + b = 0 of margin

γ = 1/|w∗ |, and let p∗ be a point such that w∗T p∗ + b = 0. Then, if |p∗ − p| ≤ γ/2, the decision
boundary (z − p)Tw∗ has a margin of separation γ/2.

Proof. First, |w∗T p−w∗T p∗ | ≤ 1/2 because |w∗T p−w∗T p∗ | ≤ |w∗ | |p−p∗ | ≤ |w∗ |/2|w∗ | = 1/2.
So, for a positive data point zt , if (zt −p∗)Tw∗ ≥ 1, then (zt −p)Tw∗ ≥ 1/2. Similarly, for a negative

data point zt , if (zt − p∗)Tw∗ ≤ −1 then (zt − p)Tw∗ ≤ −1/2. □

Lemma 7. For a fixed guess p where |p∗ − p| ≤ γ/2, when the origin is set to p (i.e., each example

x is replaced by x − p), then Algorithm 5 makes at most 4(2R + α )2 |w∗ |2 mistakes.

Proof. Proof of this lemma is in the same lines as the proof of Theorem 1with somemodifications.

First, Lemma 6 shows there exists a separator with margin of separation γ/2 passing through p. By
following the steps in Lemma 1, and using a margin of separation γ/2 instead of γ , we can show

for any positive data point xt , x̃Tt w
∗ ≥ 1/2, and for any negative data point xt , x̃Tt w

∗ ≤ −1/2. Next,
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since each data point xt is moved to xt − p, maxt |x̃t | ≤ 2R + α . Finally, by applying these bounds

and following the steps in the proof of Theorem 1, the claim is proved. □

Theorem 4. Algorithm 5 makes at most 16R (2R + α )2 |w∗ |3 mistakes in total.

Proof. Since the length of the line segment between x+ and x− is at most 2R, and guesses tried

on this line segment are γ/2 apart, Algorithm 5 tries at most 4R/γ guesses for p in total. For each

guess, if the number of mistakes is greater than 4(2R+α )2 |w∗ |2, the next guess is tried. By Lemma 7,

if for a guess p, |p− p∗ | ≤ γ/2, on all the examples that will arrive the number of mistakes does not

exceed 4(2R + α )2 |w∗ |2. Therefore the claim is proved. □

Weighted ℓ1 Costs. We show a reduction from this setting to the case where unmanipulated examples

are separable by a hyperplane passing through the origin. First, similar to the ℓ2 case, an extra fake

coordinate with a value of 1 is added to each example. The bias term b is absorbed into w∗, i.e.
replacing w∗ with (w∗,b). Now for the positive examples xTt w

∗ ≥ 1, and for the negative examples

xTt w
∗ ≤ −1. Since agents cannot manipulate in the direction of the fake coordinate, the cost of

manipulation along this direction is set to be infinity. Next, we bound the number of mistakes that

Algorithm 3 makes in this setting. Since a fake coordinate is added to each example, R increases

by a value of at most 1. Since the bias term is absorbed into the w∗, the value of |w| increases by
at most b. As a result, Algorithm 3 makes at most (1 + (d + 1) (R + α + 1)2) ( |w∗ | + b)2 number of

mistakes. At the high level, the reason the direct reduction goes through for the weighted ℓ1 case
but not the ℓ2 case is that in the ℓ1 case, agents only manipulate in coordinate directions, and we

have assumed that w∗ is non-negative in each coordinate direction. So, the algorithm is not hurt

if in computing x̃t it overestimates the amount by which the agent has manipulated. This is the

property that breaks down in the ℓ2 case.

8 CONCLUSIONS AND OPEN PROBLEMS
In this work, we showed that if agents have the ability to manipulate their features within an ℓ2
ball or a weighted ℓ1 ball in order to be classified as positive, then the classic Perceptron algorithm

may fail to achieve a bounded number of mistakes even when a perfect linear classifier exists. We

then developed new Perceptron-style algorithms that achieve a finite mistake-bound, not much

greater than the classic Perceptron bound in the non-strategic case, in both the ℓ2 and weighted

ℓ1 manipulation setting. In the case that the manipulation costs are unknown to the learner—i.e.,

the radius of the ball in which agents can modify their features (or the per-coordinate radius in

the weighted ℓ1 case)—we provide an algorithm for the ℓ2 costs setting and a specific case of the

weighted ℓ1 costs setting.
Our work suggests several open problems. First, designing an algorithm for the general case

of weighted ℓ1 costs when the costs of manipulation along each coordinate is unknown. This is

challenging because given an observed data point, the learner doesn’t know which direction it may

have manipulated from, and this direction will change as the hypothesis classifier changes.

Second, for the case of inseparable data points, getting a bound in terms of the hinge-loss of

the best separator with respect to the original data points z1, z2, · · · . Our ideas in Section 3 can be

extended to get a bound in terms of the hinge-loss of the best separator of surrogate data points

x̃1, x̃2, · · · . However, the more interesting question of getting a bound in terms of unmanipulated

data points remains open. In the online version of our paper
2
, we provide an example where

Algorithm 2 makes an unbounded number of mistakes when data points are not perfectly separable,

even though there exists a separator with bounded hinge-loss.

2
https://arxiv.org/abs/2008.01710
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Third, when the separator of the original data points z1, z2, · · · does not cross the origin, as
studied in Section 7, Algorithm 5 makes at most O (R3 |w∗ |3) mistakes in the ℓ2 costs setting. Our
last open problem is whether it is possible to improve the number of mistakes to O (R2 |w∗ |2).
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