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Abstract

We conduct a study of the aliased spectral densities of Matérn covariance functions on 5

a regular grid of points, providing clarity on the properties of a popular approximation
based on stochastic partial differential equations. While others have shown that it can
approximate the covariance function well, we find that it assigns too much power at high
frequencies and does not provide increasingly accurate approximations to the inverse as
the grid spacing goes to zero, except in the one-dimensional exponential covariance case. 10

1. Introduction

The Matérn covariance between two points in R
d separated by lag h ∈ R

d is

M [h ; ν, d ] =
σ2

2ν−1Γ(ν)
(α‖h‖)νKν(α‖h‖),

where σ2 is a variance parameter, α is an inverse range parameter, ν is a smoothness
parameter, and Kν is the modified Bessel function of the second kind. Guttorp and 15

Gneiting (2006) provide a summary of its important properties and a detailed discussion
of its history. Our article presents a theoretical and numerical study of properties of
the spectral density of the Matérn covariance when aliased to regular grids of points
in one and two dimensions. We apply our results to study a popular approximation
to the inverse of Matérn covariance matrices that is motivated by connections between 20

the Matérn covariance and a class of stochastic partial differential equations (SPDEs)
(Lindgren et al., 2011).

Building on work by Whittle (1954), Whittle (1963), and Besag (1981), Lindgren et al.
(2011) proposed that the inverse of Matérn covariance matrices can be represented by
sparse matrices whenever ν + d/2 is an integer, which is why our notation for M includes 25

ν and d. The resulting approximation is commonly referred to as the SPDE approxima-
tion. In this paper, we use the terms “SPDE approach” and “SPDE approximation” to
refer specificially to the methods in Lindgren et al. (2011). We investigate the sparsity
of Matérn inverses and find that there is nothing particularly special with regards to
sparsity about the d = 1, ν = 3/2 case or the d = 2, ν = 1, relative to other values of ν. 30

Further, by studying the spectral densities implied by the SPDE approximation, we show
that the SPDE over-approximates power at the highest frequencies by a factor of 3 in
the d = 1, ν = 3/2 case and by as much as a factor of 2.7 in the d = 2, ν = 1 case.

In the discussion of Lindgren et al. (2011), Lee and Kaufman noted that the likeli-
hood implied by the SPDE approximation overestimates spatial range parameters. The 35

discussion of the bias was centered on boundary effects. Though boundary effects are
important for approximations to the inverse covariance matrix, the present paper sug-
gests instead that the overestimation stems from the fact that the SPDE approximation
has too much power at the highest frequencies, causing the likelihood to select a larger
range parameter in order to compensate. Our results also suggest an explanation for why 40
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Fig. 1. For dimension d = 1, Qi,i+h/Qi,i as a function
of ν for various values of h and several inverse range
parameters α. Vertical lines indicate values set to

zero in the SPDE approximation.

Guinness (2018) found that SPDE approximations were less accurate in terms of KL-
divergence than Vecchia’s approximation (Vecchia, 1988). The supplementary material
of the present paper contains a simulation study that corroborates Lee and Kaufman’s
results.

To set the stage, consider a Matérn covariance matrix Σ for a large grid of points in45

one dimension with spacing 1, ordered left to right. Then let Q = Σ−1, and consider the
values Qi,i+h/Qi,i, where i is the index for a location near the center of the domain. Figure
1 plots these values for h = 1, 2, 3, and 4 over a range of smoothness and inverse range
parameters. When ν = 0.5, the values are zero for h > 1, and they generally appear
to converge as the inverse range decreases, but not to zero when ν = 3/2, which is50

the approximation used in the SPDE approach. The supplement contains analogous
numerical results for the two-dimensional case. The rest of the present paper aims to
explore properties of the Matérn model and the SPDE approximation, with an aim of
understanding these numerical results.

