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Abstract— With growing access to versatile robotics, it is
beneficial for end users to be able to teach robots tasks
without needing to code a control policy. One possibility is
to teach the robot through successful task executions. How-
ever, near-optimal demonstrations of a task can be difficult
to provide and even successful demonstrations can fail to
capture task aspects key to robust skill replication. Here,
we propose a learning from demonstration (LfD) approach
that enables learning of robust task definitions without the
need for near-optimal demonstrations. We present a novel
algorithmic framework for learning task specifications based
on the ergodic metric—a measure of information content in
motion. Moreover, we make use of negative demonstrations—
demonstrations of what not to do—and show that they can help
compensate for imperfect demonstrations, reduce the number
of demonstrations needed, and highlight crucial task elements
improving robot performance. In a proof-of-concept example
of cart-pole inversion, we show that negative demonstrations
alone can be sufficient to successfully learn and recreate a skill.
Through a human subject study with 24 participants, we show
that consistently more information about a task can be captured
from combined positive and negative (posneg) demonstrations
than from the same amount of just positive demonstrations.
Finally, we demonstrate our learning approach on simulated
tasks of target reaching and table cleaning with a 7-DoF Franka
arm. Our results point towards a future with robust, data-
efficient LfD for novice users.

I. INTRODUCTION

Many assistive robots being deployed in people’s homes or
on factory floors are capable of performing a wide variety
of tasks. As such, it is beneficial for end users to be able
to customize these robots by teaching them tasks specific to
their needs. However, it is often not possible to provide high-
quality task demonstrations. This could be because the task is
challenging for a person to perform, e.g., cart-pole inversion
due to its unintuitive dynamics, or the person is limited by
a low-dimensional control interface, such as a joystick, for
providing demonstrations to a 7-DoF robotic arm. Although
successful approaches exist for imitation learning, including
Dynamic Motion Primitives (DMPs) [1], inverse reinforce-
ment learning [2], and others—as we describe in more detail
in Section II—few of the LfD frameworks allow for reliable
learning from novice task demonstrations.

Our approach stems from the idea that one can characterize
movement by asking how much information about a task
is encoded in motion—quantifying this using a measure of
ergodicity. We propose ergodic LfD for robust learning from
imperfect demonstrations. In this approach, we define tasks
through spatial distributions in state-based feature space.
Through successive demonstrations, we learn the underly-
ing distribution corresponding to a task and generate robot

behavior via ergodic control [3] with respect to the learned
distributions. This learning framework allows us to combine
multiple novice demonstrations into a successful objective
and use model predictive control (MPC) to recreate trajecto-
ries for new, previously unencountered scenarios. A desirable
property of the proposed method is that demonstrations need
not be either temporally aligned or of the same duration.
As a result, the information content of the demonstrations
is additive without temporal pre-processing. Finally, it is
worth noting that ergodic LfD does not focus on imitating
trajectories directly—instead it emphasizes imitating trajec-
tory statistics. As a result, the method learns well from
imperfect demonstrations and is robust to noise in individual
demonstrations (e.g., corrective motions or perturbations).

Moreover, we propose imitation learning using negative
demonstrations. In some cases, it might be easier for a person
to demonstrate what not to do rather than to provide an
exemplary task execution. In other scenarios, aspects of a
task might not be apparent from a successful demonstration
and so presenting common pitfalls might be more valu-
able than repetitively showing the same correct movements.
Demonstrating things to avoid is something that people
already intuitively do when teaching new skills to others. As
we show in this work, robotic LfD can also largely benefit
from incorporating negative demonstrations into the learning
process. What is more, ergodic LfD is a particularly suit-
able algorithmic framework, because it enables combining
positive and negative demonstrations into a well-posed task
objective.

As part of this study, we validate our learning approach
on two test beds: a virtual 2-dimensional cart-pole system
and a simulated 7-DoF robotic arm. We find that ergodic
LfD (1) enables robust skill reconstruction that outperforms
the provided demonstrations and (2) generalizes to different
robot tasks. Additionally, we test the utility of negative
demonstrations in an experiment with 24 participants. Our
results show that there is consistent benefit to soliciting
combined posneg demonstrations compared to only positive
demonstrations. The algorithmic framework, more detailed
experimental results, and a discussion of future work are
described in Sections III, IV, and V, respectively.

