
Architecturally Truly Diverse Systems: A Review

Roger D. Chamberlain

Washington University in St. Louis, St. Louis, Missouri, USA

Abstract

The pairing of traditional multicore processors with accelerators of various
forms (e.g., graphics engines, reconfigurable logic) can be referred to gen-
erally as architecturally diverse systems. Our interest in this work is truly
diverse systems, in which more than one accelerator is used in the execution
of an application. These systems have the potential for substantial per-
formance gains relative to multicores alone; however, they pose significant
difficulties when it comes to application development.

In spite of these difficulties, the use of accelerators in high performance
computation, generally, has grown substantially over the past decade. This
is primarily due to a pair of forces. First, with the demise of Dennard scal-
ing, power has become a substantial limiting factor in systems development,
pushing computations to be more power efficient (a strength of many accel-
erators). Second, the application development environments for accelerators
have improved substantially in recent years.

We review the use of multiple, distinct accelerators deployed in a indi-
vidual system or, more to the point, used concurrently within an individual
application. We give a history of architecturally diverse systems that use
multiple accelerators, discuss the motivations for diversity in accelerators,
and describe the approaches that both system designers and application
developers have used to put accelerators to beneficial use.

Keywords: graphics engine, GPU, reconfigurable logic, FPGA

1. Introduction

The exploitation of Moore’s Law [1, 2] and Dennard Scaling [3, 4] has
enabled an unprecedented increase in computational capability over ap-

Email address: roger@wustl.edu (Roger D. Chamberlain)

Preprint submitted to Elsevier November 26, 2019



proximately five decades. Smaller feature sizes in semiconductor technol-
ogy, combined with greater power efficiency associated with each transistor,
have resulted in a long stretch of time in which application performance
greatly improved simply by waiting for the next generation of processors to
be shipped.

No longer. Since the early 2000s, the clock rates of individual proces-
sors have stayed relatively constant, and improved performance has primar-
ily been due to a combination of speculative computation and parallelism.
Speculative computation has been used to increase the performance of in-
dividual processor cores, and the number of cores on a processor chip has
been expanding for over a decade.

In addition to the transition of traditional processors into multicores, the
past two decades have also seen the advent of accelerators, or architecturally
diverse systems. Here, a multicore processor is augmented with one or
more specialized computational resources. While most commonly graphics
engines or reconfigurable logic, other accelerators that have seen use include
digital signal processors and vector processors (e.g., Intel’s Xeon Phi).

Accelerators typically gain performance by exchanging generality for
specificity. While general purpose processor cores try to be very good at
everything, accelerators forego good performance on some computational
tasks so that they can excel on a more limited set of target tasks. They
accomplish this goal by specializing the computational data path, each in
their own specific way.

Graphics engines (or GPUs, graphics processing units) are now ubiqui-
tous in the Top500 supercomputer lists.1 Graphics engines trade off sin-
gle thread performance (i.e., minimum latency to execute a sequential set
of instructions) for greater computational throughput on multiple threads.
A single fetch-decode unit controls a collection of execution units, each of
which performs the same instruction on different data elements. This en-
ables the graphics engine to excel at regular dense matrix computations
(e.g., vector-matrix multiplication) and other compute problems for which
the same operation is to be performed on a large set of data.

In 2015, Mittal and Vetter [5] surveyed techniques for effective computa-
tion using a combination of multicores and graphics engines. They consider
systems in which the graphics engines are on a peripheral bus (typically
PCIe in modern systems) as well as fused systems (both compute resources
on a common chip).

1https://www.top500.org

2



Reconfigurable logic (or FPGAs, field-programmable logic arrays) has
been around for a longer time than graphics engines, but it has only recently
come to be seen as a viable option for high performance computation. The
unique advantage of reconfigurable logic is that the actual structure of the
data path can be altered to match the needs of the specific computation at
hand.

Compton and Hauck [6] described the state of reconfigurable logic tar-
geting high performance computations back when the largest chips were
capable of about one million equivalent logic gates. Since then, capacities
have increased 100-fold. In addition, it is now common for reconfigurable
logic chips to also have some chip area dedicated to specific functions (e.g.,
memory, multipliers, etc.).

More recently, Trimberger [7] provides a retrospective on the first 30
years of reconfigurable logic technology, breaking it down into three “ages,”
which he calls invention, expansion, and accumulation. Escobar et al. [8]
provide a comprehensive analysis of the use of reconfigurable logic in high
performance computing. They extract features from families of high per-
formance computing applications and assess their suitability for hardware
implementation. Microsoft is now installing reconfigurable logic in its Azure
cloud systems [9].

In this paper, we are interested in exploring truly architecturally diverse
systems, by which we mean systems that include not just one, but two
(or potentially more) distinct accelerators. Most of these systems contain
both graphics engines and reconfigurable logic, in addition to the traditional
multicore that forms the base of the system.

Here, we review the use of multiple accelerators used to execute an in-
dividual application. We describe early efforts in this area and then con-
centrate on how system designers and application developers have utilized
multiple accelerators. Moving forward, what properties (of both the appli-
cation and the execution platform) are important in matching applications
to platforms, and how can we perform the appropriate deployments with
little or no explicit developer guidance.

The paper is organized as follows. Section 2 describes the early history
of multiple accelerator use (roughly defined as 2010 or before). Section 3
follows with a description of a number of machines that support multiple
accelerators, both early machines and more recent machines. Section 4
lists a number of applications that have used multiple accelerators in their
execution. Section 5 then describes development environments that target
multiple accelerator use, and Section 6 concludes and describes future work.

3



2. Early History

Hardware acceleration of applications has a long history. In 1984, Blank [10]
published a survey of hardware accelerators used in computer-aided design
that described a set of special-purpose engines going back nearly 20 years
(the first being described in 1969 [11]). Blank describes accelerators for
logic simulation, design rule checking, placement, and routing. These are all
tasks that remain computationally expensive today, especially as designs of
digital systems have grown in size and complexity.

These accelerators were all dedicated hardware engines, capable only of
executing the specific application for which they were originally designed and
built. As a result, none of them were economically viable over any length
of time. During this time period, the march of technology (specifically the
combination of Moore’s Law and Dennard Scaling) quickly overcame any
functionality-limited design. It simply wasn’t long before general-purpose
machines became fast enough to eliminate the performance advantage that
was available via hardware specialization.

While the example given above is computer-aided design, there were sim-
ilar efforts in other domains (e.g., N-body simulations in astrophysics [12,
13], LISP machines [14, 15], Java machines [16, 17]), all of which suffered
a similar fate. A recent counterexample to this trend is the advent of cus-
tomized architectures applied to convolutional neural network computations,
e.g., the Tensor Processing Unit [18].

2.1. Comparing Different Accelerators

While dedicated purpose hardware acceleration has had limited success,
accelerators that can be repurposed to multiple applications have seen sub-
stantially more utilization. There has been a significant amount of work
dedicated to effectively using individual accelerators on a wide range of prob-
lems. Excellent reviews include those by Mittal and Vetter [5] for graphics
engines, Escobar et al. [8] for reconfigurable logic, and Brodtkorb et al. [19]
for three accelerators: graphics engines, reconfigurable logic, and Cell pro-
cessors. Chung et al. [20] provided a retrospective of the field in 2010.

Approximately a decade ago, there was a fair amount of research that
went into comparing one accelerator with another. The bulk of that work
compared graphics engines to reconfigurable logic on a wide range of appli-
cations and/or application kernels. Examples include dense matrix multipli-
cation [20, 21], sparse matrix-vector multiplication [22], Gaussian elimina-
tion [23], FFT [20], reduction [21], encryption [23], image processing [24, 25],
lithography simulation [26], pseudo-random number generation [21, 27, 28],

4



N-body simulation [21], computational biology [23], and computational fi-
nance [20, 29].

Kapre and DeHon [30] compared the performance of graphics engines,
reconfigurable logic, and Cell processors on a circuit simulation application,
and Baker et al. [31] did the same exploring matched filter computations.
Application performance compared across graphics engines and Cell proces-
sors includes CT reconstruction [32] and partial differential equation simu-
lations [33].

Table 1 summarizes the majority of the reported results from these stud-
ies. The clear takeaway from this table is that there is no clear winner for
all of these applications which accelerator gives the greater performance. It
clearly depends on the properties of the application and the implementation.

Table 1: Performance comparisons for different accelerators on a variety of applications,
all reported between 2007 and 2010.

Application Ref.
Graphics Reconfig.

Notes
Engine Logic

matrix [20] 541 1,491 GFLOP/s
multiply [21] 120× 60× speedup vs. 1 core

reduction [21] 120× 80× speedup vs. 1 core

image [24] 100 600 frames/s
processing [25] 847 258 frames/s

lithography sim. [26] 8× 15× speedup vs. 1 core

pseudo-random [21] 90× 89× speedup vs. 1 core
number [27] 3 × 109 26 × 109 random numbers/s

generation [28] 14 × 109 44 × 109 random numbers/s

N-body sim. [21] 70× 5× speedup vs. 1 core

comp. [20] 10,756 7,800 Mopts/s
finance [29] 50× 162× speedup vs. 1 core

circuit sim. [30] 131× 182× speedup vs. 1 core

matched filter [31] 6× 2× speedup vs. 1 core

While which accelerator will win a head-to-head performance competi-
tion varies with application and implementation, a number of clear trends
are evident from the work described in this section. In particular, the three
types of compute engine (multicores, graphics engines, and reconfigurable
logic) each have their own strengths and weaknesses relative to the other
two. These can be briefly stated as follows:

• Multicores – Strengths: generality, application portability, ease of

5



programmability. Weaknesses: lowest parallelism of the group, rigid
memory subsystem, low power efficiency.

• Graphics engines – Strengths: high parallelism (esp. for data par-
allel problems), high density of floating-point units, high throughput
memory (including coalescing). Weaknesses: rigid computational data
path, limited suitability for a variety of applications.

• Reconfigurable logic – Strengths: extremely high flexibility, suit-
ability for fine-grain parallelism, power efficiency. Weaknesses: diffi-
culty of programmability, lower clock rates (necessitating greater par-
allelism to achieve similar performance).

The end result, not surprisingly, is that a particular accelerator sees
performance benefits particularly when the needs of the application are a
match with the capabilities of the accelerator. E.g., high-volume floating-
point multiplications on regular data structures are well suited to a graphics
engine, while specialized bit-level manipulations are well suited to reconfig-
urable logic, in which the data path is customized the to specific needs of
the application.

While the above conclusions were based upon investigations completed
by 2010, they are still as true today as they were then.

