UNIQUENESS AND STABILITY OF ENTROPY SHOCKS TO THE
ISENTROPIC EULER SYSTEM IN A CLASS OF INVISCID LIMITS
FROM A LARGE FAMILY OF NAVIER-STOKES SYSTEMS
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ABSTRACT. We prove the uniqueness and stability of entropy shocks to the isentropic
Euler systems among all vanishing viscosity limits of solutions to associated Navier-Stokes
systems. To take into account the vanishing viscosity limit, we show a contraction property
for any large perturbations of viscous shocks to the Navier-Stokes system. The contraction
estimate does not depend on the strength of the viscosity. This provides a good control
on the inviscid limit process. We prove that, for any initial value, there exist a vanishing
viscosity limit to solutions of the Navier-Stokes system. The convergence holds in a weak
topology. However, this limit satisfies some stability estimates measured by the relative
entropy with respect to an entropy shock. In particular, our result provides the uniqueness
of entropy shocks to the shallow water equation in a class of inviscid limits of solutions to
the viscous shallow water equations.

CONTENTS
1. Introduction 2
1.1. Main results 4
2. Ideas of the proof. 7
3. Preliminaries 11
3.1. Transformation of the system (1.16) 11
3.2. Global and local estimates on the relative quantities 12
4. Proof of Theorem 3.1 14
4.1. Properties of small shock waves 15
4.2. Relative entropy method 15
4.3. Construction of the weight function 19
4.4. Maximization in terms of h — h, 19
4.5. Main proposition 20
4.6. Proof of Theorem 3.1 from Proposition 4.1 21
4.7. Expansion in the size of the shock 24
4.8. Truncation of the big values of |p(v) — p(¥¢)] 24
4.9. Proof of Proposition 4.1 41
5. Proof of Theorem 1.1 43

Date: August 12, 2019.
1991 Mathematics Subject Classification. 76N15, 35B35, 35Q30.
Key words and phrases. Isentropic Euler system, Shock, Uniqueness, Stability, Compressible Navier-
Stokes, Relative entropy, Conservation law.
Acknowledgment. The first author was partially supported by the NRF-2017R1C1B5076510 and the
NRF-2019R1C1C1009355. The second author was partially supported by the NSF grant: DMS 1614918.
1



2 KANG AND VASSEUR

5.1. Proof of (1.12) : Well-prepared initial data 43
5.2.  Proof for the main part of Theorem 1.1 45
Appendix A. Proof of Proposition 4.2 60
References 62

1. INTRODUCTION

We consider the vanishing viscosity limit (v — 0) of the one-dimensional barotropic
Navier-Stokes system in the Lagrangian coordinates:

vy —ul =0,
1.1 ,
(L) uf + o) = v (M)

where v denotes the specific volume, u is the fluid velocity, and p(v) is the pressure law.
We consider the case of a polytropic perfect gas where the pressure is given by

(1.2) pv)=v"", y>1,
with ~« the adiabatic constant. Here, y denotes the viscosity coefficient given by
(1.3) p(v) =bv.

Notice that if & > 0, u(v) degenerates near the vacuum, i.e., near v = +00. Very often, the
viscosity coefficient is assumed to be constant, i.e., « = 0. However, in the physical context
the viscosity of a gas depends on the temperature (see Chapman and Cowling [6]). In the
barotropic case, the temperature depends directly on the density (p = 1/v). The viscosity
is expected to degenerate near the vacuum as a power of the density, which is translated
into p(v) = bv™® in terms of v with a > 0.

At least formally, as v — 0, the limit system of (1.1) is given by the isentropic Euler
System:

vy — Uy = 0,
(1.4) { wp + p(v)y = 0.

The idea of approximating inviscid gases by viscous gases with vanishing viscosity is due
to the seminal paper by Stokes [46]. The vanishing viscosity limit has been used later to
construct entropy solutions to the isentropic Euler system, see DiPerna [20, 21|, Hoff-Liu
[30], Goodman-Xin [25], Yu [52]. Recently, Chen and Perepelitsa [8] proved the convergence
of solutions to the Navier-Stokes system with a = 0 towards an entropy solution of the
isentropic Euler system with finite energy initial data. Some results exist for the inviscid
limit of the Navier-Stokes-Fourier system in very special cases, see for instance Feireisl [23]
and [50], and the references cited therein.

In this article, we prove the existence of vanishing viscosity limits of solutions to (1.1) in
some weak sense, and obtain a stability estimate of those limits. We then present the class
of inviscid limits, in which the entropy shocks to (1.4) are unique.

Our result provides an answer, in the case of a shock, to the conjecture: The compressible
Euler system admits a unique entropy solution in the class of vanishing viscosity solutions to
the associated compressible Navier-Stokes system. As a breakthrough result related to this
conjecture, Bianchini-Bressan [2] constructed a globally-in-time unique entropy solution to
a strictly hyperbolic n X n system with small BV initial datum, which is obtained from
vanishing “artificial” viscosity limit of the associate parabolic system. However, to the best



3

of our knowledge, there is no result on uniqueness of discontinuous entropy solutions in the
class of vanishing physical viscosity solutions to the Navier-Stokes systems.

Previous uniqueness results for special discontinuous solutions (as solutions to the Rie-
mann problem) required suitable regularity like locally BV or strong trace properties (see
Chen-Frid-Li [7] and Vasseur et al. [35, 39, 49]). Unfortunately, the global-in-time propaga-
tion of those regularities is unknown in general (except for the system with v = 3 see [47]).
In the multi-D case, De Lellis-Székelyhidi[18] and Chiodaroli et al. [9, 10, 11, 12] showed
non-uniqueness of entropy solutions. They showed that entropy solutions to the isentropic
Euler systems in more than one space dimension are not unique, by constructing infinitely
many entropy solutions based on the convex integration method [17, 18].

It is well known that the system (1.1) admits viscous shock waves connecting two end
states (v—,u_) and (vy,uy), provided the two end states satisfy the Rankine-Hugoniot
condition and the Lax entropy condition (see Matsumura and Wang [40]):

—o(vy —v-) = (uy —u) =0,
Jo st
{ —o(uy —u-)+p(vy) —p(v-) =0,
and either v_ > v; and u_— > uy or v— < vy and u— > u4 holds.

(1.5)

In other words, for given constant states (v_,u_) and (v, uy) satisfying (1.5), there exists
a viscous shock wave (0¥, 4”)(x — ot) as a solution of

—o(0")" = (@)’ =0,

~u /
(1.6) —o (@) + p(t*) = V(ﬂgi )(&”)/)
limg s 3.00 (07, 07)(§) = (v, ux).
Here, if v— > vy, (0,0)(z — ot) is a l-shock wave with velocity ¢ = — —%,
whereas if v_ < v, that is a 2-shock wave with o = —%.