II. RELATED WORK

Machine learning techniques such as inverse reinforcement
learning (IRL) can be used to generate a reward function
that reflects the policy for the task [2], [4]–[6]. While these
methods can successfully represent and learn various skills,
they cannot generate safety guarantees for the resulting
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Fig. 1: An overview of the learning process using ergodic LfD on the example of the cart-pole inversion task. Positive and negative demonstrations are
combined to form posonly, negonly, or posneg task definitions.

learned policy nor guarantee the dynamic feasibility of the
generated trajectories. In contrast, the proposed algorithm
inherits formal algorithmic properties from ergodic control
and standard MPC methods. These formal properties are
as follows: (1) The ergodic cost is globally convex w.r.t.
distributions so long as the metric used is on a Sobolev
space. The distance from ergodicity can be measured by
several metrics, see [7] or [8]. Here, we use the spectral
approach as in [9]. (2) The ergodic LfD approach inherits
asymptotic convergence from ergodic control [3]. In the
cart-pole example described in Section III, this implies that
when the goal distribution is defined as a delta function at
the unstable equilibrium, the statistics of the trajectory will
asymptotically approach the delta function—the pole could
occasionally fall, but the amount of time spent at the inverted
equilibrium would approach 100% as time goes to infinity.
(3) Safety sets can be specified through the use of barrier
functions. This property is inherited from standard MPC
methods rather than ergodic control specifically.

Furthermore, IRL and inverse optimal control methods
assume that the demonstrations representing the task are
generated by an expert demonstrator providing optimal (or
near-optimal) solutions for the task in order to generate fea-
sible solutions [2], [4]–[6]. Only some proposed approaches
allow for non-optimal input, e.g., by executing a number
of imitation learning iterations before switching to rein-
forcement learning methods [10]. Other approaches—such as
those that use probabilistic methods to represent a task from
demonstrations and replicate robot motions based on that
representation—also rely on highly skilled demonstrators,
accounting for imperfections with relatively small-scale noise
in the probabilistic representation. These methods include
dynamical movement primitives (DMP) [11], probabilis-
tic movement primitives (ProMP) [12], Fourier movement
primitives [13], Gaussian mixture regression (GMR) [14],
Gaussian process regression (GPR) [15], and GMR-based
Gaussian process regression (GMR-GP) [16]. In our ap-
proach, we explicitly allow for suboptimal demonstrations
and treat them as positive (as long as they ultimately achieve
the task). A unique aspect of the current work is that
one can improve task learning by incorporating negative

demonstrations—unsuccessful task executions representing
explicit examples of what not to do. This means that users
can teach a task when they have difficulty providing even
suboptimal demonstrations.

To enable task learning that more closely captures human
preferences and that accounts for imperfect or incomplete
demonstrations, active learning methods have been devel-
oped [17]–[20]. In these approaches, the human is treated as
an oracle that the autonomy can query, improving learning
quality. However, there is an inherent cost of time and effort
to querying the user for corrections and previous studies
have found that the preference-learning process can be
prohibitively frustrating [21], [22]. Moreover, the user tends
to have a preference towards online learning approaches
(e.g., [20]) that do not require post-hoc corrections to learned
robot policies. In this paper, we propose a novel learning
method that takes advantage of people’s ability to convey
information about a task through demonstrations of what not
to do during runtime and we present an LfD algorithm that
allows for combining positive and negative demonstration
into a successful task definition.

Lastly, we note that existing methods inherently specify
the task representation in a time-dependent manner. As a
result, they require temporal modulation or pre-processing
to align the demonstrations for task learning; the time-
dependent specification makes it difficult to incorporate
negative task demonstrations. Some approaches, such as
behavioral cloning via DMPs, do not even enable learning a
task objective and as a result allow skill reconstruction only
in open-loop w.r.t. the task goal (and closed-loop w.r.t. the
behavior). We propose ergodic LfD as one possible approach
that enables defining objectives as state distributions. While
existing methods, such as IRL, could be adapted to learn an
objective function over distributions, the nominal complexity
of IRL is already exponential (O(n2log(nk)) [23]. If one
were to perform IRL over the set of distributions, the al-
gorithm would further increase in computational complexity
likely becoming intractable. Ergodic LfD allows us to avoid
the computational complexity of IRL, as well as other
pitfalls, such as issues with converging on local minima
due to many possible reward functions. What is more,



Fig. 2: Example task definition (left) and skill reconstruction (right) learned from 3 expert trajectories. An optimal controller is used to recreate the task
given the learned goal distribution. Green indicates success—time when the cart-pole is inverted. The controller-generated trajectory is plotted on the
right and overlayed on the task distribution on the left with black dots—note that the trajectory closely represents the underlying distribution subject to
constraints imposed by system dynamics.