2.2. First Use of Multiple Accelerators on a Common Problem

The first known (to this author) combination of a graphics engine and
reconfigurable logic used on a common problem was presented in two papers
by Kelmelis et al. [34, 35] in 2006. They used a pair of PCI cards (an
EM Photonics Celerity card with a Xilinx Virtex-II FPGA and an NVIDIA
GeForce 7800 GTX graphics card) to accelerate the execution of the finite-
difference time-domain (FDTD) simulation of electromagnetic waves [34]
and nanoscale devices [35]. In the electromagnetic wave simulation, the 2D
problem was solved using the graphics engine, exploiting its greater memory
bandwidth, while the 3D problem was solved using the reconfigurable logic,
building a custom cache. As such, this problem didn’t yet meet our interest
in using both accelerators on a common problem.

In [35], the authors describe what is believed to be the first ever use
of multicores, graphics engines, and reconfigurable logic to execute a single
application. In the problem partitioning, the graphics engine is responsible
for the mesh construction over the 3D space, which is a regular computation
that maps well onto the graphics engine’s data parallel pipelines. The recon-
figurable logic is responsible for performing the field-update computations,

6



which benefits from the custom cache designed to provide input data to the
field updates.

This combined machine was then used to execute a full-wave electromag-
netic circuit simulation in which the graphics engine was used for coefficient
calculations and matrix setup while the reconfigurable logic was responsible
for the iterative matrix solver.

2.3. Other Early Uses of Multiple Accelerators

A second example of simultaneous use of multiple accelerators was re-
ported by Yeung et al. [36] in 2008. The authors propose the use of the
map-reduce framework for heterogeneous systems, show the performance of
a number of benchmarks (e.g., Monte Carlo simulation, European options
pricing, cipher attack, N-body simulation) using each accelerator indepen-
dently, and then show performance with combined use of both the graphics
engine and the reconfigurable logic.

The third known example of using multiple accelerators on a common
problem is the deployment of a financial Monte Carlo simulation (a value-at-
risk computation) on graphics engines and reconfigurable logic by Singla et
al. [37], also described in 2008. The authors report a speedup of 74× relative
to an 8-core implementation, using an NVIDIA GeForce GTX 260 as the
graphics processor and a Xilinx Virtex-4 LX80 FPGA for the reconfigurable
logic. The processors are 2.2 GHz AMD Opterons.

In 2010, there were three publications that describe such deployments.
First, Tsoi and Luk [38] deployed an N-body simulation application on the
Axel cluster, a heterogeneous system in which each cluster node (out of 16
total) includes both reconfigurable logic and a graphics engine. The map-
reduce framework is used to deploy applications on the Axel system.

Second, Bauer et al. [39] deployed a video-based pedestrian detection
problem on a PC system that includes a graphics card and in which the
frame grabber board has an embedded reconfigurable logic chip. The recon-
figurable logic is responsible for feature extraction and the graphics engine
is responsible for classification (using a Gaussian kernel support vector ma-
chine).

Third, Tse et al. [40] deployed a pair of Monte Carlo simulation ap-
plications on a cluster with 8 Virtex-5 FPGAs and 8 Tesla C1060 GPUs.
Their asset simulation application achieved a speedup of 44× relative to a
16-node cluster of AMD quad-core 2.4 GHz multicores. Energy efficiency
improved almost 20-fold. A first for this paper was the investigation of var-
ious scheduling policies for assignment of work to the various accelerators.

7



2.4. Early Machines and Development Environments

In addition to the Axel cluster [38] mentioned above, another early ma-
chine that included both graphics engines and reconfigurable logic is the
Quadro Plex (QP) [41] cluster at NCSA. The QP, deployed in 2007, was a
16 node cluster in which each compute node contained two dual-core 2.4 GHz
AMD Opterons, four NVIDIA Quadro FX 5600 graphics engines and one
Nallatech H101-PCIX reconfigurable logic accelerator card. While [41] de-
scribes several applications deployed on the cluster, they all appear to use
one accelerator or the other, but not both.

Kastl and Loimayr [42] described a machine designed to accelerate crypt-
analytic algorithms. However, in the initial publication the reconfigurable
logic was not operational and any application testing was limited to graphics
engine acceleration.

Early development environments include Auto-Pipe [43, 44] and Har-
mony [45]. Auto-Pipe was originally introduced in 2006 as an environment
for streaming applications supporting both traditional multicores and recon-
figurable logic [43], and was later extended to support graphics engines [44].
This was the environment used by Singla et al. [37].

The Harmony environment supports applications that have been de-
composed into computer kernels whose execution can be subject to explicit
control decisions [45]. As such, it has much in common with Auto-Pipe’s
streaming model, with a slightly richer set of topologies supported. While
the design of Harmony includes reconfigurable logic support, the experimen-
tal evaluation provided in [45] is limited to multicores and graphics engines.

The work described in this section was all published by 2010. In the
sections that follow, we will concentrate on research that has been published
since then.

3. Machines

The ability to physically construct a machine with multiple accelerators
has never really been in question. Frankly, they are straightforward to con-
struct using readily available commercial components. Figure 1 illustrates
the classic approach to such a design. Clusters of nodes of this style can be
readily constructed using either Ethernet or Infiniband as the communica-
tion technology.

In the figure, a multicore host is attached to a reconfigurable logic board
and to a graphics engine via the host’s I/O bus. Current systems use PCIe
as the I/O bus, however, most of the early systems described in the previous
section used PCI-X. Each of the elements of the machine (the multicore, the

8



multicore

DRAM

reconfigurable

logic

SRAM DRAM

graphics

engine

DRAM

I/O bus

Figure 1: Individual node architecture for an multiple-accelerator system.

reconfigurable logic, and the graphics engine) has its own physical memory.
It is common for reconfigurable logic boards to have both SRAM and DRAM
on board. Since there is not, by default, a common address space that
encompasses all of these physical memories, data communications between
execution engines can be a significant issue both in application development
and performance. We will come back to this point later.

After the initial set of machines described in Section 2.4 above, a number
of additional machines have been designed, built, and deployed that support
multiple accelerators.

In 2012, the Chimera system was described [46]. It combined Intel mul-
ticores, NVIDIA Tesla C2070 graphics engines, and an Altera (now Intel)
Stratix-IV reconfigurable logic card using the motherboard’s PCIe bus. The
authors describe approaches to deploying a variety of applications on the
system. However, performance results are not provided.

A multiple accelerator cluster built at the Center for Development of Ad-
vanced Computing (C-DAC) in Bangalore, India, was described in 2014 [47].
Here, the authors adapted the StarPU development environment [48] to
support reconfigurable logic as well as simultaneous support of CUDA and
OpenCL in the same application. A Monte Carlo simulation application is
described, achieving a 22× speedup relative to a Xeon processor.

Also in 2014, Wu et al. [49] describe a heterogeneous compute platform
with multicores, graphics engines, and reconfigurable logic that has a focus
on power efficient computing. The authors explore four application exam-
ples, but similar to the QP machine, chose to exploit one accelerator type
or another, but not both simultaneously.

Proaño et al. [50] describe an open-source framework for integrating ac-

9



celerators into a cloud infrastructure. Their goal is to enable both graphics
engines and reconfigurable logic as compute resources in the Infrastructure
as a Service (IaaS) cloud service model. With AWS having already an-
nounced the availability of graphics engines in the cloud, the authors fo-
cused on exploring the issues associated with enabling the reconfigurable
logic. More recently, AWS has announced the availability of FPGA-enabled
nodes in their cloud infrastructure.

In 2015, Rethinagiri et al. [51] described a pair of computational plat-
forms that included both graphics engines and reconfigurable logic. One was
targeting high-performance computing (HPC) applications and the other
was targeting high-performance embedded (HPE) applications. In both
cases, their interest was a combination of performance and energy efficiency.
Table 2 gives the particulars of the two platforms (extracted from Table I
of [51]).

Table 2: Specifications for HPC and HPE platforms [51].

Domain Engine Specification Communication

HPC
cores Intel Xeon E5-2634 Gen3 ×16
GPU NVIDIA Telsa K40 Gen3 ×16

FPGA Xilinx Virtex-7 VC709 Gen3 ×8

HPE
cores and GPU NVIDIA Jetson TK1 Gen2 ×1

cores and FPGA Xilinx Zynq-7015 Gen2 ×4

The authors give performance results and energy efficiency for five appli-
cations across the pair of machines: computed tomography, face recognition,
video coding, character recognition, and motion tracking.

The SuperDragon system [52] contains 64 nodes, each of which is com-
prised of an Intel Westmere processor, an NVIDIA Tesla C2050 graphics
engine, and a pair of Xilinx FPGAs (an XC5VLX330-1 for computation and
an XC5VLX70T for control and communications management), connected
by PCIe. The 64 nodes communicate via an Infiniband network. The au-
thors use a Cryo-electron microscopy application to explore various mapping
options for assigning work to the different accelerators.

Segal and Margala [53] describe a system constructed using commodity
cloud nodes (from AWS) and a locally deployed node containing a recon-
figurable logic card. They used the SparkCL framework [54], which adds
accelerator support to Apache Spark, to deploy an N-body simulation. They
conclude that which accelerator gives the best performance depends in part
on the dynamics of the particle interactions in the N-body simulation.

10



This latter point is worth reinforcing. Not only does the application
algorithm impact what type of accelerator gives the best performance, for
many problems the nature of the input data can also influence this result.
In many cases, it might very well be impractical to know, for certain, which
accelerator is to be preferred prior to the actual execution. This leaves the
door open for adaptive approaches to be effective.

Finally, in 2016 Contassot-Vivier and Vialle [55] described a pair of ma-
chines that contain both an NVIDIA graphics engine and also a Xeon Phi.
This is the first known combination of these two accelerators in a single ma-
chine. The authors give performance data for a Jacobi relaxation application
on each of these two machines. They report that effective management of
communications (between host and accelerators) is essential to achieving
good performance on this type of machine.

4. Applications

The vast majority of the applications that have been deployed on more
than one accelerator have combined graphics engines and reconfigurable logic
as the two types of accelerator. Tables 3 and 4 summarize the literature for
these applications, indicating the application itself, the year of publication
(including the citation), and various notes about the specific implementa-
tion. Particularly, for each application it is indicated whether (or not) the
application assigns distinct functions to the two different accelerator types,
and also whether (or not) the map-reduce programming model is used as
part of the implementation.

A large fraction of the applications listed partition the workload across
distinct functions. Out of 41 total applications, 29 (or about 70%) divide the
application in this way. These decisions on the part of the application devel-
opers reflect the reality that the different accelerators have distinct strengths
and weaknesses, and different portions of the application can differently take
advantage of those strengths and/or ameliorate the weaknesses.

