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Elastic valley metamaterials offer an excellent platform to manipulate elastic waves and have potential
applications in energy harvesting and elastography. Here we introduce a series of strategies to realize
a topological transition in spiral elastic valley metamaterials by parameter modulations. We show the
evolution of the Berry curvature and valley Chern number as a function of inherent parameters of a spiral,
which further results in a general scheme to achieve topological valley edge states. Our strategy leverages
multiple degrees of freedom in spiral elastic valley metamaterials to provide enhanced opportunities for

desired topological states.
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I. INTRODUCTION

Topological valley metamaterials have had a remark-
able impact not only on condensed-matter physics but also
on manipulation of waves in electronics, photonics, and
phononics [1-9]. Wave propagation in topological valley
metamaterials has prominent applications in information-
carrier and light modulation with its remarkable feature:
robust valley-polarized transport [1-8,10,11]. Therein, a
topological transition is a necessary process in metamate-
rials to realize topological states. Several strategies have
been proposed to achieve the topological transition. For
example, the inherent degree of freedom, such as adjust-
ing the geometric parameters, can be exploited to invert
the topological phase of metamaterials [4,6,9,12]. Besides,
the external degree of freedom, such as deformation, can
also affect the band inversion dynamically [13,14]. How-
ever, existing metamaterials still lack of the control knob
to generate the desired topological phase at will. One
of the reasons is that the inherent simple structures are
insufficient to manipulate the geometric parameters.

Recently, spiral and chiral elements have been used
for the construction of metamaterials, realizing remarkable
achievements [9,15—19]. Especially, an elastic valley meta-
material that consists of a hard spiral in a soft hexagonal
matrix was proposed as a design to achieve valley topo-
logical insulators [9]. In contrast to conventional valley
systems, spiral elastic valley metamaterials have high com-
plexity of internal structure, which has a series of design
parameters to manipulate. For example, this spiral system
possesses an inherent chiral anisotropy, which results in
valley anisotropy and the exceptional Berry curvature dis-
tribution. On this basis, the elastic topological valley edge
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state relying on frequency has been demonstrated to have
potential applications in signal processing and frequency
selection.

Although this spiral system has shown promising prop-
erties and greater controllability in comparison with the
symmetric valley system, there remain several natural
questions about this valley system. For example, since
this is a chiral anisotropic system, how does the chirality
affect the topological properties? How does the topologi-
cal transition happen in an asymmetric system? Addressing
these challenging questions is important to understand and
enrich the intrinsic physics of topological valley states.

In this article, we report a topological transition via
parameter modulations in spiral elastic metamaterials. We
discuss the effect of chirality, rotation angle, number of
turns, and thickness of the spiral on the topological prop-
erties in terms of the Berry curvature and valley Chern
number. Topological transition of spiral elastic metama-
terials is clearly shown by the inversion of the Berry
curvature and valley Chern number. After the key factors
contributing to the topological transition are determined,
we propose a general scheme to generate the desired topo-
logical phase of these elastic metamaterials. Furthermore,
we demonstrate topological valley edge states by using this
general scheme. Thereby, our strategy provides enhanced
degrees of freedom and opportunities to achieve a topo-
logical transition by leveraging the spiral architecture’s
parameter modulations.

II. TOPOLOGICAL TRANSITION VIA
PARAMETER MODULATIONS

Figure 1 shows a schematic of the spiral elastic val-
ley metamaterial considered in this study. A hard spiral
made of polylactic acid (PLA) is embedded as a scat-
terer in a triangular unit-cell matrix made of soft hydrogel.
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FIG. 1. Schematics of spiral elastic valley metamaterials. The
scatterer (Archimedean-spiral structure) is shown in purple and
the soft matrix is shown in beige. Modulations of chirality, rota-
tion angle, number of turns, and thickness of the scatterer are
illustrated on the right, at the top, on the left, and at the bottom,
respectively.

