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Charting the genomic landscape of seed-free plants

Péter Szovényi©®'%, Andika Gunadi®? and Fay-Wei Li©®?23

During the past few years several high-quality genomes has been published from Charophyte algae, bryophytes, lycophytes and
ferns. These genomes have not only elucidated the origin and evolution of early land plants, but have also provided important
insights into the biology of the seed-free lineages. However, critical gaps across the phylogeny remain and many new questions
have been raised through comparing seed-free and seed plant genomes. Here, we review the reference genomes available and
identify those that are missing in the seed-free lineages. We compare patterns of various levels of genome and epigenomic
organization found in seed-free plants to those of seed plants. Some genomic features appear to be fundamentally different.
For instance, hornworts, Selaginella and most liverworts are devoid of whole-genome duplication, in stark contrast to other land
plants. In addition, the distribution of genes and repeats appear to be less structured in seed-free genomes than in other plants,
and the levels of gene body methylation appear to be much lower. Finally, we highlight the currently available (or needed) model

systems, which are crucial to further our understanding about how changes in genes translate into evolutionary novelties.

the terrestrial vegetation was dominated by seed-free plants.

Modern-day seed-free plants are a paraphyletic assemblage
represented by bryophytes (mosses, liverworts and hornworts),
lycophytes and ferns (Fig. 1). From the evolutionary perspective,
seed-free plants hold the key to retracing the major transitions in
land plant evolution; from the applied perspective, they are the vital
outgroup to better understand the biology of agronomically impor-
tant traits such as seeds, fruits and flowers.

The phylogenetic relationships of seed-free lineages have been
widely debated, especially the relationships among the bryophytes.
Almost all the possible combinations of branching orders between
mosses, liverworts, hornworts and vascular plants have been pro-
posed on the basis of morphological, ribosomal and/or organellar
DNA evidence (reviewed in refs. '=*). Only recently have phyloge-
nomic studies with transcriptomic and genomic datasets started to
provide more definitive answers.

Wickett et al.' were the first to apply a large number of nuclear
genes to infer the phylogeny of Viridiplantae. In their study, a
sister relationship between mosses and liverworts was consis-
tently recovered with strong support, whereas the position of
hornworts varied depending on the data types (nucleotide versus
amino acids), subsets (codon position or filtering threshold) and
inference methods (concatenation versus species-tree method
or maximum likelihood versus Bayesian)'. Subsequently, Puttick
et al.? and de Sousa et al.’ reanalysed the Wickett et al.' dataset
with methods that better modelled rate and compositional het-
erogeneities. Both studies confirmed that mosses and liverworts
comprised a single clade, and de Sousa et al.’ further resolved
bryophytes as monophyletic with high confidence. However, it
should be stressed that the Wickett et al.' dataset has a very lim-
ited hornwort representation, with transcriptomes from only two
closely related Nothoceros species. A more balanced sampling
came in 2019 with the full release of the One Thousand Plants
(IKP) transcriptomes®. The analyses by 1KP* and by Harris et al.”
both supported the placement of hornworts as sister to mosses
and liverworts. The monophyly of all bryophytes was further bol-
stered by the recent analyses of hornwort genomes®’. Mounting
evidence suggests that extant land plants are essentially composed

For over 150-200 million years after colonization of the land,

of two monophyletic groups: bryophytes and vascular plants
(Fig. 1). This phylogenetic framework is facilitating new research
directions to revisit the major transitions of land plants as well as
the underlying genetic changes.

There has been a recent renaissance of studies into seed-free
plants. This has been driven partly by the development of efficient
gene-editing methodologies in mosses and liverworts, as well as an
increasing number of high-quality genomes from across seed-free
plants and the close algal relatives of land plants (Charophyte algae)
(Fig. 1). In this Review, we first lay out the current genomic land-
scape across seed-free plants and point out the critical gaps that
need to be filled. We then highlight some of the unique features that
have emerged from genomic studies of seed-free plants, and discuss
their significance in comparison to seed plant genomes. Finally, we
outline future research directions to advance our understanding of
genome evolution in seed-free and seed-bearing plants.

The current gaps

Plant genomic research has historically focused on crop plants,
which are phylogenetically restricted to a small number of angio-
sperm clades. This imbalance is reflected in the fact that the moss
Physcomitrium patens and lycophyte Selaginella moellendorfii had
been the only available seed-free genomes for more than six years®’.
Availability of genomes began to accelerate in 2017, thanks largely
to the advent of long-read sequencing, and in the subsequent 3 years
a total of 28 genomes have been published or made available for
seed-free plants®*'°~** as well as the Charophyte algae**~** (Fig. 1 and
Table 1). High-quality genomes are now available for almost every
major lineage of plants (Fig. 1). The noteworthy exceptions are dis-
cussed below.

Bryophytes. It is important to emphasize that the three lineages of
bryophytes (mosses, liverworts and hornworts) are a result of more
than 400 million years of independent evolution, going back to the
Cambrian-Ordovician period”. Although multiple genome assem-
blies are available for all three lineages of bryophytes, the phyloge-
netic diversity of each group is poorly covered. All four published
hornwort genomes are from Anthoceros®’, and all the liverwort
genomes are from Marchantia'*"** (Fig. 1). For mosses, high-quality
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genomes based on long reads are available only for P patens®,
Ceratodon purpureus” and Sphagnum spp. (http://phytozome.jgi.
doe.gov/), none of which belong to the hyperdiverse pleurocarpous
lineage. Future work is needed to strategically sequence genomes
that can better cover the bryophyte phylogeny.