An example of partitioning the workload based on the distinct functions
to be performed is described by Danczul et al. [56]. The authors are at-
tempting a brute force attack on the password for a set of PDF encrypted
files. This requires both MD5 hash computations as well as RC4 stream
cypher computations. They assign the MD5 hashes to the graphics engines,
in part due to its limited memory requirements, and assign the RC4 com-
putations to the reconfigurable logic (in which the memory requirements of
the RC4 algorithm can be accommodated efficiently).

11



Table 3: Applications deployed on multiple accelerators.

Application Ref. Year Notes

EM sim [35] 2006 First known example∗

Monte
Carlo
simulation

[36] 2008 European options pricing†

[37] 2008 Financial value-at-risk computation∗

[40] 2010 Asian options and generalized asset pricing
[47] 2014 Computation of π∗

N-body
simulation

[36] 2008 Dynamic workload distribution†

[38] 2010 Introduced Axel cluster†

[53] 2016 AWS GPUs plus local FPGA

crypto
[36] 2008 Brute force key search†

[56] 2013 Password search for PDF documents∗

machine
learning

[39] 2010 Pedestrian detection∗

[57] 2018 Character recognition∗

vision
[58] 2011 Stereo 3D video production∗

[59] 2014 Hand tracking∗

[51] 2015 Video coding and motion tracking∗

medical
imaging

[60] 2012 Includes both static and dynamic assignment∗

[61] 2012 Cardiac mapping
[62] 2013 Transmural electrophysiological imaging∗

[51] 2015 Cone beam computed tomography∗

[52] 2015 Cryo-electron microscopy
[63] 2018 Ultrasonic imaging∗

signal and
image
processing

[64] 2013 Pedestrian recognition∗

[51] 2015 Face recognition and character recognition∗

[65] 2015 Real-time RF localization
[66] 2016 Data acquisition for experimental physics∗

[67] 2018 Add dynamic function distribution to above∗

[68] 2018 Increase frame rate to 9000 frames/s∗

astronomy [69] 2014 Radio antenna cross-correlation∗

comp bio

[70] 2014 Protein-protein sequence alignment∗

[71] 2016 Genome-wide association studies∗

[72] 2017 Genome-wide interaction studies∗

[73] 2019 Computation of gene-gene interactions∗

∗Assigns distinct functions to the two accelerators. †Utilizes map-reduce.

12



Table 4: Applications deployed on multiple accelerators (cont.).

Application Ref. Year Notes

data
acquisition

[74] 2016 Linear accelerator∗

[75] 2017 Trigger systems for Large Hadron Collider∗

[76] 2018 3D waveform oscilloscope
[77] 2019 Linear accelerator∗

driving
[78] 2017 Driver assistance (lane detection)
[79] 2018 Autonomous vehicle computations∗

∗Assigns distinct functions to the two accelerators. †Utilizes map-reduce.

In a large fraction of the implementations where the workload is divided
by function onto each accelerator, the computation is organized as a pipeline.
Data flows into one accelerator, the portion of the work assigned to that
accelerator is performed, the output of that pipeline stage then flows into the
other accelerator, where the portion of the work assigned to that accelerator
is performed.

Sb̂ırlea et al. [60] extend this to general dataflow graphs, supporting
a richer set of topologies than just a simple pipeline. The authors also
incorporate the ability to support a work stealing scheduler across execution
platforms.

A clear benefit of the map-reduce paradigm is that it is relatively straight-
forward to express the computational parallelism available in an algorithm
using this approach. Several applications took advantage of this (4 of 41,
or about 10% of those listed). In addition, it can also support the dynamic
assignment of workload across the available computational resources, illus-
trated as early as 2008 by Yeung et al. [36]. This approach, however, has
not been used for recent deployments, likely due to its inability to effec-
tively exploit the particular advantages of each accelerator. If the workload
is uniform, it stands to reason that a uniform architecture is the preferred
deployment option.

For the set of Monte Carlo simulations listed in the table, four of the five
problems attempted ([40] includes two) are some form of financial compu-
tation. This hints at the strong interest in accelerated computation on the
part of the financial industry.

Any time multiple compute resources are used in an application, there
is the potential for data movement between those resources to be a perfor-
mance bottleneck. Bittner et al. [59] demonstrate direct graphics engine to
reconfigurable logic DMA data transfers over PCIe, avoiding a copy to/from

13



the host memory. Ammendola et al. [80] also exploit a combination of FP-
GAs and graphics engines; however, the FPGAs are not used for application
functionality but instead are used to implement GPU to GPU communica-
tions.

In the past decade, there has been a continuation of the research that
seeks to compare one accelerator type with another. Examples of this that
compare reconfigurable logic with graphics engines include: scientific com-
putations [81], compressed sensing and Cholesky decomposition [82], sliding-
window computations [83], de novo assembly (in computational biology) [84],
erasure coding [85], database join [86], and data integration [87]. The quanti-
tative performance comparisons for these experiments are shown in Table 5.
Carabaño et al. [88] compare energy efficiency, performance, and productiv-
ity across accelerators, and Véstias and Neto [89] explore accelerator trends,
particularly as they impact both peak performance and sustained perfor-
mance. O’Neal and Brisk [90] provide predictive models for each of the
constituent computational engines: multicores, graphics engines, and recon-
figurable logic, quantifying both performance and power consumption.

Table 5: Performance comparisons for graphics engines and reconfigurable logic, reported
since 2010.

Application Ref.
Graphics Reconfig.

Notes
Engine Logic

Quantum MC
[81] 50 × 106 90 × 106 interactions/s

simulation

Cholesky
[82] 38× 15× speedup vs. 1 core

decomposition

image convolution [83] 20 40 frames/s

genome alignment [84] 13× 115× speedup vs. 1 core

erasure coding [85] 3.9 1.2 GB/s throughput

database join [86] 127 70 µs for 8192 elements

bio data conversion [87] 5.3 15.3 GB/s throughput

ML data conversion [87] 6.2 1.8 GB/s throughput

A number of investigations have concluded that which accelerator is
preferred often depends upon the properties of the input data. Examples
of applications for which this is true include: linear algebra [91, 92], sparse
matrix multiplication [93], and vision [94]. In general, the conclusions drawn
in the previous decade (see Section 2.1) still hold for this work as well.

Graphics engines and reconfigurable logic are not the only accelerators

14



available, however. An investigation that included the Cell in the mix imple-
mented a biological sequence alignment problem [95]. Work comparing the
Cell with graphics engines (but not including reconfigurable logic) includes
problems such as wavelet transforms [96], Bayesian analysis in bioinformat-
ics [97], molecular dynamics [97], and the TPC decision support bench-
mark [97].

Research that compares graphics engines, reconfigurable logic and the
Xeon Phi include an investigation of sparse matrix multiplication [93] as
well as the development of predictive models for power and energy for all
three execution platforms [98]. Dropping reconfigurable logic from the com-
parison yields the following application investigations: Ising model simula-
tion [99], microscopy [100], quantum chemistry [101], quantum many-body
simulations [102], and Jacobi relaxation [55]. Performance data from some
of the above systems is presented in Table 6. As is the case for the previous
comparisons, which accelerator has better performance is again a function
of the properties of the application itself. Productivity, performance, and
energy quantification is pursued by Memeti et al. [103].

Table 6: Performance comparisons for graphics engines and Xeon Phi.

Application Ref.
Graphics Xeon

Notes
Engine Phi

sparse matrix
[93] 60 59 Gflops/s

multiply

Ising model
[99] 3.72 7.03 ns/spin for L128 lattice

simulation

Jacobi relaxation [55] 4.96 3.02 speedup vs. 1 core

We next turn our focus away from individual applications, and focus
instead on the development environments that enable these applications to
be designed, implemented, deployed, tested, and executed.

5. Development Tools

The general responsibilities associated with application development tools
can be quite broad. First, they might assist in the expression of the compu-
tation to be executed (either by supporting one or more languages or intro-
ducing a potentially new language). Second, they might assist the execution
of the application, often through resource management and/or scheduling.
We will consider each of these in turn.

15



5.1. Expression of the Application’s Computation

Here we are interested in tools that help the application developer ex-
press the computation that is to be performed. Essentially, what must
the programmer say to enable the execution platform to do what is desired.
Traditionally, application expression using even a single accelerator has been
somewhat difficult (e.g., requiring the use of low-level languages like Verilog
and/or VHDL for reconfigurable logic design), and the addition of a second
accelerator with potentially vastly different properties does nothing to make
the task any easier.

Probably the easiest place to make progress on this front is the develop-
ment of libraries. By encapsulating either a portion of the computation or
some support function in a library, the application developer is relieved of
the responsibility to implement that functionality.

As a first example, Thoma et al. [104] describe a framework for sup-
porting accelerator to accelerator communications (specifically supporting
data transfers between GPUs and FPGAs). In particular, PCIe transfers
are made directly, device-to-device, without data being copied into the main
memory of the multicore host.

For a second example, Moore et al. [105] describe an implementation of
the VSIPL++ signal processing library that supports both graphics engines
and reconfigurable logic. The same source code can be used on a multicore
as well as exploit available accelerators.

As a third example, Zhu et al. [106] present CNNLab, a framework for
neural network implementations that supports both graphics engines and
reconfigurable logic. Each layer of the model is prescribed via an API.

For reconfigurable logic on the Zynq SoC, Xilinx supports the use of
Python on the embedded processor core for coordination and library invoca-
tion (with the instantiation of the library functionality on the reconfigurable
logic fabric).

Finally, Abalenkovs et al. [107] explore the performance of libraries for
dense linear algebra deployed on multicores, graphics engines, and the Intel
Xeon Phi.

As a next step in the direction of simplifying application development,
several groups have used what are, in effect, coordination languages. Here,
the individual portions of the overall computation that is to be performed
on an accelerator is programmed using native tools for that accelerator. A
coordination language is then used to stitch the whole application together.

Examples of this approach include the Auto-Pipe system, which origi-
nally supported just multicores and reconfigurable logic [43], but was later

16



expanded to include graphics engines [44]; the Axel cluster [38], which ini-
tially used the map-reduce framework for coordination, extended later to
richer coordination capabilities [108]; and a data-flow coordination model
called Concurrent Collections [60].

