
OpenCL Performance on the Intel Heterogeneous
Architecture Research Platform

Steven Harris
McKelvey School of Engineering

Washington University in St. Louis
Saint Louis, MO, USA
0000-0001-5943-3036

Roger D. Chamberlain
McKelvey School of Engineering

Washington University in St. Louis
Saint Louis, MO, USA
0000-0002-7207-6106

Christopher Gill
McKelvey School of Engineering

Washington University in St. Louis
Saint Louis, MO, USA
0000-0003-0366-8586

Abstract—The fundamental operation of matrix multiplication
is ubiquitous across a myriad of disciplines. Yet, the identification
of new optimizations for matrix multiplication remains relevant
for emerging hardware architectures and heterogeneous systems.
Frameworks such as OpenCL enable computation orchestration
on existing systems, and its availability using the Intel High
Level Synthesis compiler allows users to architect new designs
for reconfigurable hardware using C/C++. Using the HARPv2 as
a vehicle for exploration, we investigate the utility of several tra-
ditional matrix multiplication optimizations to better understand
the performance portability of OpenCL and the implications for
such optimizations on cache coherent heterogeneous architec-
tures. Our results give targeted insights into the applicability of
best practices that were designed for existing architectures when
used on emerging heterogeneous systems.

Index Terms—Design space search, HARP, High-level synthe-
sis, SGEMM, Field-programmable gate array

I. INTRODUCTION

Even with nearly exponential increases in computer perfor-
mance, matrix multiplication remains a persistent challenge
and the advent of new accelerators reopens questions of
both expression and optimization. With the breakdown of
Dennard scaling, along with thermal and memory barriers,
there has been a divergence from the performance improve-
ments previously driven by Moore’s law, and CPU clock
rates have reached a plateau around 4-5 GHz. Under these
constraints, both users and manufacturers have elected to scale
horizontally. However, vertical and horizontal scaling of CPU
and GPU resources has not been enough to keep up with the
demands of modern workloads.

This performance gap has motivated some users to explore
alternative architectures and bypass CPU and GPU architec-
tures entirely by adapting their workloads to Application-
Specific Integrated Circuits (ASICs) and Field Programmable
Gate Arrays (FPGAs), which tend to be more performant than
general purpose CPU/GPU devices for specific applications.
With a focus on dynamic workloads, the reconfigurability of
FPGAs has many advantages over fixed ASIC architectures.
Yet, even though FPGAs have considerably less cost and
development overhead than an ASIC, developing FPGA-based
implementations can involve a steep learning curve that has
traditionally only been accessible to those with knowledge of

This work supported by NSF grants CNS-1763503 and CNS-1814739.

Hardware Description Languages (HDL) and digital system
design techniques. That learning curve may be exacerbated in
heterogeneous environments due to additional challenges such
as orchestration and data migration.

To alleviate these challenges, OpenCL allows rapid devel-
opment of programs that can execute across a wide range of
heterogeneous platforms including, but not limited to, CPUs,
GPUs, and FPGAs. The OpenCL framework enables compu-
tation orchestration on existing systems and its compatibility
with the Intel High Level Synthesis compiler allows users
to architect new designs for reconfigurable hardware using
C/C++.

As the world transitions toward application-specific acceler-
ators for modern workloads, Intel has developed an alternative
accelerator in the form of a unified hybrid CPU+FPGA. One
realization of this effort is the Heterogeneous Architecture
Research Platform (HARP), version 2 of which consists of
an Intel Broadwell Xeon CPU combined with an Intel Ar-
ria 10 GX1150 FPGA into a Multi-Chip Package (MCP)
that enables shared DRAM memory through a single Intel
QuickPath Interconnect (QPI) and two Peripheral Component
Interconnect Express (PCIe) channels. Using the HARPv2 as
a vehicle for exploration, we investigate the design space of
matrix multiplication, using several existing cache-oriented
optimizations to better understand the performance portability
of OpenCL and the implications for such optimizations on this
and future heterogeneous architectures.