The mechanical properties of the spiral PLA are as fol-
lows: mass density 1250 kg/m®, Young’s modulus 2.1 GPa,
and Poisson’s ratio 0.36. The mechanical properties of the
soft hydrogel are as follows: mass density 1000 kg/m?,
Young’s modulus 18 kPa, and Poisson’s ratio 0.5. Four
parameter modulations are shown around the original unit
cell of the spiral elastic metamaterial, where the side
of the hexagon ¢=14 mm and the initial spiral radius
a;=1.5 mm. Modulations of chirality C, rotation angle
0, number of turn n, and thickness of the spiral d are
illustrated counterclockwise. For simplicity, we denote our
spiral elastic metamaterial by (C, @ (deg), n, d (mm))
to discuss the topological transition. All simulations are
done under the plane-strain condition with use of COMSOL
Multiphysics.

First, we investigate the effect of the rotation angle of the
spiral around the center of the hexagon (@) on the topologi-
cal properties. According to our previous work, there exists
a band inversion under certain circumstances between the
second band and the third band [9]. Therefore, we focus
on these two bands of (right-handed, 8, 2, 2). We calculate
two bands around the K point when the spiral is rotated
around the center from 20° to 40° with an increment of
1°. The blue line in Fig. 2(a) represents the maximum fre-
quency of the second band and the red line represents the
minimum frequency of the third band. The enclosed area,
which is the band-gap range, experiences an open-close-
reopen process (see the narrowing band gap around the 30°
region). Because of the low-order symmetry of the spiral,
the band gap cannot completely close.
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FIG. 2. (a) Band evolution as a function of rotation angle.

The blue and red lines represent the maximum frequency of
the second band and the minimum frequency of the third band,
respectively, as the spiral rotates. The green line indicates the
valley Chern number as a function of rotation angle. (b) Band
structure of (right-handed, 22°, 2, 2) elastic metamaterial, which
is marked by yellow diamonds in (a). (c) The corresponding
Berry curvature. Black crosses indicate the corners of the Bril-
louin zone (K point). (d) Band structure of (right-handed, 387, 2,
2) elastic metamaterial, which is marked by cyan diamonds in (a).
(e) The corresponding Berry curvature. Black crosses indicate the
corners of the Brillouin zone (K point). The area for the calcu-
lation of the Berry curvature is shown in (b),(d) in black lines,
which spans &, from 87 /15¢ to 47 /5¢ and k, from JT/'(Z»\/EC) to

5 /(6+/3¢).
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We calculate the wvalley Chern number C, =
(1/27) [ iV x u(k)|Vilu(k)d*k based on the third band
using the numerical method [20]. As shown in Fig. 2(a),
the green line indicates that the valley Chern number has
a sudden increase at around 29°, suggesting that our spi-
ral elastic metamaterial has a topological transition (see
Appendix A for the explanation of this transition at 29°
by introduction of the pseudospin angular momentum).
Within one topological phase, the valley Chern number
has little fluctuation, which suggests that the rotation has
little effect on the valley Chern number until it crosses the
critical angle around 29°. Besides, the valley Chern num-
ber is always within (—0.5, 0.5) due to the strong spatial
inversion symmetry breaking [9,21-23].

Figure 2(b) shows the band structure around the K point
of (right-handed, 22°, 2, 2) as indicated by the yellow dia-
monds in Fig. 2(a). The second band and the third band
behave like the typical valley structure with a small band
gap. The Berry-curvature distributions of the correspond-
ing bands calculated within the black lines [Fig. 2(b)]
are shown in Fig. 2(c), where they have the opposite
sign and the extrema of the Berry curvature deviate from
the K point. This discrepancy is caused by the mismatch
between the asymmetric spiral and the triangular lattice
[9]. When the spiral continues rotating to 38° until it has
the configuration (right-handed, 38°, 2, 2) [cyan diamonds
in Fig. 2(c)], the band structure illustrated in Fig. 2(d)
is similar to that of the structure with the configuration
(right-handed, 22°, 2, 2). However, the Berry-curvature
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distributions are completely distinct. The Berry curvature
of the second band has negative values and that of the
third band has positive values. This inversion of the Berry
curvature indicates the band inversion and the topological
transition. The band inversion often reflects the eigen-
modes of metamaterials, but the eigenmodes of these two
configurations at the K point do not show the swap of the
two bands clearly. Instead, the band inversion reflects the
pseudospin of the phonon in the unit cell, which indicates
different valley polarization (see Appendix A). This is one
of the unique aspects of our spiral valley system in contrast
to the conventional symmetric valley system.

