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ABSTRACT

The bimodal Wichita igneous province (WIP) represents the only exposed Ediacaran to
Cambrian anorogenic magmatic assemblage present along the buried southern margin of
Laurentia and was emplaced during rifting in the Southern Oklahoma Aulacogen prior to
Cambrian opening of the southern Iapetus Ocean. Here, we establish the first high-precision
U-Pb zircon geochronological framework for the province. Weighted mean 2*Pb/>%U dates
from mafic and felsic rocks in the Wichita Mountains indicate emplacement in a narrow time
frame from 532.49 + 0.12 Ma to 530.23 + 0.14 Ma. Rhyolite lavas in the Arbuckle Mountains
farther east yield weighted mean 2*°Pb/>*U dates of 539.20 £ 0.15 Ma and 539.46 £ 0.13 Ma.
These dates for the WIP indicate that magmatism in the Southern Oklahoma Aulacogen post-
dated the ca. 540 Ma rift-drift transition along the Appalachian margin to the east. Whole-
rock trace-element and isotopic geochemistry, supplemented by trace elements in zircon,
tracks the evolution of magma sources during WIP petrogenesis. These data indicate that
initial melting and assimilation of subcontinental mantle lithosphere by an uprising mantle
plume were followed by increasing involvement of asthenospheric melts with time. We suggest
that upwelling of this plume in the area of the Southern Oklahoma Aulacogen triggered an
inboard jump of the spreading center active along the eastern margin of Laurentia, which
led to separation of the Precordillera terrane (now located in Argentina) from the Ouachita
embayment present in the southern Laurentian margin.

INTRODUCTION

Anorogenic magmatism along craton mar-
gins provides important constraints on the tim-
ing and causes of rifting during progressive
disaggregation of supercontinents to form new
ocean basins. The western, northern, and east-
ern margins of the Laurentia craton contain a
protracted record of such magmatism, which
ranges in age from ca. 780 to 540 Ma, and which
preceded the onset of seafloor spreading during
the late Ediacaran to early Cambrian breakup
of the Rodinia supercontinent (Thomas, 2014;

*E-mail: coreywall@boisestate.edu

Yonkee et al., 2014). Indications that the largely
buried southern Laurentian margin may have
had a similar history occur in west Texas, USA
(Fig. 1A). Cryogenian to early Cambrian U-Pb
zircon ages in that region have been obtained
from volcanic rocks in drill cores in the sub-
surface Devils River uplift and from volcanic
clasts with intraplate geochemical signatures
in Ordovician strata in the Marathon fold-and-
thrust belt (Hanson et al., 2016; Dickerson et al.,
2020). The extent of this igneous activity and
its relation to rifting, however, remain unclear.

The only exposed igneous assemblage with-
in this time frame anywhere along the southern

Laurentian margin is the bimodal Wichita igne-
ous province (WIP) in southern Oklahoma and
adjacent parts of Texas (Fig. 1A). Emplacement
of these rocks occurred during extensional or
transtensional tectonism within the Southern
Oklahoma Aulacogen (SOA), which devel-
oped in relation to Cambrian opening of the
southern Iapetus Ocean (e.g., Thomas, 2011).
Although only a few parts of the WIP crop out
at the surface (Fig. 1B), a large amount of ad-
ditional information is provided by numerous
wells drilled into igneous basement in the re-
gion (Ham et al., 1964; Puckett et al., 2014).
One important aspect that has remained poorly
constrained is the duration of the igneous activ-
ity and the temporal relations of mafic and felsic
magmatism within the WIP. We used high-pre-
cision U-Pb zircon geochronology, whole-rock
isotope and trace-element geochemistry, and
zircon trace-element analyses from exposed
igneous units within the WIP to address these
questions and constrain source regions for the
bimodal magmas.

WICHITA IGNEOUS PROVINCE
Outcrops of the WIP occur in the Wichita
and Arbuckle Mountains in southern Okla-
homa (Fig. 1), which were uplifted when the
SOA underwent late Paleozoic compressional to
transpressional deformation (McConnell, 1989;
Perry, 1989). The oldest igneous unit exposed
in the Wichita Mountains, the Glen Mountains
Layered Complex (GMLC; Fig. 1C), extends for
~7000 km? in the subsurface in the western part
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Figure 1. Regional geology of the Wichita igneous province (WIP), southern Oklahoma, USA. (A) Geological setting of province. MU—Marathon
uplift; DRU—Devils River uplift. Map is modified from Hanson et al. (2013); subsurface extent of the WIP is modified from Ham et al. (1964);
early Paleozoic continental margin is from Keller and Stephenson (2007). (B) Closer view of the WIP in southern Oklahoma showing exposed
parts of the province (from Miser, 1954). WM—Wichita Mountains, AM—Arbuckle Mountains. (C) Simplified geology of the main part of the
Wichita Mountains, modified from Powell et al. (1980). Yellow stars indicate locations of geochronological samples.