Isoetales. Although members of Isoetales had once dominated the
Earth’s terrestrial ecosystem, only a single extant genus, Isoetes (quill-
worts), remains. The closest living relative of Isoetes is Selaginella
in Selaginellales (Fig. 1), which diverged around 380 million years
ago (Ma)*. Many morphological and developmental features of
Isoetes are unique among land plants; for example, Isoetes roots are
developed from a specialized rhizomorph structure and are iso-
tomously branched. Isoetes species are mostly aquatic, and when
underwater, they carry out photosynthesis via the crassulacean acid
metabolism (CAM) pathway, which is typically a water-conserving
mechanism in xeric-adapted plants. CAM in Isoetes is believed to
be an adaptation to limited CO, availability in aquatic environ-
ments®'. Comparing Isoetes genomic features and diel gene expres-
sion profiles with other CAM plants will provide new insights into
the convergent evolution of CAM. For genome sequencing, because
many Isoetes species are recent polyploids (up to dodecaploid), it is
imperative to locate diploid species. The 1C value of a diploid spe-
cies is around 1.7 Gbp*~.

Lycopodiales. This lineage is sister to Isoetes and Selaginella, and
diverged around 400 Ma”. Lycopodiales are homosporous (that is
producing one type of spores), which is distinct from the hetero-
sporous Isoetes and Selaginella (having separate mega- and micro-
spores). The transition between homospory and heterospory has
been hypothesized to have large impacts on genome structure. In
particular, homosporous individuals have the potential for intraga-
metophytic selfing, which would result in completely homozygous
offspring. To compensate for such sudden loss of heterozygosity,
polyploidization would be favoured as a means to inject genetic
diversity™. To test this hypothesis, lycophytes and ferns are the two
prime groups, given they each have experienced independent homo-
heterospory transitions. In both groups, homosporous lineages tend
to have much larger genomes than the heterosporous relatives, con-
sistent with the hypothesis**. The life cycle of Lycopodiales is also
unique in that the gametophytes are mycoheterotrophic, relying
on fungal partners to provide carbon sources. Very little is known
about this mycoheterotrophic interaction. Lycopodiales genome
sizes range from 2.4-5.6 Gbp*>.

Homosporous ferns. Both of the published fern genomes (Azolla
filiculoides and Salvinia cucullata) belong to the heterosporous
Salviniales®, whose genome sizes are on average about an order of
magnitude smaller than those of homosporous ferns™. Because
Salviniales are nested within ferns, their genomes were prob-
ably secondarily reduced and unlikely to represent a general fern
genome. The model fern Ceratopteris richardii is homosporous
and has a large genome of 14 Gbp, typical of most fern lineages™.
Recently a fragmented, short-read assembly of C. richardii was pub-
lished™, which unfortunately covered only a third of the estimated
genome size and highlighted the difficulty in assembling a homo-
sporous fern genome.
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Whole-genome duplications

Whole-genome duplication (WGD) and the generated redundancy
is thought to be one of the key drivers in plant evolution®. For flow-
ering plants, various studies have suggested that WGDs preceded
and are correlated with the evolution of key diversification events*”,
and have decreased extinction risk over the Cretaceous-Paleogene
mass-extinction event™. In contrast to the multiple rounds of WGDs
in all major lineages of flowering plants’, the picture appears to be
more variable in seed-free plants. No WGD was detected in the
hornwort®’, liverwort'’ and Selaginella’ genomes sequenced to date.
Analyses based on a broader sampling of transcriptomes also found
no or only a few confident WGD events in these lineages*". By con-
trast most mosses, ferns and homosporous lycophytes have experi-
enced at least one well-supported WGD in their history*®7!>20:353-40,

It is unclear what genomic or historical factors made some of
the seed-free plant lineages more prone to WGDs than others. It
has been proposed that the paucity of WGD in liverworts may be a
consequence of the early evolution of dimorphic sex chromosomes,
which, when duplicated, could cause difficulties during meiotic seg-
regation'’. By contrast, sex chromosomes are assumed to be rela-
tively young in mosses and angiosperms, enabling WGDs to have
accumulated. However, recent evidence contradicts this hypothesis:
the genome of the moss C. purpureus was revealed to have experi-
enced at least one WGD but also harbours an ancient sex chromo-
some system*. Similarly, phylogenetic evidence suggests relatively
recent origins of sex chromosomes in hornworts, which is coun-
ter to the hypothesis that the age of the sex chromosomes would
restrict WGDs*'.

How WGDs have contributed to genome evolution and innova-
tions in seed-free plants is even less clear. There is some evidence
that WGDs probably promoted the diversification of peat mosses
and the pleurocarp mosses, at species, physiological and morpho-
logical levels*>*. For ferns, the limited number of studies have pro-
duced somewhat contradictory results******. For instance, reanalysis
of Equisetum transcriptomes by Clark et al.”® did not support WGD
conferring a reduced extinction risk at the Cretaceous-Palaeogene
boundary as previously suggested”. Huang et al.*’ recently identi-
fied 19 WGDs in ferns on the basis of transcriptome data, and found
a positive correlation between WGD occurrence and shifts in diver-
sification rates. However, aside from the uncertainty in inferring
rate shifts (especially with a small sample size), the majority of the
WGD events did not actually coincide with major diversification
events. In other words, the extent to which WGDs fuel fern diversi-
fication remains to be resolved.