A spiral is a natural chiral element, where right-handed
and left-handed spirals can be transformed by parity inver-
sion [24,25]. To explore the effect of chirality on the
topology of the bands, we fix d =2 mm and choose several
configurations made from combinations among chirality,
rotation angle, and number of turns. Likewise, we calculate
the Berry curvature around the K point and integrate it for
the valley Chern number for all configurations. The valley
Chern number calculated here is based on the third band
because the second band is largely coupled with the first
band, which will result in inaccuracy of the valley Chern
number.

In Fig. 3(a), green filled circles show the variation of
the valley Chern number for (right-handed, 6, 1.5, 2)
as a function of the rotation angle, and green unfilled
circles represent the variation of the valley Chern num-
ber for (left-handed, &, 1.5, 2). Likewise, in Fig. 3(b),

FIG. 3. (a),(b) Evolution of the val-
ley Chern number for elastic metamate-
rials for different chiralities. (a) Valley
Chern numbers for (right-handed, 6, 1.5,
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shown as green filled circles and green
unfilled circles, respectively. (b) Val-
ley Chern numbers for (right-handed, 6,
2, 2) and (left-handed, 6, 2, 2) shown
as magenta filled triangles and magenta
unfilled triangles, respectively. (c) The
left panel shows the Berry curvature of
the third band and the second band of
(left-handed, 60°, 1.5, 2) metamaterial,
while the right panel shows the Berry
curvature of (right-handed, 60°, 1.5, 2)
metamaterial.
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magenta filled triangles and unfilled triangles show the
variation of the valley Chern number for (right-handed,
0, 2, 2) and (left-handed, 8, 2, 2), respectively. From the
two graphs, the rotation is able to cause the topological
transition, which confirms the conclusion in Fig. 2. More
notably, massive calculations of valley Chern numbers
of different configurations shows that when the chirality
of the spiral changes (e.g., from a right-handed to left-
handed spiral), the sign of the valley Chern number always
changes, suggesting that the topological transition should
happen when the chirality changes. That is, we find that
the Chern-number data points of the left-handed counter-
parts (unfilled circles or triangles) can always be found on
the other side of the right-handed geometries (filled cir-
cles or triangles). Note that we calculate the valley Chern
number from 0° to 360° with an increment 20° but several
missing data points are found because Berry curvatures
of some configurations are distributed with both positive
and negative values, which poses a challenge to the inte-
gral. We also observe in passing that when the number
of turns n changes from 1.5 to 2, the sign of the valley
Chern number is flipped, which was shown in previous
work [9].

We then take (left-handed, 60°, 1.5, 2) and (right-
handed, 60°, 1.5, 2) as examples to demonstrate the
topological transition caused by the chirality modulation.
The top row in Fig. 3(c) shows Berry-curvature distribu-
tions for the third bands in both cases, while the bottom
row shows Berry-curvature distributions of the second
bands. The Berry-curvature distribution, likewise, devi-
ates from the K point because of the mismatch between
the asymmetric spiral and the triangular lattice. When the
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left-handed spiral is transformed to the right-handed spiral,
there is a clear sign flip of the Berry curvature, suggesting
that the topological transition happens in this process.

To continue discussing the effect of the thickness of the
spiral on the topological properties, we calculate the valley
Chern number for several elastic metamaterials with differ-
ent configurations (C, 60°, n, d). In Fig. 4, for variation of d
from 1 to 4 mm, the evolution of the valley Chern number
of (right-handed, 60°, 1.5, d) is shown as a solid red line.
The corresponding Berry-curvature distribution is shown
near the solid red line. We notice that apart from the devi-
ation of the Berry curvature, the magnitude of the Berry
curvature becomes smaller and the distribution becomes
dispersed when d increases to 4 mm, resulting in a decreas-
ing valley Chern number. Since the spiral approaches a
solid circle with the increase of d, this will reduce the bro-
ken spatial inversion, which will result in a decrease of the
Berry curvature.