Let (v,u) be an associated entropy (inviscid) shock wave connecting the two end states
(v—,u_) and (vy,uq) satisfying (1.5) as follows:

(1.7) R I S

As mentioned above, our goal is to show the uniqueness of the entropy shock to (1.4)
in a suitable class, based on a generalization of our recent result [33] on the contraction
property of viscous shocks to (1.1). More precisely, we prove the contraction of any large
perturbations of viscous shocks to (1.1) in the case of 0 < @ <y < a+ 1 and v > 1, which
improves the special case v = « in [33]. The contraction holds up to a shift, and is measured
by a weighted relative entropy. Notice that since the relative entropy is locally quadratic,
the contraction measured by the relative entropy can be regarded as L?-type contraction.
To prove the contraction, we employ the new approach introduced by the authors [33],
which basically uses the relative entropy method. The relative entropy method has been
extensively used in studying the contraction (or stability) of viscous (or inviscid) shock
waves (see [13, 14, 31, 32, 33, 35, 36, 37, 38, 42, 43, 44, 49, 50]).
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1.1. Main results. To handle the stability and uniqueness of the entropy shocks, we use the
relative entropy associated to the entropy of(1.4) as follows: For any functions vy, u1, va, ug,

u1 — us|?
(1.8) (o1, w)](v2, u2)) := ———— + Qv1]va),
where Q(v1|vg) is the relative functional associated with the strictly convex function
p Y+l
= > 0,
Q) =", v

that is,
Q(v1lv2) == Q(v1) — Q(v2) — Q' (v2)(v1 — va).

However, the first components v; that we will consider are limit of Navier-Stokes equations,
for which we obtain only uniform bounds in L'. Therefore, the limit can be a measure
in t,z. This is actually physical, and is related to the possible appearance of cavitation.
For this reason, we need to extend the definition of relative entropy to measures defined
on RT x R. We will restrict the definition in the case where we compare a measure dv
with a simple function v only taking two values v_ and vy. Let v, denote the Radon-
Nikodym derivative of dv with respect to the Lebesgue measure and dvs its singular part,
i.e., dv = v, dt dxr + dvs. The relative entropy is then itself a measure defined as

(1.9) dQ(v|v)(t, ) := Q (va|v) dtdz + |Q"(V (¢, ))|dvs(t, z),
where we need to define V everywhere. Denote Qy; = {t,z : 9(¢,x) = max(v_,v;)}, we set

Vit z) = { max(v—v) - for (t2) € Quy (closure of Qyy),
" min(v_,vy) for (t,z) € ()"

Note that |Q'(max(v_,v))| < |Q'(min(v_,v;))|. Also, note that if v € L>®(R™; L>(R) +
M(R)), then dQ(v|v) is defined in L®(R*; L>®(R) + M(R)), where M denotes the space

of nonnegative Radon measures.

For the global-in-time existence of solutions to (1.1), we introduce the function space:
Xr:={(v,u) ERT xR | v—v, u—uc L®0,T; H'(R)),
u—u € L*0,T; H*(R)), v € L=((0,T) x R)},
where v and u are smooth monotone functions such that
(1.10) v(z) =vy and wu(z)=usr for £z >1.

The first theorem is on stability and uniqueness of the entropy shocks to (1.4):
Theorem 1.1. Lety > 1 and o, b > 0 be any constants satisfying o < v < a+1. For each
v >0, consider the system (1.1)-(1.3). For a given constant state (v_,u_) € RT x R, there
exists a constant 9 > 0 such that for any € < g9 and any (v4,uy) € RT X R satisfying
(1.5) with |p(v—) — p(vy)| = €, the following holds.

Let (0¥,4") be a viscous shock connecting the two end states (v—_,u_) and (vy,uy) as a

solution of (1.6).
Then for a given initial datum (v°,u") of (1.4) satisfying

(1.11) & = /00 n((vo,u0)|(’z_),ﬁ))d1’ < 00,

—00



the following is true.
(1) (Well-prepared initial data) There exists a sequence of smooth functions {(vg,u§)}v>0
such that

lin%)vg = lin%)ug =u’ ae, vf§>0,
v—r v—r

(1.12) 1 a ay \2
lim < (ug + y(p(vg)*r) —a” — u(p(@”)"/) ) + Q(v6|6”)> dx = &.

v—0 Jr 2 T T

(i1) For a given T > 0, let {(v¥,u”)},>0 be a sequence of solutions in Xr to (1.1) with the

ingtial datum (vy,uf) as above. Then there exist limits voo and U Ssuch that as v — 0 (up

to a subsequence),

(1.13)

VW s, U = Uuse in Mioe((0,T) X R) (space of locally bounded Radon measures),

where vy lies in L°(0,T, L°(R) + M(R)).
In addition, there exist shift Xoo € BV((0,T)) and constant C' > 0 such that dQ(vs|V) €
L>(0,T; M(R)), and for almost every t € (0,T),

(1.14) /R“W(t’x)_uém_X”(t)”Qdﬁ(/x

Moreover, the shift X satisfies

AQunlila = X)) (1) < Co

€R

(1.15) Xoo(t) — ot] < (€0+(1+t)\/8 )

Therefore, entropy shocks (1.7) (with small amplitude) of the isentropic Euler system (1.4)
are stable and unique in the class of weak inviscid limits of solutions to the Navier-Stokes
system (1.1).

Remark 1.1. 1. By (1.14), the limits v, Uoo Satisfy v € U+ L°(0,T; L (R) + M(R))
and us € 4+ L®(0,T; L3(R)), where M(R) is the set of bounded Radon measures on R.
The control in measure of vso is due to the fact that Q(v|v) > co|lv—71| for v > 3v_ (see (3.8)
in Lemma 3.1). Especially, voo may have some measure concentration at the limit. This
corresponds physically to cavitation (the creation of bubbles in the fluid) and appearance of
vacuum. It is interesting to see that this does not affect the contraction property (and the
uniqueness of the shock at the limit).

2. Theorem 1.1 provides the stability and uniqueness of weak Fuler shocks in the wide class
of weak inviscid limits of solutions to the Navier-Stokes system.

Indeed, for the uniqueness, if & = 0, then (1.14) and (1.15) imply that for a.e. t € (0,T),

/ oo (£, ) —2u($ — ot
R

where dvs = v dt dx + dvg, and the singular part vs vanishes. Therefore, we have

v — vy

)2 D
da:+/RQ(va(t,:c)|v(x t))dx = 0,

Uoo(t, ) = u(x — ot), Voo(t, ) = 0(x — ot), a.e. (t,x) € [0,T] x R.

3. In fact, the smallness of amplitude of shocks is not needed in the proof of Theorem 1.1.
The constraint is due to Theorem 1.2.

4. It is worth emphasizing from the assumption on « and 7y that Theorem 1.1 also holds in
the case of the shallow water equations (i.e., v = 2) in a class of inviscid limits of solutions
to the viscous shallow water equations (i.e., v =2, a =1). We refer to Gerbeau-Perthame
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[24] for a derivation of the viscous shallow water equations from the incompressible Navier-
Stokes equations with free boundary.

Remark 1.2. For the global-in-time existence (and uniqueness) of any large solutions to
(1.1) in Xp, we refer to [41] in the case of & < 1/2 and v > 1. More precisely, they proved
that p = 1/v and u satisfy

p—pu—u€L®0,T;H (R)), u—ue L*0,T; H*(R)), p~' € L>((0,T) x R).

This implies that there exists a solution in Xp to the system (1.1) with o < 1/2 and v > 1,
since the system (1.1) is equivalent to the one in the Eulerian coordinates for such strong
solutions. The result of [41] was extended by Haspot [28] to the case of « € (1/2,1]. Recently,
Constantin-Drivas-Nguyen-Pasqualotto [15, Theorem 1.6] extended it to the case of a > 0
and v € [a,a + 1] with v > 1, but they handled it on the periodic domain. Recently, the
authors [34] extends the result [15, Theorem 1.6] to the case where smooth solutions connect
possibly two different limits at the infinity on the whole space, which implies our solution
space X .

