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Distinct critical behaviors from the same state in quantum spin and population
dynamics perspectives
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There is a deep connection between the ground states of transverse-field spin systems and the late-time
distributions of evolving viral populations—within simple models, both are obtained from the principal eigen-
vector of the same matrix. However, that vector is the wave-function amplitude in the quantum spin model,
whereas it is the probability itself in the population model. We show that this seemingly minor difference has
significant consequences: Phase transitions that are discontinuous in the spin system become continuous when
viewed through the population perspective, and transitions that are continuous become governed by new critical
exponents. We introduce a more general class of models that encompasses both cases and that can be solved
exactly in a mean-field limit. Numerical results are also presented for a number of one-dimensional chains
with power-law interactions. We see that well-worn spin models of quantum statistical mechanics can contain
unexpected new physics and insights when treated as population-dynamical models and beyond, motivating
further studies.
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I. INTRODUCTION

A. Viral populations and quantum spins:
Qualitative comparison

In a somewhat simplified perspective, the evolution of viral
populations is governed by two competing processes: Muta-
tion of the genetic code on reproduction and natural selection
due to differences in the corresponding reproduction rates.
Mutations destroy the information contained in the genetic
sequence and lead to a wider variety of sequences in the
population (known as a quasispecies cloud), whereas selection
promotes those sequences which give the fastest reproduction
rates at the expense of slower members. The quasispecies
population collapses if the rate of mutations is too large,
suggesting a sharp transition—an “error catastrophe”—in the
number of mutations per virus [1,2]. It has motivated the
treatment of ribonucleic acid (RNA) viruses such as human
immunodeficiency virus (HIV) through hypermutation: in-
creasing the average mutation rate in the viral population so as
to drastically reduce the proportion of viable members [3–9].

The competition between mutation and selection is
analogous to competition between the two terms of a quantum
transverse-field Ising model: The transverse field encourages
spin flips and leads to a ground state that is superposed from a
wider variety of configurations, whereas spin-spin interactions
bias the ground state toward specific configurations having
lower interaction energy. An error catastrophe simply
corresponds to a phase transition in the usual sense

of statistical mechanics, i.e., nonanalyticity of an
observable [10].

B. Viral populations and quantum spins:
Quantitative comparison

The above analogy has been formulated mathematically
and shown to be quite deep [11–15]. Let us briefly summarize
the precise relationship.

A particularly simple model for mutation-selection dynam-
ics is to represent genetic sequences by chains of Ising spins:
σ ≡ {σi}N

i=1, where σi = −1 indicates a mutation on site i
and σi = 1 indicates no mutation (called “wild-type”). The
wild-type state on site i changes to the mutated state at rate
"+

i , and the mutated state reverts to wild-type at rate "−
i . Each

sequence σ reproduces at a certain rate F (σ ), called the fitness
function. Natural selection is captured by the fact that different
σ have different values of F (σ ).

A useful measure of the relative strength of mutation ver-
sus selection is the surplus µ1, defined as the average value
throughout the population of N−1 ∑

i σi, i.e., the number of
wild-type sites minus the number of mutated sites. Clearly
smaller "±

i and steeper F (σ ) favor µ1 ≈ 1 (assuming the
wild-type state has highest fitness), while larger "±

i and shal-
lower F (σ ) favor µ1 < 1.

To describe how the population changes over time, we con-
sider the number of members N (σ, t ) having each possible
sequence σ at time t . Denoting by Liσ the sequence which has
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spin i flipped relative to σ [e.g., L1(1, 1, 1, ) = (−1, 1, 1)],
the time evolution of the population is given by the set of
equations

d
dt

N (σ, t ) = F (σ )N (σ, t )

+
∑

i

[
"−σi

i N (Liσ, t ) − "σi
i N (σ, t )

]
. (1)

The first term is the change due to reproduction, and the
second term is that due to mutation. We write Eq. (1) more
compactly by denoting N (σ, t ) as a vector |N (t )〉 in the
2N -dimensional Hilbert space having basis states |σ 〉 (i.e., so
that 〈σ |N (t )〉 = N (σ, t )). Evolution according to Eq. (1) is
then cast in the matrix form

d
dt

|N (t )〉 = −H |N (t )〉, (2)

H ≡ −F (σ̂ z ) +
∑

i

(
"+

i + "−
i

2
+ "+

i − "−
i

2
σ̂ z

i

)

−
∑

i

("+
i σ̂+

i + "−
i σ̂−

i ), (3)

with σ̂ being the standard Pauli operators.
Equation (3) is quite literally the Hamiltonian of a

transverse-field Ising model (albeit non-Hermitian unless
"+

i = "−
i ), and Eq. (2) can equally be seen as the imaginary-

time Schrodinger equation. In particular, as t → ∞, the state
|N (t )〉 approaches the ground state of the Hamiltonian. The
steady-state value of the surplus in the population is seen to be
a ground-state property of the associated Ising Hamiltonian,
analogous to the longitudinal magnetization, and any error
catastrophe corresponds to a quantum phase transition.

C. Summary of our results

Despite the deep connection between an error catastrophe
and a quantum phase transition, the purpose of the present
paper is to show that the nature of the transition is often
qualitatively different when viewed through the surplus rather
than the magnetization. There have been observations of this
phenomenon previously [14,16,17] (although some specific
models have turned out to be misleading [18]), and these ob-
servations have been explained in a purely mathematical sense
[15,19]. Yet in our opinion, such explanations, valuable as
they are, do not give much physical intuition and risk making
the correspondence between the two fields seem less powerful
than it is. Our aim in this paper is to study the problem
using the techniques and terminology of quantum statistical
physics, with the hope of encouraging further investigation
of population-dynamical models among the condensed-matter
physics community.

One common means of classifying phase transitions is
by the nonanalyticity of an order parameter, e.g., continuous
versus discontinuous. We shall show that the surplus can go
to zero continuously even when the magnetization is discon-
tinuous, and can have novel critical exponents at continuous
transitions. As will become clear, these differences stem from
one detail which was glossed over in the above discussion:
The weight 〈σ |N (t )〉 (once normalized) is the probability of
observing configuration σ when sampling randomly from the

FIG. 1. Sketch of a typical phase diagram in the "-β plane,
where " is the transverse field and β is the power to which the
wave-function amplitude is raised (see the discussion in Sec. I C).
Red shading indicates the ordered phase and blue indicates disor-
dered. The black dashed line indicates a continuous transition and
solid indicates discontinuous, and the red dashed line is a transition
between two ordered phases. The quantum model corresponds to
the line β = 2, and the population dynamics model to β = 1 (both
dotted).

population, whereas if |N (t )〉 were a quantum state, then it
would be the square root of the probability.