As discussed in the previous section, a change of chi-
rality can induce the topological transition. The dashed red
line represents the evolution of the valley Chern number
of (left-handed, 60°, 1.5, d), which displays positive val-
ues. The corresponding Berry curvatures are shown beside
the dashed red line. They have the same trend as in the
previous case. Similarly, we can deduce that the valley
Chern number of (right-handed, 60°, 2, d), as shown by
the solid blue line, will be opposite that of (right-handed,
60°, 1.5, d), which has negative values. We also notice that
increasing n from 1.5 to 2 will increase the absolute value
of valley Chern number for 8 =60° when the chirality is
the same. However, for other rotation angles, the change
of the absolute value of the valley Chern number may be

FIG. 4. Evolution of wvalley Chem
number for elastic metamaterials for dif-
ferent thicknesses. Valley Chern num-
bers for (right-handed, 60°, 1.5, d), (left-
handed, 60°, 1.5, d), (right-handed, 60°,
2, d), and (left-handed, 60°, 2, d) meta-
materials for thickness d varying from
1 to 4 mm, shown as the solid red line,
the dashed red line, the solid blue line,
and the dashed blue line, respectively.
The corresponding Berry curvatures of
the third band are shown beside the
lines. The corresponding configurations
are also shown beside the lines.

| | | |
-03 -02 -01 O 01 02
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different when n varies from 1.5 to 2 (see Appendix B and
Fig. 7).

According to the above analysis, we can conclude that
chirality C, rotation angle 8, and the number of turns n
of the spiral play an important role in the topological
transition. Chirality transformation causes a topological
transition when the parity changes. Rotation will also
change the topology of bands and is related to the symme-
try of the lattice. When the rotation angle varies from 0° to
360°, there is a periodic change of topological properties,
where six topological transition points exist in this process
determined by the triangular lattice. We also confirm that
changing number of turns results in a topological transi-
tion. However, changing the thickness of the spiral only
changes the valley Chern number instead of flipping the
sign. In possession of information on the topological tran-
sition via parameter modulation, we can design the desired
topological phase of spiral elastic valley metamaterials.

III. ELASTIC TOPOLOGICAL VALLEY EDGE
STATES

After obtaining the general scheme for generating dif-
ferent topological phases, we create an elastic topological
insulator on the basis of our conclusion in the previous
section. We can confirm that (right-handed, 60°, 1.5, 2)
has a positive Berry curvature and a negative Berry curva-
ture in its second and third bands, respectively, as observed
from Fig. 3(b). To find an elastic metamaterial with the
opposite topological properties and fully reflect our previ-
ous conclusion, we choose a left-handed spiral first, which
will invert the topological phase once [i.e., (right-handed,
60°, 1.5, 2) — (left-handed, 60°, 1.5, 2)]. Then we are
aware that rotation also induces a topological transition,
so 8 =0° is chosen to invert the topological phase twice
[i.e., (left-handed, 60°, 1.5, 2) — (left-handed, 0°, 1.5, 2)].
After we select n =2 as the number of turns of the spiral,
we invert the topological phase three times in total [i.e.,
(left-handed, 0°, 1.5, 2) — (left-handed, 0°, 2, 2)]. Thus,
we have the opposite topological phase if we choose (left-
handed, 0°, 2, 2) compared with the original (right-handed,
60°, 1.5, 2). Lastly, to ensure that we have an overlapping
band gap between two components, we change the thick-
ness d (see Appendix C, which shows the frequency range
of the band gap as a function of d). Conclusively, (left-
handed, 0°, 2, 1) is chosen to have a topological phase
opposite that of and a band gap overlapping with that of
(right-handed, 60°, 1.5, 2). Therefore, we denote the gener-
ated elastic valley metamaterial as (right-handed, 60°, 1.5,
2 | left-handed, 0°, 2, 1).

Figure 5(a) illustrates the projected band structure cal-
culated for a sandwiched supercell (right-handed, 60°, 1.5,
2 | left-handed, 0°, 2, 1 | right-handed, 60°, 1.5, 2). The
geometry of the supercell is shown in Fig. 5(b), where
the interface is a zigzag. In the band structure, the bulk
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FIG. 5.