The limited understanding summarized above is in contrast to
the vast amount of information available for seed plants about the
impact of WGDs on genomic instability, genome downsizing and
reshuffling, epigenetic changes, speciation, phenotypic diversifica-
tion, adaptation and extinction resistance*-*>. Many of these aspects
have yet to be investigated in seed-free plants, and we believe that
seed-free plants could actually provide an ideal system to comple-
ment the studies on seed plants. The highly variable frequency
of WGDs among seed-free plant lineages would enable multiple
comparisons between WGD-poor and WGD-rich lineages to bet-
ter understand the contribution of WGD to genome evolution as
well as overall diversification rate. Similar comparisons could also
be made at a shallower phylogenetic scale by comparing groups of

>

>

Fig. 1| Phylogeny of streptophytes (charophyte algae and land plants) and the available genomic resources. The topology was largely based on

refs. #7213 Genome sizes, scaffold and contig N50 lengths were calculated by the summarizeAssembly.py function of PBSuite”*. Genomes with scaffold
N50> 100 kbp are shown in bold, and asterisks indicates genomes assembled into pseudochromosomes. The draft assembly of Ceratopteris richardii*> was
not included here, as only a third of the genome was assembled. The recently published genome of Synthrichia caninervis was a short-read-only assembly
but scaffolded onto pseudochromosomes™>. WGD events inferred by 1KP* are marked by inverse triangles and associated identifiers; only WGDs that
were supported by a combination of Ks (number of synonymous substitutions per synonymous sites) plots, orthologue divergence and multi-taxon

paleopolyploidy search algorithm (MAPS) analyses* are plotted here.
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closely related species with contrasting WGD histories. In addi-
tion, bryophytes and some ferns are attractive models in which to
investigate the molecular underpinnings of a wide range of pro-
cesses associated with WGDs (including genomic shock, paralogue
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Table 1| Summary of seed-free plant model systems

In vitro propagation

Genetic transformation

REVIEW ARTICLE

Gene silencing Genome editing

Ferns

Adiantum capillus-veneris

Azolla filiculoides*

Full life cycle'® and somatic

embryogenesis'“®

Full life cycle'?

Particle bombardment'"’ DNAj“8 -

Ceratopteris spp. Full life cycle™ Agrobacterium-mediated'**”*' and particle RNAi™?, DNA™? —
bombardment'*

Marsilea vestita Gametophyte™™ and — RNAf™># -

sporophyte’™®
Pteris vittata Full life cycle'™® Agrobacterium-mediated™ RNAi®” -
Salvinia spp.* Full life cycle'™® - - -
Lycophytes

Huperzia selago Gametophyte®™' and - - -

sporophyte’™®

Isoetes echinospora Full life cycle'®® — - -

Lycopodium spp. Full life cycle™ — — —

Selaginella spp.* Full life cycle®1%? - - -

Mosses

Ceratodon purpureus* Full life cycle'® Protoplast transfection’”¢ — Gene targeting’’

Funaria hygrometrica* Full life cycle'®® - - -

P. patens* Full life cycle®™*%3 Agrobacterium-mediated, particle RNAi™ CRISPR-targeted
bombardment and protoplast mutagenesis and gene
transfection’* targeting’>*

Sphagnum spp.* Gametophyte"®® — - —

Syntrichia caninervis* Gametophyte®® — - -

Syntrichia ruralis Full life cycle'®® —

Liverworts

M. polymorpha* Full life cycle™®

Riccia spp. Gametophyte'

Hornworts

Anthoceros spp.* Full life cycle'”®,
gametophyte and

cyanobacteria symbiosis””'

Agrobacterium-mediated and particle RNA;©8
bombardment'®'¢’

CRISPR-targeted
mutagenesis'® and gene
targeting'*®

Agrobacterium-mediated'' - -

Agrobacterium-mediated'®” and particle — — -
bombardment (A.G., unpublished results)

Model systems with assembled genomes (see in Fig. 1) are marked with an asterisk. CRISPR, clustered regularly interspaced short palindromic repeats.

provides a unique opportunity to study how extensive exposure in
the haploid phase affects the frequency of WGDs and subsequent
genomic evolution. This question cannot be properly addressed in
seed plants because of the highly reduced haploid phase. Altogether,
we are confident that future studies on seed-free plants will provide
a much more holistic view of the biological significance of WGDs.

Genome size variation and its potential drivers

Genome sizes of land plants are highly variable, with a greater vari-
ation in angiosperms than in seed-free plants™. Among seed-free
plants, ferns and lycophytes exhibit larger and more variable
genome sizes overall than bryophytes®®. In addition, genome
size distribution is less skewed towards smaller sizes in seed-free
plants than in seed plants, especially in lycophytes and ferns. These
observations suggest that the trajectory of genome size evolution
might differ between seed-free and seed-bearing lineages in vari-
ous aspects. The evidence suggests contrasting patterns between
ferns and lycophytes and bryophytes; we therefore discuss them
separately below.
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Ferns and lycophytes. Genome sizes and chromosome numbers
are significantly correlated in ferns and lycophytes, but not in any
other plant lineages®. This correlation is probably the result of at
least two processes. First, ferns and lycophytes may differ from
angiosperms in their post-polyploidization genomic processes. The
predominantly small (yet historically polyploid) genomes of angio-
sperms imply that post-polyploidization genome fractionation and
downsizing is effective and frequent. By contrast, the diploidization
process in ferns might be slower™, although the extent to which
it differs from that of angiosperms is unclear. Second, it has been
hypothesized that DNA content per chromosome is constrained in
ferns and lycophytes, resulting in more chromosomes being needed
to sustain a larger genome™. Available data suggest that chromo-
somes of ferns and lycophytes are smaller and more uniform in size
compared with those of angiosperms®~. In particular, chromo-
some size variation is 3,100-fold in angiosperms but only 31-fold in
ferns™. However, the underlying mechanisms constraining chromo-
some sizes in ferns and lycophytes remain unknown. Observations
in angiosperms suggest that above a certain chromosome arm/
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spindle length ratio, mitotic divisions will fail®. It is tempting to
suggest that this threshold might be lower overall in most ferns and
lycophytes, but further studies are needed.