Across a range of matrix sizes, we show that several classic
optimizations designed for traditional caches are also effective
on the HARP system. This includes transposition, blocking,
and loop unrolling. When all optimizations are included,
our implementations consistently outperform the optimized
standard library implementation (CBLAS). However, there is
considerable variability in performance, across both matrix
sizes and various tuning parameters, that are not yet well
understood and warrant further investigation. Given that FP-
GAs have been shown consistently to achieve considerable
speedups over traditional microprocessor solutions across a
wide range of applications [1]–[8], our results show a pressing
need for a deeper investigation into underlying architectures
created by the automated HLS process.



II. BACKGROUND AND RELATED WORK

Exponential data growth has given rise to powerful analytic
tools that can interpret and extract actionable information from
expanding data sets [9]. Challenging tasks ranging from com-
puter vision and natural language processing, to self-driving
cars and social network filtering, typically rely on Machine
Learning (ML) algorithms such as Deep Convolutional Neural
Networks (DNNs) [10]. However, these techniques incur large
costs in time and computational resources [11]. Information
extraction for Big Data workloads inherently requires linear
algebra, which can be challenging to implement with both
low latency and high resource utilization. Many linear algebra
libraries provide building blocks for these challenging numeric
computations. Among the oldest and best known are the Basic
Linear Algebra Subroutines (BLAS) and the Linear Algebra
PACKage (LAPACK) which serve as the basis for many ML
algorithms and mathematics libraries [12].

A. FPGAs

Several decades ago, FPGAs saw little adoption for many
high-precision linear algebra workloads given their limited
ability to handle high-precision floating point operations [13].
Since that time, there have been significant improvements in
high-precision floating point performance for FPGAs [14],
[15]. Consequently, modern FPGAs, such as Intel’s Arria 10,
have adopted variable-precision DSP blocks that include hard-
ened floating-point operators. These architectural innovations
enable the FPGA to processes both high-precision fixed-point
and single- and double-precision IEEE-754 compliant floating-
point operations efficiently. Unlike CPUs and GPUs with fixed
datapaths, pipelines, and computational units, FPGAs allow
users to adapt the hardware to critical features of computation.
Of specific relevance to our problem of interest, Zhuo and
Prasanna [16] have deployed matrix multiplication on an
FPGA using HDL, as have Thomas and Luk [17] in the context
of random number generation. Rather than using low-level
languages such as Verilog or VHDL, our focus is on exploring
the utility of a higher-level language, OpenCL.

B. Intel Heterogeneous Architecture Research Platform

No single device excels at all computational tasks, and com-
putations can alternate between serial and parallel execution
leaving the performance improvements of accelerators dimin-
ished by data migration that limits computational performance
(and may be further exacerbated by imperfect coordination
of multiple devices). Ultimately, most of these devices are
limited by the speed of the PCIe interface. One radical
architecture, which may minimize data migration in the case
of FPGAs, comes from a solution which combines CPU and
FPGA architectures. Intel has introduced the Heterogeneous
Architecture Research Platform version 2 (HARPv2) which
consists of an Intel Broadwell Xeon CPU combined with
an Intel Arria 10 GX1150 FPGA into a Multi-Chip Package
(MCP) with shared DRAM memory through a low latency,
high bandwidth, Intel QuickPath Interconnect (QPI) and two
Peripheral Component Interconnect Express (PCIe) busses.

This supports a common last-level cache and DDR memory.
In addition to unified DDR memory, the FPGA supports cache
coherence and virtual-to-physical memory address translation.
This provides a unique communications capability between
the CPU and FPGA. This device gives users an opportunity
to architect their own solutions without having to perform
the arduous task of designing new circuitry from schematics
to fabrication. Some examples of applications deployed on
the HARP system include Convolutional Neural Networks
(CNNs) [18], high-throughput DNA sequencing [19], dynamic
programming [20], coordinative sparse LU factorization, and
speculative implementations of breadth first search, single-
source shortest path, Kruskal’s minimal spanning tree, and
Delaunay mesh refinement [21].

C. Open Computing Language

The OpenCL framework offers high-level abstractions that
remove requirements for low-level hardware configuration
and enable orchestration of memory and execution models
for parallel workloads across accelerators. Source code can
be written, compiled, and executed on a range of OpenCL
compatible devices. Every OpenCL program has three pri-
mary components: Compute Units, Kernels, and Data Buffers.
OpenCL generalizes heterogeneous devices into an OpenCL
Platform model. One Host, typically a CPU, controls multiple
Compute Devices. These Compute Devices contain multiple
Compute Units which have multiple cores. Each core is typi-
cally an execution unit referred to as a Processing Element and
each Processing Element can be used by one work-item. Work-
items can be arranged into workgroups using an abstraction
called an NDRange. OpenCL programs, called Kernels, are
executed on multiple Processing Elements. The host sends
kernels to the compute units and associates data buffers with
compute unit(s) memory hierarchies. In many instances, when
the hardware allows, the number of kernels sent to the compute
device can be proportional to the dimensions of the data to be
processed.