of the SOA (Ham et al., 1964). The GMLC con-
sists of anorthositic and gabbroic rocks consid-
ered to represent the middle portion of a tholei-
itic layered mafic intrusion (Powell and Phelps,
1977; Powell, 1986). An angular unconformity
of 10°-20° between the igneous layering in the
GMLC and the overlying A-type rhyolites re-
cords tilting of the complex followed by a period
of erosion. Wichita granite sills compositionally
similar to the rhyolites intruded along this sur-
face (Fig. 2). Biotite-bearing Roosevelt Gabbro
plutons also intrude the GMLC but are petro-
genetically unrelated to the layered complex
(Powell, 1986). Although these biotite-bear-
ing gabbros form relatively limited exposures
in the Wichita Mountains (Fig. 1C), they are
more abundant in the subsurface (Powell et al.,
1980). Diabase dikes and sills cut all the other

igneous units (McConnell and Gilbert, 1990;
Hogan et al., 2000). Smaller outcrops of the WIP
in the Arbuckle Mountains consist primarily of
rhyolite lavas and felsic and diabasic intrusions
(Fig. S1 in the Supplemental Material'). Basalt
lavas are not exposed at the surface but occur
in large amounts in the subsurface, where they
are interbedded with rhyolites and intruded by
Wichita granite plutons (Puckett et al., 2014).
Geophysical studies indicate that those parts
of the WIP exposed at the surface represent the

Supplemental Material. Section S1 (geological
setting of Arbuckle rhyolite samples), Section S2
(analytical methods), Section S3 (CL images), Section
S4 (data tables), and Section S5 (Concordia diagrams).
Please visit https://doi.org/10.1130/GEOL.S.13020647
to access the supplemental material, and contact
editing @geosociety.org with any questions.
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uppermost portion of a mass of mafic igneous
rock that extends along the axis of the SOA,
reaches depths of at least 10 km in the crust, and
has a volume of ~210,000 km? (Hanson et al.,
2013). It is unknown how much of this mafic
mass consists of basaltic lavas versus intrusive
rocks. The total volume of felsic rock is esti-
mated to be at least 40,000 km? (Hanson and
Eschberger, 2014).

Published geochronology for the WIP in-
cludes a Sm-Nd isochron date of 528 + 29 Ma
from the GMLC (Lambert et al., 1988) and U-Pb
zircon dates of ca. 539 and ca. 536 Ma from
two rhyolite units in the Arbuckle Mountains
(Thomas et al., 2012). Additional U-Pb zircon
and titanite and “*Ar/**Ar hornblende and bio-
tite dates of ca. 577-530 Ma from rhyolites,
granites, and Roosevelt Gabbro exposed in the
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Figure 2. Cross section of igneous rocks exposed in the Wichita Mountains (Oklahoma, USA), modified from Hogan et al. (2000), with geo-
chronological samples indicated. Note that samples AE-389 and JP-118 come from rhyolites in the Arbuckle Mountains. Ranked 2°°Pb/%8U
dates from all samples dated from the Wichita igneous province are also shown. Bars represent single-zircon analyses at 2¢ uncertainty and
are color coded based on geologic unit. Bars with no color fill are zircon fractions not included in the 2°°Pb/?3¢U weighted mean. Horizontal
gray bands represent uncertainty in 2°°Pb/2*U weighted mean.

Wichita Mountains have only been published in
conference abstracts (e.g., Wright et al., 1996;
Hames et al., 1998; Hogan and Amato, 2015).

