Inverses of Matérn Covariances on Grids

Joseph Guinness

Cornell University, Department of Statistics and Data Science

Abstract

We conduct a study of the aliased spectral densities of Matérn covariance functions on
a regular grid of points, providing clarity on the properties of a popular approximation
based on stochastic partial differential equations. While others have shown that it can
approximate the covariance function well, we find that it assigns too much power at high
frequencies and does not provide increasingly accurate approximations to the inverse as
the grid spacing goes to zero, except in the one-dimensional exponential covariance case.

1. INTRODUCTION

The Matérn covariance between two points in R% separated by lag h € R? is

2

M[h;v,d] =

= 31y @R (el k),

where o2 is a variance parameter, o is an inverse range parameter, v is a smoothness
parameter, and K, is the modified Bessel function of the second kind. Guttorp and
Gneiting (2006) provide a summary of its important properties and a detailed discussion
of its history. Our article presents a theoretical and numerical study of properties of
the spectral density of the Matérn covariance when aliased to regular grids of points
in one and two dimensions. We apply our results to study a popular approximation
to the inverse of Matérn covariance matrices that is motivated by connections between
the Matérn covariance and a class of stochastic partial differential equations (SPDEs)
(Lindgren et al., 2011).

Building on work by Whittle (1954), Whittle (1963), and Besag (1981), Lindgren et al.
(2011) proposed that the inverse of Matérn covariance matrices can be represented by
sparse matrices whenever v + d /2 is an integer, which is why our notation for M includes
v and d. The resulting approximation is commonly referred to as the SPDE approxima-
tion. In this paper, we use the terms “SPDE approach” and “SPDE approximation” to
refer specificially to the methods in Lindgren et al. (2011). We investigate the sparsity
of Matérn inverses and find that there is nothing particularly special with regards to
sparsity about the d = 1, = 3/2 case or the d = 2,v = 1, relative to other values of v.
Further, by studying the spectral densities implied by the SPDE approximation, we show
that the SPDE over-approximates power at the highest frequencies by a factor of 3 in
the d =1, v = 3/2 case and by as much as a factor of 2.7 in the d = 2, v =1 case.

In the discussion of Lindgren et al. (2011), Lee and Kaufman noted that the likeli-
hood implied by the SPDE approximation overestimates spatial range parameters. The
discussion of the bias was centered on boundary effects. Though boundary effects are
important for approximations to the inverse covariance matrix, the present paper sug-
gests instead that the overestimation stems from the fact that the SPDE approximation
has too much power at the highest frequencies, causing the likelihood to select a larger
range parameter in order to compensate. Our results also suggest an explanation for why
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Fig. 1. For dimension d = 1, Q;,;+1/Qs,: as a function

of v for various values of h and several inverse range

parameters «. Vertical lines indicate values set to
zero in the SPDE approximation.

Guinness (2018) found that SPDE approximations were less accurate in terms of KL-
divergence than Vecchia’s approximation (Vecchia, 1988). The supplementary material
of the present paper contains a simulation study that corroborates Lee and Kaufman’s
results.

To set the stage, consider a Matérn covariance matrix ¥ for a large grid of points in
one dimension with spacing 1, ordered left to right. Then let Q = 7!, and consider the
values Q; i11/Qii, where i is the index for a location near the center of the domain. Figure
1 plots these values for h = 1,2,3, and 4 over a range of smoothness and inverse range
parameters. When v = 0.5, the values are zero for h > 1, and they generally appear
to converge as the inverse range decreases, but not to zero when v = 3/2, which is
the approximation used in the SPDE approach. The supplement contains analogous
numerical results for the two-dimensional case. The rest of the present paper aims to
explore properties of the Matérn model and the SPDE approximation, with an aim of
understanding these numerical results.

2. BACKGROUND

The details for all derivations in this section are spelled out in the supplementary
material. Let Y : RY — R be a stationary process with autocovariance function A[h] =
Cov{Y [z + h],Y[z]}. Due to Bochner’s theorem (cf. Stein, 1999), A[ ] is positive definite
when

/ A[h]e"#mhgn .= A(w) >0 for all w € RY.
R4

We call A() the spectral density for A[ ]. Our notational convention uses the same letter
for the spectral density and covariance function, distinguishing the two with the type of
bracket: round for spectral densities and square for covariances. For A > 0, define the
interval Ta = [0,1/A] and hypercube T4. When h € Z¢, the inverse Fourier transform
can be rewritten as

A[AR] = /Td D Alw+ k/A)ePTA N dw = Ax[B],

A kezd
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which uses the aliasing property of complex exponentials and introduces a notation
Aa[]:Z% — R for covariances on a grid of points with spacing A. We define

Aa(w) =Y Aw+k/A)
kezd

to be the aliased spectral density for A on a grid with spacing A. The discrete covariances
and the aliased spectral density are related via

Aa[h] = AA(w)eiQWAw'hdw7 Ap(w) = A? Z AA[h]e—i%rAw-h’
TdA hezd

so that Aa[ ] is the integral Fourier transform of Aa() over T4, and Aa() is the infinite
discrete Fourier transform of Aa[]. We say that Ax'[] is the inverse of Aa[] if

AYN " Anh - kAR K] = 1[A]. (1)
kezd

where 1[h] = 1 when h = 0 and 0 otherwise. We call A}'[] the inverse operator. Taking
the infinite discrete Fourier transform of both sides of (1) reveals that

Apa(w) AR (w) = AY,

meaning that the spectrum of Agl is the A? times the reciprocal of the spectrum of An.