Fig. 3: Example task definition and skill reconstruction learned from 3 novice trajectories from Subject 6. Note that the controller just barely succeeds (for
less than 5 seconds), exhibiting comparable performance to the original demonstrations, which had an average success time of 5.6 seconds.

the proposed framework allows for positive and negative
distributions to be simply added together. In the results
section, we focus on showcasing the value of incorporating
negative demonstrations into the learning process.

III. METHODS

A. Ergodic Task Definitions and Control

In ergodic LfD, we generate a representation of an un-
known task using spatial statistics. Since we avoid specifying
temporal dependencies, we synthesize robotic controls that
successfully achieve a task without necessarily replicating
the demonstration’s time-evolving trajectory. We define a
single demonstration, represented as di, as the distribution
of points in the state space making up the the state trajectory
x(t) for a given set of time t ∈ [t0, tf ], and the set of
demonstrations as D = d1, ..., dm. This set may contain both
positive and negative demonstrations, so we also store a label
array E = e1, ..., em corresponding in length to D.

Learning from positive demonstrations. A positive
demonstration is defined to be a person’s attempt at a
task that is at least somewhat successful. Oftentimes user-
provided positive demonstrations are incomplete or highly
sub-optimal with multiple attempts at the task and corrective

actions within the demonstration. This was the case in the
user studies used in this work.

During the task learning process, we use the demonstration
trajectories to generate a task definition φ(x) by representing
the spatial statistics of each demonstration trajectory d with
the Fourier decomposition φk, as described in Eq. 2. We then
average the φk values of the demonstrations to represent
the collective spatial statistics of all the demonstrations.
Regions of the state space where more time is spent in the
trajectories have a higher density in the distribution than
regions where less time is spent. If a set of demonstrations
for the task of reaching an equilibrium state were used
to generate a distribution, there would be a peak at the
equilibrium state. As more demonstrations are added, the
collective time spent at the equilibrium state would generate a
higher peak at the state s, asymptotically approaching a delta
function. Examples of the cart-pole inversion task learned
from an expert demonstration and from novice imperfect
demonstrations are showed in Fig. 2 and Fig. 3, respectively.

To generate the distribution φ(x) from the demonstration
trajectories x(t), we calculate spatial Fourier coefficients of



x(t) using Fourier basis functions of the form

Fk(x) =
1

hk

n∏
i=1

cos

(
kiπ

Li
xi

)
, (1)

where k is a multi-index over n dimensions, hk is a nor-
malizing factor [9], and Li is a measure of the length of
the dimension. We then compute the coefficients of a time-
averaged trajectory using Eq. 2.

ck =
1

T

∫ T

0

Fk(x(t))dt (2)

The coefficients of the demonstration trajectories are com-
bined to form the coefficients that describe the task definition.

φk =
m∑
j=1

wjck,j (3)

The demonstrations may be weighted depending on the
relative quality or may be given equal weight by setting
wj = 1/m for each demonstration as is done in this paper.
Note that other representations of a distribution could be
used instead of Fourier coefficients, including wavelets or
Gaussian Mixtures, as long as a comparison metric of two
distributions can be defined and meets the conditions for
global convexity.

Learning from negative demonstrations. In this work,
we also employ negative demonstrations, defined as both un-
successful task attempts and explicit demonstrations of what
not to do. Negative demonstrations can include good-faith
attempts at a task where the demonstrator performs poorly,
or explicit examples of actions that are far from the desired
behavior. As with positive demonstrations, the demonstrated
trajectories are represented by the Fourier decomposition ck
calculated using Eq. 2. However, they are combined through
subtraction—wj < 0 in Eq. 3—such that regions of the state
space where more time is spent in the trajectories have a
lower density in the distribution than regions where less
time is spent. We show that negative demonstrations can
be used to both construct a successful representation of a
task by themselves or to improve a task definition when
used in conjunction with positive demonstrations (see Fig. 4
and 5 for examples). Mathematically, we define the posneg
distribution as φposneg = γ1φpos − γ2φneg , while negonly
distributions learned from just negative demonstrations are
defined by subtracting φneg from a uniform distribution.
γ1 and γ2 represent normalization factors that weigh the
contribution of positive and negative demonstrations to the
final task definition.