Furthermore, we place these results in the context of a
larger family of models, taking the probabilities to be the
weights 〈σ |N (t )〉 raised to an arbitrary power β (β = 1
corresponds to the population dynamics model and β = 2
corresponds to standard quantum mechanics). This reveals in-
tricate "-β phase diagrams, one example of which is sketched
in Fig. 1. We show that the nature of the phase transition in "
can depend on β in a variety of ways, with the overall trends
that the transition becomes continuous at lower β and the crit-
ical field begins increasing at larger β. The full significance
of this nontrivial β dependence remains to be discovered, but
it is already useful in elucidating our results on surplus and
magnetization.

Finally, let us briefly mention an alternative perspective
on the difference between surplus and magnetization: The
distinction between surface and bulk critical phenomena in
classical spin systems [16,20]. We shall postpone a review of
the relationship until later in the paper, but the main result
(not due to us) is that nonzero surplus corresponds to order
at the surface, whereas nonzero magnetization corresponds
to order in the bulk. This already gives some intuition as to
how the two can have different continuity properties: Spins
at the surface interact with fewer neighbors and have larger
fluctuations than in bulk, leading to a suppressed surplus. Our
results show that this is sufficient to modify the critical prop-
erties quite generically, not only in special cases, and further
provide a generalization to arbitrary β (which no longer has
the mapping to surface physics).

D. Roadmap

In Sec. II, we present the analytical treatment of symmetric
models, i.e., models in which the fitness function depends
solely on the total magnetization. Although idealized, they
often serve as valuable toy systems among both the statisti-
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cal physics and population genetics communities [15,21–24].
We show that the models commonly used to demonstrate
discontinuous magnetic phase transitions generically have a
continuous surplus. In Sec. III, we then present numerical
results demonstrating the same phenomena in nonsymmetric
models. Although finite-size effects prevent any quantitative
conclusions, we do find evidence that the surplus often has
distinct critical exponents at continuous phase transitions. Fi-
nally, in Sec. IV, we discuss the relationship to critical surface
phenomena and then conclude.

II. EXACT SOLUTION OF SYMMETRIC MODELS

Symmetric Hamiltonians constitute a large family of mod-
els for which we can determine the ground state analytically,
at least to leading order in large N . By symmetric, we mean
any fitness function F (σ ) which depends only on the total
spin-z M(σ ) ≡

∑
i σi. An example is

F0(σ ) = 1
N

∑

i, j

σiσ j = 1
N

M(σ )2, (4)

which can equivalently be thought of as an Ising model with
infinite-range interactions. More generally, we write

F (σ ) = N f
[

M(σ )
N

]
, (5)

where the factors of N are included simply for convenience
in what follows. Furthermore, to make closer contact with the
models used in statistical physics, we shall restrict ourselves
to Hermitian Hamiltonians ("+

i = "−
i ).

A. Definitions and notation

Taking |N 〉 to be the ground state of Eq. (3), we denote
〈σ |N 〉 by Cσ . Note that by the Perron-Frobenius theorem,
Cσ ! 0 for all σ . The symmetry of the Hamiltonian ensures
that the eigenstates have definite total angular momentum
Ŝ2 ≡ |

∑
i σ̂i|

2
, and we shall focus on the subspace of maximal

angular momentum N . In this subspace, Cσ is identical for
all configurations having the same M(σ ). We shall henceforth
write CM , where M ∈ {−N,−N + 2, . . . , N}.

We will find that CM is, to leading order, exponentially
small in N . In particular,

CM ∼ e−Nα(m), (6)

for some smooth function α of m ≡ M/N .
By definition, the magnetization density of |N 〉 when

viewed as a quantum state is

µ2 ≡ 1
N

∑
σ M(σ )C2

M(σ )∑
σ C2

M(σ )
. (7)

Correspondingly, the surplus density of |N 〉 when viewed as
a population is

µ1 ≡ 1
N

∑
σ M(σ )CM(σ )∑

σ CM(σ )
. (8)

Note that we can write

µ2 = 1
N

∑

M

M|%(M )|2, µ1 = 1
N

∑

M

MP(M ), (9)

where

|%(M )|2 =
∑

σ δM(σ ),MC2
M(σ )∑

σ C2
M(σ )

∝
(

N
N+M

2

)
C2

M ,

P(M ) =
∑

σ δM(σ ),MCM(σ )∑
σ CM(σ )

∝
(

N
N+M

2

)
CM ,

(10)

i.e., |%(M )|2 and P(M ) are the probability distributions for the
magnetization and surplus respectively.

At large N , the binomial coefficient can be approximated
as (m ≡ M/N)

(
N

N+M
2

)
∼ eNh(m), (11)

where

h(m) = −1 + m
2

log
1 + m

2
− 1 − m

2
log

1 − m
2

. (12)

Using Eq. (6), we have that

|%(M )|2 ∝ eN[h(m)−2α(m)], P(M ) ∝ eN[h(m)−α(m)]. (13)

To leading order as N → ∞,

µ2 ∼ argmax[h(m) − 2α(m)],

µ1 ∼ argmax[h(m) − α(m)],
(14)

where argmax denotes the value of m for which the argument
is maximum. Generalizing slightly, we can define an entire
family of distributions,

Pβ (M ) =
∑

σ δM(σ ),MCβ
M(σ )∑

σ Cβ
M(σ )

∝ eNsβ (m), (15)

where sβ (m) = h(m) − βα(m), for an arbitrary positive real
number β. The generalized magnetization µβ is defined as the
expectation value with respect to Pβ (m) (hence the notation
µ2 for magnetization and µ1 for surplus). Although we do not
have a physical interpretation for µβ at arbitrary β, it will be
useful to consider β as a tunable parameter.