The starting point of the proof of Theorem 1.1 is to derive a uniform-in-v estimate for
any large perturbations of viscous shocks to (1.1). It is equivalent to obtain the contraction
property of any LARGE perturbations of viscous shocks to (1.1) with a fixed v = 1:

vy — Uy =0,
1.16 v
(1.16) ur +p(v)y = (#ux)x

As in [33], we first introduce the following relative functional E(-|-) to measure the contrac-
tion:

for any functions vy, u1, v, us,

(1.17) 1

B((onu)l(v2,)) = 3 (w+ (p00)3) — = (p2)7) ) + Qo).

where the constants v, « are in (1.2) and (1.3). The functional E is associated to the BD
entropy (see Bresch-Desjardins [3, 4, 5]). Since Q(v;|ve) is positive definite, (1.17) is also
positive definite, that is, for any functions (vi,u;) and (vg, uz) we have E((v1, u1)|(ve, u2)) >
0, and

E((v1,u1)|(ve,u2)) =0 ae. < (v1,u1) = (va,uz) a.e.

The following result provides a contraction property measured by the relative functional
(1.17).

Theorem 1.2. For any v > 1 and o, b > 0 satisfying a < v < a+ 1, consider the system
(1.16) with (1.2)-(1.3). For a given constant state (v_,u_) € RT x R, there exist constants
€0,00 > 0 such that the following is true.

For any € < 9, ;e < A < &y, and any (vy,us) € RY x R satisfying (1.5) with |p(v—) —
p(vy)| = €, there exists a smooth monotone function a : R — RT with lim, 1+ a(z) =
1+ ay for some constants a_, a4 with |ay —a—| = X such that the following holds.

Let U := (9, 1) be the viscous shock connecting (v_,u_) and (v4,uy) as a solution of (1.6)
with v = 1. For a given T > 0, let U := (v,u) be a solution in Xp to (1.16) with a
initial datum Uy := (vo,uo) satisfying [ E(Uo|U)dz < oco. Then there exists a shift



X € WHL((0,T)) such that

/OO Uty + X (6)|0())dz
+506/ /OO 0d'(2)|Q (v(t, = + X (£))i(x)) dudt

(1.18)
+50/ / )Ttz + X (1))|0: (p(v(t, @ + X (t))) — p(v(x )}dmdt
< [ 4B (@)U (@) do
and
(1) < (1 + £(2).
(1.19)
for some positive function f satisfying || f|l11 0,1 / E(Uo|U)dx

Remark 1.3. 1. Theorem 1.2 provides a contraction property for viscous shocks with
suitably small amplitude parametrized by € = |p(v_) — p(v4)|. This smallness together with
(1.5) implies [v— —vy| = O(e) and |u— — uy| = O(e). For such a fixred small shock, the
contraction holds for any large solutions to (1.16), without any smallness condition imposed
on Uy. This implies that the contraction still holds for any large solutions to (1.1), which
provides a weak compactness to prove Theorem 1.1 as the inviscid limit problem (v — 0).

2. In (1.18), the dissipation terms will be used to show the convergence of {u"},~o in (1.13).

Remark 1.4. The contraction property is non-homogenous in x, as measured by the func-
tion © — a(x). This is consistant with the hyperbolic case (with v = 0). In the hyperbolic
case, it was shown in [42] that a homogenous contraction cannot hold for the full Eu-
ler system. Howewver, the contraction property is true if we consider a non-homogenous
pseudo-distance [49] providing the so-called a-contraction [35]. Our main result shows that
the non-homogeneity of the pseudo-distance can be chosen of a similar size as the strength
of the shock (as measured by the quantity \).

The rest of the paper is as follows. We explain main ideas of proofs of the mains results
in Section 2. In Section 3, we provides a transformation of the system (1.16), and an
equivalent version of Theorem 1.2, and useful inequalities. Section 4 is dedicated to the
proof of Theorem 3.1. Finally, Section 5 is dedicated to the proof of the main Theorem.

2. IDEAS OF THE PROOF.

We describe in this section the methodology and main ideas of our results.

Uniform estimates with respect to the viscosity. The main results of this paper
boil down to the proof of stability of the viscous shocks to the Navier-Stokes equations
UNIFORMLY with respect to the strength of the viscosity. This can be obtained by con-
sidering only the case of the viscosity v = 1, replacing the notion of stability by the notion
of contraction, valid even for large perturbations (Theorem 1.2).

Indeed, if (v¥,u") is a solution of (1.1), then

v(t,z) = v”(vt,ve), u(t,z) = v’ (vt,vr)
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is a solution to (1.16), i.e., the Navier-Stokes equations with » = 1. Note that, even if the
initial perturbation (vf — 0",uy — @) is small, let say of order &, then the perturbation
(vo — D,up — @) is big (of order & /v):

/EUO O|U©) /E (U (©)IU"(€)) dé =

where E(-|-) is defined in (1.17), and the rescaled v-dependent functional E,(-|-) is defined
n (5.4).

However, a contraction independent of the size of the perturbation in the case v =1, as in
Theorem 1.2, provides, after rescaling, a similar contraction for any values v:

/ A€V B (U (4.6 4 vX (1)) | 0¥ (€)) dé < / a(& /) B, (UZ|0) de
R R

This gives a uniform stability result with respect to v provided that the weight function a
is uniformly bounded from below and from above, that we have a control on the shift which
is independent of the transformation

t
X(t) —vX () ,
v
and that we have a uniform bound of [, E, (U |Up) d¢. The first two conditions are verified
by Theorem 1.2 thanks to (1.19), and con51der1ng A < 1, and the last one is verified thanks
to the well-prepared initial data (1.12).

The contraction when v = 1: Theorem 3.1. This result is a generalization of the result
in [33] where only the case av =y was considered. The extension introduces severe technical
difficulties. A key to the extension is the local minimization explained below.

Step one: Considering a new velocity variable. We need to control the growth of the
perturbation due to the hyperbolic terms (flux functionals). Thanks to the relative entropy
method, the linear fluxes are easier to handle (the relative functional of linear quantity
vanishes). Therefore, the main hyperbolic quantities to control are the pressure terms de-
pending only on the specific volume v. At the core of the method, we are using a generalized
Poincaré inequality Proposition A.1, first proved in [33]. The Navier-Stokes system can be
seen as a degenerate parabolic system. But the diffusion is in the other variable, the velocity
variable w. Bresch and Desjardins (see [5, 3, 4]) showed that compressible Navier-Stokes
systems have a natural perturbed velocity quantity associated to the viscosity:

@

h =u" +v (p(v”)?)x.

Remarkably, the system in the variables (v¥,h") exhibits a diffusion in the v variable (the
Smoluchowski equation), rather than in the velocity variable. For this reason, we are
working with the natural relative entropy of this system, which corresponds to the usual
relative entropy of the associated p-system in the U} = (v”, h¥) variable:

(U} |U}) = E,(U"|U").

For the rest of the proof of this theorem, we consider only v = 1 and work only in the new
set of variable (v, h). To simplify the notation, we denote U = (v, h) from now on.
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Step 2: Evolution of the relative entropy. Computing the evolution of the relative entropy
in Lemma 4.2, we get

% _°° a(€)n(U(t,€ + X (1)U (€))dé

= XOY(U(t,+ X (1) + TN U+ X(1)) = TOUU (- + X (1))

The functional J9°°¢(U) is non-negative (good term) and can be split into three terms (see
(4.10), (4.18)):

JUU) = JI*UU) + Go(U) + D(U),

where only 79°°*(U) depends on h (and actually does not depend on v). The term D(U)
corresponds to the diffusive term (which depends on v only, thanks to the transformation
of the system).