2. Background55

The details for all derivations in this section are spelled out in the supplementary
material. Let Y : Rd → R be a stationary process with autocovariance function A[h ] =
Cov{Y [x+ h ], Y [x ]}. Due to Bochner’s theorem (cf. Stein, 1999), A[ ] is positive definite
when

∫

Rd

A[h ]e−i2πω·hdh := A(ω) > 0 for all ω ∈ R
d.60

We call A() the spectral density for A[ ]. Our notational convention uses the same letter
for the spectral density and covariance function, distinguishing the two with the type of
bracket: round for spectral densities and square for covariances. For ∆ > 0, define the
interval T∆ = [0, 1/∆] and hypercube T

d
∆. When h ∈ Z

d, the inverse Fourier transform
can be rewritten as65

A[ ∆h ] =

∫

T
d
∆

∑

k∈Zd

A(ω + k/∆)ei2π∆ω·hdω =: A∆[h ],
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which uses the aliasing property of complex exponentials and introduces a notation
A∆[ ] : Z

d → R for covariances on a grid of points with spacing ∆. We define

A∆(ω) =
∑

k∈Zd

A(ω + k/∆)

to be the aliased spectral density for A on a grid with spacing ∆. The discrete covariances 70

and the aliased spectral density are related via

A∆[h ] =

∫

T
d
∆

A∆(ω)e
i2π∆ω·hdω, A∆(ω) = ∆d

∑

h∈Zd

A∆[h ]e
−i2π∆ω·h,

so that A∆[ ] is the integral Fourier transform of A∆() over T
d
∆, and A∆() is the infinite

discrete Fourier transform of A∆[ ]. We say that A−1
∆

[ ] is the inverse of A∆[ ] if

∆d
∑

k∈Zd

A∆[h− k ]A−1
∆

[ k ] = ✶[h ]. (1) 75

where ✶[h ] = 1 when h = 0 and 0 otherwise. We call A−1
∆

[ ] the inverse operator. Taking
the infinite discrete Fourier transform of both sides of (1) reveals that

A∆(ω)A
−1
∆

(ω) = ∆d,

meaning that the spectrum of A−1
∆

is the ∆d times the reciprocal of the spectrum of A∆.

3. Matérn Covariances and SPDE Approximations 80

3.1. General Representation

The stationary Matérn covariance function is

M [h ; ν, d ] =
σ2(α‖h‖)νKν(α‖h‖)

Γ(ν)2ν−1
=

∫

Rd

σ2Nα,ν,d(
α2 + 4π2‖ω‖2

)ν+d/2
ei2πω·hdω,

where Nα,ν,d = 2dπd/2α2νΓ(ν + d/2)/Γ(ν) is a normalizing constant (Williams and Ras-
mussen, 2006). The aliased spectral density is 85

M∆(ω ; ν, d) =
∑

k∈Zd

σ2Nα,ν,d

(
α2 + 4π2‖ω + k/∆‖2

)
−ν−d/2

.

3.2. One Dimension, ν = 1/2

From here on, we set σ2 = 1 to simplify the expressions. When d = 1 and ν = 1/2, the
aliased spectral density has the closed form

M∆(ω ; 1/2, 1) = ∆
1− e−2∆α

1 + e−2∆α − e−∆αe−iω2π∆ − e−∆αe+iω2π∆
, (2) 90

which can be proven by taking the discrete Fourier transform of the covariance function.
The inverse spectral density is ∆ times the reciprocal,

M−1
∆

(ω ; 1/2, 1) =
1 + e−2∆α − e−∆αe−iω2π∆ − e−∆αe+iω2π∆

1− e−2∆α
,
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and thus the inverse operator is

M−1
∆

[h ; 1/2, 1 ] =





(1 + e−2∆α)/(1− e−2∆α) h = 0,
−e−∆α/(1− e−2∆α) |h| = 1,
0 |h| > 1.

95

The SPDE approximation for the inverse operator in Lindgren et al. (2011) is

M̃−1
∆

[h ; 1/2, 1 ] =





α∆
2

+ 1
α∆ h = 0

− 1
2α∆ |h| = 1

0 |h| > 1.

which corresponds to spectral density

M̃∆(ω ; 1/2, 1) = ∆
(α∆

2
+

1

α∆
−

1

2α∆
e−iω2π∆ −

1

2α∆
e+iω2π∆

)
−1

.

Our first theorem establishes that the true and SPDE spectral densities for ν = 1/2100

converge to the same values at frequencies 0 and 1/(2∆) for small α∆.

Theorem 1.