Besides polyploidy, activity of transposable elements (TEs), espe-
cially long terminal repeat (LTR) transposons are thought to con-
tribute to the majority of genome size variation in angiosperms and
gymnosperms®'. Until recently, it has been assumed that the role
of LTRs in genome size evolution may be less prominent in ferns
and lycophytes because chromosome numbers are well correlated
with genome sizes. Indeed, a few studies have suggested that there
is either no correlation between LTR abundance and genome size
or that LTR activity may have been too recent to have an effect™'*%.
By contrast, Baniaga & Barker® recently found that, similar to seed
plants, the timing of median LTR activity is also positively corre-
lated with genome size in fern and lycophyte taxa. It is therefore
possible that LTR accumulation, together with a slower post-WGD
diploidization rate, may have jointly contributed to larger genome
sizes in lycophytes and ferns.

Altogether, genomic processes driving genome size evolution in
ferns and lycophytes are still poorly understood and several hypoth-
eses remain to be tested. More information is needed regarding the
activity of LTR elements in ferns and lycophytes. Current analy-
ses of LTRs have been largely restricted to comparisons between
homosporous versus heterosporous groups, whose genome size dif-
ference may be confounded by their contrasting reproductive strat-
egies®. Therefore, estimating LTR abundance and activity among
closely related species with similar life history traits should provide
much-needed information on the contribution of TEs to genome
size evolution. Studies at the infraspecific level would also help to
clarify the dynamics of TEs over a shorter time scale. In particular,
apomixis—a form of asexual reproduction in which fertilization is
bypassed during phase transition—is prevalent in many ferns, and
its frequency can vary greatly within a species or a species complex*.
Therefore, it would be very interesting to test whether genome size
varies between populations of different reproductive modes (sexual
or apomictic), and how much of that variation is caused by TEs.
Because genome reduction with TE purging may happen within
a few generations in angiosperms®, such comparative analyses
could be complemented by experimental evolution studies vary-
ing the selfing rates in the fast-cycling fern model C. richardii to
further interrogate the relationship between genome size and TEs.
Techniques that have been successfully applied to Arabidopsis thali-
ana could also be adapted for ferns and lycophytes to track TE activ-
ity in real time®.

Bryophytes. In contrast to ferns and lycophytes, there seems to
be no correlation between genome size and chromosome num-
ber in mosses and potentially across all bryophytes””. Whereas
genome sizes vary between 122-719 Mbp (mode, 176 Mbp; median,
205Mbp)>*8 and 206 Mbp—20Gbp (mode, 740 Mbp; median,
751 Mbp)®, respectively for hornworts and liverworts, both lineages
have relatively constant chromosome numbers: n=4-6 in hornworts
and n=8-9 in liverworts”. Contrastingly, mosses exhibit a much
larger variation in chromosome numbers (n=6-38)", but their
genome sizes are relatively stable (minimum, 170 Mbp; maximum,
2 Gbp; mode, 442 Mbp; median, 433 Mbp)”'. Phylogenetic analyses
in liverworts and mosses suggest that genome size evolution is not
a one-way process and that genome size increase and decrease both
occurred along the phylogeny***’. Analysis of hornworts suggests a
different pattern, with a gradually increasing genome size across the
phylogeny®.

It is unclear how repeat elements (especially LTRs) contributed
to genome size differences in bryophytes, because very few reliable
estimates of repeat content are available. WGDs are frequent in
mosses but rare in liverworts and absent in investigated hornwort
genomes*®”'%1>¥ Tt is therefore possible that increase in genome
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size is driven mainly by repeat expansions in hornworts and liv-
erworts, but less so in mosses. Overall repeat content varies con-
siderably among moss genomes but it does not seem to correlate
with genome size differences'>-'?%. By contrast, in liverworts, some
early cytological studies revealed massive tracks of heterochro-
matic regions, which may contribute to genome size expansions’.
In hornworts, LTR content can partially explain the genome size
difference, at least among three closely related strains that were ana-
lysed®. We can speculate that hornwort and liverwort genomes may
follow a unique evolutionary trajectory in which WGD is either rare
or absent and genome size variation is driven primarily by LTRs. In
contrast, WGDs and post-WGD fractionations may have a larger
role in genome size evolution in moss.

This overview shows that current data are insufficient to dis-
entangle the dominant mechanisms contributing to genome size
variation in bryophytes. We have identified several research areas
that should be pursued. First, while it is often stated that genome
sizes and chromosome numbers are uncorrelated in bryophytes”™,
the evidence supporting this statement is not very strong. This is
because genome sizes and chromosome numbers can substan-
tially vary among geographically distant accessions of the very
same species™®. Studies are needed to measure genome size and
chromosome number in the same individuals to carefully test
their correlation in all three groups of bryophytes. The measure-
ments are further complicated by the need to account for the fre-
quent occurrence of endopolyploidy in mosses™. Second, to better
understand the role of WGDs in bryophyte genome size evolution,
phylogenetic comparative analysis of a properly assembled dataset
incorporating chromosome counts, genome sizes and WGD events
is necessary. Similarly, more information is needed on the contri-
bution of TEs, which should be investigated in groups with highly
divergent genome sizes but relatively stable chromosome numbers.
Genome-skimming approaches® could be a relatively inexpensive
way to gather repeat data from across a wide range of species. To
this end, the pleurocarpous mosses, several groups of thalloid and
leafy liverworts and hornworts would provide appropriate systems.