Step 3: Construction of the shift. The shift X (t) produces the term X (t)Y (U). The key
idea of the technique is to take advantage of this term when Y (U(t,-)) is not two small,
by compensating all the other terms via the choice of the velocity of the shift (see (4.20)).
Specifically, we algebraically ensure that the contraction holds as long as |Y (U (t))| > &2.
The rest of the analysis is to ensure that when |Y (U(t))| < €2, the contraction still holds.

The condition |Y (U(t))| < €2 ensures a smallness condition that we want to fully exploit.
This is where the non-homogeneity of the semi-norm is crucial. In the case where the
function a is constant, Y (U) is a linear functional in U. The smallness of Y (U) gives only
that a certain weighted mean value of U is almost null. However, when a is decreasing, Y (U)
becomes convex. The smallness Y (U(t)) < &2 implies, for this fixed time ¢ (See Lemma 4.4
with (4.14) and (4.1)):

(2.1) /Rge_CSEIQ(U(t’f+X(t))|ﬁ€(f))d§SC’(i>2

This gives a control in L? for moderate values of v, and in L' for big values of v, in the
layer region (| — X (¢)] < 1/¢).

The problem now looks, at first glance, as a typical problem of stability with a small-
ness condition. There are, however, three major difficulties: The bad term J%¢(U) has
some terms depending on the variable h for which we do not have diffusion, we have some
smallness in v, only for a very weak norm, and only localized in the layer region. More im-
portantly, the smallness is measured with respect to the smallness of the shock. It basically
says that, considering only the moderate values of v: the perturbation is not bigger than
e/A (which is still very big with respect to the size of the shock ). Actually, as we will see
later, it is not possible to consider only the linearized problem: Third order terms appear in
the expansion using the smallness condition (the energy method involving the linearization
would have only second order term in ¢).

In the argument, for the values of ¢ such that |Y (U(t))| < 2, we construct the shift as
a solution to the ODE: X (t) = —Y (U(t,- + X (t)))/e*. From this point, we forget that
U =U(t,¢§) is a solution to (3.3) and X (¢) is the shift. That is, we leave out X (¢) and the
t-variable of U. Then we show that for any function U satisfying |Y (U)| < 2, we have

1

(2.2) — Y U) + TU) = 7)< 0.
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This is the main Proposition 4.1 (actually, the proposition is slightly stronger to ensure the
control of the shift). This implies clearly the contraction. From now on, we are focusing on
the proof of this statement.

Step 4: Mazximization in h for v fired. We need to get rid of the dependence on the h
variable from the bad parts J%(U). The idea in [33] (for v = a) is to maximize the bad
term with respect to h for v fixed:

B(v) = sup (77(v, h) — T*(h)).

We then had an inequality depending only on v and d,v (through D(U)) for which we can
apply a generalized Poincaré inequality. This does not work anymore when v # «. This is
because B(v) involves powers of p(v) which cannot be controlled by the good terms due to
big values of p(v). The new idea is to maximize in h ONLY for the fixed values of v such
that p(v) — p(0e) < d3 for a constant d3 to be determined (and depending on the Poincaré
inequality). This leads to the decomposition (4.17), (4.18). The bad terms involving values
p(v) —p(0:) > 03 can now be controlled using additional information from the unconditional
estimate |Y (U)| < &2 (see (4.37), (4.70)).

Step 5: Ezpansion in €. Although we have no control on the supremum of |p(v) — p(?.)|,
we can control independently the contribution of the values |p(v) —p(9:)| > 03 in Proposition
4.3 (for the same 3 related to the maximization process above. The coefficient d3 can be
chosen very small, but independent of € and of € /)A). The last step is to perform an expansion
in the size of the shock ¢ every small, uniformly in v (but for a fixed small value of §). Asin
[33], the expansion has to be done up to the third order. It leads to the exact same generic
expression (A.5). The generalized nonlinear Poincaré inequality, Proposition A.1 concludes
the proof.

The inviscid limit: Theorem 1.1.

We have now a stability result uniform with respect to the viscosity. It is natural to
expect a stability result on the corresponding inviscid limit. The result, however, is not
immediate. Several difficulties have to be overcome. First, due to the BD representation as
above, the stability result for v fixed is on the quantities:

Uy =", h"), h"=u"+v (p(v”)%)x.

This is the reason we need a compatibility condition on the family of initial values Uj. This
also leads to a very weak convergence (in measure in (¢,z) only). The next difficulty is
that for small values of v, the relative entropy control only the L' norm of Q(v) = 1/v77L.
Therefore the pressure p(v) = 1/vY cannot be controlled at all. Therefore, we do not control
the time derivative of v in any distributional sense in z. Moreover, we have to study carefully
the effect of small and big values of v together with big values of |u| through truncations
(see (5.9) and (5.13)). This is particularly important to pass to the limit on the shift in
the contraction inequality (note that the shift converges only in Lf, (RT), for 1 < p < o).
Finally, it has to be shown that the shift converges to ot when the perturbation converges
to 0. This can be obtained, thanks to the convergence of v in CO(RT, ngj’l(R)). It is
interesting to note that the continuity (in time) of v is enough. We do not obtain any such
control on u (nor h).
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3. PRELIMINARIES

3.1. Transformation of the system (1.16). We here provides an equivalent version of
Theorem 1.2 as in [33]. First of all, since the strength of the coefficient b in p(v) does not
affect our analysis, as in [33], we set b =  (for simplification) and introduce a new effective
velocity

h:=u+ (p(v)%>gC

The system (1.16) with p(v) = yv~* is then transformed into

(3.1) { v — hy = — (vﬁp(v)x)m
hy —|—p(7))x =0,

where 8 := v—a. Notice that the above system has a parabolic regularization on the specific
volume, contrary to the regularization on the velocity for the original system (1.16). This
is better for our analysis, since the hyperbolic part of the system is linear in u (or h) but
nonlinear in v (via the pressure). This effective velocity was first introduced by Shelukhin
[45] for @ = 0, and in the general case (in Eulerian coordinates) by Bresch-Desjardins
[3, 4, 5], and Haspot [27, 26, 29]. It was also used in [51].

As mentioned in Theorem 1.2, we consider shock waves with suitably small amplitude e.
For that, let (0., u.)(z — o.t) denote a shock wave with amplitude |p(v_) — p(v4)| = € as

a solution of (1.6) with p(v) = yv~". Then, setting h. = . + (p(ﬁs)%> , the shock wave
x

—0cT, — h. :<p )

(3:2) —o.h. +p(:) =0
limg 00 (Ve, he ) (§) = (v, u).

) =
For simplification of our analysis, we rewrite (3.1) into the following system, based on
the change of variable (¢,z) — (t,{ = x — oct):

vy — 0V — hg = —(Uﬁp(v)i)

hy — oche + p(v)e =0
V|¢=0 = vo, hlt=0 = uo.

(e, he)(z — 0.t) satisfies

(3.3) ¢

For the global-in-time existence of solutions to (3.3), we consider the function space:
Hr :={(v,h) e RT xR | v —v € C(0,T; H(R)),

(34) h .12 —1 [e¢)
—u e C(0,T;L*(R)), v~ € L*™((0,T) x R)},

where v and u are as in (1.10).
Theorem 1.2 is a direct consequence of the following theorem on the contraction of shocks
to the system (3.3).