All of the approaches discussed so far still require some amount of the
application to be developed in the low-level languages supported by the ac-
celerators (a particularly problematic issue for reconfigurable logic). With
the availability of OpenCL as a potential common language, Ahmed [109]
built the necessary infrastructure to enable a single OpenCL application to
exploit both graphics engines and reconfigurable logic for a common appli-
cation. The Liquid Metal project [110] at IBM introduced a new language,
Lime, a Java-compatible object-oriented language, that can be compiled for
and executed on both graphics engines and reconfigurable logic. In these
systems, the reconfigurable logic is expressed in a high-level language (either
OpenCL or Lime, respectively) and a high-level synthesis process is used to
convert the source code into the gate-level designs necessary for deployment
on reconfigurable logic.

Most research into application development languages and systems for
accelerators has focused on one accelerator. When the target is a graphics
engine, by far the most common two languages are CUDA and OpenCL.
CUDA, being proprietary, is limited to NVIDIA graphics engines, while
OpenCL, as an open standard, can be used across a much wider set of
manufacturers’ platforms.

Both CUDA and OpenCL are primarily used to express data paral-
lelism when targeting graphics engines, particularly regular computations
on densely packed data structures. The MERCATOR system [111] attempts
to widen the scope of applicability to irregular computations, such as ma-
nipulation of sparse data. While CUDA has been almost exclusively used
for graphics engines, FCUDA [112] is a system that does a source-to-source
translation of CUDA code to C (suitable for high-level synthesis), enabling
CUDA applications to be deployed on reconfigurable logic.

OpenACC is a directive-based approach to application expression, used
initially for graphics engines, that has been adapted to support FPGAs [113]
via source-to-source translation into OpenCL.

While historically the only way to realize efficient and performant appli-
cations on reconfigurable logic was to use a hardware description language
(such as Verilog or VHDL), there are now a number of options for high-level
synthesis tools that enable application expression at a level of abstraction
much closer to that used in graphics engines or traditional processor cores.
OpenCL as a source language has already been mentioned above. Many oth-

17



ers are based on C/C++ or a subset thereof. Table 7 summarizes many of
these tools, and Nane et al. [114] provide a broader survey of FPGA-specific
tools. These high-level synthesis tools are now quite effective in practice,
delivering reasonable performance with design effort comparable to graphics
engine application development [115, 116, 117].

Table 7: Tools for application expression on accelerators.

Tool Ref. License
Input Deployment

Language(s) Target(s)

Auto-Pipe [44] academic VHDL,CUDA FPGA,GPU

Liquid Metal [110] commercial Lime FPGA,GPU

OpenACC [113] academic C/C++ FPGA,GPU

NVIDIA CUDA [118] commercial CUDA GPU

MERCATOR [111] academic CUDA GPU

DWARV [119] academic C FPGA

FCUDA [112] academic CUDA FPGA

Intel HLS commercial C/C++/OpenCL FPGA

LegUp [120] academic C FPGA

Maxeler [121] commercial MaxJ FPGA

ROCCC [122] academic C FPGA

Vivado HLS commercial C/C++/OpenCL FPGA

While high-level synthesis can be extremely beneficial in terms of en-
abling application developers to author their codes at a higher level of
abstraction than was previously available, they are not without continu-
ing issues. Cabrera and Chamberlain [116] recently investigated the im-
plications of adjusting design parameters in OpenCL implementations of
the Needleman-Wunsch biosequence alignment algorithm targeting recon-
figurable logic. They reported performance variability on an Intel FPGA of
over 100× across different parameter configurations. Knowing how to tune
the implementation is clearly crucial to achieving good performance.

Productivity, performance, and energy quantification is pursued by Memeti
et al. [103] for languages that can be deployed to graphics engines and the
Xeon Phi. Their work compared OpenCL, OpenACC, OpenMP, and CUDA.
They developed a developer productivity measure that quantifies the frac-
tion of code lines required for parallelization. Two things they conclude
are: (1) human factors are quite important (a fact well known in software
development circles), and (2) OpenMP generally requires less programmer
effort that the other approaches.

18



The European EXTRA project has investigated the issue of design space
exploration for reconfigurable systems [123, 124]. The focus of this project
has been reconfigurability at a courser granularity than traditional FPGAs
(e.g., CGRAs, or course grained reconfigurable arrays), although the exper-
imental deployments include FPGAs. A unique feature of this project is the
explicit consideration of the need for effective reconfigurability, i.e., what is
deployed on the accelerator will vary either during the execution of the ap-
plication or between applications. A wide number of applications have been
implemented [125, 126, 127], as well as domain specific language approaches
to application expression [128, 129].

The take-home message from all of this is that if one’s goal is to develop
applications that can be deployed across both graphics engines and reconfig-
urable logic, one of the OpenCL variants (from Intel or Xilinx) is the most
appropriate choice. They both employ knowledge gained from the various
academic efforts, and have matured into well-supported commercial tools.

5.2. Managing the Application’s Execution

Given the ability to deploy various components of a problem onto dis-
tinct accelerators, Liu and Luk [130, 131] provided an early study of how
one should allocate problem components onto execution resources that in-
clude graphics engines and reconfigurable logic. They explored three met-
rics: performance, energy efficiency, and temperature. This was expanded
by Spacey et al. [132] to describe a formal model for partitioning tasks across
distributed hardware components. Their experimental work was performed
on the Axel cluster [38], but was limited to multicores and reconfigurable
logic, not including the graphics engines. Lösch and Platzner [133] present
reMinMin, a scheduling technique that is focused on optimizing the total
energy for a set of tasks executed across multicores, graphics engines, and
reconfigurable logic. They report experimental results for four applications,
with the heuristic scheduling algorithm coming within 2% of optimum in all
cases that were investigated.

Kicherer et al. [134] come at the problem from a completely different
perspective. They are interested in the circumstance where an application
is to be executed on any number of different hardware platforms, some of
which include accelerators and some not. They describe an approach to
enable these applications to be seamlessly portable, taking advantage of
accelerators when present, but still executing correctly when not present.

The above partitioning and mapping approaches result in static assign-
ments. There has also been some work in the area of dynamic approaches.

19



Bogdański et al. [135] use on-line machine learning techniques to dynami-
cally adjust the computation as it proceeds. Karia and Lopez [136] provide
a comprehensive overview of prior work in scheduling for heterogeneous sys-
tem, and then propose their own, Alternative Processor within Threshold,
to address some of the issues present in the prior work. Both of these groups
used simulation of a multiple accelerator system for their quantitative eval-
uation.

Belviranli et al. [137] schedule loop iterations dynamically, resizing blocks
as needed to prevent underutilization and load imbalance. Bolchini et
al. [138] describe an approach that dedicates some of the computational
resources to dynamic measurement of the current performance, feeding that
information back into the scheduling decisions, effectively making the sys-
tem self-adaptive. Both of the above groups evaluate their approaches on
a pair of systems, one containing graphics engines and the other contain-
ing reconfigurable logic, but don’t include a machine that contains both
accelerators.

An approach that addresses both the issues of application expression and
application execution is EngineCL [139]. EngineCL is a high-level framework
that provides load balancing across devices that are authored in OpenCL. An
experimental comparison of static versus dynamic load balancing approaches
yields strong evidence for the improvements that are realizable with dynamic
scheduling.

6. Conclusions and Future Directions

6.1. Conclusions

Over the past 15 years, there has been a growing interest in the use
of multiple accelerators on individual applications, the utilization of truly
architecturally diverse systems. The reasons for this are many, but the
dominant consideration is that the benefits achievable through acceleration
are strongly dependent upon the properties of the application as well as the
properties of the implementation.

Since applications are far from monolithic, by exploiting a different ac-
celerator for different parts of an application, one can achieve better results
overall than if the accelerator choice is limited to just a single option.

The vast majority of recently developed applications that exploit multi-
ple accelerators deploy different portions of the application to distinct accel-
erators. Portions of the application that work well on reconfigurable logic

20



are deployed on reconfigurable logic, and portions that work well on graph-
ics engines are deployed on graphics engines. This is not surprising, as each
computational platform has its own unique strengths and weaknesses.

While performance is still the dominant figure of merit, there is increas-
ing interest in energy consumption and/or energy efficiency as an important
consideration in how one wishes to deploy an application in production use.
Accelerators often provide strong advantages in this circumstance, further-
ing the interest in their use.

6.2. Future Directions

As an application developer with over a decade of experience using archi-
tecturally diverse systems, there are a pair of things this author would like
to see achieved in the future. Both items directly relate to the development
tools available to authors of applications.

First, the compiler technology, especially for reconfigurable logic, re-
mains woefully behind the capabilities of compilers for traditional software
systems. Even things such as the degree of loop unrolling, which happens
regularly and invisibly in software compilers, must be explicitly specified by
the developer for high-level synthesis.

The reason that parameters such as loop unrolling degree are exposed to
application developers is that we don’t yet understand the implications of
the various choices prior to deployment and empirical measurement. In the
software world, the compiler has a reasonably well understood model of the
implications of code generation choices that it makes. This is simply not yet
the case in the domain of high-level synthesis for reconfigurable logic.

Second, debugging tools are simply in their infancy. Today, an applica-
tion developer must use separate tools that are designed for the individual
accelerator(s) in use. At the very least, they have different user interfaces
and modes of operation. More seriously, the visibility that they provide into
the operations of the application (especially those internal to an accelerator)
are quite deficient.

While there is clearly need for additional work, the fundamental forces
that make truly architecturally diverse systems attractive are only getting
stronger. Dennard Scaling has essentially halted, and Moore’s Law is slowing
down. Architectural diversity is one of the more promising approaches to
addressing the challenges inherent in this modern reality.

21



Acknowledgements

This work was supported by the National Science Foundation under
grants CNS-1527510 and CNS-1763503.

References

[1] G. E. Moore, Cramming more components onto integrated circuits,
Electronics 38 (8) (1965) 114–117.

[2] C. A. Mack, Fifty years of Moore’s Law, IEEE Transac-
tions on Semiconductor Manufacturing 24 (2) (2011) 202–207.
doi:10.1109/TSM.2010.2096437.

[3] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, A. R.
LeBlanc, Design of ion-implanted MOSFET’s with very small physical
dimensions, IEEE Journal of Solid-State Circuits 9 (5) (1974) 256–268.
doi:10.1109/JSSC.1974.1050511.

[4] M. Bohr, A 30 year retrospective on Dennard’s MOSFET scaling pa-
per, IEEE Solid-State Circuits Society Newsletter 12 (1) (2007) 11–13.
doi:10.1109/N-SSC.2007.4785534.

[5] S. Mittal, J. S. Vetter, A survey of CPU-GPU heterogeneous com-
puting techniques, ACM Comput. Surv. 47 (4) (2015) 69:1–69:35.
doi:10.1145/2788396.