Finally, the processes that have kept moss and most bryophyte
genomes relatively small remain unclear. Recent evidence indicates
that the constraints imposed by sperm size and/or high frequency
of homologous recombination’’ are insufficient to explain the
relatively small genome sizes in mosses and potentially in most
bryophytes’””. Conversely, both theory and experimental evidence
suggest that asexual reproduction and selfing can lead to decreased
genome sizes and rapid loss of TEs®’*”°. Indeed, frequent self-
ing and/or asexual reproduction do occur in all three groups of
bryophytes and may thus prevent runaway genome expansions.
Evidence is accumulating that some TEs may be active throughout
the life cycle of the model moss P. patens'>®. Therefore, the inter-
play among TEs, breeding system and genome size could be tested
in experimental evolutionary studies, which, together with a larger
collection of high-quality genomes, should shed light on the factors
contributing to bryophyte genome size evolution.

Overall chromosome structure
Organization of angiosperm chromosomes appears to be conserved
at a large scale (Fig. 2). Typically, metacentric chromosomes are
characterized by a gene-poor centromeric, pericentromeric and
telomeric regions, with most genes located between the pericen-
tromeric regions and the telomeres. Centromeric regions of angio-
sperms investigated so far are occupied by tandem satellite repeats
with relatively long repeat units that are interspersed with TEs®.
Telomeres are composed of shorter tandem repeats whose actual
sequence may vary across taxa®. Finally, pericentromeric regions
are usually enriched for TEs, especially retrotransposons® (Fig. 2).
Recent results suggest that some chromosomal properties of
seed-free plants deviate from this pattern (Fig. 2). Analysis of
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P. patens, M. polymorpha and A. agrestis genomes show that peri-
centromeric regions are not enriched for TEs®*'*'#!>!*, Furthermore,
in contrast to many angiosperm genomes, the TEs and genes are
relatively evenly dispersed along the chromosomes, resulting
in a fine-grained landscape of alternating gene- and repeat-rich
islands. This lack of TE clustering might be an ancestral state of the
Viridiplantae, because repeat elements of Mesostigma are also simi-
larly distributed®. Alternatively, it could also be a lineage-specific
trait that is shared by all bryophytes.

Very little information is available on large-scale chromo-
some structure in ferns and lycophytes™. Telomere structure has
been investigated only for the lycophyte Selaginella, which were
found to have similar telomere structure to Arabidopsis*'. Putative
centromeric regions of the water fern genomes were inferred,
but the genomes were not assembled at the chromosomal level®.
Consequently, whether pericentromeric regions with an elevated TE
density are present in ferns and lycophytes is unclear. Nevertheless,
data on the Selaginella genome suggest that genes and repeats seem
to be evenly dispersed along the chromosomes, similar to the inves-
tigated bryophyte genomes”". Therefore, some evidence supports
similar spatial arrangements of repeats and genes in the fern, lyco-
phyte and bryophyte genomes (Fig. 2). If this is the case, it would
indicate a radical difference in genome structure between seed
plants and seed-free plants.

With the limited data currently available, we could only specu-
late about the biological processes behind such contrasting patterns.
Because many genomic features (epigenetic state, nucleotide com-
position, recombination rate and higher-level three-dimensional
(3D) organization) are significantly correlated with the density of
both TEs and genes, their actual contributions are difficult to dis-
sect. Frequent selfing has been proposed to have potentially influ-
enced the distribution of transposons', but the outcrossing mating
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system of M. polymorpha makes this explanation unlikely'>'>".
Alternatively, it is possible that the unique distribution of TEs and
genes is a consequence of idiosyncratic TE dynamics. For instance,
in Caenorhabditis inopinata, a relative of the model nematode
Caenorhabditis elegans, a similarly even distribution of genomic
features was observed and can be attributed to the activities of a few
specific TE classes®. Therefore, it would be necessary to learn more
about the ‘community ecology’ of TEs in seed-free plants in a simi-
lar way as was described in Stitzer et al.* using available genome
data. Such studies could be further complemented by investigating
TEs in population genomic datasets and in mutant lines with com-
promised epigenetic machinery.

Another critical piece of information that is missing for
seed-free plants is the process by which centromeric and peri-
centromeric regions evolve. In seed plants, centromere evolution
begins by epigenetic reprogramming of the DNA and continues
with the accumulation of retrotransposons, which contribute to
the formation of tandem satellite repeats and stability of the cen-
tromere®"*’. It is possible that centromere evolution in seed-free
plants proceeds in a similar manner, although no experimental evi-
dence is available. Comparative analyses of centromeres in closely
related species and investigation of de novo evolved centromeres
(neocentromeres) have provided insights into centromere biology
in seed plants***. Because neocentromeres in seed-free plants are
not well characterized, experiments in which chromosome frag-
ments are created and the rapid evolution of neocentromeres is
tracked may provide a viable strategy to investigate centromere
evolution”. Furthermore, with the new sequencing technologies it
will become possible to investigate the composition and dynam-
ics of centromeres in a larger group of seed-free plants by selec-
tive capture and/or sequencing of centromeres’~*. Owing to their
small genomes, the model bryophytes (M. polymorpha, A. agrestis
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and P, patens) and closely related species would be ideal systems for
such investigations.