METHODS AND RESULTS

We present chemical abrasion—isotope di-
lution—thermal ionization mass spectrometry
(CA-ID-TIMS) U-Pb isotopic and laser abla-
tion—inductively coupled plasma—mass spec-
trometry (LA-ICP-MS) trace-element data for
zircon from a number of the main units exposed
within the WIP. Two samples (AE389 and JP-
118) came from the Arbuckle Mountains, from
rhyolite lavas located in the East and West Tim-
bered Hills, respectively (Fig. 1B; Fig. S1). Oth-
er samples came from the well-exposed east-
ern part of the Wichita Mountains and include
samples from rhyolite lavas at the base (JP-22)
and top (JP-120) of a sequence of felsic volcanic
rocks 22 km thick exposed at Bally Mountain
(Fig. 1C). Intrusive rocks sampled include typi-
cal anorthositic gabbro from the GMLC (G8)
and the three main granites exposed in the east-
ern Wichita Mountains. We also collected a fel-
sic pegmatitic segregation (PEG) from an inter-
nally differentiated Roosevelt Gabbro, which
intrudes the GMLC.

Based on results from 477 laser-ablation
spots, 77 grains that showed no sign of inclu-
sions and yielded consistent U-Pb laser dates
were plucked from their respective grain mounts
for high-precision CA-ID-TIMS geochronol-
ogy (see Supplemental Material S2 for methods
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and analytical results). The CA-ID-TIMS U-Pb
data for zircon from the nine samples yielded
weighted mean 2°Pb/>¥U dates in the range of
539-531 Ma (Fig. 2; Fig. S5). The two rhyolite
lavas from the Arbuckle Mountains (AE-389 and
JP-118) yielded weighted mean 2°Pb/*8U dates
0f 539.20 £ 0.15 Ma and 539.46 £ 0.13 Ma, re-
spectively. These dates are older than the cur-
rently accepted age bracket of 538.6-538.8 Ma
for the base of the Cambrian (Linnemann et al.,
2019) and indicate a late Ediacaran age for some
WIP magmatism. In contrast, our new age re-
sults from the Wichita Mountains fall entire-
ly into the early Cambrian. Anorthosite from
the GMLC (G-8) yielded a weighted mean
206Pb/>38U date of 532.49 £ 0.12 Ma (Fig. 2), and
zircon trace-element ratios from this sample are
dispersed into continental arc fields on zircon
trace-element discrimination diagrams (Fig. 3A;
Grimes et al., 2015). The Roosevelt Gabbro
(PEG) yielded a weighted mean 2°°Pb/?*#U date
of 532.05 £ 0.12 Ma, constraining intrusion and
cooling of the GMLC to have occurred within a
narrow time frame of <500 k.y. The two rhyolite
samples from the Wichita Mountains (JP-22 and
JP-120) yielded weighted mean 2Pb/>*8U dates
0f 530.98 + 0.15 Ma and 530.70 = 0.12 Ma. The
Cache Granite (WP18-1), Mt. Scott Granite
(WP16-2), and Quanah Granite (JPQ-71797)
yielded weighted mean 2°°Pb/**U dates of
530.61 £ 0.13 Ma, 530.45 £0.14 Ma, and
530.23 = 0.14 Ma, respectively. Trace-element
ratios for zircon from the Roosevelt Gabbro and

the felsic samples indicate asthenospheric sourc-
es, and the felsic data cluster near or within the
field for plume-influenced ocean-island basalt
(OIB)-type settings (Fig. 3A).

DISCUSSION

Our new dates for rhyolite lavas in the Ar-
buckle Mountains overlap within uncertain-
ty with the less-precise U-Pb zircon dates of
539 £ 5 and 536 = 5 Ma obtained by Thomas
et al. (2012) for two other rhyolite units in that
area (Fig. S1). The new dates from the Wichita
Mountains show that voluminous felsic mag-
matism occurred at 531-530 Ma in that part of
the SOA and was preceded by intrusion of the
GMLC and slightly younger Roosevelt Gabbro
at 532 Ma. Erosional removal of higher parts
of the GMLC and an unknown amount of over-
burden occurred during and/or after these rocks
were tilted northward, which is ascribed to block
rotation along south-dipping normal faults dur-
ing extensional tectonism (McConnell and Gil-
bert, 1990).

Previous workers considered the unconfor-
mity separating the main mafic units and the fel-
sic rocks in the Wichita Mountains to represent a
significant break in time (e.g., Ham et al., 1964;
Hogan and Amato, 2015), a view which was
plausible based on the existing isotopic dates
for these units. Our new data indicate that intru-
sion and block rotation of the GMLC and some
Roosevelt Gabbro plutons, extensive erosion,
and extrusion of a thick sequence of rhyolites on
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the resulting angular unconformity, along with
intrusion of slightly younger granite sills (Fig. 2,
inset), occurred in this part of the SOA within a
time frame of only ~2 m.y.