3. MATERN COVARIANCES AND SPDE APPROXIMATIONS

3.1. General Representation
The stationary Matérn covariance function is

M[h v d] — 02(C¥HhH)VKV(CthH) :/ UzNa,u,d Z‘Qﬂ—w.hdw
T [(v)2v—1 R4 (a2+47r2HwH2)V+d/2 ’

where N, , 4 = 2%7%2a®T'(v + d/2)/T(v) is a normalizing constant (Williams and Ras-
mussen, 2006). The aliased spectral density is

Ma(w; v,d) = Z 0% Ny pa(0® + 4m*||w + k/AH2)7V7d/2.
kezd

3.2.  One Dimension, v =1/2

From here on, we set 02 = 1 to simplify the expressions. When d = 1 and v = 1/2, the
aliased spectral density has the closed form

1— e—QAOz

MA(W; 1/2’ 1) = Al + e—20a _ p—Acp—iw2mA _ o—Aaptiw2TA”’ (2)

which can be proven by taking the discrete Fourier transform of the covariance function.
The inverse spectral density is A times the reciprocal,

14+ 6—2Ao¢ _ e—Aae—inTrA _ e—AOce—i-inﬂA
Mytw; 1/2,1) =

1 — e 20 )
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4
and thus the inverse operator is

(1 + €—2Aa)/(1 o €—2Aa) h = 0,
M3'[h;1/2,1) = —e 2 /(1—e22%)  |p| =1,
0 |h| > 1.

The SPDE approximation for the inverse operator in Lindgren et al. (2011) is

A 1 _
el 4 1 p =0

-1
My [h;1/2,1] = _ﬁ h| =1
0 |h| > 1.
which corresponds to spectral density
~ al 1 1 , 1 ) -1
M, -1/2.1) = A(i e 100 A S .HUJQFA) .
A(Wa / ) ) 9 +O¢A 2C¥A€ TQAe

Our first theorem establishes that the true and SPDE spectral densities for v =1/2
converge to the same values at frequencies 0 and 1/(2A) for small aA.

THEOREM 1.
; Ma (555 1/2,1 2A2
Mo UZD _yyopeay  MAEIED 8 gial
Ma(0; 1/2,1) Ma(sk31/2,1)  a2A2 i nd
_— = 1 - .
2/ 2/ ;- TolA)

This provides evidence that the SPDE approximation for v = 1/2, d =1 is a good ap-
proximation to the true model when aA is small; their spectral densities are similar at
the lowest frequency (w = 0) when the power is greatest and at the highest frequency
(w = A~1/2) when the power is smallest, implying that the both the SPDE spectral den-
sity and its reciprocal may be good approximations to the truth, which in turn implies
that both the covariance operator and its inverse may be good approximations.

3.3.  One Dimension, v = 3/2
When v = 3/2, the aliased spectral density is
403

Ma(w;3/2,1) = é (02 + 472 (w + k/A)2]2 ¥

The SPDE approximation in Lindgren et al. (2011) to the inverse operator is simply the
convolution of the ¥ = 1/2 approximation

2
AL 1 _
(a2 +aA> toa2az b =0

(@A)M [R5 3/2,1] = ~3 ~ aaz h =1,
TNy || =2
0 |h| > 2

which means that the spectral density for the v = 3/2 SPDE inverse operator is simply
the square of spectral density for the v = 1/2 SPDE inverse operator,

~ 1 7aA 1 1 . 1 . 2
M-l . 2.1) = — <7 o —iw2TA +zw27rA>
A (@33/2,1) aA\ 2 + aA ~ 2aA°€ 2aA € ’
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Fig. 2. Ford =1, v = 3/2, a = 0.4, true aliased spec-

tral density and its reciprocal (lines) and SPDE ap-

proximation to the aliased spectral density and its
reciprocal (circles).

and the spectral density for the v = 3/2 SPDE covariance operator is

[Y3 ) _ 2 (A 1 [N L iwora) 72

Ma(w; 3/2,1) = aA (7+E—me G ) :
Normalizing constants are chosen so that Ma(0; 3/2,1) — Ma(0; 3/2,1) as aA — 0.