In the calculations that follow, it will be easier to work
directly with %(M ) rather than CM , thus we give the exponent
a name:

1
N

log %(M ) ≡ φ(m) = 1
2

h(m) − α(m). (16)

To summarize, in the following section we shall calculate
φ(m) and then determine sβ (m) via

sβ (m) =
(

1 − β

2

)
h(m) + βφ(m) (17)

and finally µβ via

µβ = argmax[sβ (m)]. (18)

B. Large-N analysis

The eigenstates of H in the subspace of maximal angular
momentum can be determined analytically using the WKB
method, which becomes exact in the N → ∞ limit. This
technique, or equivalent formulations of it, has been applied

012106-3



BALDWIN, SHIVAM, SONDHI, AND KARDAR PHYSICAL REVIEW E 103, 012106 (2021)

successfully in both the quantum physics and population ge-
netics fields, and we refer to the literature for further details
[13,15,23,25,26].

Noting that 〈M|N 〉 = %(M ) as defined above (where |M〉
is the basis state having total spin-z M), we project the eigen-
value equation E |N 〉 = H |N 〉 onto |M〉 to obtain

E%(M ) = −N f
(

M
N

)
%(M )

− "

2

√
(N + M )(N − M + 2)%(M − 2)

− "

2

√
(N − M )(N + M + 2)%(M + 2). (19)

We write both log %(M ) and E as series in N :

%(M ) = eNφ(m)+φ1(m)+ 1
N φ2(m)+···, (20)

E = Nε + ε1 + 1
N

ε2 + · · · , (21)

then insert into Eq. (19) and equate like powers of N (while
expanding terms like φ(m ± 2

N ) in Taylor series). For our
purposes, only the O(N ) equation will be needed. It is

ε = − f (m) − "
√

1 − m2 cosh
(

2
dφ

dm

)
. (22)

Solving for dφ/dm, we have

dφ

dm
= 1

2
log [κ (m) ±

√
κ (m)2 − 1], κ (m) ≡ −ε − f (m)

"
√

1 − m2
.

(23)

As discussed in Appendix A, the correct sign to use in
Eq. (23) is the plus sign near m = −1 and the minus sign near
m = 1, needed so that Eq. (23) agrees with the Schrodinger
equation at the end points (for which a separate expansion
is needed). This then requires that |κ (m)| cross 1 at some
intermediate value of m, so that dφ/dm is nonanalytic there
[27]. The requirement that |κ (m)| " 1 for at least one point
m translates to a restriction on the allowed values of ε: There
must be a point m at which

U−(m) " ε " U+(m), U±(m) ≡ − f (m) ± "
√

1 − m2.
(24)

The ground-state energy is the lowest allowed value:

εGS = minm[U−(m)]. (25)

These equations are best understood graphically, such as in
Fig. 2.

Equation (24) further has a nice physical interpretation:
Consider a classical spin ŝ, by which we mean a unit vector in
R3, with an energy function Hcl(ŝ) analogous to the original
Hamiltonian:

Hcl(ŝ) = − f (sz ) − "sx, (26)

where sx and sz are the projections along the x and z axes. If sz

is fixed to be m, then sx can take values between −
√

1 − m2

and
√

1 − m2. U+(m) and U−(m) are precisely the maximum
and minimum corresponding energies, and the lowest possible
energy is found by minimizing U−(m), i.e., Eq. (25).

FIG. 2. Sketch of an example potential U−(m) (solid black line),
the ground-state energy density εGS and average magnetization µ2,
and the resulting wave-function exponent φ(m) (red line).

The magnetization density of the ground state is
correspondingly

µ2 = argminm[U−(m)]. (27)

This follows from having dφ/dm > 0 for m less than the
argmin and dφ/dm < 0 for m greater than the argmin:

dφ

dm
=

{
1
2 log [κ (m) +

√
κ (m)2 − 1], m " argmin[U−]

1
2 log [κ (m) −

√
κ (m)2 − 1], m ! argmin[U−]

.

(28)
Thus φ(m) is maximized at the argmin. Since µ2 is the sum
over M of M|%(M )|2 and %(M ) scales exponentially with
N , the sum is dominated by where the exponent is maximal,
giving Eq. (27). The situation is sketched in Fig. 2.

With this analysis in hand, we now calculate φ(m) and
sβ (m) for a variety of symmetric Hamiltonians. The locations
of the maxima of sβ (m) then give the values of µβ shown in
what follows [see Eqs. (17) and (18)].

C. Results

For concreteness, we have focused on systems which ex-
hibit a transition from an ordered phase having magnetization
µ2 > 0 to a disordered phase having µ2 = 0 as " is increased.
A sufficient condition is that the fitness function f (m) increase
monotonically with m and grow no faster than O(m2) near
m = 0. For example, f (m) = m2sgn[m] and f (m) = m3 both
exhibit such a transition, as shown in Fig. 3. Note that the
former undergoes a continuous transition (in that µ decreases
to 0 continuously), whereas the latter is discontinuous.

The corresponding µβ for these examples are shown in
Fig. 4. Considering the upper panel, we see that as " → "c
from below, the magnetization µ2 vanishes as

√
"c − " but

the surplus µ1 vanishes more rapidly as "c − " (the precise
scaling can easily be verified analytically). In the language
of critical exponents, the magnetization has exponent 1/2
whereas the surplus has exponent 1.

The contrast is even more stark in the lower panel: Whereas
µ2 remains finite as " → "c, µ1 vanishes. This behavior is
quite generic. Figure 5 presents the magnetization and surplus
for a wide variety of fitness functions, all chosen so that the
transition in magnetization is discontinuous. In all cases, the
transition in surplus is nonetheless continuous.
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FIG. 3. Two examples of the potential U−(m) as a function of
m for various " (increasing from blue curves to red). The fitness
functions f (m) are indicated, and the potential is given by Eq. (24).
For this figure, constants have been added to U−(m) so that U−(0) =
0. Top: A potential which gives a continuous transition. Solid curves
are " = 1.5, 2.0, 2.5 (blue to red). Bottom: A potential which gives
a discontinuous transition. Solid curves are " = 1.2, 1.3, 1.4.

Furthermore, one can prove that the surplus transition is
continuous for any model which meets our two criteria stated
above [namely that f (m) increases monotonically and grows
no faster than O(m2) near m = 0]. The proof is given in
Appendix B.