Ergodic Control. When recreating the learned skills, we
use a model predictive controller (MPC) to synthesize con-
trols that generate a trajectory to match the spatial statistics
of the distribution representing the demonstration set. In
defining the task objective, we use ergodicity, which relates
the temporal behavior of a signal to a pre-defined distribu-
tion. Ergodicity can be measured by several metrics [7], [8];
here we use the spectral approach [9], which characterizes
ergodicity by comparing spatial Fourier coefficients of x(t)

to coefficients of φ(x). Assume we have an autonomous
agent whose movements are governed by a dynamic model
that is either known a priori or learned from data and is of
the form

ẋ = f(x, u) = g(x) + h(x)u (4)

where x ∈ Rn is the state of the agent and u ∈ Rm is the
control input or “actions” the robot can take. A trajectory
x(t) is ergodic with respect to a distribution φ(x) if, for
every neighborhood N ⊂ X , the amount of time x(t) spends
in N is proportional to the measure of N provided by
φ(x). On a long enough time horizon, measuring a perfectly
ergodic x(t) gives a complete description of φ(x). Here,
we ask that x(t) be maximally ergodic, by introducing a
metric on the distance from ergodicity into the objective
function, so that when x(t) captures the statistics of φ(x)
in a specified time horizon T the metric is lower. Ergodicity
can be quantified as the sum of the weight square distance
between Fourier coefficients of the distribution φk and the
coefficients representing the trajectory ck as defined below:

ε =

K∑
k1=0

...

K∑
kn=0

Λk|ck − φk|2, (5)

where there are n dimensions and K + 1 coefficients along
each dimension and the coefficients ck can be calculated
using Eq. 2. The coefficient Λk = 1

(1+||k||2)s , where s =
n+1
2 , places larger weights on lower frequency information.
We define the task objective as

J = qε+

∫ T

0

1

2
u(t)Ru(t)dt (6)

with a cost to minimize the ergodic metric and a cost on
the control effort used over time.

Now, using the defined ergodic objective function, we
frame the control problem as an MPC problem, following
work [3]. The algorithm is described in Algorithm 1.

Algorithm 1 Ergodic Control Algorithm for LfD

Input: initial time t0, initial state x0, set of demonstrations
{d1, ..., dm} with positive/negative labels {e1, ..., em}, fi-
nal time tf

Output: ergodic trajectory x(t)→ X
Define: ergodic cost weight Q, highest order of co-
efficients K, control weight R, search domain bounds
{L1, ...Ln}, sampling time ts, desired rate of change αd,
time horizon T
Initialize: nominal control unom, step i = 0
Generate distribution D(s) from set of demonstrations
{d1, ..., dm}.
Calculate φk from distribution D(s)
while ti < tf do

Compute u∗i using MPC
Apply u∗i for t ∈ [ti, ti + ts] to get x∀t ∈ [ti, ti + ts].
Define ti+1 = ti + ts, xi+1 = x(ti+1)
i← i+ 1

end while



Fig. 4: Example task definition and skill reconstruction learned from 3 negative demonstrations. Note that a negative demonstration includes only movements
of what not to do and—with this low-dimensional task—suffices for learning a sub-optimal, yet successful task definition.

Fig. 5: Example task definition and skill reconstruction learned from positive and negative demonstrations from Subject 6. Note that while the posonly
controller exhibits performance similar to the original demonstrations, the posneg controller significantly outperforms them. Although Subject 6 is still a
novice at this task, we can learn a task representation comparable to the one learned from an expert trajectory (see Fig. 2) by soliciting both positive and
negative demonstrations.

B. Experimental platforms

We use two simulated experimental platforms and three
benchmark tasks for algorithm validation. Similar to [24]–
[26], we employ a cart-pole system for initial validation with
end users. Inverting and balancing the cart-pole is a great
example of a task that is reliably difficult for people, partic-
ularly novices, to accomplish. We also test two household
tasks on a robot arm. These include reaching with object
avoidance (similar to [27], [28]) as well as cleaning or wiping
a surface (similar to [29], [30]. These are good examples
of real-world assistive tasks that encounter high variability
in task execution during demonstrations. The platforms are
described in more detail below.