Theorem 3.1. Assume v > 1 and o > 0 satisfying « < v < a+ 1. For a given constant
state (v—,u_) € RT x R, there exist constants g,y > 0 such that the following holds.

For any € < 9, 05 'e < A < &y, and any (vy,us) € RY x R satisfying (1.5) with |p(v_) —
p(vy)| = €, there exists a smooth monotone function a : R — RT with lim,_, 1+ a(x) =
1+ ay for some constants a_,ay with |a— — ay| = X such that the following holds.
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Let U, := (.,he) be a viscous shock connecting (v_,u_) and (vy,uy) as a solution of
(3.2). For a given T > 0, let U := (v,h) be a solution in Hy to (3.3) with a initial datum
Uo := (vo, uo) satisfying [~ n(Uo|U.)dx < oo, there exists a shift function X € WH((0,T))
such that

/R a()n(U(t,€ + X(1)[0.(6))de
e // o (€)Q (v(t,€ + X (1))[5:(6)) dédt

(3.5)
oy / [ aten e e g X(ep]os(otete € + X(0) - p(a-(9) [
< [ atemilt.)e
and
) 1 oo -
]X(t)\ggz(f(t)JrC/ WU 1) for ae. t € [0.7],
(3.6) >

. : . 2\ [ ~
for some positive function f satisfying || f|l110,r) < B0 /Oo n(Uo|Ue)d€

Remark 3.1. 1. In [33], the authors proved Theorem 1.2 in the case of o = y. Therefore,
it suffices to prove the remaining cases where 0 < a < v < a+1. That is, B =~v—a € (0,1].
2. Notice that it is enough to prove Theorem 3.1 for 1-shocks. Indeed, the result for 2-shocks
1s obtained by the change of variables x — —x, u — —u, 0z — —0%.

Therefore, from now on, we only consider a 1-shock (ﬁe,ﬁe), 1.6, U_ > Vg, U_ > Uy, and

(37) oc = _\/_p<v+>—p<v—>,

Vy — U=

Remark 3.2. As mentioned in Remark 1.2, we consider the solution (v,u) € Xr to (1.16).
Then, (3.3) admits the solution (v,h) in Hr. Indeed, since v; = u, € L?(0,T; HY(R)) by
(1.16),, we have v —v € C(0,T; HY(R)). To show h—u € C(0,T; L*(R)), we first find that
for (v,u) € Xr,

h—u=u—u-+t gp(v)%_lvJj e L>=(0,T; LQ(R)).
Y

Moreover, together with the fact that v € L>((0,T) x R) by Sobolev embedding, we find that

up = —p (v)vy + CZJ(MS}))” u uiv)% € L*(0,T; L*(R)),

ve), = (5 = D)7 e +p(0) o € L0, T L2 (R)),

g

(p(v)W
which implies hy € L*(0,T; L*(R)), and therefore h —u € C(0,T; L*(R)).

3.2. Global and local estimates on the relative quantities. We here present useful
inequalities on @) and p that are crucially used for the proofs of main results. First, the fol-
lowing lemma provides some global inequalities on the relative function Q(+|-) corresponding

to the convex function Q(v) = va v>0,v>1.
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Lemma 3.1. For given constants v > 1, and v— > 0, there exist constants c1,co > 0 such
that the following inequalities hold.

1) For any w € (0,v_),

Qv|w) > ¢i1|lv —wl|?,  forall 0 <v < 3v_,

Q(v|w) > ealv —w|, for all v > 3v_.

2) Moreover if 0 <w <u<wv or0<v<u<w then

(3.9) Q(vlw) > Q(ulw),

and for any 6, > 0 there exists a constant C > 0 such that if, in addition, v— > w > v_—0, /2
and |w — u| > 6., we have

(3.8)

(3.10) Qv|w) = Q(ulw) = Clu —v|.

3) For any w € (v_/4,v_),

(3.11) Ip(v) — p(w)| < eslv —wl|, for allv>wv_/2,

Proof. We refer to [33, Lemma 2.4, 2.5]. O

Next, we use (3.8) and (3.9) above to prove the following lemma, which is used for the
proof of Theorem 1.1.

Lemma 3.2. For given constants v, M > 1, there exist constants C > 0 and kg > 1 such
that the following inequalities hold.
1) For any k > 3M and w € (M, M),

(3.12) max{(k~! —v)y, (v —k)y+} < CQv|w), for any v > 0.
2) For any wi,ws € (M~ M),
(3.13) Qv|wy) < CQ(v|ws), for any v € (0,ky ") U (Ko, 00).

Proof. e proof of (3.12) : i) If k=1 < v <k, then max{(k~!—v)4, (v—k)+} = 0 < CQ(v|w).
i) If 0 < v < k™!, we have

(3.14) max{(k™' —v)y,(v—k) } =kl —v <kl
Since v < k=1 < M~1/3, we use (3.8) and (3.9) to have
Qvlw) = QM /3jw) = 1| M1 /3 — w|”.
Moreover, since w > M ™!, we have
Qv|w) > c14M2/9 > (c;4M 1 /3)k™1,
which together with (3.14) implies the desired inequality.
iii) If v > k, we have
max{(k™' —v)y, (v —k)y}=v -k <v—3M.
Likewise, using (3.8), we have
Q(v|w) > ealv — w|.
Since v > 3M > w, we have
Qvjw) = ea(v — 3M),

which completes the desired inequality.
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e proof of (3.13) : We set C := Qmax{ Q (M 1} Since Q" < 0, there exists k1 > 1
such that for all v > kq,

—Q (Mo > (1- C)Q) + (Q'(M)M — Q(M)) — C(Q(M-1)M~ — Q(M)).
Moreover, since @' is increasing and % (Q’ v)v — Q(v)

)
(= CQ'(wo) + Q(wn))v = (- CQMT) +Q (M ))v> —Q'(M)v
> (1-0)Q(v) + (@ (MM — Q(M)) = C(Q(M™HM ™ - Q(M™))
> (1-0)Q(v) + (@ (wi)wr — Q(wr)) — C(Q' (wz)wz — Q(uw2)).
which together with the definition of Q(+|-) yields that
Qv|wy) < CQ(v|ws), forall v > ky.
On the other hand, since Q(v) — 400 as v — 0+, there exists kg > k; such that for all
v < kal
Q(v) = (CQ'(M™) = Q'(M))v + (Q(M)M - Q(M)) = C(Q (M )M~ —Q(M™1)).
Then we have
(C-1DQ(v) = Qv)
> (CQ' (M) = Q(M))v + (Q(M)M — Q(M)) = C(Q (MM ™! = QM)
> (CQ'(w2) — Q'(w1))v + (Q'(wi)wi — Q(wr)) — C(Q'(w2)wz — Q(w2)),
which yields that Q(v|wi) < CQ(v|ws) for all v < k. O

> 0, we have

We present now some local estimates on p(v|w) and Q(v|w).

Lemma 3.3. For given constants v > 1 and v— > 0 there exist positive constants C' and dy
such that for any 0 < & < dx, the following is true.
1) For any (v,w) € R% satisfying [p(v) — p(w)| < & and [p(w) — p(v-)| < 0,

(3.15 plolu) < (L 08t - sl

2) For any (v,w) € R% such that [p(w) — p(v_)| < 8, and satisfying either Q(v|w) < & or
p(v) = p(w)] <9,

(3.16) p(v) = p(w)* < CQv]w).