(a) The projected band structure of the (right-handed,
60° 1.5, 2 | left-handed, 0°, 2, 1) metamaterial. Topological
interface states are shown as red and blue lines. Bulk modes are
shown in gray. Four markers are placed at k=0.6 and k=0.7,
respectively. (b) The displacement fields corresponding to mark-
ers in (a). The arrows indicate the position of the interface.
Enlarged displacement fields near the interfaces are shown beside
the arrows. (c) Propagation of elastic waves along the interface.
The directions of topological edge states projected by different
valleys are marked by the yellow and cyan arrows. At a fre-
quency of 143 Hz, which is shown by dashed green line in (a),
elastic waves propagate along the interface and through the bend.

states are shown in gray. Because the two elastic metama-
terials are topologically different, two topological interface
states appear within the band gap as a result of the bulk-
edge correspondence, as displayed by red and blue lines.
We choose four points on the topological interface states
located at k=0.6 and k=0.7. By our checking the eigen-
displacement-field at these points, Fig. 5(b) indicates the
vibrations are concentrated around the interface marked by
the arrows (magnified views of the interfaces are shown
in the insets). As shown by the leftmost (orange) and
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rightmost (pink) cases in Fig. 5(b), the eigen-displacement-
fields corresponding to the blue line in Fig. 5(a) show the
topological edge states located at the interface between
(right-handed, 60°, 1.5, 2) and (left-handed, 0°, 2, 1)
(see the blue arrows). On the other hand, the eigen-
displacement-fields for the red line in Fig. 5(a) represent
the topological edge states located at the interface between
(left-handed, 0°, 2, 1) and (right-handed, 60°, 1.5, 2) [see
the red arrows in the blue and green cases in Fig. 5(b)].

We note again that the supercell in Fig. 5 is composed
of the two types of spiral architectures that underwent
topological flipping between them three times (i.e., chi-
rality, rotation angle, and number of turn changes). In
Appendix D, we present the projected band structures of
the supercells with (i) one-time topological flipping by
chirality-only change [i.e., (right-handed, 60°, 1.5, 2) and
(left-handed, 60°, 1.5, 2)] and (ii) two-time topological
flipping by chirality and rotation-angle change [i.e., (right-
handed, 60°, 1.5, 2) and (left-handed, 0°, 1.5, 2)]. We
confirm that as predicted and guided by our parametric
studies in Sec. II, one-time (two-time) flipping results in a
domain boundary with a distinctive (identical) topological
nature. We demonstrate that this, in turn, causes the appear-
ance (disappearance) of the topological interface states
(see Appendix D for details).

Returning to the configuration in Fig. 5, we now explore
the topologically protected transport of elastic waves in
this elastic metamaterial. We construct a two-part meta-
material consisting of (right-handed, 60°, 1.5, 2) at the
bottom left and top right and (left-handed, 0°, 2, 1) at the
bottom right and top left, as shown in Fig. 5(c). One of
the most-important features of the edge states in topologi-
cal valley metamaterials lies in the valley-polarized nature.
In our case, when a vibration source with a frequency of
143 Hz [marked in the dashed green line in Fig. 5(a)]
is set on the right side of our elastic metamaterial, the
topological valley edge states between (left-handed, 0°, 2,
1) and (right-handed, 60°, 1.5, 2) are excited. As shown
in Fig. 5(c), the elastic wave travels along the path at
the beginning, and when it arrives at the intersection, it
propagates both upwards and downwards, but it does not
propagate forwards. This indicates that the mode gener-
ated at the beginning can couple with the upward mode
and the downward mode. We notice that there is a sharp
corner in the upward direction and an obtuse corner in
the downward direction, which demonstrates the reflec-
tion immunity of topological valley edge states to path
bending. The cross-waveguide splitter also demonstrates
the valley-polarized elastic wave propagation [26-30]. The
generated forward elastic wave is projected by the K’ val-
ley according to the group velocity shown in the projected
band structure [Fig. 5(a)]. The propagation direction of
K-valley-projected (K’-valley projected) elastic waves is
marked in Fig. 5(c) by yellow (cyan) arrows. Therefore,
the elastic wave will travel along the cyan arrows, which

forms an elastic wave splitter resulting from its valley
polarization.