Our goal is now to understand this phenomenon in more
physical terms. In doing so, it will be convenient to consider
the parameter β as an arbitrary positive real number. For
reference, recall the expressions

µ2 = argminm[U−(m)], εGS = U−(µ2),

κ (m) ≡ 1 + U−(m) − εGS

"
√

1 − m2
, (29)

from which the exponent of the ground-state wave function is,
for m " µ2 [see Eq. (28)],

φ(m) = −1
2

∫ µ2

m
dm log [κ (m) +

√
κ (m)2 − 1], (30)

FIG. 4. Generalized magnetization µβ as a function of ", for
various β (decreasing from blue to red) and the same fitness functions
as in Fig. 3. The vertical black lines indicate the values of "c (µβ is
identically 0 for " > "c).

and the generalized magnetization µβ is given by

µβ = argmaxm[sβ (m)], sβ (m) =
(

1− β

2

)
h(m) + βφ(m),

(31)

where h(m), the “binomial entropy,” is given by Eq. (12). We
are setting φ(µ2) = 0 for convenience.

Note that the numerator of κ (m) − 1 is the height of the po-
tential barrier, U−(m) − εGS. Furthermore, dφ/dm increases
monotonically with κ (m). Thus the wave function behaves
roughly as one would find in the WKB treatment of one-
dimensional tunneling problems: The slope is zero only at
points where the barrier vanishes, and the wave function falls
off faster in regions where the barrier is larger (albeit with
the factor of "

√
1 − m2 included). Figure 6 gives an example.

Note that the qualitative features of φ(m) can be predicted
simply from the shape of U−(m).

First consider β < 2. A number of results follow immedi-
ately from the above discussion:

(i) The surplus is less than the magnetization—this fol-
lows from the fact that dsβ/dm|m=µ2 < 0 for β < 2.
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FIG. 5. Comparison of magnetization (blue, β = 2) against surplus (red, β = 1) for many different fitness functions. In all plots, the
rightmost value of " is the transition point "c.

(ii) The surplus is nonnegative—this follows from
dsβ/dm > 0 for m < 0.

(iii) The surplus is positive for all " < "c—this fol-
lows from dφ/dm|m=0 > 0 (since U−(0) > εGS) and thus
dsβ/dm|m=0 > 0.

(iv) The surplus is strictly zero for all " > "c—both
dφ/dm and (1 − β/2)h(m) are maximized at m = 0 when
" > "c.

Note that all these features are borne out in Fig. 4.
The maximization of sβ (m) can be thought of as a compe-

tition between two terms. The binomial contribution h(m) is
an entropic term, in that it is maximal at m = 0 and strictly
concave everywhere. The wave function φ(m) is an energetic
term (although not literally an energy), since it is maximal at
m = µ2. β then plays a role analogous to the inverse tempera-
ture in a thermal ensemble: In one limit (β = 0), the entropic
term dominates; in another limit (β = 2), the energetic term
dominates; and for β in between, the maximum is at an inter-
mediate value of m.

These considerations together explain why µβ lowers con-
tinuously to 0 as " → "c, at least for small β. The wave
function φ(m) is a small perturbation to h(m) when β is small,
and in particular sβ (m) will be strictly concave for β less than
a certain nonzero value. The strict concavity ensures that µβ

varies continuously with ", and since we know that µβ = 0 at
" = "c, it follows that µβ → 0 as " → "c.

Of course, this argument does not prove that µ1, the
quantity which we are most interested in, must approach
0. That proof is supplied in Appendix B, where we show
that s1(m) cannot be maximized at m ∼ O(1) as " →
"c. In this sense, β = 1 is sufficiently “small” for the
above argument to hold. The critical value of β sepa-

rating continuous from discontinuous µβ can generically
be anywhere between 1 and 2, depending on the fitness
function.

It is interesting to note that in models with flat fitness
functions, such as the single-peak landscape often studied
in the literature [16,18], these conclusions no longer hold.
In particular, one can verify that the surplus of the single-
peak landscape [ f (m) = δm,1] is discontinuous: The surplus
jumps from 1 to 0 at " = 1. The situation also becomes more
complex if one allows for alternate configuration spaces, such
as the truncated configuration space considered in Ref. [17].
In that model, the authors demonstrated that the surplus
and magnetization transitions can occur at different values
of ".

Finally, let us briefly consider β > 2. The entropy term
(1 − β/2)h(m) is now convex, and is minimized at m = 0
rather than maximized. Thus µβ > µ2. As a result, µβ need
not be zero for all " > "c, although it is certainly nonan-
alytic at "c. We generically find the behaviors indicated in
Fig. 7: If the transition in µ2 is continuous, then the tran-
sitions in all µβ will be as well, but at fields increasing
with β. One can confirm that the critical exponents are the
same as for the magnetization, i.e., those of standard mean-
field theory. For discontinuous transitions, the critical field
remains at the original "c for β less than a certain model-
dependent value, past which it increases with β. In its place
at the original "c remains an ordered-to-ordered transition,
which is always continuous: since dφ/dm is continuous at "c
for all m > µ2 [see Eq. (28) and note that m > argmin[U−]
both above and below "c], so is the solution to the equa-
tion dsβ/dm = 0. The resulting phase diagram is sketched
in Fig. 1.
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FIG. 6. Wave function φ(m) for the f (m) = m3 fitness function,
both for a value of " less than "c (top) and " = "c (bottom). Wave
functions are in red, while the corresponding potentials U−(m) are
shown in black, with εGS and µ indicated by dashed lines. The precise
values of " are 1.2 (top) and 1.299 (bottom).

III. NUMERICAL RESULTS FOR SHORT-RANGE MODELS

To reiterate, our analysis of symmetric models identified
two important differences between the magnetization and sur-
plus at the critical point: In situations where the magnetization
approaches 0 continuously, the surplus is characterized by a
different critical exponent (µ1 ∼ "c − " vs. µ2 ∼

√
"c − ");

and in situations where the magnetization is discontinuous,
the surplus is nonetheless continuous. The rough intuition
is that the surplus is more influenced by the entropic effect
of there being more configurations having small total spin-
z than large. Yet the analysis used to derive these results
relied heavily on the model being symmetric, thus we now
investigate whether the conclusions extend to more general
systems.