OpenCL provides two abstractions for partitioning work-
loads: NDRange and Single-Work-Item (SWI). An NDRange
describes a 1- to 3-dimensional space for work-items. Con-
trasting this is the SWI, which follows a sequential model
similar to many programming languages and is based on
dependency analysis at compile time, OpenCL can extract
pipelined parallelism from code to replicate a deeply-pipelined
workflow that is common for FPGAs. The overall execution
model for both methods is characterized in Figure 1.

III. METHODS

All experiments are conducted on the Intel HARPv2 system
at the Texas Advanced Compute Center (TACC). The pro-
grams are coded in OpenCL, conforming to version 2.0 of
the specification [22]. A number of commonly used practices
for matrix multiplication on multicore devices are applied
to dense matrices that range in size from 1024 × 1024 to
8192 × 8192. The common advice for FPGA programming
recommends writing code in the SWI format, allowing the



Fig. 1: Execution behavior.

compiler to identify elements that may be pipelined to take
advantage of parallelism on the FPGA [23]. This is in contrast
to the approach on GPUs which are naturally well suited to the
NDRange methodology [24]. We explore both approaches. For
NDRange implementations, the literature encourages users to
set up a workgroup size that partitions the workload across
processing elements in a uniform manner [24]. We utilize
a method wherein the workgroup sizes are representative of
the blocking and loop unrolling sizes. For instance, in kernel
L2 B16 U16 ndrange, the kernel divides the matrices into
16 × 16 blocks and processes 16 elements simultaneously.
This configuration will have a workgroup size of 16 by 16
processing elements. Each of the 256 processing elements
takes a 16×16 block of the matrix and processes 16 elements
each clock cycle.

To ensure correctness, each computation performed by the
FPGA is compared against the same computation performed
on the host processor using the cblas_sgemm function of
the well-known CBLAS library. The various implementations
investigated are organized into progressive levels as articulated
below. At each level, both SWI and NDRange execution
techniques are explored.

A. Level 0 – Naı̈ve Implementation

The naı̈ve implementation consists of the classic 3 nested
loop implementation shown in Algorithm 1. Even though our
performance expectations are low for this design, it forms a
baseline for comparison with what follows. We will consider
this the unoptimized version.

Algorithm 1 Naı̈ve Matrix Multiply
(AM×K , BK×N ,M,N,K)

1: C[M,N] = 0
2: for row = 1 to M do
3: for column = 1 to N do
4: sum = 0
5: for index = 1 to K do
6: sum = sum + A[row,index] * B[index,column];
7: end for
8: C[row,column] = sum
9: end for

10: end for

While a naı̈ve implementation traditionally may not be
classified as an optimization, it provides a good baseline
to determine if future optimization choices are beneficial or
detrimental to the performance of the computation. Referring
to Algorithm 1 we see that the computation consists of three
sequential for loops that range over the indices of the matrices.

Fig. 2: Naı̈ve Algorithm – matrix multiplication.

Looking at the matrix multiplication operations graphically,
as shown in Figure 2, each element of the resulting matrix
consists of one row of matrix A and one column of matrix B.
This sequential method has a significant impact on the cache
behavior. Disregarding cache line sizing and instead focusing
on data arrangement within each cache line, we see that this
algorithm makes poor use of the cache for columns of matrix
B as shown in Figure 3.

Fig. 3: Naı̈ve Algorithm – cache behavior.

Notice that in the case of Matrix A, all the elements
required for the computation fit into an arbitrary length cache
line. However, in the case of Matrix B, only one element
of the B column is available in the cache line. This will
cause significant cache misses and cache reloading which will
negatively affect the performance of the overall computation.
In the case of sequential matrix multiplication, notice that the
row-major order allows us to retrieve elements of A in an
efficient manner, but given that we require column entries of B
we suffer from numerous cache misses equal to the dimension
of the matrices themselves. To eliminate these misses, we will
be performing a transposition of the B matrix which will
streamline our element retrieval.