Proof. We refer to [33, Lemma 2.6]. O

4. PROOF OF THEOREM 3.1

Throughout this section, C' denotes a positive constant which may change from line to
line, but which stays independent on ¢ (the shock strength) and A (the total variation of
the function a). We will consider two smallness conditions, one on ¢, and the other on &/\.
In the argument, ¢ will be far smaller than £/ .
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4.1. Properties of small shock waves. In this subsection, we present useful properties of
the 1-shock waves (0, he) with small amplitude €. In the sequel, without loss of generality,

we consider the 1-shock wave (@, he) satisfying . (0) = v*+”+ Notice that the estimates

in the following lemma also hold for h. since we have h. = p (Us)f/ and C71 < 2 (UE) <C.
But, since the below estimates for ¥ are enough in our analysw we give the estlmates only
for v..

Lemma 4.1. We fir v— > 0 and h— € R. Then there exists eqg > 0 such that for any 0 <
e < gq the following is true. Let U. be the 1-shock wave with amplitude |p(v_) — p(vy)| =€
and such that v.(0) = % Then, there exist constants C,C1,Co > 0 such that

(4.1) —C el < (g) < —Ce?em 2okl v e R.
Therefore, as a consequence, we have
(4.2) [ f?f;] vl| > Ce?.

Proof. Using v_ /2 < 0. < v_, the proof follows the same arguments as in [33, Lemma 2.1].
Therefore, we omit its details. O

4.2. Relative entropy method. Our analysis is based on the relative entropy. The
method is purely nonlinear, and allows to handle rough and large perturbations. The
relative entropy method was first introduced by Dafermos [16] and Diperna [19] to prove
the L? stability and uniqueness of Lipschitz solutions to the hyperbolic conservation laws
endowed with a convex entropy.

To use the relative entropy method, we rewrite (3.3) into the following general system of
viscous conservation laws:

(4.3) U + 0:A(U) = ( aﬁ(”ﬂoaﬁp( ))>,

o= (y). aw= (50

The system (4.3) has a convex entropy n(U) := %2 + Q(v), where Q(v) = L—

Q'(v) = —p(v).
Using the derivative of the entropy as

(4.4) i) = ().

the above system (4.3) can be rewritten as

where

(4.5) QU + 0 A(U) = Ok (M(U)agvn(U)),

where M (U) = (UO[3 00), and (3.2) can be rewritten as

(4.6) O¢A(U.) = 0 (M(0.)9eVn (D) ).
Consider the relative entropy function defined by

nUV) =nU) =n(V) = Vn(V)(U - V),
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and the relative flux defined by
A(U|V)=AU) - A(V) - VAWV)(U -V).
Let G(+;-) be the flux of the relative entropy defined by
GU;V)=GU) - G(V) = Vn(V)(AU) = A(V)),

where G is the entropy flux of 7, i.e., ;G(U) = Y5_, dpn(U)%iAx(U), 1<i<2.
Then, for our system (4.3), we have

h — he|? i
n el Q).

Y A0 = )
G(U; ﬁs) = (p(v) — p(%e))(h — Bz—:) - Usn(U|(~Js)>

n(U|U:) =

where the relative pressure is defined as
(4.8) p(vw) = p(v) = p(w) — p'(w)(v — w).
We consider a weighted relative entropy between the solution U of (4.5) and the viscous
shock U, = (gs) in (3.2) up to a shift X (¢) :
a(©n(U(t,€ + X (1))|U=(8))-

where a is a smooth weight function.

In Lemma 4.2, we will derive a quadratic structure on 4 [ a(&)n(U (¢, €+ X ())|U-(€))dE.
For that, we introduce a simple notation: for any function f : R™ x R — R and the shift
X (),

FEN(€) = f(t € £ X(1)).
We also introduce the function space:
H:={(v,h) ERT xR | v ,v € L®(R), h — h. € L*(R), 9¢(p(v) — p(@:)) € LA(R)},
on which the functionals Y, 7% 79°°¢ in (4.10) are well-defined for all ¢ € (0, 7).

Remark 4.1. As mentioned in Remark 3.2, we consider the solution (v, h) € Hr to (3.3).
Then, using the fact that ve € C(0,T; L*(R)), 0. € L*(R), and v=',v € C(0,T; L*(R)),
we find

O (p(v) = p(2)) € C(0, T; L*(R)),
which implies (v, h)(t) € H for all t € [0,T].

Lemma 4.2. Let a : R — RT be any positive smooth bounded function whose derivative

is bounded and integrable. Let U, := (;ff) be the viscous shock in (3.2). For any solution

U € Hr to (4.5), and any absolutely continuous shift X : [0,T] — R, the following holds.
d

49 & Ra(é)n(UX(t,ﬁ)IUs(i))df = XY (UY) +T"UUY) = 79U,
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where
(4.10)
V()= = [ @O0 + [ adeOn(@0)(U ~ ).

bad = [ d(p(v) —p(® —h o ade0:-p(v|D
Th () = /R (p(v) — p(7)) (h — he)dg + o /R Detep(v]5.)de

— [ v 60) =026 (p(0) = p(32)) e — [ o' (pto) = pl) (07 = )i

R
_ /Raﬁg(p(v) —p(’[N)E))('U’B - 775’8)852?(775)(157

O¢

TN = 2/Ra' h — he

“de 4o /R o Qo] de + /R av |0¢ (p(v) — p(e) [ de.

Remark 4.2. In what follows, we will define the weight function a such that o.a’ > 0.
Therefore, —J9°°¢ consists of three good terms, while Jb** consists of bad terms.

Proof. To derive the desired structure, we use here a change of variable £ — £ — X (¢) as

(4.11) /R a(©n(UX (t,€)|U:(€))de = /R a” M (U, &)U (£))de.

Then, using the same computation in [33, Lemma 2.3] (see also [48, Lemma 4]), we have

a
dt g

¢ /R o/ (U0 %) dg + / X [(WU) = Vi(U)) (- 9:AW) + 0 (M(U)2evn(D) ) )

a= X (En(U (¢, )|U X (&))de
]Ra_
= V(U0 = U) (= X007 = 0:A(UY) + 0 (M <U€X>85Vn(U€X)))] 3
=x(- /R o' Xn(UUZ ) dg + /R X0V N0 = UY)) + i+ L+ I+ L

where
I := —/ a X0 G(U; U ™) de,

R
L= — / X 0eVn(TX) A(U|T% ) de,

R
= [ @ (V0(0) = V@) Yo (MU)3E (T0(U) = Va(0)) ) s

I = /R ¥ (Vi(U) = Vn(0)) 0 (M (V) = M(UY)) 0 9n(07) ) dg
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Using (4.7) and (4.4), we have
I = /R XG(U; U7 dg = /R o ((p(v) = pY)) (h = hY) = oon(UIT) ) de
= | X (plv) —p(a% —hZX _ % a~ —h ’ -0 = XQ(vl|v
= [ o) = po ) (- e - G [ | de—a. [ @ FQuinie