[6] K. Compton, S. Hauck, Reconfigurable computing: A survey of sys-
tems and software, ACM Comput. Surv. 34 (2) (2002) 171–210.
doi:10.1145/508352.508353.

[7] S. M. Trimberger, Three ages of FPGAs: A retrospective on the first
thirty years of FPGA technology, Proceedings of the IEEE 103 (3)
(2015) 318–331. doi:10.1109/JPROC.2015.2392104.

[8] F. A. Escobar, X. Chang, C. Valderrama, Suitability analysis
of FPGAs for heterogeneous platforms in HPC, IEEE Transac-
tions on Parallel and Distributed Systems 27 (2) (2016) 600–612.
doi:10.1109/TPDS.2015.2407896.

[9] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,

22



D. Chiou, D. Burger, A cloud-scale acceleration architecture, in: Proc.
of 49th IEEE/ACM International Symposium on Microarchitecture,
MICRO, 2016, pp. 7:1–7:13. doi:0.1109/MICRO.2016.7783710.

[10] T. Blank, A survey of hardware accelerators used in computer-
aided design, IEEE Design Test of Computers 1 (3) (1984) 21–39.
doi:10.1109/MDT.1984.5005647.

[11] A. R. McKay, Comment on “Computer-Aided Design: Simulation
of Digital Design Logic”, IEEE Transactions on Computers C-18 (9)
(1969) 862. doi:10.1109/T-C.1969.222783.

[12] D. Sugimoto, Y. Chikada, J. Makino, T. Ito, T. Ebisuzaki,
M. Umemura, A special-purpose computer for gravita-
tional many-body problems, Nature 345 (6270) (1990) 33–35.
doi:10.1038/345033a0.

[13] P. Hut, J. Makino, Astrophysics on the GRAPE family of special-
purpose computers, Science 283 (5401) (1999) 501–505.

[14] R. D. Greenblatt, T. F. Knight, J. T. Holloway, D. A.
Moon, A LISP machine, SIGIR Forum 15 (2) (1980) 137–138.
doi:10.1145/1013881.802703.

[15] H. Hayashi, A. Hattori, H. Akimoto, ALPHA – a high-performance
LISP machine equipped with a new stack structure and garbage collec-
tion system, in: Proc. of 10th International Symposium on Computer
Architecture, ISCA, 1983, pp. 342–348. doi:10.1145/800046.801672.

[16] J. M. O’Connor, M. Tremblay, picoJava-I: the Java virtual machine
in hardware, IEEE Micro 17 (2) (1997) 45–53. doi:10.1109/40.592314.

[17] M. Schoeberl, A Java processor architecture for embedded real-time
systems, Journal of Systems Architecture 54 (1-2) (2008) 265–286.
doi:10.1016/j.sysarc.2007.06.001.

[18] N. Jouppi, C. Young, N. Patil, D. Patterson, Motivation for and eval-
uation of the first Tensor Processing Unit, IEEE Micro 38 (3) (2018)
10–19. doi:10.1109/MM.2018.032271057.

[19] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, O. O.
Storaasli, State-of-the-art in heterogeneous computing, Scientific Pro-
gramming 18 (1) (2010) 1–33. doi:10.3233/SPR-2009-0296.

23



[20] E. S. Chung, P. A. Milder, J. C. Hoe, K. Mai, Single-chip hetero-
geneous computing: Does the future include custom logic, FPGAs,
and GPGPUs?, in: Proc. of 43rd IEEE/ACM Int’l Symposium on
Microarchitecture, 2010, pp. 225–236. doi:10.1109/MICRO.2010.36.

[21] D. H. Jones, A. Powell, C.-S. Bouganis, P. Y. K. Cheung, GPU versus
FPGA for high productivity computing, in: Proc. of Int’l Conference
on Field Programmable Logic and Applications, FPL, 2010, pp. 119–
124. doi:10.1109/FPL.2010.32.

[22] Y. Shan, T. Wu, Y. Wang, B. Wang, Z. Wang, N. Xu, H. Yang, FPGA
and GPU implementation of large scale SpMV, in: Proc. of IEEE 8th
Symposium on Application Specific Processors, SASP, 2010, pp. 64–
70. doi:10.1109/SASP.2010.5521144.

[23] S. Che, J. Li, J. W. Sheaffer, K. Skadron, J. Lach, Accelerating
compute-intensive applications with GPUs and FPGAs, in: Proc. of
Symposium on Application Specific Processors, SASP, 2008, pp. 101–
107. doi:10.1109/SASP.2008.4570793.

[24] S. Asano, T. Maruyama, Y. Yamaguchi, Performance comparison of
FPGA, GPU and CPU in image processing, in: Proc. of Int’l Confer-
ence on Field Programmable Logic and Applications, FPL, 2009, pp.
126–131. doi:10.1109/FPL.2009.5272532.

[25] J. Bodily, B. Nelson, Z. Wei, D.-J. Lee, J. Chase, A comparison study
on implementing optical flow and digital communications on FPGAs
and GPUs, ACM Trans. Reconfigurable Technol. Syst. 3 (2) (2010)
6:1–6:22. doi:10.1145/1754386.1754387.

[26] J. Cong, Y. Zou, FPGA-based hardware acceleration of lithographic
aerial image simulation, ACM Trans. Reconfigurable Technol. Syst.
2 (3) (2009) 17:1–17:29. doi:10.1145/1575774.1575776.

[27] X. Tian, K. Benkrid, Mersenne twister random number genera-
tion on FPGA, CPU and GPU, in: Proc. of NASA/ESA Confer-
ence on Adaptive Hardware and Systems, AHS, 2009, pp. 460–464.
doi:10.1109/AHS.2009.11.

[28] D. B. Thomas, L. Howes, W. Luk, A comparison of CPUs,
GPUs, FPGAs, and massively parallel processor arrays for ran-
dom number generation, in: Proc. of ACM/SIGDA Int’l Sympo-

24



sium on Field Programmable Gate Arrays, FPGA, 2009, pp. 63–72.
doi:10.1145/1508128.1508139.

[29] X. Tian, K. Benkrid, High-performance quasi-Monte Carlo financial
simulation: FPGA vs. GPP vs. GPU, ACM Trans. Reconfigurable
Technol. Syst. 3 (4) (2010) 26:1–26:22. doi:10.1145/1862648.1862656.

[30] N. Kapre, A. DeHon, Performance comparison of single-precision
SPICE model-evaluation on FPGA, GPU, Cell, and multi-core proces-
sors, in: Proc. of Int’l Conference on Field Programmable Logic and
Applications, FPL, 2009, pp. 65–72. doi:10.1109/FPL.2009.5272548.

[31] Z. K. Baker, M. B. Gokhale, J. L. Tripp, Matched filter computation
on FPGA, Cell and GPU, in: Proc. of 15th IEEE Symposium on
Field-Programmable Custom Computing Machines, FCCM, 2007, pp.
207–218. doi:10.1109/FCCM.2007.52.

[32] H. Scherl, B. Keck, M. Kowarschik, J. Hornegger, Fast GPU-based
CT reconstruction using the Common Unified Device Architecture
(CUDA), in: IEEE Nuclear Science Symposium Conference Record,
Vol. 6, 2007, pp. 4464–4466. doi:10.1109/NSSMIC.2007.4437102.

[33] S. Rostrup, H. De Sterck, Parallel hyperbolic PDE simulation on clus-
ters: Cell versus GPU, Computer Physics Communications 181 (12)
(2010) 2165–2179. doi:10.1016/j.cpc.2010.07.049.

[34] E. J. Kelmelis, J. R. Humphrey, J. P. Durbano, F. E. Ortiz, Accel-
erated modeling and simulation with a desktop supercomputer, in:
Proc. of SPIE, Enabling Technologies for Simulation Science X, Vol.
6227, 2006, pp. 62270N–1 – 62270N–9. doi:10.1117/12.668281.

[35] E. J. Kelmelis, J. P. Durbano, J. R. Humphrey, F. E. Ortiz, P. F.
Curt, Modeling and simulation of nanoscale devices with a desktop
supercomputer, in: Proc. of SPIE, Nanomodeling II, Vol. 6328, 2006,
pp. 632804–1 – 632804–12. doi:10.1117/12.681085.

[36] J. H. C. Yeung, C. C. Tsang, K. H. Tsoi, B. S. H. Kwan, C. C. C. Che-
ung, A. P. C. Chan, P. H. W. Leong, Map-reduce as a programming
model for custom computing machines, in: Proc. of 16th Int’l Sympo-
sium on Field-Programmable Custom Computing Machines, FCCM,
2008, pp. 149–159. doi:10.1109/FCCM.2008.19.

25



[37] N. Singla, M. Hall, B. Shands, R. D. Chamberlain, Financial Monte
Carlo simulation on architecturally diverse systems, in: Proc. of Work-
shop on High Performance Computational Finance, WHPCF, 2008.
doi:10.1109/WHPCF.2008.4745401.

[38] K. H. Tsoi, W. Luk, Axel: A heterogeneous cluster with FP-
GAs and GPUs, in: Proc. of 18th ACM/SIGDA Int’l Symposium
on Field Programmable Gate Arrays, FPGA, 2010, pp. 115–124.
doi:10.1145/1723112.1723134.

[39] S. Bauer, S. Köhler, K. Doll, U. Brunsmann, FPGA-GPU architecture
for kernel SVM pedestrian detection, in: Proc. of IEEE Computer
Society Conference on Computer Vision and Pattern Recognition –
Workshops, 2010, pp. 61–68. doi:10.1109/CVPRW.2010.5543772.

[40] A. H. T. Tse, D. B. Thomas, K. H. Tsoi, W. Luk, Dynamic scheduling
Monte-Carlo framework for multi-accelerator heterogeneous clusters,
in: Proc. of Int’l Conference on Field-Programmable Technology, FPT,
2010, pp. 233–240. doi:10.1109/FPT.2010.5681495.

[41] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R. Pen-
nington, W. Hwu, QP: A heterogeneous multi-accelerator cluster, in:
Proc. of 10th LCI Int’l Conf. on High-Performance Clustered Com-
puting, 2009.

[42] W. Kastl, T. Loimayr, A parallel computing system with special-
ized coprocessors for cryptanalytic algorithms, in: Proc. of Sicherheit,
Gesellschaft für Informatik (GI), Berlin, Germany, 2010, pp. 73–83.
URL http://dl.gi.de/handle/20.500.12116/19801

[43] M. A. Franklin, E. J. Tyson, J. Buckley, P. Crowley, J. Maschmeyer,
Auto-Pipe and the X language: A pipeline design tool and descrip-
tion language, in: Proc. of Int’l Parallel and Distributed Processing
Symposium, IPDPS, 2006. doi:10.1109/IPDPS.2006.1639353.