We study a series of one-dimensional transverse-field Ising
models through exact diagonalization of the Hamiltonian.
Unfortunately, the accessible system sizes are too small to
draw any quantitative conclusions. One could perform a more
systematic study using quantum Monte Carlo—note that the
models considered here do not have sign problems—together
with a finite-size scaling analysis, but we leave that for future

FIG. 7. Generalized magnetization µβ as a function of ", for
various β both greater than and less than 2 (decreasing from blue
to red). Fitness functions are indicated above each plot. The vertical
black lines indicate "c for the quantum transition (β = 2).

work. The purpose of this section is merely to provide prelim-
inary evidence suggesting that the surplus and magnetization
exhibit different critical properties even in nonsymmetric
models.

One such Hamiltonian, the nearest-neighbor ferromagnetic
chain, can be solved analytically as was done in Ref. [11]. The
authors showed that the surplus undergoes a nonanalyticity at
the same "c as the magnetization, but with an exponent of 1/2
rather than the well-known 1/8 of the magnetization (see also
Ref. [28]).

Here we consider the following fitness functions, all of
which are for an N-site chain:

F5(σ̂ z ) =
∑

i< j

1
|i − j|5

σ̂ z
i σ̂ z

j , (32)

F5/2(σ̂ z ) =
∑

i< j

1
|i − j|5/2

σ̂ z
i σ̂ z

j , (33)

F3/2(σ̂ z ) =
∑

i< j

1
|i − j|3/2

σ̂ z
i σ̂ z

j , (34)

FFour(σ̂ z ) =
∑

i

σ̂ z
i σ̂ z

i+1 −
∑

i

σ̂ z
i σ̂ z

i+1σ̂
z
i+2σ̂

z
i+3. (35)
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FIG. 8. Surplus (solid lines) and magnetization (dashed lines) as
functions of transverse field, for the Ising models in Eqs. (32)–(34).
System size is N = 22. For each model, "m is the field at which
µ2 = 0.3, chosen simply to normalize the x axis (since the three
models have significantly different "c). The solid black line is merely
a straight line drawn for comparison.

These models do not have analytic solutions, but it is known
that the quintic power-law model F5 has the same magne-
tization exponents as the nearest-neighbor chain, the 3/2
power-law model F3/2 has those of mean-field theory, and
the 5/2 model F5/2 has intermediate exponents [29,30]. In
general, longer-range interactions have a larger exponent gov-
erning the magnetization. The results shown in Fig. 8 are
qualitatively consistent with this trend—the curvature of the
curves is smaller for the longer-range models—and we see
that the same trend holds for the surplus. Again, these obser-
vations are hardly quantitative and the differences are quite
modest. One feature which is reasonably clear, however, is
that the surplus seems to have a larger exponent than the
magnetization in all cases shown.

As for Eq. (35), the model with antiferromagnetic four-spin
interactions, it has been shown to exhibit a discontinuity in
magnetization as one increases " [31]. Figure 9 shows the
surplus and magnetization for FFour. Even though the small
system sizes again prohibit quantitative statements, we see
that the magnetization curves are consistent with a discontin-
uous transition: The falloff near the transition region becomes
sharper as system size increases. The surplus curves do not
show any such behavior, and instead are more consistent with
a continuous transition. It thus appears that even in nonsym-
metric models, the surplus and magnetization transitions can
have different orders.

We have not been able to reach any conclusions regarding
β > 2—finite-size effects are too severe—but we expect the
behavior seen in symmetric models to apply here as well,
namely that µβ remains nonzero at "c (albeit nonanalytically)
for sufficiently large β. The intuition is again that µβ is shifted
relative to µ2 by an entropic effect, but with the entropic
correction now acting to keep µβ ,= 0 at "c. There are many
interesting questions, e.g., the nature of the nonanalyticity at

FIG. 9. Surplus (solid lines) and magnetization (dashed lines) for
the Ising model with four-spin interactions, Eq. (35). Insets show
magnified portions of the plot, demonstrating that the magnetization
curves cross each other whereas the surplus curves decrease mono-
tonically with N even at small ".

"c and whether µβ drops to zero at larger fields, and a more
systematic study is clearly warranted.

IV. DISCUSSION AND CONCLUSION

Many quantum spin Hamiltonians can serve as generators
for the evolution of populations under joint mutation and
selection, and quantum phase transitions are then associated
with error catastrophes. We have shown here that despite
the correspondence between the spin magnetization and the
population surplus, the continuity properties of the two can
be different. Transitions in which the magnetization is discon-
tinuous often have a surplus which remains continuous, while
continuous transitions come with novel critical exponents for
the surplus.

There is a third perspective through which to view these
results: the different critical properties of free surfaces as
compared to bulk in classical Ising models. It is well-known
that d-dimensional quantum Ising systems can be mapped
to (d + 1)-dimensional classical systems, and it is also well
documented that systems with open boundary conditions can
have different critical exponents or even orders of transitions
at the free surfaces.

To see explicitly that the surplus in mutation-selection
models corresponds to a surface magnetization, note that the
time evolution of the population [say, starting from a specific
sequence σ (0)] can be written compactly as

N (σ, t ) = 〈σ |N (t )〉 = 〈σ |e−Ht |σ (0)〉, (36)

which can then be expressed through standard means as
the partition function of a classical system. For example, in
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the transverse-field models considered here,

N (σ, t ) =
∑

σ (1)···σ (M−1)

〈σ |e−H t
M |σ (M−1)〉〈σ (M−1)| · · · |σ (1)〉〈σ (1)|e−H t

M |σ (0)〉

∼
∑

σ (1)···σ (M−1)

exp

{
M−1∑

m=0

[
t

M
F (σ (m) ) + V (σ (m+1), σ (m) )

]}

, (37)

where V (σ, σ ′) ≡ 1
2 log coth "t

M

∑
i σiσ

′
i plus a constant (with

M → ∞ implied). We see that the transverse field cor-
responds to a ferromagnetic interaction between σ (m) and
σ (m+1), regardless of the form of the fitness function.