Cart-pole System. A simulated cart-pole system with
state vector x = [θ, θ̇, xc, ẋc] and input ẍc was used in a
previous study of 24 participants. Participants were each
given 3 sets of 30 30-second attempts to invert the pole
from its resting state to the unstable equilibrium . The data
from this experiment—details of which can be found in [32]
and [33]—are used as the novice task demonstrations in this
work.

For cart-pole inversion, a demonstration is defined as
successful when during the 30-second attempt the participant

reaches a state near the unstable equilibrium, specifically
|θ| < 0.4 rad and |θ̇| < 0.75 rad/s. We take the best
demonstrations each user provided in set 3 (on average the
best set) as positive demonstrations and take unsuccessful
demonstrations from set 1 (on average the worst set) as
negative demonstrations. Finally, we also test our approach
on expert demonstrations—the positive expert demonstra-
tions are generated using an optimal controller, whereas the
negative expert demonstrations are generated by one of the
authors. The true task definition for cart-pole inversion is
defined as a Dirac delta function around [θ, θ̇] = [0, 0].

Robot Arm Simulator. We develop a pybullet simulation
of the Franka Emika Panda Robot Arm to evaluate ergodic
LFD on basic table-top tasks, specifically target reaching and
table cleaning. In the simulation, we generate demonstrations
for robot motion using a keyboard control interface. The
keys control the desired end-effector position of the robot
in the [x, y] dimensions at a fixed end-effector height zd.
The demonstrations consist of the resulting executed end-
effector trajectories, from which we learn a task distribution.
After that task definition is learned, we use ergodic MPC as
a motion planner for the end-effector by generating desired
end-effector positions [x, y, zd] over time. For the ergodic
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Fig. 6: Comparison of best task executions from 24 novice participants and skill reconstruction based on objectives learned from participant demonstrations,
using only positive demonstrations (posonly, orange) and from both positive and negative demonstrations (posneg, yellow). We employ two performance
metrics for comparison: task success time (left) and the ergodic metric [31], which measures information captured about the task through the learned
distributions (right). For both metrics, posonly skill reconstructions achieve performance comparable to or better than the novice demonstrations. Moreover,
posneg trajectories significantly outperform the provided novice demonstrations in both metrics: 1 (F=9.07, p=5.7e-10) and 2 (F=1.2, p=3.8e-5)—in fact
they provide skill reconstructions comparable to expert task executions.

controller, we model the system as a double-integrator with
state X = [x, y, ẋ, ẏ] and U = [ẍ, ÿ]. We use the an inverse
kinematics solver to generate joint states corresponding to
the target trajectory and employ a low-level joint controller
to execute the trajectory.

For the target-reaching task, we define success as reaching
a target location without colliding with an obstacle. For the
cleaning task, success m is evaluated as a continuous variable
based on both workspace coverage and object avoidance. If
the controller-generated trajectory comes too near the object,
the trial is considered a failure (m = 0). Otherwise, the
cleaning is assessed by calculating the percentage of the
workspace visited by the end-effector, as approximated on
a 5× 5 grid.

IV. EXPERIMENTAL RESULTS

A. Ergodic LfD enables learning from imperfect demos

We show that ergodic LfD can be used to infer the cart-
pole inversion task from imperfect novice demonstrations
and that the learned task definitions can be used to recreate
the skill on average better than presented during demon-
strations. This performance comparison is also visible in
Fig. 6, where we see that the controller-generated trajectories
using the posonly task definitions are on average better
than the demonstration trajectories. More specifically, a t-test
comparison shows that trajectories generated using ergodic
LfD have higher success times (F=0.24, p=0.06) and are
more ergodic w.r.t. the true task definition (F=0.68, p=0.002)
than the provided demonstrations. This means that when
learning from only positive demonstrations, our trained con-
troller will on average slightly outperform the provided
task demonstrations. When controller trajectories are more
ergodic w.r.t. the learned task distribution than individual

demonstration trajectories, it indicates that our learner can
actually outperform the demonstrations used to learn the task.