IV. CONCLUSIONS

In this study, we investigate topological properties of
a spiral structure with multiple degrees of freedom in
detail. We demonstrate computationally that the inherent
geometrical parameters of the spiral architecture, such as
chirality, rotation angle, and number of turns, can induce
evolution of the Berry curvature and valley Chern number
of a spiral elastic valley metamaterial, thereby resulting
in a landscape change of the topological characteristics.
Knowledge of different roles played by spiral parame-
ters enhances our understanding of the elastic topological
phase transition using parameter modulation in our sys-
tem and opens avenues for topological state manipulation.
This strategy based on an asymmetric spiral architecture
gives us the possibility to realize and control a topologi-
cal interface state in a more-controllable and more-efficient
manner compared with symmetric valley architectures.
Our research may not be limited only to the monofilar
spiral, but can be extended and generalized to the bifilar
spiral, trifilar spiral, and so on [19,31], which may have
more degrees of freedom to tune the topological properties
of elastic metamaterials.
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APPENDIX A: BAND EVOLUTION AT THE K
POINT, EIGENMODES, AND PSEUDOSPIN
ANGULAR MOMENTUM

Because of the asymmetric spiral in the metamateri-
als, when the spiral rotates around the center, there is no
degenerate point appearing at the K point, although the
topological phase is indeed inverted according to Fig. 2.
Figure 6(a) presents the evolution of two bands at the K
point as the spiral rotates around the center. It appears the
periodic change of frequency does not have a degenerate
point at the K point in this process as we predict. In addi-
tion, we calculate the total pseudospin angular momentum
of a phonon within the unit cell using S = (pw/Z)u|§|u,
where p is the mass density, @ is the angular frequency, u
is the eigen-displacement-field, and S is the spin-1 oper-
ator [9,32]. The dashed lines show the periodic change
across the positive and negative values with a period of
60°. When the total pseudospin angular momentum is zero
in the unit cell, the pseudospin nature vanishes in our elas-
tic valley metamaterials, corresponding to the topological
transition points, such as the first topological transition
point at around 29°.
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FIG. 6. (a) Evolution of the second band at the K point
as a function of rotation angle (blue line) and the evolution
of the third band at the K point as a function of rotation
angle (red line). The corresponding dotted lines show the pseu-
dospin angular momentum in the unit cell as a function of
the rotation angle. The dashed green line represents zero pseu-
dospin angular momentum. (b),(c) Eigen-displacement-fields
and pseudospin-angular-momentum-density distribution of the
third bands of (right-handed, 22°, 2, 2) and (right-handed,
389, 2, 2), respectively. (d),(e) Eigen-displacement-fields and
pseudospin-angular-momentum-density distribution of the sec-
ond bands of (right-handed, 22°, 2, 2) and (right-handed, 38°,
2, 2). The curved arrows indicate pseudospin up and pseudospin
down.

As mentioned in the main text, the eigenmodes at the K
point do not show the inversion of the band. The eigen-
modes of the third and second bands of (right-handed, 22°,

0.5 -
0.4F o=
0.3 s

0.2+ =

2, 2) are shown in the left panels in Figs. 6(b) and 6(d). For
comparison, the eigenmodes of the third and the second
bands of (right-handed, 38°, 2, 2) are shown in the left
panels in Figs. 6(c) and 6(e). From the eigenmode, we
cannot see any indication of band inversion or topological
transition. However, the right panels in Figs. 6(b)-6(e)
display the pseudospin-angular-momentum density distri-
bution corresponding to each state. We find negative and
positive total pseudospin angular momentum in the third
band and the second band of (right-handed, 22°, 2, 2), rep-
resenting the pseudospin-down and pseudospin-up states.
In stark contrast, corresponding states of (right-handed,
389, 2, 2) show positive and negative total pseudospin
angular momentum, representing the pseudospin-up and
pseudospin-down states. The inversion of pseudospin
states clearly shows the topological transition. Besides,
from the Berry curvature in Figs. 2(c) and 2(e), these two
configurations are topologically different, which further
verifies that the band inversion reflects the pseudospin of
the phonon.