[44] R. D. Chamberlain, M. A. Franklin, E. J. Tyson, J. H. Buckley, J. Buh-
ler, G. Galloway, S. Gayen, M. Hall, E. B. Shands, N. Singla, Auto-
Pipe: Streaming applications on architecturally diverse systems, Com-
puter 43 (3) (2010) 42–49. doi:10.1109/MC.2010.62.

[45] G. F. Diamos, S. Yalamanchili, Harmony: An execution model and
runtime for heterogeneous many core systems, in: Proc. of 17th Int’l

26



Symposium on High Performance Distributed Computing, HPDC,
2008, pp. 197–200. doi:10.1145/1383422.1383447.

[46] R. Inta, D. J. Bowman, S. M. Scott, The “Chimera”: An off-the-
shelf CPU/GPGPU/FPGA hybrid computing platform, International
Journal of Reconfigurable Computing 2012 (2012) Article ID 241439.
doi:10.1155/2012/241439.

[47] Alankrutha P., Deepika H. V., Mangala N., N. Sarat Chan-
dra Babu, Multi-accelerator cluster runtime adaptation for en-
abling discrete concurrent-task applications, in: Proc. of IEEE
Int’l Advance Computing Conference, IACC, 2014, pp. 754–760.
doi:10.1109/IAdCC.2014.6779418.

[48] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, StarPU: A
unified platform for task scheduling on heterogeneous multicore ar-
chitectures, Concurrency and Computation: Practice and Experience
23 (2) (2011) 187–198. doi:10.1002/cpe.1631.

[49] Q. Wu, Y. Ha, A. Kumar, S. Luo, A. Li, S. Mohamed, A heterogeneous
platform with GPU and FPGA for power efficient high performance
computing, in: Proc. of Int’l Symposium on Integrated Circuits, ISIC,
2014, pp. 220–223. doi:10.1109/ISICIR.2014.7029447.

[50] J. Proaño, C. Carrión, B. Caminero, An open-source framework for
integrating heterogeneous resources in private clouds, in: Proc. of 4th
Int’l Conference on Cloud Computing and Services Science, CLOSER
2014, SCITEPRESS - Science and Technology Publications, Lda, Por-
tugal, 2014, pp. 129–134. doi:10.5220/0004936601290134.

[51] S. K. Rethinagiri, O. Palomar, J. A. Moreno, O. Unsal, A. Cristal,
Trigeneous platforms for energy efficient computing of HPC applica-
tions, in: Proc. of IEEE 22nd Int’l Conference on High Performance
Computing, HiPC, 2015, pp. 264–274. doi:10.1109/HiPC.2015.19.

[52] G. Tan, C. Zhang, W. Wang, P. Zhang, SuperDragon: A hetero-
geneous parallel system for accelerating 3D reconstruction of cryo-
electron microscopy images, ACM Trans. Reconfigurable Technol.
Syst. 8 (4) (2015) 25:1–25:22. doi:10.1145/2740966.

[53] O. Segal, M. Margala, Exploring the performance benefits of hetero-
geneity and reconfigurable architectures in a commodity cloud, in:

27



Proc. of Int’l Conference on High Performance Computing Simulation,
HPCS, 2016, pp. 132–139. doi:10.1109/HPCSim.2016.7568327.

[54] O. Segal, P. Colangelo, N. Nasiri, Z. Qian, M. Margala, SparkCL:
A unified programming framework for accelerators on heterogeneous
clusters, arXiv preprint arXiv:1505.01120 (2015).

[55] S. Contassot-Vivier, S. Vialle, Algorithmic scheme for hybrid comput-
ing with CPU, Xeon-Phi/MIC and GPU devices on a single machine,
in: G. R. Joubert, H. Leather, M. Parsons, F. Peters, M. Sawyer
(Eds.), Parallel Computing: On the Road to Exascale, Advances
in Parallel Computing, IOS Press, Amsterdam, 2016, pp. 25–34.
doi:10.3233/978-1-61499-621-7-25.

[56] B. Danczul, J. Fuß, S. Gradinger, B. Greslehner, W. Kastl, F. Wex,
Cuteforce Analyzer: A distributed bruteforce attack on PDF en-
cryption with GPUs and FPGAs, in: Proc. of Int’l Conference
on Availability, Reliability and Security, ARES, 2013, pp. 720–725.
doi:10.1109/ARES.2013.94.

[57] X. Liu, H. A. Ounifi, A. Gherbi, Y. Lemieux, W. Li, A
hybrid GPU-FPGA-based computing platform for machine
learning, Procedia Computer Science 141 (2018) 104–111.
doi:10.1016/j.procs.2018.10.155.

[58] P. Greisen, S. Heinzle, M. Gross, A. P. Burg, An FPGA-based pro-
cessing pipeline for high-definition stereo video, EURASIP Journal on
Image and Video Processing 2011 (1) (2011) 18. doi:10.1186/1687-
5281-2011-18.

[59] R. Bittner, E. Ruf, A. Forin, Direct GPU/FPGA communica-
tion via PCI express, Cluster Computing 17 (2) (2014) 339–348.
doi:10.1007/s10586-013-0280-9.

[60] A. Sb̂ırlea, Y. Zou, Z. Budimĺıc, J. Cong, V. Sarkar, Mapping a data-
flow programming model onto heterogeneous platforms, in: Proc. of
13th ACM SIGPLAN/SIGBED Int’l Conference on Languages, Com-
pilers, Tools and Theory for Embedded Systems, LCTES, 2012, pp.
61–70. doi:10.1145/2248418.2248428.

[61] P. Meng, M. Jacobsen, R. Kastner, FPGA-GPU-CPU heterogenous
architecture for real-time cardiac physiological optical mapping, in:

28



Proc. of Int’l Conference on Field-Programmable Technology, FPT,
2012, pp. 37–42. doi:10.1109/FPT.2012.6412108.

[62] S. Skalicky, S. Lopez, M. Lukowiak, Distributed execution of trans-
mural electrophysiological imaging with CPU, GPU, and FPGA, in:
Proc. of Int’l Conference on Reconfigurable Computing and FPGAs,
ReConFig, 2013. doi:10.1109/ReConFig.2013.6732278.

[63] D. Cacko, M. Walczak, M. Lewandowski, Low-power ultrasound imag-
ing on mixed FPGA/GPU systems, in: Proc. of Joint Conference -
Acoustics, 2018, pp. 1–6. doi:10.1109/ACOUSTICS.2018.8502371.

[64] B. da Silva, A. Braeken, E. H. D’Hollander, A. Touhafi, J. G. Cor-
nelis, J. Lemeire, Comparing and combining GPU and FPGA accel-
erators in an image processing context, in: Proc. of 23rd Int’l Con-
ference on Field Programmable Logic and Applications, FPL, 2013.
doi:10.1109/FPL.2013.6645552.

[65] M. Alawieh, M. Kasparek, N. Franke, J. Hupfer, A high performance
FPGA-GPU-CPU platform for a real-time locating system, in: Proc.
of 23rd European Signal Processing Conference, EUSIPCO, 2015, pp.
1576–1580. doi:10.1109/EUSIPCO.2015.7362649.

[66] J. Nieto, D. Sanz, P. Guillén, S. Esquembri, G. de Arcas, M. Ruiz,
J. Vega, R. Castro, High performance image acquisition and pro-
cessing architecture for fast plant system controllers based on FPGA
and GPU, Fusion Engineering and Design 112 (2016) 957–960.
doi:10.1016/j.fusengdes.2016.04.004.

[67] S. Esquembri, J. Nieto, M. Ruiz, A. de Gracia, G. de Arcas, Method-
ology for the implementation of real-time image processing systems
using FPGAs and GPUs and their integration in EPICS using Nomi-
nal Device Support, Fusion Engineering and Design 130 (2018) 26–31.
doi:10.1016/j.fusengdes.2018.02.051.

[68] H. Zhang, B. Xiao, Z. Luo, Q. Hang, J. Yang, High-speed visible image
acquisition and processing system for plasma shape and position con-
trol of EAST Tokamak, IEEE Transactions on Plasma Science 46 (5)
(2018) 1312–1317. doi:10.1109/TPS.2018.2805911.

[69] J. Kocz, L. J. Greenhill, B. R. Barsdell, G. Bernardi, A. Jame-
son, M. A. Clark, J. Craig, D. Price, G. B. Taylor, F. Schinzel,
D. Werthimer, A scalable hybrid FPGA/GPU FX correlator,

29



Journal of Astronomical Instrumentation 3 (1) (2014) 10pp.
doi:10.1142/S2251171714500020.

[70] A. Papadopoulos, Accelerating bioinformatics and biomedical applica-
tions via massively parallel and reconfigurable systems, Ph.D. thesis,
Dept. of Electrical and Computer Engineering, Univ. of Cyprus (2014).
URL http://hdl.handle.net/10797/14216

[71] J. C. Kässens, L. Wienbrandt, M. Schimmler, J. Gonzalez-Dominguez,
B. Schmidt, Combining GPU and FPGA technology for efficient ex-
haustive interaction analysis in GWAS, in: Proc. of IEEE 27th Int’l
Conference on Application-specific Systems, Architectures and Pro-
cessors, ASAP, 2016, pp. 170–175. doi:10.1109/ASAP.2016.7760788.

[72] L. Wienbrandt, J. C. Kässens, M. Hübenthal, D. Ellinghaus, Fast
genome-wide third-order SNP interaction tests with information
gain on a low-cost heterogeneous parallel FPGA-GPU comput-
ing architecture, Procedia Computer Science 108 (2017) 596–605.
doi:10.1016/j.procs.2017.05.210.

[73] L. Wienbrandt, J. C. Kässens, M. Hübenthal, D. Ellinghaus, 1,000x
faster than PLINK: Combined FPGA and GPU accelerators for logis-
tic regression-based detection of epistasis, Journal of Computational
Science 30 (2019) 183–193. doi:10.1016/j.jocs.2018.12.013.

[74] M. Vogelgesang, L. Ardila Perez, M. Caselle, S. Chilingaryan, A. Kop-
mann, L. Rota, M. Weber, A heterogeneous FPGA/GPU architecture
for real-time data analysis and fast feedback systems, in: Proc. of
5th International Beam Instrumentation Conference, IBIC, 2016, pp.
626–629. doi:10.18429/JACoW-IBIC2016-WEPG07.