B. Level 1 – Transposition

The first optimization that we employ is to transpose the B
source matrix. The data will be reordered on the host before
it is sent to the device. In OpenCL (which is based on C/C++)
matrices are stored in row-major order. As a result, when the
B matrix is accessed down a column, there are significant inef-
ficiencies in the cache usage. Algorithm 2 shows the resulting
implementation, which benefits data locality for accesses to
matrix B.

With the data arranged in row-major order, the computation
now operates on contiguous row elements as seen in Figure 4
which benefits both spatial and temporal locality. With the
transposition of matrix B we see efficient cache behavior as
shown in Figure 5.



Algorithm 2 Transposition Matrix Multiply
(AM×K , BK×N ,M,N,K)

1: C[M,N] = 0
2: for row = 1 to M do
3: for column = 1 to N do
4: sum = 0
5: for index = 1 to K do
6: sum = sum + A[row,index] * B[row,index];
7: end for
8: C[row,column] = sum
9: end for

10: end for

Fig. 4: Transposition Algorithm – matrix multiplication.

Fig. 5: Transposition Algorithm – cache behavior.

One interesting caveat about transposition is that it is not
a cure-all for cache misses. Even with matrices being loaded
into the cache in row-major order, we can still suffer from
cache misses when the rows of the matrices are larger than
the length of the cache lines. This is a hardware limitation that
can significantly affect the performance of our computation.

C. Level 2 – Blocking

The blocking of data is a method that is beneficial to
the computation irrespective of whether the data undergoes
transposition or not. The key idea is to split the dataset into
smaller partitions to be worked on independently. This is
shown in Algorithm 3. Blocking benefits both temporal and
spatial locality. We implement blocking with TILE SIZE ∈
{2, 4, 8, 16, 32, 64}.

As shown in Figure 6, when we perform blocking on
the standard naı̈ve matrix, we are taking advantage of data
reuse. However, our data reads for matrix B still suffer from
inefficient data access as we are only using one element out
of an arbitrary cache read.

Fig. 6: Blocking Algorithm – naı̈ve matrix multiplication.

Algorithm 3 Blocking Matrix Multiply
(AM×K , BK×N ,M,N,K, TILE SIZE)

1: C[M,N] = Asub[TILE SIZE] = Bsub[TILE SIZE] = 0
2: tile1 = tile2 = TILE SIZE
3: for k2 = 0 to N by tile2 do
4: for j2 = 0 to N by tile2 do
5: for i2 = 0 to N by tile2 do
6: for k1 = k2 to k2 + tile2 by tile1 do
7: for j1 = j2 to j2 + tile2 by tile1 do
8: for i1 = i2 to i2 + tile2 by tile1 do
9: for i = i1 to i1 + tile1 do

10: for j = j1 to j1 + tile1 do
11: index = 0
12: for k = k1 to k1 + tile1 do
13: Asub[index] = A[i * K + k]
14: Bsub[index] = B[j * K + k]
15: index++
16: end for
17: for k = k1 to k1 + tile1 do
18: C[i * N + j] += Asub[index] * Bsub[index]
19: index−−
20: end for
21: end for
22: end for
23: end for
24: end for
25: end for
26: end for
27: end for
28: end for

After transposition, subdividing our data into blocks allows
for more efficient cache usage given the spatial and temporal
locality of the data for each read as shown in Figure 7.

Fig. 7: Blocking Algorithm – transposed matrix multiplication.

D. Level 3 – Loop Unrolling

The final optimization we perform is loop unrolling. This
is supported in the development toolchain via a #pragma
statement. The unroll level is specified as one of 2, 4, 8, 16, 32,
or 64. As with all of the other optimization levels, this is imple-
mented in both the SWI and NDRange implementations. Loop
unrolling allows us to increase the computational throughput.
A standard computation is shown in Algorithm 4 and will
take 1000 iterations to complete. An unrolled version of the
standard computation is shown in Algorithm 5. By simply
unrolling the computation once, we are able to complete the
computation in 500 iterations. As the maximum unroll factor is



only limited by the architecture, this can allow for significant
performance gains.