APPENDIX B: VALLEY CHERN NUMBER
AFFECTED BY THE NUMBER OF TURNS

The valley Chern numbers of (right-handed, 60°, 1.5,
d) and (right-handed, 60°, 1.5, d) are illustrated in Fig. 4.
Here we investigate the absolute values of valley Chern
numbers for different rotation angles when the number of
turns is changed from 1.5 to 2.0. We take (right-handed, 6,
n, 2) and (left-handed, 8, n, 2) as examples. According to
the left panel in Fig. 7, most of the green unfilled circles
are above the green filled circles, suggesting that increas-
ing the number of turns from 1.5 to 2.0 can increase the
absolute value of the valley Chern number. However, there
are a few cases, such as 8 = 120° and 8 = 320°, where the
absolute value of the valley Chern number decreases when
the number of turns is changed from 1.5 to 2.0. Similarly,
the right panel in Fig. 7 shows that for most of the cases,
increasing the number of turns from 1.5 to 2.0 can increase
the absolute value of the valley Chern number.

FIG. 7. Absolute values of val-
ley Chern numbers for (right-
handed, 6, 1.5, 2) and (right-
handed, 6, 2, 2) shown as green
filled circles and green unfilled
circles, respectively (left panel),
and absolute values of valley
Chern numbers for (left-handed,

right-handed, n=1.5
right-handed, n = 2.0

left-handed, n = 1. 2
o hndod. g = A 8, 1.5, 2) and (left-handed, 8, 2,

1.5
2.0

01 —

0.0 | | | | |

2) shown as magenta filled trian-
gles and magenta unfilled trian-

| 1 | gles, respectively (right panel).

| | |
0 60 120 180 240 300 360 O
Rotation angle 8 (deg)

Absolute valley Chern number

| |
60 120
Rotation angle 6 (deg)

|
180 240 300 360
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FIG. 8. Variation of band-gap range as a function thickness d
for (left-handed, 0°, 1.5, d) and (left-handed, 0°, 2, d).

APPENDIX C: BAND-GAP EVOLUTION AS A
FUNCTION OF THICKNESS

After we find our desired topological phase of the spiral
elastic metamaterials via modulation of chirality, rotation
angle, and the number of turns, we need to find the overlap-
ping band gap between the two metamaterials. By tuning
the thickness d, we are able to adjust the band-gap range.
As shown in Fig. 8, red and purple areas show the varia-
tions of band-gap ranges of (left-handed, 0°, 1.5, d) and
(left-handed, 0°, 2, d), respectively. Both show a clear
trend that with increase of the thickness of the spiral, the
frequency increases and the band gap slightly increases.
In this way, we can ensure that the two metamaterials we
choose have an overlapping band gap.

APPENDIX D: PROJECTED-BAND-STRUCTURE
EVOLUTION VIA PARAMETER MODULATION

To demonstrate the topological transition via parame-
ter modulations, we change one parameter at a time. As
mentioned in the main text, we choose (right-handed, 60°,
1.5, 2) as one part of the topological insulator. For the
other part, we first change the chirality from right-handed
to left-handed. The left panel in Fig. 9 shows the pro-
jected band calculated for a supercell (right-handed, 60°,
1.5, 2 | left-handed, 60°, 1.5, 2 | right-handed, 60°, 1.5,
2). There are two topological interface states within the
band gap, shown in red and blue, which are located at
two interfaces respectively. Next we continue to change
the rotation angle to 0°. This operation, along with the
previous chirality change, causse two-time flipping of the
topological nature, thereby returning the topological phase
to the original phase. The corresponding projected band
structure is shown in the right panel in Fig. 9. As pre-
dicted by our general scheme, (right-handed, 60°, 1.5, 2)
and (left-handed, 0°, 1.5, 2) share the same topological

180

170

r4
i =
@ @
(=] =

Frequency (Hz)
3

110 | | 1 1 1 1
=10 -0.5 0.0 0.5 1.0-1.0 =05 0.0 0.5 1.0

k (n/3c) k (n/3c)

FIG. 9. Projected band structures calculated for the supercell
(right-handed, 0°, 2, 1 | left-handed, 0°, 2, 1 | right-handed, 0°,
2, 1) (left panel) and for the supercell (right-handed, 60°, 2, 1 |
left-handed, 0°, 2, 1 | right-handed, 60°, 2, 1) (right panel).

phase, resulting in the complete stop band within the bulk
band.
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