Note that in Eq. (37), σ (M ) is fixed at σ . It is also a
“surface” layer of spins, in that there is no σ (M+1) to interact
with. Finally, to compute the average over the population of
any quantity g(σ ), we evaluate

∑

σ

g(σ )
N (σ, t )∑
σ ′ N (σ ′, t )

∝
∑

σ (1)···σ (M )

g(σ (M ) ) exp [· · · ], (38)

where · · · denotes the exponent in Eq. (37). For the surplus in
particular, we see that it is precisely the average magnetization
of the surface layer in the classical Ising model.

This relationship was first discussed in Ref. [20], and
indeed, many of the previous works comparing surplus to
magnetization have been in the language of surface versus
bulk magnetization [16,32]. In particular, the continuity of
magnetization at the surface despite discontinuity in the bulk
has been understood as an example of “wetting.” The exis-
tence of novel surface exponents has also been well studied in
that context [33–35].

Of course, these considerations alone do not prove that
the surplus must behave differently than magnetization at the
transition point. Rather, they simply raise the possibility. The
results we have presented here show that it is indeed a generic
phenomenon which occurs in practice.

It is clear that the techniques and ideas of quantum statisti-
cal physics can fruitfully be applied to problems in population
dynamics. At the same time, as the above results demonstrate,
the population-dynamical analogs of quantum spin systems
exhibit novel behaviors which are not simple corollaries to the
quantum physics. The former can also be considered in situ-
ations where the latter cannot, such as non-Hermitian models
[36]. Further investigation of quantum systems as population-
dynamical models and vice versa will undoubtedly uncover
additional surprises and insights for both fields.

Finally, there is the question of whether the generalized
magnetization µβ has physical significance for arbitrary β.
This larger family of observables is useful for understanding
the distinction between surplus and magnetization, as can be
seen in Fig. 1, and it would be valuable to know what other
information is contained in the "-β phase diagram. There
are contexts in which one considers a probability distribu-
tion raised to arbitrary powers. For example, Ref. [37] has
recently shown that, for certain classes of quantum Hamil-
tonians, exponentiating the reduced density matrix obtained
from an eigenstate at some energy density allows one to
probe properties of the system at different energy densities.

Similarly, Ref. [38] has demonstrated that raising the reduced
density matrix to a large power, as had been done in studies of
topological order [39,40], can introduce spurious phase tran-
sitions not seen in the original system. Two other situations
which come to mind are calculation of Renyi entropies (both
classical [41] and quantum [42]) and multifractality [43–45],
and we certainly expect that these are not the only examples.
The implications of our results in these areas is a topic for
further study.
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APPENDIX A: BOUNDARY CONDITIONS

In the main text, we derived Eq. (22), written here as

cosh
(

2
dφ

dm

)
= κ (m), κ (m) ≡ −ε − f (m)

"
√

1 − m2
. (A1)

At every m, this equation has two solutions:

dφ

dm
= 1

2
log [κ (m) ±

√
κ (m)2 − 1]. (A2)

Just as in one-dimensional tunneling problems, the bound-
ary conditions determine which sign to use. Here, we show
that the correct sign is + near m = −1 and − near m = 1.
This then fixes the allowed values of ε, as discussed in the
main text.

Starting from the Schrodinger equation, Eq. (19), first set
M = N − 2J with J . O(N ). To leading order in J/N , the
equation simplifies to

%(J +1) = − E + N f (1)
"

√
N (J +1)

%(J ) −
√

J
J +1

%(J −1). (A3)

The second term on the right-hand side will turn out to be
subleading compared to the first, and so we omit it. Defining
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*(J ) ≡ log %(J ), we have

*(J + 1) = *(J ) + 1
2

log
N

J + 1
+ log

−ε − f (1)
"

, (A4)

which can be easily solved:

*(J ) = *(0) + J log
−ε − f (1)

"
+ 1

2

J∑

K=1

log
N
K

. (A5)

This is an exact expression for the solution of the Schrodinger
equation, which does not rely on taking any continuum limit.

Let us now compare Eq. (A5) to what we would find ex-
panding the continuum Eq. (A2) in 1 − m. Note that κ (m) →
∞ as m → 1 [at least for ε ,= f (1)]. Thus

dφ

dm
∼ ± 1

2
log 2κ (m)

∼ ± 1
2

log

√
2[−ε − f (1)]

"
∓ 1

4
log (1 − m). (A6)

Integrating from m = 1 to m = 1 − 2 j gives

φ(1 − 2 j) = φ(1) ∓ j log
−ε − f (1)

"
∓ 1

2

∫ j

0
dk log

1
k
.

(A7)

Comparing Eqs. (A5) and (A7) [noting that *(J ) = Nφ(1 −
2 j) by definition], we see that the lower sign is needed for the
continuum result to agree with the exact expression.

A similar analysis holds near m = −1. Writing M =
−N + 2J and *(J ) = Nφ(−1 + 2 j), we find

*(J ) = *(0) + J log
−ε − f (−1)

"
+ 1

2

J∑

K=1

log
N
K

, (A8)

to be compared with

φ(−1+ 2 j) = φ(−1) ± j log
−ε − f (−1)

"
± 1

2

∫ j

0
dk log

1
k
.

(A9)

The upper sign is needed for the two expressions to agree.
Thus a valid solution to the Schrodinger equation must

indeed obey Eq. (A2) with the plus sign near m = −1 and
the minus sign near m = 1.

APPENDIX B: CONTINUITY OF THE SURPLUS

Here we show that the surplus must approach 0 continu-
ously as " → "c, for any symmetric model which meets the
criteria given in the main text ( f (m) increasing monotonically
with m and growing no faster than O(m2) near m = 0). We
do so by proving that at "c, ds1/dm " 0 for all m ! 0, with
equality only at m = 0. Since s1(m) varies continuously as
" approaches "c from below (it is only when the argmin of
U−(m) jumps as " crosses "c that there is a nonanalyticity),
this implies that for " infinitesimally less than "c, the argmax
of s1(m) cannot be at any noninfinitesimal m, i.e., µ1 is
continuous in ".