I, = —/ a” X Och X p(v|oz¥)de.
R

By integration by parts, we have
b= [ @ (plo) = pl6) 06 (00 o) — p(5)) ) e
R
= —/RaXvﬁ!@g(p(v) —p(0:7%))|?de — /Ra’Xv’B(p(v) — p(0-7)) O (p(v) — p(0- 7)) d,
In= [ a7 (o) (6 )) 0 (0" — 52)en(e ) ) e
R
== [ ¥ (o) =) 0 = E)on(i ¥ e
= [ a ¥ oc(pt) = ol ) (07 — 52)denl e
Since it follows from (4.6) and (4.4) that
_ -X X
Is = /Ra (V?])(U‘U 85/1 d§ / agh + 0'585’0 >df,
we have some cancellation
IQ + I5 = (75/ a_Xagf);Xp(U"lN}E_X)df.
R
Therefore, we have

= | a” (U7 %) dg

dt Jo

_x(_ | X X a—X T=XN\(1T _ [1-X

= X(= [ @O0+ [ o ¥ oeTn(O )W - O

- /R @ (plv) — p(E X)) (b — e ¥)dg - / X |n—he| dg o /R X Q(v]i.)dg

o / X e X p(o]5 ) — /’” (5)) 9 (p(v) — p(52%)) de

J
[ 0eot0) — p(6) (o = @2)7%) 2uptez ¥y — [ a¥ePloc(ote) — pie )P
R
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Again, we use a change of variable £ — & + X (¢) to have

G | anw 10
=X (= [ an¥ e + [ aden@UX - D))
+ [ o) = p() X ~hoyie =5 [ o
w0 [ a0cipo¥fids = [ /00 (™) = 526 (0(0™) = o) e
= [ ) = p(an)) () — o2 ey

= [ ade(pe) - p() (09 - 52) depai)dg — | (o) |oe(o(e¥) - plc)) P
R R

hX — h,

2d5 — ag/Ra’Q(va@E)dg

which provides the desired representation. ]

4.3. Construction of the weight function. We define the weight function a by

L p(E(9) — p(v)
(4.12) a(§)=1-2A B ,

where [p] := p(v4) — p(v_).We briefly present some useful properties on the weight a.
First of all, the weight function a is positive and decreasing, and satisfies 1 — X < a < 1.
Since [p] =, p'(v-/2) < p/(%:) < p'(v-) and

0, p({’s)
4.13 A i ,
(4.13) 5
we have

A
(4.14) la’| ~ E\@; .

4.4. Maximization in terms of h—h.. In order to estimate the right-hand side of (4.15),
we will use Proposition 4.2, i.e., a sharp estimate with respect to v — v, when v — v, < 1,
for which we need to rewrite 7% on the right-hand side of (4.9) only in terms of v near
., by separating h — h. from the first term of 7. Therefore, we will rewrite 7% into
the maximized representation in terms of h — h. in the following lemma. However, we will
keep all terms of 7% in a region {p(v) — p(9-) > &} for small values of v, since we use the
estimate (4.70) to control the first term of 7% in that region.

Lemma 4.3. Let a : R — Rt be as in (4.12), and U. = (gg) be the viscous shock in (3.2).
Let § be any positive constant. Then, for any U € H,

(4.15) TNU) — J9°UU) = Bs(U) — Gs(U),
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where
(4.16)

1
Bs(U) := 05/ a0g0.p(v|v:)dE + 5
R

- [ 1p0) = 5P i cors
+ / a' (p(v) — p(Be)) (7 — he)Lip(o)—p(o)>5) €
R
—/a%WMW—m@&ﬁﬂﬂ@—m@aﬂﬁ—/ﬁﬂmw—m@dﬂw—ﬂﬂ%M%M§
R R
- /R 0 (p(v) — p(52)) (v — 58)Dep (v )de,

2
g, g,
Gs(U) = = /R o p(o)-p( <5} + = /R o

. [ @Quuli)dg + [ av’loc(plo) - pln) P
R R

h . P) = p(E)

~ 12
h = he| Lipw)—p(s.)>63dE

Remark 4.3. Since o.a’ > 0 and a > 0, —Gs consists of four good terms.

Proof. For any fixed 6 > 0, we first rewrite 7°%¢ and —79°°? into

T U) = /RGI(P(’U) — p(0)) (h = he) L) —p(ony<61dE
=:J1

a' (p(v) — p(8e)) (h = he) 1) —p(o.)>61dE + 0« /R adeVep(v|ve)d§

_|_

a'v? (p(v) — p(4.)) 0¢ (p(v) — p(02))dé — /R a (p(v) = p(0)) (v — 82)0ep(v:)dé

ade (p(v) — p(0.)) (v° — 82)9ep (0. )dE,

——

and

_ ngOd(U) — _ﬁ CL,

- - 12
> /. h — he h = he| d&1p(w)—p(o.)>51dE

2 g
I{P(U)—p(ﬁg)gé}df—;/Ra/
=:J2

~o. [ dQuig [ v’ |oc(ple) ~p(a)) [ de.
R R

Applying the quadratic identity az? + Bz = a(z + %)2 - % with z := h — he to the
integrands of J; 4+ Js, we find

O¢ = |2 ~ P O¢ 7 p(’U) _p(ﬁe) 2 1 ~ (2
—— |h — he —p(ve))(h—he) =——|h — he — ———— — p(0e

. + (o) — p(o2)) (0 — Fe) = = P ) — ()
Therefore, we have the desired representation (4.15)-(4.16). O

4.5. Main proposition. The main proposition for the proof of Theorem 3.1 is the follow-
ing.



21

Proposition 4.1. There exist €g, 6o, 03 € (0,1/2) such that for any e < ¢ and 5515 <A<
0o, the following is true.
For any U ¢ HN{U | |Y(U)| < €2},

R(U) = = Y*(U) + Bsy(U) + 6 31B5, (U]
(4.17) € .
— 7 (U) = G () = (1= b0 ) G2(U) = (1 = 0)D(U) <0,

where Y and Bs, are as in (4.10) and (4.16), and Gy ,G; ,Ga, D denote the four terms of
Gs, as follows:

G, (U):=

O¢

72
9 /Qc a'|h—h5| 1{p(U)*p(f)5)>§3}d£,

1o ~ p(v) — p(v)\2
G (U) = E/Qa' (h —he = M) Lip(o)—p(i) <ds} 4E

2 o

(4.18)
Go(U) = o /R o/ Qo]52)de,

D) = /R a0 (p(v) — p(5.)) [*dé.

4.6. Proof of Theorem 3.1 from Proposition 4.1. We will first show how Proposition
4.1 implies Theorem 3.1.

For any fixed € > 0, we consider a continuous function ®. defined by
5, ify < —€?
(4.19) Oo(y) =1 —ay, if [yl <€
-, ify> 2.
Let €9, g, 03 be the constants in Proposition 4.1. Then, let ¢, A be any constants such that
0<e<epand dyle <A< dy<1/2.

We define a shift function X (¢) as a solution of the nonlinear ODE:

(4.20) { X(t) = @.(y (U)) (2774U)| + 1),
X(0) =0,

where Y and J% are as in (4.10).

Then, for the solution U € Hy, there exists a unique absolutely continuous shift X on [0, 7.
Indeed, since @, h.,a’ are bounded, smooth and integrable, using U € Hr together with
the change of variables ¢ — ¢ — X (¢) as in (4.11), we find that there exists a,b € L?(0,T)
such that

sup |F(t,z)| <a(t) and supl|0.F(t,z)| <b(t), Vtel0,T],
zeR zeR
where F'(t,X) denotes the right-hand side of the ODE (4.20). For more details on the

existence and uniqueness theory of the ODE, we refer to [13, Lemma A.1].