[75] M. Caselle, L. Ardila Perez, M. Balzer, T. Dritschler, A. Kopmann,
H. Mohr, L. Rota, M. Vogelgesang, M. Weber, A high-speed DAQ
framework for future high-level trigger and event building clusters,
Journal of Instrumentation 12 (3) (2017) C03015. doi:10.1088/1748-
0221/12/03/C03015.

[76] N. Hu, X. Zhou, X. Li, C. Wang, 3D waveform oscilloscope imple-
mented on coupled FPGA-GPU embedded system, in: Proc. of 5th
International Conference on Information Science and Control Engi-
neering, ICISCE, 2018, pp. 1–5. doi:10.1109/ICISCE.2018.00010.

30



[77] M. Caselle, L. Rota, A. Kopmann, S. Chilingaryan, M. M. Patil,
W. Wang, E. Bründermann, S. Funkner, M. Nasse, G. Niehues,
et al., Ultrafast linear array detector for real-time imaging, in:
Proc. SPIE 10937, Optical Data Science II, 2019, p. 1093704.
doi:10.1117/12.2508451.

[78] X. Wang, L. Liu, K. Huang, A. Knoll, Exploring FPGA-GPU hetero-
geneous architecture for ADAS: Towards performance and energy, in:
S. Ibrahim, K. Choo, Z. Yan, W. Pedrycz (Eds.), Proc. of Int’l Conf. on
Algorithms and Architectures for Parallel Processing, Lecture Notes
in Computer Science, Vol. 10393, Springer, Cham, Switzerland, 2017,
pp. 33–48. doi:10.1007/978-3-319-65482-9 3.

[79] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque,
L. Tang, J. Mars, The architectural implications of autonomous
driving: Constraints and acceleration, in: Proc. of 23rd Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS, ACM, 2018, pp. 751–766.
doi:10.1145/3173162.3173191.

[80] R. Ammendola, M. Bernaschi, A. Biagioni, M. Bisson, M. Fatica,
O. Frezza, F. Lo Cicero, A. Lonardo, E. Mastrostefano, P. S. Paolucci,
D. Rossetti, F. Simula, L. Tosoratto, P. Vicini, GPU peer-to-peer tech-
niques applied to a cluster interconnect, in: Proc. of IEEE Int’l Sympo-
sium on Parallel Distributed Processing, Workshops and PhD Forum,
2013, pp. 806–815. doi:10.1109/IPDPSW.2013.128.

[81] R. Weber, A. Gothandaraman, R. J. Hinde, G. D. Peterson, Com-
paring hardware accelerators in scientific applications: A case study,
IEEE Transactions on Parallel and Distributed Systems 22 (1) (2011)
58–68. doi:10.1109/TPDS.2010.125.

[82] D. Yang, G. D. Peterson, H. Li, Compressed sensing and Cholesky de-
composition on FPGAs and GPUs, Parallel Computing 38 (8) (2012)
421–437. doi:10.1016/j.parco.2012.03.001.

[83] P. Cooke, J. Fowers, G. Brown, G. Stitt, A tradeoff analysis
of FPGAs, GPUs, and multicores for sliding-window applications,
ACM Trans. Reconfigurable Technol. Syst. 8 (1) (2015) 2:1–2:24.
doi:10.1145/2659000.

[84] P. Meng, M. Jacobsen, M. Kimura, V. Dergachev, T. Anantharaman,
M. Requa, R. Kastner, Hardware accelerated alignment algorithm for

31



optical labeled genomes, ACM Trans. Reconfigurable Technol. Syst.
9 (3) (2016) 18:1–18:21. doi:10.1145/2840811.

[85] G. Chen, H. Zhou, X. Shen, J. Gahm, N. Venkat, S. Booth,
J. Marshall, OpenCL-based erasure coding on heterogeneous archi-
tectures, in: Proc. of IEEE 27th Int’l Conference on Application-
specific Systems, Architectures and Processors, ASAP, 2016, pp. 33–
40. doi:10.1109/ASAP.2016.7760770.

[86] M. Roozmeh, L. Lavagno, Implementation of a performance optimized
database join operation on FPGA-GPU platforms using OpenCL, in:
Proc. of IEEE Nordic Circuits and Systems Conference, NORCAS,
2017. doi:10.1109/NORCHIP.2017.8124981.

[87] C. J. Faber, A. M. Cabrera, O. Booker, G. Maayan, R. D. Chamber-
lain, Data integration tasks on heterogeneous systems using OpenCL,
in: Proc. of 7th International Workshop on OpenCL, IWOCL, 2019.
doi:10.1145/3318170.3318187.

[88] J. Carabaño, F. Dios, M. Daneshtalab, M. Ebrahimi, An exploration
of heterogeneous systems, in: Proc. of 8th Int’l Workshop on Reconfig-
urable and Communication-Centric Systems-on-Chip, ReCoSoC, 2013.
doi:10.1109/ReCoSoC.2013.6581542.

[89] M. Véstias, H. Neto, Trends of CPU, GPU and FPGA for
high-performance computing, in: Proc. of 24th Int’l Confer-
ence on Field Programmable Logic and Applications, FPL, 2014.
doi:10.1109/FPL.2014.6927483.

[90] K. O’Neal, P. Brisk, Predictive modeling for CPU, GPU, and
FPGA performance and power consumption: A survey, in:
Proc. of IEEE Symposium on VLSI, ISVLSI, 2018, pp. 763–768.
doi:10.1109/ISVLSI.2018.00143.

[91] L.-P. Garćıa, J. Cuenca, F.-J. Herrera, D. Giménez, On guided instal-
lation of basic linear algebra routines in nodes with manycore compo-
nents, in: Proc. of 7th Int’l Workshop on Programming Models and
Applications for Multicores and Manycores, PMAM, 2016, pp. 114–
122. doi:10.1145/2883404.2883422.

[92] S. Skalicky, S. Lopez, M. Lukowiak, J. Letendre, D. Gasser, Lin-
ear algebra computations in heterogeneous systems, in: Proc.

32



of IEEE 24th Int’l Conference on Application-specific Sys-
tems, Architectures and Processors, ASAP, 2013, pp. 273–276.
doi:10.1109/ASAP.2013.6567589.

[93] H. Giefers, P. Staar, C. Bekas, C. Hagleitner, Analyzing the energy-
efficiency of sparse matrix multiplication on heterogeneous systems: A
comparative study of GPU, Xeon Phi and FPGA, in: Proc. of IEEE
Int’l Symposium on Performance Analysis of Systems and Software,
ISPASS, 2016, pp. 46–56. doi:10.1109/ISPASS.2016.7482073.

[94] M. Malik, F. Farahmand, P. Otto, N. Akhlaghi, T. Mohsenin,
S. Sikdar, H. Homayoun, Architecture exploration for energy-efficient
embedded vision applications: From general purpose processor to
domain specific accelerator, in: Proc. of IEEE Computer So-
ciety Annual Symposium on VLSI, ISVLSI, 2016, pp. 559–564.
doi:10.1109/ISVLSI.2016.112.

[95] K. Benkrid, A. Akoglu, C. Ling, Y. Song, Y. Liu, X. Tian, High per-
formance biological pairwise sequence alignment: FPGA versus GPU
versus Cell BE versus GPP, International Journal of Reconfigurable
Computing 2012 (2012) Article ID 752910. doi:10.1155/2012/752910.

[96] M. B lażewicz, M. Ciżnicki, P. Kopta, K. Kurowski, P. Lichocki, Two-
dimensional discrete wavelet transform on large images for hybrid com-
puting architectures: GPU and CELL, in: M. Alexander, P. D’Ambra,
A. Belloum, G. Bosilca, M. Cannataro, M. Danelutto, B. Di Mar-
tino, M. Gerndt, E. Jeannot, R. Namyst, J. Roman, S. L. Scott,
J. L. Traff, G. Vallée, J. Weidendorfer (Eds.), Proc. of Euro-Par
2011: Parallel Processing Workshops, Vol. 7155 of Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, 2012, pp. 481–490.
doi:10.1007/978-3-642-29737-3 53.

[97] F. Pratas, P. Transcoso, L. Sousa, A. Stamatakis, G. Shi,
V. Kindratenko, Fine-grain parallelism using multi-core, Cell/BE,
and GPU systems, Parallel Computing 38 (8) (2012) 365–390.
doi:10.1016/j.parco.2011.08.002.

[98] K. O’Brien, I. Pietri, R. Reddy, A. Lastovetsky, R. Sakellariou,
A survey of power and energy predictive models in HPC systems
and applications, ACM Comput. Surv. 50 (3) (2017) 37:1–37:38.
doi:10.1145/3078811.

33



[99] F. Wende, T. Steinke, Swendsen-Wang multi-cluster algorithm for the
2D/3D Ising model on Xeon Phi and GPU, in: Proc. of Int’l Con-
ference for High Performance Computing, Networking, Storage and
Analysis, SC13, 2013. doi:10.1145/2503210.2503254.

[100] G. Teodoro, T. Kurc, J. Kong, L. Cooper, J. Saltz, Comparative per-
formance analysis of Intel Xeon Phi, GPU, and CPU: A case study
from microscopy image analysis, in: Proc. of IEEE 28th Int’l Parallel
and Distributed Processing Symposium, IPDPS, 2014, pp. 1063–1072.
doi:10.1109/IPDPS.2014.111.

[101] S. S. Leang, A. P. Rendell, M. S. Gordon, Quantum chemical calcula-
tions using accelerators: Migrating matrix operations to the NVIDIA
Kepler GPU and the Intel Xeon Phi, Journal of Chemical Theory and
Computation 10 (3) (2014) 908–912. doi:10.1021/ct4010596.

[102] D. I. Lyakh, An efficient tensor transpose algorithm for multicore
CPU, Intel Xeon Phi, and NVidia Tesla GPU, Computer Physics Com-
munications 189 (2015) 84–91. doi:10.1016/j.cpc.2014.12.013.

[103] S. Memeti, L. Li, S. Pllana, J. Ko lodziej, C. Kessler, Benchmarking
OpenCL, OpenACC, OpenMP, and CUDA: Programming productiv-
ity, performance, and energy consumption, in: Proc. of Workshop on
Adaptive Resource Management and Scheduling for Cloud Comput-
ing, ARMS-CC, 2017. doi:10.1145/3110355.3110356.

[104] Y. Thoma, A. Dassatti, D. Molla, E. Petraglio, FPGA-GPU communi-
cating through PCIe, Microprocessors and Microsystems 39 (7) (2015)
565–575. doi:10.1016/j.micpro.2015.02.005.

[105] N. Moore, M. Leeser, L. S. King, VForce: An environment for portable
applications on high performance systems with accelerators, Jour-
nal of Parallel and Distributed Computing 72 (9) (2012) 1144–1156.
doi:10.1016/j.jpdc.2011.07.014.