Without loss of generality, we can take f (0) = 0. At "c,
which is the field strength at which U−(0) = εGS, we thus have
εGS = −"c. Then

κ (m) = "c − f (m)

"c
√

1 − m2
. (B1)

We thus write ds1/dm as

ds1

dm
= 1

4
log

1 − m
1 + m

+ 1
2

log [κ (m) +
√

κ (m)2 − 1]

= 1
2

log
1

1 + m
+ 1

2
log

[

1 − f (m)
"c

+

√

m2 − 2
f (m)
"c

+ f (m)2

"2
c

]

. (B2)

Since the minimum of U−(m) is not at m = 1, we know that

U−(1) = − f (1) > εGS = −"c, (B3)

and since f (m) is monotonic in m, it follows that for all m ∈ [0, 1],

0 " f (m) < "c. (B4)

We thus have the following chain of inequalities:

−2
f (m)
"c

+ f (m)2

"2
c

" 0

⇒ −2
f (m)
"c

+ f (m)2

"2
c

" m2
[
−2

f (m)
"c

+ f (m)2

"2
c

]

⇒ m2 − 2
f (m)
"c

+ f (m)2

"2
c

" m2
[

1 − f (m)
"c

]2

⇒ 1 − f (m)
"c

+

√

m2 − 2
f (m)
"c

+ f (m)2

"2
c

"
(
1 + m

)[
1 − f (m)

"c

]
.

(B5)
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Inserting into Eq. (B2), we have simply

ds1

dm
" 1

2
log

[
1 − f (m)

"c

]
. (B6)

Since f (m) is monotonic and f (0) = 0, this establishes what we claimed: ds1/dm " 0 with equality only at m = 0.
In fact, s1(m) has nice properties which allow us to determine the surplus quite simply. Starting from the upper line of Eq. (B2)

and setting ds1/dm = 0, we have

κ (m) +
√

κ (m)2 − 1 =
√

1 + m
1 − m

. (B7)

Using the explicit expression for κ (m) (note that here we are considering arbitrary "), this becomes

−ε − f (m) +
√

[ε + f (m)]2 − "2(1 − m2) = "(1 + m), (B8)

which simplifies considerably to (see also Ref. [15])

f (m) = −ε − ". (B9)

The surplus is given merely by the solution to Eq. (B9).
This result holds for all ", and thus is quite useful in of itself. Furthermore, it gives an immediate alternate proof that the

surplus is continuous at "c (albeit one that does not generalize to other values of β): Since ε approaches −"c continuously as
" → "c, the solution of Eq. (B9) for any monotonic f (m) must approach 0 continuously.

[1] M. Eigen, Selforganization of matter and the evolution of bio-
logical macromolecules, Naturwissenschaften 58, 465 (1971).

[2] C. O. Wilke, Quasispecies theory in the context of population
genetics, BMC Evol. Biol. 5, 44 (2005).

[3] S. Crotty, C. E. Cameron, and R. Andino, Rna virus error
catastrophe: Direct molecular test by using ribavirin, Proc. Natl.
Acad. Sci. U.S.A. 98, 6895 (2001).

[4] H. Zhang, B. Yang, R. J. Pomerantz, C. Zhang, S. C.
Arunachalam, and L. Gao, The cytidine deaminase cem15 in-
duces hypermutation in newly synthesized hiv-1 dna, Nature
424, 94 (2003).

[5] J. P. Anderson, R. Daifuku, and L. A. Loeb, Viral error catastro-
phe by mutagenic nucleosides, Annu. Rev. Microbiol. 58, 183
(2004).

[6] A. Grande-Pérez, E. Lázaro, P. Lowenstein, E. Domingo, and
S. C. Manrubia, Suppression of viral infectivity through lethal
defection, Proc. Nat. Acad. Sci. U.S.A. 102, 4448 (2005).

[7] G. R. Hart and A. L. Ferguson, Error catastrophe and phase
transition in the empirical fitness landscape of hiv, Phys. Rev. E
91, 032705 (2015).

[8] V. Gupta and N. M. Dixit, Scaling law characterizing the dy-
namics of the transition of HIV-1 to error catastrophe, Phys.
Biol. 12, 054001 (2015).

[9] S. Shivam, C. L. Baldwin, J. Barton, M. Kardar, and S. L.
Sondhi, Studying viral populations with tools from quantum
spin chains, arXiv:2003.10668 (2020).

[10] Many works use a slightly different definition of error catas-
trophe, namely when the fraction of wild-type states in the
population becomes zero. We use the definition involving aver-
age surplus because it is more natural from a statistical-physics
perspective. See as well Ref. [18].

[11] E. Baake, M. Baake, and H. Wagner, Ising Quantum Chain is
Equivalent to a Model of Biological Evolution, Phys. Rev. Lett.
78, 559 (1997).

[12] H. Wagner, E. Baake, and T. Gerisch, Ising quantum chain and
sequence evolution, J. Stat. Phys. 92, 1017 (1998).

[13] E. Baake and H. Wagner, Mutation–selection models solved
exactly with methods of statistical mechanics, Genet. Res. 78,
93 (2001).

[14] J. Hermisson, H. Wagner, and M. Baake, Four-state quantum
chain as a model of sequence evolution, J. Stat. Phys. 102, 315
(2001).

[15] J. Hermisson, O. Redner, H. Wagner, and E. Baake, Mutation–
selection balance: Ancestry, load, and maximum principle,
Theor. Popul. Biol. 62, 9 (2002).

[16] P. Tarazona, Error thresholds for molecular quasispecies as
phase transitions: From simple landscapes to spin-glass models,
Phys. Rev. A 45, 6038 (1992).

[17] D. B. Saakian, C. K. Biebricher, and C.-K. Hu, Phase diagram
for the eigen quasispecies theory with a truncated fitness land-
scape, Phys. Rev. E 79, 041905 (2009).

[18] S. Franz and L. Peliti, Error threshold in simple landscapes,
J. Phys. A: Math. Gen. 30, 4481 (1997).

[19] E. Baake, M. Baake, and H. Wagner, Quantum mechanics ver-
sus classical probability in biological evolution, Phys. Rev. E
57, 1191 (1998).

[20] I. LeuthÄusser, Statistical mechanics of eigen’s evolution
model, J. Stat. Phys. 48, 343 (1987).

[21] L. Peliti, Quasispecies evolution in general mean-field land-
scapes, Europhys. Lett. 57, 745 (2002).

[22] D. B. Saakian, C.-K. Hu, and H. Khachatryan, Solvable biologi-
cal evolution models with general fitness functions and multiple
mutations in parallel mutation-selection scheme, Phys. Rev. E
70, 041908 (2004).