Collinearity across seed-free plant genomes

Although plant genomes are highly dynamic, collinearity (the con-
served order of genes on corresponding chromosomes) is detectable
and can be used to reconstruct the ancestral genome structure and
gene content™. Collinearity is substantial within core eudicots and
grasses, but more limited between the two groups”. Collinearity is
expected to decrease over time, leading to less genomic collinearity
between more deeply diverged genomes.

Very little is known about collinearities among seed-free plants
and between seed-free and seed plants. This is due in part to the
sparse availability of high-quality genome assemblies for seed-free
plants. The few available observations are somewhat contradictory.
A study on the moss genome, P. patens, reported the presence of
several hundred collinear blocks with some angiosperm genomes,
which may have been conserved since the most recent common
ancestor of land plants®. Genes in such collinear blocks tend to
be co-expressed and preferentially contain genes related to stress
and essential biological processes. Nevertheless, reanalysis of the
available genomes from each lineage of bryophytes—the mosses,
liverworts and hornworts—revealed that very few (if any) col-
linear blocks can be found that are shared by all three bryophyte
clades and by most vascular plant lineages®'>. Therefore, the col-
linear blocks inherited from the common ancestor of land plants
must have been largely broken up by rearrangements and/or frac-
tionation following WGDs. Still, collinearity between each of the
bryophyte lineages and vascular plants are present, suggesting
that different and unique collinear blocks may have been retained
between mosses and vascular plants, between liverworts and vas-
cular plants, and between hornworts and vascular plants. It is cur-
rently unknown whether the limited collinearity among bryophyte
lineages reflects functional significance, or is simply an artefact
of the small number of genomes investigated. Limited collinear-
ity may be the result of streamlined small genomes of the model
species sequenced to date or a consequence of accelerated genome
dynamics in bryophytes. Further high-quality genome assem-
blies are needed to resolve these issues and better characterize the
dynamics of bryophyte genomes.

Information on collinearity among fern and lycophyte genomes
is even more limited, mostly because none of the published genomes
are resolved at the chromosomal scale®'****, Because fern chromo-
somes are small and their size is less variable than in angiosperms, it
has been hypothesized that they are less dynamic®*** and might have
retained more collinear blocks. The upcoming chromosome-scale
assemblies of C. richardii and others will make it possible to learn
more about collinearity in fern and lycophyte genomes.

DNA methylation

Chromosomes are also decorated with various modifications and
proteins involved in regulating their transcription. The most fre-
quently investigated epigenomic features are DNA methylation and
histone modifications. Both have wide-ranging effects on the activ-
ity of genic and intergenic regions and on overall genome stability
and dynamics. Methylation of cytosine in the fifth position (5mC)
is involved in the silencing of TEs, condensation of DNA into het-
erochromatin and regulation of gene expression. DNA methyla-
tion is an ancient feature and has been found in green algae and
land plants™.

Methylated cytosines show a well-conserved distribution across
angiosperm genomes™® (Fig. 2). At the chromosomal scale, peri-
centromeric and centromeric regions are highly methylated, close
to tenfold the level of the less methylated chromosome arms and
telomeres”. Cytosines can be methylated in three major sequence
contexts: CG, CHG and CHH (in which H corresponds to A, T
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or C). Repeat and TE sequences are highly methylated in all three
sequence contexts, and the levels of methylation correlate well with
TE activity. In genic regions, CG methylation is the lowest in the
vicinity of the TSS**””. TSS methylation is usually inversely corre-
lated with the expression level of genes. In most angiosperm and
gymnosperm taxa, gene bodies are also methylated mainly in the
CG context, and modestly expressed genes are more methylated
than those showing more extreme (very high or very low) expres-
sion levels”” (Fig. 2).

Interestingly, methylome profiling in seed-free plants revealed a
different pattern from seed plants, at least in some bryophytes and
in the lycophyte Selaginella'>**'"" (Fig. 2). Overall, cytosine meth-
ylation is at least fivefold lower in the moss, liverwort and lyco-
phyte genomes compared with Arabidopsis'>*>'. Furthermore,
TSSs are rarely methylated, and if they are, no significant corre-
lation between expression level and extent of methylation is obs
erved'>'»>!%! In contrast to the overall lower level of DNA meth-
ylation, gene body methylation (gbM) appears to be more variable
in seed-free plants. In Selaginella, M. polymorpha and P. patens,
most of the genes exhibit no sign of gbM'»!>7%10010! 'whereas gbM
levels in some ferns and non-Selaginella lycophytes are similar to
those in gymnosperms and angiosperms'*”'*. The presence of very
few gbM genes in bryophytes was previously explained by the lack
of CMT3 clade genes, which is associated with the loss of gbM in
flowering plants'®. Although gbM genes are rare in the bryophyte
genomes, they reportedly exist in mosses and liverworts. Gene
Ontolgy analysis of gbM genes in P. patens and M. polymorpha
suggests that gbM genes may be of functional importance, and
some are preferentially methylated during sexual reproduction in
M. polymorpha and P. patens'>'">'*, Intriguingly, gbM genes appear
to have contrasting characteristics in M. polymorpha and P. patens.
In M. polymorpha, gbM genes are longer, contain more exons, and
are more broadly expressed than non-methylated genes, a pat-
tern that is somewhat similar to the one in flowering plants'”. By
contrast, gbM genes in P, patens show more tissue-specific expres-
sion, have lower GC content and are expressed at lower levels than
non-methylated genes'®. Very little is known about the function
of gbM genes in ferns and other lycophytes. Nevertheless, ortho-
logues of angiosperm gbM genes tend to also be methylated in
ferns with similar structural features, suggesting conserved func-
tion among ferns, lycophytes and seed plants'®>. Without further
information on the dynamic changes of gbM in various seed-free
plant genomes, its functional significance is difficult to evalu-
ate'’"'”. Furthermore, it is currently not well known how gbM is
established in plants without CMT3 clade genes'*.