[106] M. Zhu, L. Liu, C. Wang, Y. Xie, CNNLab: a novel parallel frame-
work for neural networks using GPU and FPGA, arXiv preprint
arXiv:1606.06234 (2016).

[107] M. Abalenkovs, A. Abdelfattah, J. Dongarra, M. Gates, A. Haidar,
J. Kurzak, P. Luszczek, S. Tomov, I. Yamazaki, A. YarKhan, Parallel

34



programming models for dense linear algebra on heterogeneous sys-
tems, Supercomputing Frontiers and Innovations 2 (4) (2015) 67–86.
doi:10.14529/jsfi150405.

[108] K. H. Tsoi, A. H. Tse, P. Pietzuch, W. Luk, Programming framework
for clusters with heterogeneous accelerators, SIGARCH Comput. Ar-
chit. News 38 (4) (2010) 53–59. doi:10.1145/1926367.1926377.

[109] T. Ahmed, OpenCL framework for a CPU, GPU, and FPGA plat-
form, Master’s thesis, Dept. of Electrical and Computer Engineering,
University of Toronto (Dec. 2011).
URL http://hdl.handle.net/1807/30149

[110] J. Auerbach, D. F. Bacon, I. Burcea, P. Cheng, S. J. Fink, R. Rabbah,
S. Shukla, A compiler and runtime for heterogeneous computing, in:
Proc. of 49th Design Automation Conference, DAC, 2012, pp. 271–
276. doi:10.1145/2228360.2228411.

[111] S. V. Cole, J. Buhler, MERCATOR: A GPGPU framework for
irregular streaming applications, in: Proc. of Int’l Conference
on High Performance Computing Simulation, 2017, pp. 727–736.
doi:10.1109/HPCS.2017.111.

[112] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong,
W.-M. W. Hwu, Efficient compilation of CUDA kernels for high-
performance computing on FPGAs, ACM Trans. Embed. Comput.
Syst. 13 (2) (2013) 25:1–25:26. doi:10.1145/2514641.2514652.

[113] S. Lee, J. Kim, J. S. Vetter, OpenACC to FPGA: A framework for
directive-based high-performance reconfigurable computing, in: Proc.
of IEEE Int’l Parallel and Distributed Processing Symposium, IPDPS,
2016, pp. 544–554. doi:10.1109/IPDPS.2016.28.

[114] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, K. Bertels, A survey
and evaluation of FPGA high-level synthesis tools, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 35 (10)
(2016) 1591–1604. doi:10.1109/TCAD.2015.2513673.

[115] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, S. Matsuoka,
Evaluating and optimizing OpenCL kernels for high performance com-
puting with FPGAs, in: Proc. of Int’l Conference for High Perfor-

35



mance Computing, Networking, Storage and Analysis, SC’16, 2016,
pp. 409–420. doi:10.1109/SC.2016.34.

[116] A. M. Cabrera, R. D. Chamberlain, Exploring portability and
performance of OpenCL FPGA kernels on Intel HARPv2, in:
Proc. of 7th International Workshop on OpenCL, IWOCL, 2019.
doi:10.1145/3318170.3318180.

[117] T. Kenter, Invited Tutorial: OpenCL design flows for Intel and Xil-
inx FPGAs: Using common design patterns and dealing with vendor-
specific differences, in: FSP Workshop 2019; Sixth International Work-
shop on FPGAs for Software Programmers, 2019, pp. 1–8.

[118] H. Nguyen, GPU Gems 3, Addison-Wesley Professional, 2007.

[119] R. Nane, V. Sima, B. Olivier, R. Meeuws, Y. Yankova, K. Bertels,
DWARV 2.0: A CoSy-based C-to-VHDL hardware compiler, in: Proc.
of 22nd Int’l Conference on Field Programmable Logic and Applica-
tions, 2012, pp. 619–622. doi:10.1109/FPL.2012.6339221.

[120] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Cza-
jkowski, S. D. Brown, J. H. Anderson, LegUp: An open-source
high-level synthesis tool for FPGA-based processor/accelerator sys-
tems, ACM Trans. Embed. Comput. Syst. 13 (2) (2013) 24:1–24:27.
doi:10.1145/2514740.

[121] N. Trifunovic, B. Perovic, P. Trifunovic, Z. Babovic, A. R. Hurson,
A novel infrastructure for synergistic dataflow research, development,
education, and deployment: the Maxeler AppGallery project, in: Ad-
vances in Computers, Vol. 106, Elsevier, 2017, pp. 167–213.

[122] J. Villarreal, A. Park, W. Najjar, R. Halstead, Designing modu-
lar hardware accelerators in C with ROCCC 2.0, in: Proc. of 18th
IEEE Int’l Symposium on Field-Programmable Custom Computing
Machines, 2010, pp. 127–134. doi:10.1109/FCCM.2010.28.

[123] C. B. Ciobanu, A. L. Varbanescu, D. Pnevmatikatos, G. Charitopou-
los, X. Niu, W. Luk, M. D. Santambrogio, D. Sciuto, M. Al Kadi,
M. Huebner, et al., EXTRA: Towards an efficient open platform for
reconfigurable high performance computing, in: Proc. of IEEE 18th
Int’l Conference on Computational Science and Engineering, 2015, pp.
339–342.

36



[124] C. B. Ciobanu, G. Stramondo, A. L. Varbanescu, A. Brokalakis,
A. Nikitakis, L. D. Tucci, M. Rabozzi, L. Stornaiuolo, M. Santam-
brogio, G. Chrysos, C. Vatsolakis, C. Georgios, D. Pnevmatikatos,
EXTRA: An open platform for reconfigurable architectures, in: Proc.
of 18th Int’l Conference on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation, SAMOS, 2018, pp. 220–229.
doi:10.1145/3229631.3236092.

[125] R. Cattaneo, G. Natale, C. Sicignano, D. Sciuto, M. D. Santambrogio,
On how to accelerate iterative stencil loops: A scalable streaming-
based approach, ACM Trans. Archit. Code Optim. 12 (4) (2015) 53:1–
53:26. doi:10.1145/2842615.

[126] Wenlai Zhao, Haohuan Fu, W. Luk, Teng Yu, Shaojun Wang, Bo Feng,
Yuchun Ma, Guangwen Yang, F-CNN: An FPGA-based framework
for training convolutional neural networks, in: Proc. of IEEE 27th
Int’l Conference on Application-specific Systems, Architectures and
Processors, 2016, pp. 107–114. doi:10.1109/ASAP.2016.7760779.

[127] J. Arram, T. Kaplan, W. Luk, P. Jiang, Leveraging FPGAs for accel-
erating short read alignment, IEEE/ACM Trans. Comput. Biol. Bioin-
formatics 14 (3) (2017) 668–677. doi:10.1109/TCBB.2016.2535385.

[128] B. Lindsey, M. Leslie, W. Luk, A domain specific language for ac-
celerated multilevel Monte Carlo simulations, in: Proc. of IEEE 27th
Int’l Conference on Application-specific Systems, Architectures and
Processors, 2016, pp. 99–106. doi:10.1109/ASAP.2016.7760778.

[129] G. Inggs, D. B. Thomas, W. Luk, A domain specific approach
to high performance heterogeneous computing, IEEE Transac-
tions on Parallel and Distributed Systems 28 (1) (2017) 2–15.
doi:10.1109/TPDS.2016.2563427.

[130] Q. Liu, W. Luk, Objective-driven workload allocation in het-
erogeneous computing systems, in: Proc. of International
Conference on Field-Programmable Technology, FPT, 2011.
doi:10.1109/FPT.2011.6132695.

[131] Q. Liu, W. Luk, Heterogeneous systems for energy efficient scientific
computing, in: O. Choy, R. Cheung, P. Athanas, K. Sano (Eds.), Proc.
of 8th Int’l Symp. on Applied Reconfigurable Computing, Reconfig-
urable Computing: Architectures, Tools and Applications, Vol. 7199

37



of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,
2012, pp. 64–75. doi:10.1007/978-3-642-28365-9 6.

[132] S. Spacey, W. Luk, D. Kuhn, P. H. Kelly, Parallel partition-
ing for distributed systems using sequential assignment, Journal
of Parallel and Distributed Computing 73 (2) (2013) 207–219.
doi:10.1016/j.jpdc.2012.09.019.

[133] A. Losch, M. Platzner, reMinMin: A novel static energy-
centric list scheduling approach based on real measurements, in:
Proc. of IEEE 28th Int’l Conference on Application-specific Sys-
tems, Architectures and Processors, ASAP, 2017, pp. 149–154.
doi:10.1109/ASAP.2017.7995272.

[134] M. Kicherer, F. Nowak, R. Buchty, W. Karl, Seamlessly portable
applications: Managing the diversity of modern heterogeneous sys-
tems, ACM Trans. Archit. Code Optim. 8 (4) (2012) 42:1–42:20.
doi:10.1145/2086696.2086721.

[135] M. Bogdanski, P. R. Lewis, T. Becker, X. Yao, Improving schedul-
ing techniques in heterogeneous systems with dynamic, on-line
optimisations, in: Proc. of Int’l Conference on Complex, In-
telligent, and Software Intensive Systems, 2011, pp. 496–501.
doi:10.1109/CISIS.2011.81.

[136] S. S. Karia, S. Lopez, Alternative processor within threshold: Flexible
scheduling on heterogeneous systems, in: Proc. of IEEE Int’l Parallel
and Distributed Processing Symposium Workshops, 2017, pp. 42–53.
doi:10.1109/IPDPSW.2017.175.

[137] M. E. Belviranli, L. N. Bhuyan, R. Gupta, A dynamic self-
scheduling scheme for heterogeneous multiprocessor architectures,
ACM Trans. Archit. Code Optim. 9 (4) (2013) 57:1–57:20.
doi:10.1145/2400682.2400716.

[138] C. Bolchini, G. C. Durelli, A. Miele, G. Pallotta, M. D. Santam-
brogio, An orchestrated approach to efficiently manage resources
in heterogeneous system architectures, in: Proc. of 33rd IEEE
Int’l Conference on Computer Design, ICCD, 2015, pp. 200–207.
doi:10.1109/ICCD.2015.7357104.

[139] M. A. Dávila Guzmán, R. Nozal, R. Gran Tejero, M. Villarroya-
Gaudó, D. Suárez Gracia, J. L. Bosque, Cooperative CPU, GPU, and

38



FPGA heterogeneous execution with EngineCL, The Journal of Super-
computing 75 (3) (2019) 1732–1746. doi:10.1007/s11227-019-02768-y.

39