[23] V. Bapst and G. Semerjian, On quantum mean-field models and
their quantum annealing, J. Stat. Mech.: Theory Exp. (2012)
P06007.

[24] B. Zhao, M. C. Kerridge, and D. A. Huse, Three species of
schrödinger cat states in an infinite-range spin model, Phys.
Rev. E 90, 022104 (2014).

[25] A. Garg, Application of the discrete wentzel–kramers–brillouin
method to spin tunneling, J. Math. Phys. 39, 5166 (1998).

012106-11

https://doi.org/10.1007/BF00623322
https://doi.org/10.1186/1471-2148-5-44
https://doi.org/10.1073/pnas.111085598
https://doi.org/10.1038/nature01707
https://doi.org/10.1146/annurev.micro.58.030603.123649
https://doi.org/10.1073/pnas.0408871102
https://doi.org/10.1103/PhysRevE.91.032705
https://doi.org/10.1088/1478-3975/12/5/054001
http://arxiv.org/abs/arXiv:2003.10668
https://doi.org/10.1103/PhysRevLett.78.559
https://doi.org/10.1023/A:1023048711599
https://doi.org/10.1017/S0016672301005110
https://doi.org/10.1023/A:1026577012763
https://doi.org/10.1006/tpbi.2002.1582
https://doi.org/10.1103/PhysRevA.45.6038
https://doi.org/10.1103/PhysRevE.79.041905
https://doi.org/10.1088/0305-4470/30/13/006
https://doi.org/10.1103/PhysRevE.57.1191
https://doi.org/10.1007/BF01010413
https://doi.org/10.1209/epl/i2002-00526-5
https://doi.org/10.1103/PhysRevE.70.041908
https://doi.org/10.1088/1742-5468/2012/06/P06007
https://doi.org/10.1103/PhysRevE.90.022104
https://doi.org/10.1063/1.532563


BALDWIN, SHIVAM, SONDHI, AND KARDAR PHYSICAL REVIEW E 103, 012106 (2021)

[26] D. B. Saakian, A new method for the solution of models of bio-
logical evolution: Derivation of exact steady-state distributions,
J. Stat. Phys. 128, 781 (2007).

[27] This is analogous to the situation in single-particle bound state
problems, where states must have energies greater than the
minimum of the potential in order to be normalizable.

[28] C. Kaiser and I. Peschel, Surface and corner magnetizations
in the two-dimensional ising model, J. Stat. Phys. 54, 567
(1989).

[29] A. Dutta and J. K. Bhattacharjee, Phase transitions in the quan-
tum ising and rotor models with a long-range interaction, Phys.
Rev. B 64, 184106 (2001).

[30] S. Fey and K. P. Schmidt, Critical behavior of quantum magnets
with long-range interactions in the thermodynamic limit, Phys.
Rev. B 94, 075156 (2016).

[31] O. F. de Alcantara Bonfim and J. Florencio, Quantum phase
transitions in the transverse one-dimensional ising model with
four-spin interactions, Phys. Rev. B 74, 134413 (2006).

[32] S. Franz, L. Peliti, and M. Sellitto, An evolutionary version of
the random energy model, J. Phys. A: Math. Gen. 26, L1195
(1993).

[33] K. Binder and P. C. Hohenberg, Phase transitions and static spin
correlations in ising models with free surfaces, Phys. Rev. B 6,
3461 (1972).

[34] R. Lipowsky, Surface-induced order and disorder: Critical phe-
nomena at first-order phase transitions (invited), J. Appl. Phys.
55, 2485 (1984).

[35] K. Binder and D. P. Landau, Critical phenomena at surfaces,
Physica A 163, 17 (1990).

[36] D. B. Saakian and C.-K. Hu, Exact solution of the eigen model
with general fitness functions and degradation rates, Proc. Nat.
Acad. Sci. U.S.A. 103, 4935 (2006).

[37] J. R. Garrison and T. Grover, Does a single eigenstate
encode the full Hamiltonian? Phys. Rev. X 8, 021026
(2018).

[38] A. Chandran, V. Khemani, and S. L. Sondhi, How Universal
is the Entanglement Spectrum? Phys. Rev. Lett. 113, 060501
(2014).

[39] H. Li and F. D. M. Haldane, Entanglement Spectrum as
a Generalization of Entanglement Entropy: Identification of
Topological Order in Non-Abelian Fractional Quantum Hall
Effect States, Phys. Rev. Lett. 101, 010504 (2008).

[40] N. Regnault and B. A. Bernevig, Fractional Chern insulator,
Phys. Rev. X 1, 021014 (2011).

[41] A. Renyi, On measures of entropy and information, Proc. Fourth
Berkeley Symp. on Math. Statist. and Prob. 1, 547 (1961).

[42] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M.
Tomamichel, On quantum rényi entropies: A new gener-
alization and some properties, J. Math. Phys. 54, 122203
(2013).

[43] M. Kohmoto, Entropy function for multifractals, Phys. Rev. A
37, 1345 (1988).

[44] M. Janssen, Statistics and scaling in disordered mesoscopic
electron systems, Phys. Rep. 295, 1 (1998).

[45] A. De Luca, B. L. Altshuler, V. E. Kravtsov, and A.
Scardicchio, Anderson localization on the Bethe lattice: Non-
ergodicity of extended states, Phys. Rev. Lett. 113, 046806
(2014).

012106-12

https://doi.org/10.1007/s10955-007-9334-9
https://doi.org/10.1007/BF01019769
https://doi.org/10.1103/PhysRevB.64.184106
https://doi.org/10.1103/PhysRevB.94.075156
https://doi.org/10.1103/PhysRevB.74.134413
https://doi.org/10.1088/0305-4470/26/23/001
https://doi.org/10.1103/PhysRevB.6.3461
https://doi.org/10.1063/1.333703
https://doi.org/10.1016/0378-4371(90)90311-F
https://doi.org/10.1073/pnas.0504924103
https://doi.org/10.1103/PhysRevX.8.021026
https://doi.org/10.1103/PhysRevLett.113.060501
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevX.1.021014
https://doi.org/10.1063/1.4838856
https://doi.org/10.1103/PhysRevA.37.1345
https://doi.org/10.1016/S0370-1573(97)00050-1
https://doi.org/10.1103/PhysRevLett.113.046806