Algorithm 4
Traditional For Loop

1: for index = 0 to 1000
do

2: purge(index);
3: ...
4: end for

Algorithm 5
Unrolled For Loop

1: for index = 0 to 1000 by 2
do

2: purge(index);
3: purge(index + 1);
4: end for

Given the many optimization options and levels, so as to
not suffer a combinatorial explosion of experimental con-
figurations, we apply the above levels of optimization in a
cumulative manner. As such, level 2 optimizations are all
applied on code that has already been optimized at level 1.
In addition, the loop unroll factor in level 3 is tied to the
blocking factor used in level 2. So if we are performing a
blocking size of 2, then we will unroll the computation by the
same amount.

The full set of experiments is as follows (along with their
labels):

1) Level 0 – naı̈ve, both NDRange and SWI
(indicated with L0 ndrange, L0 swi)

2) Level 1 – transpose matrix B, both NDRange and SWI
(L1 ndrange, L1 swi)

3) Level 2 – blocking size in {2, 4, 8, 16, 32, 64}, both
NDRange and SWI
(L2 B2 ndrange, L2 B4 ndrange,
L2 B8 ndrange, L2 B16 ndrange,
L2 B32 ndrange, L2 B64 ndrange,
L2 B2 swi, L2 B4 swi,
L2 B8 swi, L2 B16 swi,
L2 B32 swi, L2 B64 swi)

4) Level 3 – loop unrolling factor in {2, 4, 8, 16, 32, 64},
both NDRange and SWI
(L3 B2 U2 ndrange, L3 B4 U4 ndrange,
L3 B8 U8 ndrange, L3 B16 U16 ndrange,
L3 B32 U32 ndrange, L3 B64 U64 ndrange,
L3 B2 U2 swi, L3 B4 U4 swi,
L3 B8 U8 swi, L3 B16 U16 swi,
L3 B32 U32 swi, L3 B64 U64 swi)

The labels encode the relevant information to identify each
experiment: the number after the L indicates the optimization
level, the number after the B indicates the block size, and the
number after the U indicates the unroll factor.

IV. PERFORMANCE RESULTS

To provide an appreciation of the breadth of performance re-
sults, Figure 8 plots the execution time for the matrix multiply
operation as a function of matrix size (for square matrices) in
every case we consider in this work (including the CBLAS
result). At first glance it is clear that there is significant
variability among the different kernels. To investigate this
variability, we will separately address subsets of the kernels to

help us elucidate and characterize this behavior, starting with
the unoptimized naı̈ve kernel.

An important thing to note in this plot is that the software-
only CBLAS performance is in the highest performing group.
This implies that a large number of the kernels do not provide
performance that is competitive with well-tuned library code
executed on traditional processor cores.

The level 0 (naı̈ve) implementation performance results
occupy the middle ground of the overall performance graph
(kernels L0 ndrange and L0 swi). Not surprisingly, this
unoptimized kernel does not provide performance that is
competitive with other kernels.

We next turn our attention to the SWI kernels. All but
one of this set are bunched in the upper left corner of the
graph, indicating that they performed the worst of all those
considered. The single exception is the L1 swi kernel. It is
worth pointing out here that the SWI approach is the one most
recommended for initial implementation by the manufacture’s
Best Practices Guide [23]. For the highly parallel task of dense
matrix multiplication, this approach is clearly not the best one
to pursue.

The best performing kernels are the NDRange kernels. The
performance for many of the kernels bifurcates into two com-
parable groupings for the majority of matrix sizes. Figure 9
zooms in on the smaller matrix dimensions (6144× 6144 and
smaller) and includes only NDRange kernels.

Looking at these kernels, we see that the bifurcation
starts almost immediately. All kernels in the upper diverg-
ing path, except for L3 B2 U2 ndrange, do not have
the level 3 optimization (i.e., loop unrolling). Interestingly,
L3 B2 U2 ndrange has the same performance profile as
L3 B2 ndrange, and their execution times differ only by
a fraction of a second. We assume that is because the
L3 B2 U2 ndrange kernel has a loop unroll factor of only
2. We conclude that greater loop unrolling is critical for this
application.