The narrow time frame of magmatism within
the WIP and its restriction to one specific area
along the southern Laurentian margin suggest
that it was generated from a focused mantle ther-
mal anomaly such as an uprising plume. The
SOA is inferred to have developed either as the
failed arm of a rift-rift-rift triple junction along
the southern Laurentian margin (Hoffman et al.,
1974) or as a transtensional fault system linked
to a transform plate boundary along the northern
margin of the Ouachita embayment (Thomas,
2011, 2014). Either model is consistent with
formation of voluminous late Ediacaran—early
Cambrian magmas in the SOA if it is assumed
that rifting or transtensional basin formation in-
teracted with, or was triggered by, an underlying
mantle thermal anomaly.

Mafic rocks in the WIP have Sr and Nd isoto-
pic ratios reflecting derivation from subcontinen-
tal lithospheric mantle as well as OIB-type as-
thenosphere (Supplemental Material S6; Hogan
et al., 1995; Brueseke et al., 2016). WIP felsic
rocks have similar Nd and Sr ratios to the mafic
rocks (see the Supplemental Material; Hogan
et al., 1995), suggesting an origin for the fel-

sic magmas either from partial melting of un-
derplated basalt or by fractionation from mafic
parental magmas. The role of asthenospheric
partial melting in the generation of the WIP is
supported by zircon trace-element geochemistry
from the felsic rocks and the Roosevelt Gabbro.
We interpret these data to reflect an OIB-type
component in the mantle source for the basaltic
magmas that were parental to the felsic units
(Fig. 3A). Zircon trace-element evidence from
the older GMLC suggests that it was derived
largely from continental lithosphere previously
modified by subduction. The contrast in zircon
chemistry between the GMLC and the younger
rocks can be explained by a process in which a
mantle thermal anomaly initially caused melting
and assimilation of subcontinental mantle litho-
sphere, which gave way to increased involvement
of asthenospheric melts with time. This is con-
sistent with whole-rock trace-element data from
a much larger sample set of WIP rhyolites and
granites. As shown in Figure 3B, the data define
a trend extending from average continental crust
well into the OIB field, pointing to varying con-
tributions from lithospheric and asthenospheric
sources during petrogenesis of the felsic rocks.

Results of the present study support inclu-
sion of the WIP within the widespread Central
ITapetus magmatic province (CIMP), as proposed
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by Ernst and Bell (2010) and Youbi et al. (2020).
CIMP developed prior to and during opening
of the central Iapetus Ocean and is represented
in Laurentia by Ediacaran intraplate magmatic
rocks preserved along the eastern Laurentian
margin in the Appalachians. Other parts of the
CIMP include voluminous intraplate igneous
assemblages with U-Pb zircon or baddeleyite
ages of 620-520 Ma in Baltica, the West Af-
rican craton, and other cratons or microconti-
nental blocks. CIMP igneous activity occurred
in pulses, likely included several different large
igneous provinces, and recorded the ascent of
multiple mantle plumes (e.g., Tegner et al.,
2019; Youbi et al., 2020).

Magmatism at 539-530 Ma in the SOA, with
a major pulse at 532-530 Ma in the Wichita
Mountains area, contrasts markedly with the
Ediacaran intraplate magmatic record preserved
in the Appalachians. Rift-related igneous rocks
there have yielded U-Pb zircon dates as young as
550 Ma (Thomas, 2014), predating early Cam-
brian establishment of the passive margin in that
region (Smoot and Southworth, 2014; Thomas,
2014). The passive margin did not begin to de-
velop until the late middle Cambrian along that
part of the Ouachita embayment proximal to
the SOA (Thomas, 2011, 2014). In a widely ac-
cepted model, the Precordillera terrane, which
has Laurentian affinities and is now located
in western Argentina, originally occupied the
Ouachita embayment (e.g., Thomas and Asti-
ni, 1996). According to this model, the Iapetus
Ocean had already started opening along the
eastern Laurentian margin before the Precordil-
lera terrane began to separate from the margin
farther southwest (present coordinates). Detach-
ment of the terrane from Laurentia required a
large inboard jump of the spreading center, but
the cause of this event has remained unclear. We
suggest that, during progressive evolution of the
CIMP, ascent of a mantle plume near the loca-
tion of what was to become the SOA resulted
in thermal weakening of the lithosphere in that
region. This plume-driven thermal weakening
triggered or facilitated the change in plate ki-
nematics that led to drift of the Precordillera
terrane away from Laurentia.
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