M∆(0 ; 1/2, 1)

2/α
= 1 +O(α2∆2)

M∆

(
1
2∆

; 1/2, 1
)

2/α
=

α2∆2

4
+O(α4∆4)

M̃∆(0 ; 1/2, 1)

2/α
= 1

M̃∆

(
1
2∆

; 1/2, 1
)

2/α
=

α2∆2

4
+O(α4∆4).

This provides evidence that the SPDE approximation for ν = 1/2, d = 1 is a good ap-
proximation to the true model when α∆ is small; their spectral densities are similar at105

the lowest frequency (ω = 0) when the power is greatest and at the highest frequency
(ω = ∆−1/2) when the power is smallest, implying that the both the SPDE spectral den-
sity and its reciprocal may be good approximations to the truth, which in turn implies
that both the covariance operator and its inverse may be good approximations.

3.3. One Dimension, ν = 3/2110

When ν = 3/2, the aliased spectral density is

M∆(ω ; 3/2, 1) =
∑

k∈Z

4α3

[α2 + 4π2(ω + k/∆)2]2
. (3)

The SPDE approximation in Lindgren et al. (2011) to the inverse operator is simply the
convolution of the ν = 1/2 approximation

(α∆)M̃−1
∆

[h ; 3/2, 1 ] =





(
α∆
2

+ 1
α∆

)2

+ 1

2α2∆2 h = 0

−1
2
− 1

α2∆2 |h| = 1
1

4α2∆2 |h| = 2
0 |h| > 2

,115

which means that the spectral density for the ν = 3/2 SPDE inverse operator is simply
the square of spectral density for the ν = 1/2 SPDE inverse operator,

M̃−1
∆

(ω ; 3/2, 1) =
1

α∆

(α∆
2

+
1

α∆
−

1

2α∆
e−iω2π∆ −

1

2α∆
e+iω2π∆

)2

,
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Fig. 2. For d = 1, ν = 3/2, α = 0.4, true aliased spec-
tral density and its reciprocal (lines) and SPDE ap-
proximation to the aliased spectral density and its

reciprocal (circles).

and the spectral density for the ν = 3/2 SPDE covariance operator is

M̃∆(ω ; 3/2, 1) = α∆2
(α∆

2
+

1

α∆
−

1

2α∆
e−iω2π∆ −

1

2α∆
e+iω2π∆

)
−2

. 120

Normalizing constants are chosen so that M∆(0 ; 3/2, 1) → M̃∆(0 ; 3/2, 1) as α∆ → 0.
Note that the aliased Matérn spectral density for ν = 3/2 in (3) is not simply the

square of the aliased ν = 1/2 spectral density in (2); rather, we alias the square of the
unaliased ν = 1/2 spectral density. The SPDE appproximation reverses the order of
operations, squaring the aliased spectral density. This subtle difference leads to the SPDE 125

approximation assigning too much power at the highest frequencies, made explicit in the
following theorem:

Theorem 2.

M∆(0 ; 3/2, 1)

4/α
= 1 +O(α4∆4)

M∆

(
1
2∆

; 3/2, 1
)

4/α
=

α4∆4

48
+O(α6∆6)

M̃∆(0 ; 3/2, 1)

4/α
= 1

M̃∆

(
1
2∆

; 3/2, 1
)

4/α
=

α4∆4

16
+O(α6∆6).

When scaled by 4/α, both spectral densities converge to 1 when ω = 0 and α∆ → 0, 130

but they converge to two different values, α4∆4/48 and α4∆4/16, when ω = ∆−1/2,
meaning that the SPDE spectral density assigns three times too much power at the
highest frequency. The inaccuracy of the spectral density at high frequencies impacts the
quality of the approximation to the reciprocal of the spectral density, seen in Figure 2,
and to the inverse operator, as evidenced in Figure 1. 135

3.4. Two Dimensions

The aliased spectral density for the Matérn in two dimensions is

M∆(ω ; ν, 2) = 4πα2
∑

k∈Z2

[
α2 + 4π2(ω1 + k1/∆)2 + 4π2(ω2 + k2/∆)2

]
−ν−1

.
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The following theorem establishes properties of the aliased Matérn spectral density for
ν = 1 at the lowest frequency and at high frequencies in one and both spatial dimensions.140

Theorem 3.