As we look at NDRange performance between sizes
3072 × 3072 and 6144 × 6144, we can see the general
trend of bifurcation with the exception of the aforementioned
L3 B2 U2 ndrange kernel. Notice that kernels without the
loop unroll optimization continue along smooth gradations
towards higher execution times but all kernels with the level 3
optimization have a spike in execution time at matrix dimen-
sions of 4096 × 4096 and 6144 × 6144 while decreasing for
the 5120×5120 dimension. This is an illustration of a pattern
that happens frequently, in which we realize large swings in
performance for unexpected reasons.

As we move forward to the larger matrix sizes, we see
some interesting behavior starting after 7168×7168. Figure 10
shows the results zoomed in to these matrix sizes. For kernels
with level 3 optimizations, those with a loop unroll factor of
2, 4, 8, and 16, have yet another spike which has a profile that
degrades their performance even over kernels with only level 2
(i.e., blocking) optimizations. However, this behavior does not
seem to impact level 3 kernels with unrolling factors of 32 or
64. Notice that for 8192× 8192 matrices, the performance of



Fig. 8: Performance results – execution time vs. matrix size.

Fig. 9: Performance results for NDRange small matrices
(6144× 6144 and smaller).

L3 B16 U16 ndrange is comparable to L2 B16 ndrange
and is a similar trend that we saw in L3 B2 U2 ndrange.

We next review the three highest performing kernels at
each matrix size, comparing them to those conducted on
the CPU. In all of our experiments, the highest performing
kernel is L3 B64 U64 ndrange. However, we noticed that
the runner-up kernels vary based on matrix dimensions as
shown in Figures 11-18.

Fig. 10: Performance results for large matrices (larger than
6144× 6144 inclusive).

Fig. 11: Top 3 highest performance -– 1024× 1024.



Fig. 12: Top 3 highest performance — 2048× 2048.

Fig. 13: Top 3 highest performance — 3072× 3072.

Fig. 14: Top 3 highest performance — 4096× 4096.

Fig. 15: Top 3 highest performance — 5120× 5120.

Fig. 16: Top 3 highest performance — 6144× 6144.

Fig. 17: Top 3 highest performance — 7168× 7168.

Fig. 18: Top 3 highest performance — 8192× 8192.

While the particular runner-up kernel varies across matrix
dimensions, what is consistent throughout is that the full suite
of optimizations are needed for the FPGA deployment to be
competitive with the CPU implementation. The top 3 in every
case were level 3 optimizations that include both blocking and
loop unrolling of an NDRange kernel.

As a final comparison, Figure 19 shows the execution time
of the best-performing kernel, L3 B64 U64 ndrange, and
the software CBLAS implementation.

Fig. 19: FPGA vs. CPU execution time performance.

As one would expect, the execution time grows O(N3)
with the dimension size N for both the software and hardware
implementations. The software dependence upon matrix size,
however, is fairly smooth, while there is considerable vari-
ability for the FPGA design. The FPGA design outperforms
the software implementation at every matrix size, but the
performance gain is highly variable, ranging from 1.05× to
3.53×.



V. DISCUSSION AND CONCLUSIONS

The performance of the FPGA kernels varies considerably
across optimization levels as well as matrix dimensions. This
is in contrast with CBLAS, giving performance uniform and
competitive across matrix dimensions. The results have shown
conclusively that there are many considerations that must be
taken into account in order to successfully develop high-
performance kernels on reconfigurable hardware.

The SWI implementations, as seen in Figure 8, consistently
performed worse than the standard CBLAS computations. The
SWI execution model is recommended for FPGA implemen-
tations given that its architecture benefits pipelining, but after
investigating Algorithm 3, we conclude that the compiler was
unable to determine the exact loop iterations needed to pipeline
the for-loop stages, due to our dynamic tiling, and executed
many of the for-loops sequentially, leading to considerable
serial execution stages.

The NDRange performance, as shown in Figures 9 and 10
has both interesting bifurcation patterns and varying per-
formance spikes across dimensions. We speculate that this
is caused by caches, memory subsystems, or underlying
microarchitectural features, in effect hitting size boundaries
of the various physical structures involved. A similar effect
is frequently seen in GPU applications, where a mismatch
between requested resources and available resources provided
by the hardware can result in a zig-zag performance pattern as
one parameter or another is varied [25], [26]. Since in our case
we have a hardware data path that is constructed independent
of the matrix size, and then utilized across a range of matrix
sizes, it is reasonable to expect to experience this effect.