The limited information outlined above suggests that in most
seed-free plants, the overall level of DNA methylation appears to
be lower and gbM appears to be less common than in seed plants.
Nevertheless, there are exceptions to this observation and pat-
terns of DNA methylation in seed-free plants may be more diverse.
Therefore, it is imperative to collect more data on DNA methy-
lome variation in seed-free plants to be able to make generaliza-
tions. Although whole-genome methylome sequencing requires
a reference genome, information on genic methylation could also
be obtained using transcriptomes as the reference'®. With this
latter approach, information on gbM could be gained in a more
cost-effective manner for a wide range of taxa. Another even more
poorly understood topic is whether the effect of DNA methylation
on genome evolution differs between seed and seed-free plants.
In seed plants, DNA methylation has important roles in silencing
mobile elements, increasing mutation rates (mutagenic factor),
affecting the distribution of recombination hot spots, influencing
the retention of gene duplicates, contributing to phenotypic plastic-
ity and epigenetic inheritance, and gene expression'””"''". However,
very little is known about these processes in seed-free plants, and
this should be a priority for future research''>.
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3D genome structure

During the past decade, important advancements have been made
to characterize the 3D genome structure of flowering plants'*'**. In
flowering plants, genomes are spatially organized at various levels
starting from the chromatin territories, in which telomeres and cen-
tromeres occupy different parts of the nucleus'”’. At the megabase
scale, chromatin is organized into A and B compartments that pref-
erentially interact with each other; these compartments are charac-
terized by well-defined epigenetic states, and often correspond to
heterochromatic, pericentromeric regions and euchromatic chro-
mosome arms. Topologically associating domains (TADs) are 3D
structural entities along the linear chromosome representing fur-
ther genomic organization at a finer scale'”*. Chromosomal regions
within a TAD exhibit higher contact frequencies than with regions
outside of TADs, and are delineated by their transcriptional and
epigenetic state'”’. Finally, chromosomal loops represent the small-
est unit that has well-proven functional significance. Various stud-
ies have found that 3D interaction frequency is a good indicator of
transcriptional activity and the epigenetic state of genes, and can be
heavily modulated by abiotic factors''®.

The 3D genome structure and its functional significance in
seed-free plants are not well known. Because spatial distribution of
genes and TEs in seed-free plants differ from those of seed plants,
it is of particular importance to know how the genome structures
compare between the two groups. Information on the 3D structure
of seed-free genomes is available only for the liverwort M. polymor-
pha, which has both shared and distinct features compared with
those of flowering plants">. M. polymorpha telomeres have been
described as clustering together at interphase, similar to the bouquet
structure detected in some flowering plants'’. Furthermore, borders
of TAD-like domains in M. polymorpha have been associated with
active gene expression and have served as units of expression regu-
lation, features also shared with other flowering plant genomes'"".
Conversely, the M. polymorpha genome contains a distinct type of
TAD that has not been observed in other plants or animals'””. These
TADs are enriched with TCP1 transcription factors, and the com-
plex of TCP1 and TAD collectively repressed gene expression. It is
unknown whether such transcription-factor-enriched TADs exist
in other land plants or whether they are unique to M. polymorpha.

Another unique feature of the M. polymorpha genome is the
presence of strong intra- and interchromosomal interactions.
Regions with such interactions are depleted in heterochromatic
(H3K27mel) and euchromatic (H3K4me3 and H3K36me3) histone
marks, but enriched in DNA methylation similar to KNOT regions
of Arabidopsis'*®. The Arabidopsis KNOT is a 3D nuclear structure
that is involved in defence against invasive DNA elements inde-
pendent of methylation and epigenetic silencing via small RNAs.
In addition, H3K27me3 is strongly associated with heterochromatic
domains in M. polymorpha; this is in contrast to flowering plants,
in which such domains are marked by H3K9mel and H3K27mel
(ref. ). Therefore, H3K27me3 is likely to be important in forming
heterochromatic domains and repressing TEs in M. polymorpha, a
feature shared with some ciliates but not with flowering plants.

While 3D genome structure is rarely considered as a direct factor
affecting genome evolution, it is clear that structures such as TADs
are not only spatial features, but are also regulatory units that demar-
cate the range of enhancer activity, control enhancer-gene interac-
tions, synchronize replication timing and coordinate correlated
gene expression''”'?. Therefore, changes in TADs and probably
other 3D structures of the genome will lead to regulatory evolution
and ultimately new phenotypes'*"'**. Furthermore, proper 3D struc-
ture of the genome is required for genomic stability and can poten-
tially impose constraints on genome evolution'”. Nevertheless, it
is not well known how and to what extent 3D genome structure
contributes to genome evolution'*. We believe that comparative
analyses of 3D genome structures in seed and seed-free plants will
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prove particularly useful for gaining deeper insights into this ques-
tion, especially given their seemingly contrasting distributions of
TEs and genes.