M∆((0, 0) ; 1, 2)

4π/α2
= 1 +

α4∆4

258.6
+O(α6∆6)

M∆

(
( 1
2∆

, 0) ; 1, 2
)

4π/α2
=

α4∆4

43.10
+O(α6∆6)

M∆

(
( 1
2∆

, 1
2∆

) ; 1, 2
)

4π/α2
=

α4∆4

86.20
+O(α6∆6)

The numbers 258.6, 43.10, and 86.20 are the result of numerical calculations and are
rounded to one or two decimals. They are available to higher accuracy. Details are given145

in the proof in the supplementary material. The SPDE approximation to the inverse
operator is

4π(α∆)2M̃−1
∆

[h ; 1, 2 ] =





(4 + α2∆2)2 + 4 h = (0, 0)
−2(4 + α2∆2) h = (0, 1), (0,−1), (1, 0), (−1, 0)

2 h = (1, 1), (1,−1), (−1, 1), (−1,−1)
1 h = (2, 0), (0, 2), (−2, 0), (0,−2)
0 otherwise,

which corresponds to the spectral density

M̃∆(ω ; 1, 2) = 4πα2∆4
(
4 + α2∆2 − ei2π∆ω1 − e−i2π∆ω1 − ei2π∆ω2 − e−i2π∆ω2

)
−2

.150

The normalizing constants are chosen so that M∆((0, 0) ; 1, 2) → M̃∆((0, 0) ; 1, 2) =

4π/α2 as α∆ → 0. The following theorem establishes the behavior of M̃∆(ω ; 1, 2) at
the same frequencies in Theorem 3.

Theorem 4.

M̃∆((0, 0) ; 1, 2)

4π/α2
= 1

M̃∆

(
( 1
2∆

, 0) ; 1, 2
)

4π/α2
=

α4∆4

16
+O(α6∆6)155

M̃∆

(
( 1
2∆

, 1
2∆

) ; 1, 2
)

4π/α2
=

α4∆4

64
+O(α6∆6)

Theorems 3 and 4 imply that when α∆ is small, the SPDE approach over-approximates
the spectral density by a factor of 43.1/16 = 2.69 at ω = (∆−1/2, 0) and 86.2/64 = 1.35
at ω = (∆−1/2,∆−1/2). Figure 3 contains an example where the ratio between the SPDE
spectral density and the true spectral density varies between 0.999 at ω = (0, 0), 2.680160

at ω = (∆−1/2, 0) and 1.345 at ω = (∆−1/2,∆−1/2).

4. Discussion

The SPDE approximation has proven useful as a computational tool and as a concep-
tual tool for defining extensions of the stationary gridded model to models for irregularly-
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Fig. 3. True spectral density for ν = 1, α = 0.5,
SPDE approximation to the spectral density, and the
ratio of the two. The ratio is near 1.00 at (0, 0), near
2.69 at (1/2∆, 0) and near 1.35 at (1/2∆, 1/2∆), as

predicted by the theory.

spaced data, models on manifolds, and to non-stationary models (Fuglstad et al., 2015; 165

Bakka et al., 2018). This paper does not question the usefulness of the SPDE approach
as a tool for data analysis. Rather, it is a study of the SPDE approximation to Matérn
models on grids. The supplementary material explores the implications of our results,
namely a simulation study showing that the SPDE approximation overestimates range
parameters. The supplementary material also includes numerical results for the true 170

inverse operator in the one- and two-dimensional cases.
We study SPDE approximations to Matérn fields observed at point locations on a

grid, as opposed to observations of gridbox averages. While SPDE approximations have
been applied in both cases, the spectral properties of gridbox average fields are different,
and it is not clear to the author whether the SPDE approximations would be more 175

or less accurate in the gridbox average case. This is certainly an interesting question
worthy of future study. In addition, it would be interesting to explore extensions to
irregularly sampled locations. In all cases, a study of the impact of the approximations
on predictions is also warranted. It seems plausible that if the approximate model is used
for both inferring parameters and generating predictions, the resulting predictions would 180

be reasonably accurate.

Supplementary Material

The appendices contain additional numerical and simulation studies, background ma-
terial, and proofs. R code for reproducing all numerical results and figures has been
uploaded as online supplementary material. 185
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