A general rule in optimization is to design your algorithms
to make optimal usage of architectural features such as cache
behavior and memory coalescing [12]. Given the dynamic
design of our implementation using HLS it is difficult to
determine how to ensure this a priori. We should not assume
a particular cache size or method to coalesce memory reads.
We would argue that our results clearly show performance
sensitivity to this class of optimizations. Some block sizes
actually degraded performance which we speculate was caused
either by imbalanced memory access or inefficient cache
usage. We would argue that HLS introduces the need for new
design methods that may differ from our assumptions about
traditional cache and memory hierarchies.

The kernel with the most aggressive optimizations,
L3 B64 U64 ndrange, always had the best performance,
but an interesting phenomenon occurred as we
increased the dimensions of the matrices. Given that
the L3 B64 U64 ndrange kernel, with the highest
optimization, always finishes first, it may be natural
to assume that the slightly less optimized kernels
(L3 B32 U32 ndrange, L3 B16 U16 ndrange, and
L3 B8 U8 ndrange) would occupy 2nd, 3rd, and 4th
place respectively. For the 1024 × 1024 matrix, this is the
behavior for the top 3 kernels. We encounter situations
where the above does not hold, for instance, in the

5120 × 5120 matrix wherein the L3 B16 U16 ndrange
kernel outperforms the L3 B32 U32 ndrange kernel.
This becomes more pronounced for the 6144 × 6144
matrix where the L3 B8 U8 ndrange kernel outperformes
the L3 B32 U32 ndrange kernel. When we reach
the final matrix dimension of 8192 × 8192 only our
L3 B64 U64 ndrange kernel performs better than the
standard CBLAS computation.

We can conclude several things from these experiments:

1) In a system such as the HARP, in which the FPGA is tied
in to the cache hierarchy, classic optimizations targeting
cache behaviour are beneficial to the FPGA as well as
the CPU.

2) In order to take advantage of the accelerator in this
environment, all of the optimizations we consider are
needed to achieve performance competitive with mature,
optimized software.

3) The standard CBLAS library was able to outperform all
but one optimized kernel in spite of the fact that these
kernels are executing on an FPGA.

4) Many optimized kernels have degraded performance
for a range of workloads. Whether or not a particular
optimization ends up being performant is not at all clear
prior to implementation and measurement.

5) These experiments confirm that FPGA performance can
exceed CPUs such as the Intel Xeon class processor
when coding in OpenCL, but achieving that performance
benefit is not necessarily just a simple porting exercise.

We thus need to rethink whether general purpose tools
give us sufficient flexibility to truly design, tailor, and re-
configure components of our particular computation. To make
the most of accelerators, we must understand not only the
algorithms but how they interact with data, workflows, and
other cooperative components. Future work thus will need
to include more effective compile-time performance models,
so as to allow the tool chain to effectively do some of the
investigated optimizations automatically (e.g., loop unrolling
is quite common in compilers for CPUs, without asking the
programmer to specify the degree to which loops are unrolled).

ACKNOWLEDGMENT

The authors thank both Intel and the Texas Advanced Com-
puting Center (TACC) for access to the experimental hardware
through the Hardware Accelerator Research Program.

REFERENCES

[1] Rodriguez-Borbon, Jose, et al. ”Field Programmable Gate Arrays for
Enhancing the Speed and Energy Efficiency of Quantum Dynamics
Simulations,” J. Chem. Theory Comput., 16(4):2085–2098, 2020.

[2] Dhar, S., L. Singhal, M. Iyer and D. Pan. ”FPGA Accelerated FPGA
Placement,” Proc. of 29th International Conference on Field Pro-
grammable Logic and Applications, 2019, pp. 404-410.

[3] Jovanović, Ž., and V. Milutinović. ”FPGA accelerator for floating-point
matrix multiplication,” IET Computers & Digital Techniques, 6(4):249-
256, July 2012.

[4] Stitt, G., R. Lysecky and F. Vahid. ”Dynamic Hardware/Software Parti-
tioning: A First Approach,” Design Automation Conference, June 2003.



[5] Villarreal, J., D. Suresh, G. Stitt, F. Vahid and W. Najjar. ”Improving
Software Performance with Configurable Logic,” Journal on Design
Automation of Embedded Systems, 7(4):325-339, November 2002.