Linking genes to phenotypes

Next, having evaluated the emerging questions about the genomes
of seed-free plants, we turn to the progress in the development
of functional genetic tools. Although comparative genomics is a
powerful tool for formulating hypotheses concerning the evolu-
tion and diversification of seed-free plants, linking genotypes to
phenotypes requires targeted investigation of gene function. While
reverse-genetic tools are available for an increasing number of seed
plant model systems, seed-free plants remain underdeveloped in
this respect. Below, we provide a brief overview of the currently
available and aspiring seed-free model systems, all of which are
amenable to in vitro propagation and can provide biological data
(that is, biochemical, physiological and genetics) of interest. We
also highlight the problems and challenges faced in using these
model systems.

Ferns. While several model species are available for ferns, few
are amenable to transformation and gene silencing (Table 1). The
homosporous C. richardii is the most popular model fern, and has
a short life cycle in the laboratory, well-established reverse-genetic
tools'*>'** and a representative genome size of 14 Gbp™. C. richar-
dii has been used extensively to elucidate sporophyte and game-
tophyte development, cell division and sex determination in
ferns'”’. Besides C. richardii, the homosporous A. capillus-veneris
has been studied extensively for its unique photobiology'*, P. vit-
tata for its phytoremediation potential'”’, M. vestita for its intron
retention and splicing during spermatogenesis'”’, and Azolla for
its nitrogen-fixing symbiosis®’. The application of genome-editing
tools in these model ferns have not been reported yet, but their use
is highly anticipated.

Lycophytes. The absence of a reliable genetic transformation
method poses a major challenge towards gene functional analysis
in lycophytes (Table 1). Notably, in vitro propagation methods are
available for several Lycopodiaceae species, although the length
of time needed to complete their life cycle (spanning months to
years for spore germination and sporophyte development) presents
a major hurdle’”. Among Selaginellales, S. apoda is a promising
model species due to its short life cycle'”?, which can be completed
within 85 days.

Mosses. P. patens and C. purpureus are the two most developed
model moss species (Table 1), and P. patens is also the most promi-
nent bryophyte and seed-free plant model system overall, owing to
the existence of effective methods for in vitro propagation, genetic
transformation and high gene-targeting efficiency that is on par
with that of the budding yeast'**. Other model mosses under devel-
opment (Table 1) include E hygrometrica®', the desiccation-tolerant
S. ruralis’** and S. caninervis*>'*, as well as the agriculturally and
economically important Sphagnum spp.'.

Liverworts. M. polymorpha is the only well-established model spe-
cies for liverworts (Table 1). Although not as efficient as in P. pat-
ens, gene targeting in M. polymorpha has been found to be more
efficient (approximately 2%) than in most land plants'**. M. poly-
morpha and P. patens have recently begun to revolutionize our
understanding of plant evolutionary development'*. M. paleacea, a
sister species to M. polymorpha, is also being developed as a model
for studying arbuscular mycorrhizal symbiosis in bryophytes'.
In vitro gametophyte propagation of several other liverwort species
besides Marchantia spp. have been documented'*. Riccia spp. is a
promising model liverwort, and is the focus of several studies on
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the effects of environmental cues on gametophyte development'*'.
Altogether, diversified development of genetic transformation and
genome-editing tools for species other than M. polymorpha are still
needed to better represent the diversity of liverworts.

Hornworts. Functional genetic tools are under development for
hornworts in the genus Anthoceros, while other hornwort clades lag
behind (Table 1). A reliable Agrobacterium-mediated genetic trans-
formation method was recently reported for A. agrestis'**. A. puncta-
tus has been especially useful as a model for the characterization of
plant symbiosis with nitrogen-fixing cyanobacteria®. While almost
all known hornwort species are able to support such symbiosis, the
presence of pyrenoids (for their carbon-concentrating mechanism),
sex chromosomes, stomata and arbuscular mycorrhizal symbiosis
varies between species'”. Efforts are underway to develop in vitro
gametophyte cultures of representative species from all five horn-
wort families, paving the way towards elucidating the genetic basis
of the unique traits in hornworts.

Conclusions and perspectives

During the past ten years, the availability of new sequencing
technologies have contributed to an increasing number of plant
genomes. While the majority of these genomes are from seed
plants, the gaps in seed-free plants are being filled. Despite these
efforts, genomic information for seed-free plants is far from sat-
isfactory. In particular, genome sequences for some major clades
are missing (for example, Isoetales and Lycopodiales), and most
large and diverse clades are represented by a single reference
genome, few of which have been assembled at the chromosomal
level (Fig. 1). To gain a better understanding of genome evolution
across the plant tree of life, more high-quality and phylodiverse
reference genomes are needed. Future work should also consider
pan-genomic approaches to capture the genomic diversity at shal-
lower phylogenetic scales'.

Studies to date have suggested that seed-free plant and seed plant
genomes may differ in various aspects. Nevertheless, given the gaps
in the genome information available for seed-free plants, the gener-
ality of these findings remains to be tested. Key questions including
the evolution of collinearity, genome size, gene content, WGD, over-
all chromosome structure, 3D genome conformation, epigenetics
and diverse aspects of gene regulation in seed-free plants need to be
readdressed when more data are available.

While comparative genomic information is necessary to put
forward evolutionary hypotheses, functional verification can only
be achieved when amenable model systems are available. Much
remains to be done in this respect for seed-free plants. Model sys-
tems with a proper reverse-genetic toolbox need to be developed for
various groups of seed-free plants together with genomic resources
(Table 1). We are confident that further investigations into seed-free
plants will not only help to address classical evolutionary questions,
but also lead to new discoveries, some of them may be of applied
importance.
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