Note that the aliased Matérn spectral density for v = 3/2 in (3) is not simply the

square of the aliased v = 1/2 spectral density in (2); rather, we alias the square of the
unaliased v = 1/2 spectral density. The SPDE appproximation reverses the order of
operations, squaring the aliased spectral density. This subtle difference leads to the SPDE
approximation assigning too much power at the highest frequencies, made explicit in the
following theorem:

THEOREM 2.
Ma(0; 3/2,1) Ma(55:3/2,1)  ofAl
e " 1+ 0(a*A") 2 T =g T00°A%
Ma(0; 3/2,1) Ma(5h;3/2,1) oAl 6 A G
-1 = A®).
i/a 1/ T

When scaled by 4/«, both spectral densities converge to 1 when w =0 and oA — 0,
but they converge to two different values, a*A*/48 and a*A*/16, when w = A~1/2,
meaning that the SPDE spectral density assigns three times too much power at the
highest frequency. The inaccuracy of the spectral density at high frequencies impacts the
quality of the approximation to the reciprocal of the spectral density, seen in Figure 2,
and to the inverse operator, as evidenced in Figure 1.

3.4. Two Dimensions
The aliased spectral density for the Matérn in two dimensions is

Ma(w; v,2) = 4ma? Z [a2 + 4% (w1 + k1 /A)? + 472 (wo + k:g/A)Q]_V_l.
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The following theorem establishes properties of the aliased Matérn spectral density for
v =1 at the lowest frequency and at high frequencies in one and both spatial dimensions.

THEOREM 3.
A <1 g o
JCAE R
DO SE R Jemn

The numbers 258.6, 43.10, and 86.20 are the result of numerical calculations and are
rounded to one or two decimals. They are available to higher accuracy. Details are given
in the proof in the supplementary material. The SPDE approximation to the inverse
operator is

(44 a®A2%)2+4 h=(0,0)
— —2(4—|—O&2A2) h = (03 1)’( 1)7(]— 0),(—1,0)
am(aA)2My R 1,2] = 2 b= (LD, -1, (L), (-1 1)
(1) h( )’( )7( 270)a(03*2>
otherwise,

which corresponds to the spectral density
MA(w; 1,2) = Aral A4 (4 1 a?A2 _ gi2mlw _ —i2mAwy _ i2nlwy efiQﬂAwg)_Q

The normalizing constants are chosen so that Ma((0,0); 1,2) — MA((O,O); 1,2) =

47 /a? as oA — 0. The following theorem establishes the behavior of Ma(w; 1,2) at
the same frequencies in Theorem 3.

THEOREM 4.
Ma((0,0); 1,2)
-1
47 /a2

Ma((5%,0);1,2)  a*At

e Y
Ma((x,55):1,2)  a*Al

(sz/i; - 6 oA

Theorems 3 and 4 imply that when aA is small, the SPDE approach over-approximates
the spectral density by a factor of 43.1/16 = 2.69 at w = (A™1/2,0) and 86.2/64 = 1.35
at w = (A71/2, A=1/2). Figure 3 contains an example where the ratio between the SPDE
spectral density and the true spectral density varies between 0.999 at w = (0,0), 2.680
at w = (A71/2,0) and 1.345 at w = (A~1/2, A71/2).

4. DISCUSSION

The SPDE approximation has proven useful as a computational tool and as a concep-
tual tool for defining extensions of the stationary gridded model to models for irregularly-
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Fig. 3. True spectral density for v =1, a = 0.5,

SPDE approximation to the spectral density, and the

ratio of the two. The ratio is near 1.00 at (0, 0), near

2.69 at (1/2A,0) and near 1.35 at (1/2A,1/2A), as
predicted by the theory.

spaced data, models on manifolds, and to non-stationary models (Fuglstad et al., 2015;
Bakka et al., 2018). This paper does not question the usefulness of the SPDE approach
as a tool for data analysis. Rather, it is a study of the SPDE approximation to Matérn
models on grids. The supplementary material explores the implications of our results,
namely a simulation study showing that the SPDE approximation overestimates range
parameters. The supplementary material also includes numerical results for the true
inverse operator in the one- and two-dimensional cases.

We study SPDE approximations to Matérn fields observed at point locations on a
grid, as opposed to observations of gridbox averages. While SPDE approximations have
been applied in both cases, the spectral properties of gridbox average fields are different,
and it is not clear to the author whether the SPDE approximations would be more
or less accurate in the gridbox average case. This is certainly an interesting question
worthy of future study. In addition, it would be interesting to explore extensions to
irregularly sampled locations. In all cases, a study of the impact of the approximations
on predictions is also warranted. It seems plausible that if the approximate model is used
for both inferring parameters and generating predictions, the resulting predictions would
be reasonably accurate.

Supplementary Material

The appendices contain additional numerical and simulation studies, background ma-
terial, and proofs. R code for reproducing all numerical results and figures has been
uploaded as online supplementary material.
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