[6] Brebner, G. ”Single-Chip Gigabit Mixed-Version IP Router on Virtex-II
Pro,” Proc. of 10th IEEE Symposium on Field-Programmable Custom
Computing Machines, September 2002.

[7] Cardells-Tormo, F., et al. ”Efficient FPGA-based QPSK Demodulation
Loops: Application to the DVB Standard,” Proc. of 12th International
Conference on Field Programmable Logic and Applications, Sept. 2002.

[8] Hauser, J., J. Wawrzynek. ”Garp: a MIPS processor with a reconfig-
urable coprocessor,” IEEE Symposium on Field-Programmable Custom
Computing Machines, April 1997, pp. 12-21.

[9] Reed, Daniel A., and Jack Dongarra. ”Exascale computing and big data,”
Communications of the ACM, 58(7):56-68, June 2015.

[10] Rani, Kumari Seema, et al. ”Deep Learning with Big Data: An Emerging
Trend,” 19th International Conference on Computational Science and Its
Applications, IEEE, 2019.

[11] Liu, Weibo, et al. ”A survey of deep neural network architectures and
their applications,” Neurocomputing, 234:11-26, 2017.

[12] Dongarra, Jack J., et al. Numerical Linear Algebra for High-Performance
Computers, SIAM, 1998.

[13] Shirazi, Nabeel, Al Walters, and Peter Athanas. ”Quantitative analysis of
floating point arithmetic on FPGA based custom computing machines,”
Proc. IEEE Symp. on FPGAs for Custom Computing Machines, 1995.

[14] Govindu, Gokul, et al. ”Analysis of high-performance floating-point
arithmetic on FPGAs,” 18th International Parallel and Distributed Pro-
cessing Symposium, IEEE, 2004.

[15] Underwood, Keith. ”FPGAs vs. CPUs: Trends in peak floating-point
performance,” Proc. of ACM/SIGDA 12th International Symposium on
Field Programmable Gate Arrays, 2004.

[16] Govindu, Gokul, et al. ”Analysis of high-performance floating-point
arithmetic on FPGAs,” 18th International Parallel and Distributed Pro-
cessing Symposium, IEEE, 2004.

[17] Thomas, David B., and Wayne Luk. ”Multivariate Gaussian random
number generation targeting reconfigurable hardware,” ACM Trans. on
Reconfigurable Technology and Systems, 1(2):12:1–12:29, June 2008.

[18] Zeng, H., C. Zhang and V. Prasanna. ”Fast generation of high throughput
customized deep learning accelerators on FPGAs,” Proc. of International
Conference on ReConFigurable Computing and FPGAs, 2017.

[19] Choi, Young-kyu, et al. ”A quantitative analysis on microarchitectures
of modern CPU-FPGA platforms,” Proc. of 53rd Annual Design Au-
tomation Conference, June 2016.

[20] Cabrera, Anthony M., and Roger D. Chamberlain. ”Exploring Portability
and Performance of OpenCL FPGA Kernels on Intel HARPv2,” in Proc.
of 7th International Workshop on OpenCL, May 2019.

[21] Li, Zhaoshi, et al. ”Aggressive pipelining of irregular applications
on reconfigurable hardware,” Proc. of ACM/IEEE 44th International
Symposium on Computer Architecture, 2017.

[22] Howes, Lee, and Aaftab Munshi. ”The OpenCL Specification, version
2.0.” Khronos Group, 2015.

[23] Intel® FPGA SDK for OpenCL™ Pro Edition: Best Practices Guide.
Intel, April 2020.

[24] Owens, John D., et al. ”GPU computing.” Proceedings of the IEEE,
96(5):879-899, 2008.

[25] Zhang, Yao, and John D. Owens. “A quantitative performance analysis
model for GPU architectures,” Proc. of Int’l Symp. on High Performance
Computer Architecture, Feb. 2011, pp. 382–393.

[26] Ma, Lin, and Roger D. Chamberlain. ”A Performance Model for
Memory Bandwidth Constrained Applications on Graphics Engines,”
Proc. of 23rd IEEE International Conference on Application-specific
Systems, Architectures and Processors, July 2012, pp. 24-31.