B. Negative demos consistently improve learning

Furthermore, we show that negative demonstrations add
more value than numerous positive demonstrations, allowing
data-efficient learning. Here, for each of the 24 participants,
we learn a task definition from 3 positive and 3 negative
demonstrations. We use a controller to recreate the skill
with respect to the learned distributions. We compare the
controller-generated trajectories with the provided trajec-
tories, again using success time and the ergodic metric.
Results of a t-test show that trajectories generated using
ergodic LfD have higher success times (F=9.07, p=5.7e-10)
and are more ergodic with respect to the true task defi-
nition (F=1.2, p=3.8e-5) than the provided demonstrations.
They also have higher success times (F=1.4, p=4.9e-7) and
are more ergodic (F=0.79, p=0.003) than the trajectories
generated using posonly demonstrations. Finally, note that
the effect sizes are significantly larger than in the earlier
comparison.

In the event that an end-user cannot generate any suc-
cessful demonstrations, we also demonstrate the ability to
define a successful task specification from just negative
demonstrations. This is visible in Fig. 4, where we note that
the skill reconstruction achieves inversion around t = 20s.
Although impractical for many tasks, this interesting result
illustrates that valuable information about a task can be
captured in negative demonstrations.

C. Ergodic LfD with negative demos works for variable tasks

Ergodic LfD with posneg demonstrations extends to a
variety of tasks. It is particularly useful for open-ended
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tasks, such as target reaching, where how you get to the
destination often does not matter, and for multi-objective
tasks, such as target reaching while avoiding an object,
where there might be an additional safety constraint on the
correct task execution. Positive-only task definitions can be
limiting, particularly when trying to represent constraints in
the environment.

Fig. 7 shows the results of trying to accomplish a target-
reaching task while trying to simultaneously avoid another
object in the environment. We present an example trajec-
tory generated from random initial conditions based on a
task definition learned from 13 positive demonstrations and
combined posneg demonstrations (13 positive + 3 negative).
Note that with positive demonstrations, the goal location is
successfully reflected, but the region of obstacle avoidance
is only starting to appear. When we add negative demonstra-
tions (see Fig. 7c), the region of avoidance is more clearly
defined.

Similarly, generating task definitions using only positive
definitions can be inefficient for multi-objective tasks such as
cleaning around an object, as depicted in Fig. 8. Here, task
success requires overall coverage to sufficiently clean the
workspace and object avoidance to not disturb the object on

the table. We compare the results for 10 controller-generated
trajectories from random initial states for each type of task
definition (posonly, negonly, and posneg)—generated from 5
positive demonstrations, 2 negative demonstrations and 3+2
combined posneg demonstrations, respectively. As seen in
Fig. 8b, the combination of positive and negative demon-
strations offers best performance, highlighting the region
to avoid while still representing the rest of the cleaning
task. The posonly controller-generated trajectories result in
many outright failures, where the robot arm collides with
the object. However, when it successfully avoids the object,
the cleaning results in a 100% workspace coverage. The
negative-only definition result in very few failures due to
object collision, but the overall workspace coverage is low.
The posneg definition significantly outperforms both other
definitions, resulting in no failures and a median 100%
success rate.

V. CONCLUSIONS & DISCUSSION

This paper introduces ergodic LfD for learning from
novice robot users and illustrates the value of negative
demonstrations—reflecting what not to do—in imitation
learning. While positive-only demonstrations can result in



successful skill reproduction, the combination of positive and
negative demonstrations can help to efficiently generate task
definitions for difficult tasks. Moreover, we show that ergodic
LfD is particularly well suited for multi-objective and open-
ended tasks, where either multiple goals are equally impor-
tant (i.e., moving a cup without spilling) or different motion
trajectories can accomplish the same task. As such, there is
potential to extend to applications with a focus on learning
safety constraints and user preferences, such as in assisted
driving—similarly to [34] but without the need for preference
querying. Moreover, in future work, the ergodic learning
framework could be further automated by implementing
feature selections algorithms as in [35], [36], and [37]—the
feature variance between negative and positive demonstration
could provide insights into features key to a task’s success.
Overall, the presented results are promising and the proposed
algorithmic framework and negative demonstrations have po-
tential to enable demonstration-efficient LfD from imperfect
demonstrations for a range of robotic applications.

ACKNOWLEDGMENT
This material is based upon work supported by the NSF

under Grant CNS 1837515. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the aforementioned institutions.

REFERENCES

[1] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[2] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” ACM, p. 1, 2004.

[3] A. Mavrommati, E. Tzorakoleftherakis, I. Abraham, and T. D. Mur-
phey, “Real-time area coverage and target localization using receding-
horizon ergodic exploration,” IEEE Trans. Robotics, vol. 34, no. 1, pp.
62–80, 2018.
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