Based on (4.9) and (4.20), to get the contraction estimate (3.5), it is enough to prove
that for almost every time ¢t > 0 |

(421) (Y (W)(2ATUUT) + 1) Y (UF) + FOY) - FeelU) <0,
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We define
FU) =@y () (217"/0)| +1)Y (U) + T*UU) = TUU), U € H.
From (4.19), we have

—2|Bs,|, if |[Y|>e?,
—LY? Y| <€

(4.22) o.(Y) (2|jb“d| n 1)Y < {
Hence, for all U € H satisfying |V (U)| > €2, we have
F(U) < ~|7"(U)| = T9°(U) < 0.
Using (4.15), (4.22) and Proposition 4.1, we find that for all U € H satisfying |Y (U)| < €2,
F(U) < ~005 |3, (U)] = 60 G2(U) = 5oD(U) < 0.
Since dp < 1/2, these two estimates show that for every U € H we have

FU) < —50§|553(U)| _ 50§g2(U) — 8,D(U).

Thus, using the above estimates with U = U*X | together with (4.9), (4.21) and the definition
of 79°°? we find that for a.e. t > 0,

(4.23)

| an(U¥|0:) + 50§g2(UX) +60D(UN)de = F(UX) + 50§g2(UX) +60D(UY)
R

. €
< —|T*UUS) 1y x ) se2y — 5OX\363(UX)|1{|Y(UX)|§52} <0.
Therefore we have

(4.24) / an(UX|0.)de + 60 = Ga (UX) + 8oDU) < / an(Uo|0.)d¢ < oo,
R A R

which completes (3.5).

To estimate | X |, we first observe that (4.19) and (4.20) yield
. 1 o
(4.25) 1X| < ?2(2|jb YUX) +1), forae. te(0,T),

Notice that it follows from (4.23) and 1/2 < a <1 by dg < 1/2 that

T . c B
@26) [ (170 1ymneny + 05 1B U iy ) e < 2 [ n(TolT s
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To estimate | J°*¢(UX)]| globally in time, using (4.15) and the definitions of Z9°°? and Gs,,
we find that

‘jbad(UX)‘

= |7 U gy ey + [TUUN) gy <2y

= [T U) 1y x)zezy + [T9UUX) + Bsy (UX) = Goy (UX) 1y () <e2)
<IN U Ly ) se2y + \Bég(UX)!1{|Y(UX)\<52}

/ (hX o ile)z - <hX - B‘f - o) bl > ‘1{10 —p(0e) <55}d§

O¢

< |TNUS) Ly ) se2y + 1Bs, (U 1gy rx) <2y
T \2 ~ 2
+ C/R ’a/|((hx —he)” + (p(v™) — p(3c)) )1{p(vX)—p(ﬁe)§53}d£'

Since for any v satisfying p(v) — p(0e) < J3, there exists a positive constant ¢, such that
v > ¢t and [p(v) — p(9e)| < cx, we use (3.11) and (3.8) to have

/R (P(v) = P(9)) 1 p(0)—p(5) <6} 0E

< / ‘p(v) - p(66)|1{v23v_}d€ +/ 1 ‘p(v) - p(66)|21{v§3v_}d§
v>ert

v>Cy

<[ (=t o= Pz ) < [ Qi
Therefore, using a’ < Cdg and §y < % < a, we have
TN UX)] < 1T HU Ly x)ze2y + 1By (UN) Ly ) <e2y + C/Rm?(UX\Us)di,
which together with (4.24) and (4.25) implies
%12 2 | (170 gy + 1B O greeny) + € [ nCidigas +1).

and (4.26) implies

T
/0 (|jbad(UX)|1{|Y(UX)\Z€2} -+ |B(S3(UX)|1{‘Y(UX)‘S€2} dt < / UO‘U

Hence we complete (3.6).

The rest of this section is dedicated to the proof of Proposition 4.1.
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4.7. Expansion in the size of the shock. We define the following functionals:

1 / ~ / - - .
/Ra Ip(v) —p(vs)]2d§ — /Ra Qv|v:)dE — /Raﬁgp(ve)(v — Ve )d€

T 942
207

N 01 /R adeh. (p(v) — p(i.))dE,

Y,(v) =

Zi(v) == Ug/Raﬁgﬁgp(vwg)dﬁ,

To(v) = - /R o |p(v) — p(52) e,

20,

(4.27)

Go(v) 1= o /R o' Qu]5.)de,
D) = /R a0 (p(v) — p(5.)) *de.

Note that all these quantities depend only on v (not on h).

Proposition 4.2. For any constant Co > 0, there exist 9,03 > 0, such that for any
e € (0,e0), and any \,d € (0,93) such that ¢ < X, the following is true.
For any function v : R — RT such that D(v) + Go(v)is finite, if

2
9 ~
(4.28) Yo()l < oty lIp(v) = p(Te) || oo (m) < 03,

then
Res(v) = —sl¥y(0) + Ti(0) + S/ (0)
+ L)+ (5) 120) - (1-3(5)) G(v) - (1 - D) <0,

where note that Z1,Zs > 0.

(4.29)

Proof. The proof is almost the same as that of [33, Proposition 3.4], because Yy, 71,75, Go
defined in (4.27) are the exactly same functionals as in [33, Proposition 3.4], and the diffusion
D is slightly different but has the same expansion. Note that this proposition corresponds
to an expansion in p(v) near p(?.) (up to d3) for p(v.) close to p(v_) (up to €). It is therefore
natural that the expansion is similar to the case of a =« as in [33, Proposition 3.4], since
the viscosity is almost constant near p(v_). For completeness, the main part of the proof
is given in Appendix A. O

4.8. Truncation of the big values of |p(v) —p(?:)|. In order to use Proposition 4.2 in the
proof of Proposition 4.1, we need to show that the values for p(v) such that |p(v)—p(d:)| > d3
have a small effect. However, the value of d3 is itself conditioned to the constant Cs in the
proposition. Therefore, we need first to find a uniform bound on Y, which is not yet
conditioned on the level of truncation k.

We consider a truncation on |p(v) — p(9:)| with a constant k£ > 0. Later we will consider
the case £k = d3 as in Proposition 4.2. But for now, we consider the general case k to
estimate the constant Cs. For that, let ¢ be a continuous function defined by

(4.30) Yi(y) = inf (k, sup(—k,y)) .
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We then define the function vy uniquely (since the function p is one to one) as

(4.31) p(vr) = p(0e) = Yr(p(v) — p(0c))-

We have the following lemma (see [33, Lemma 3.2]).

Lemma 4.4. For a fired v— > 0, u_ € R, there exists Co, ko, €9, > 0 such that for any
e < eo, /A < 8o with X < 1/2, the following is true whenever |Y (U)| < &2:

2
(4.32) /ya|h h \2d§+/ ld'|Q(v d§<C—

(4.33) 1Yy (0r)] < 02 for every k < ky.

A7

We now fix the constant d3 of Proposition 4.2 associated to the constant Cy of Lemma
4.4. Without loss of generality, we can assume that 03 < kg (since Proposition 4.2 is valid
for any smaller d3). From now on, we set (without confusion)

V1= Ug,, U := (v,h), B := Bs,, G := Gs,.

Note from Lemma 4.4 that

2
(4.34) Yy(®)| < Co

We first recall the terms Y in (4.10) as
2 ~ ~
Y:/ (b= h | —d€ — /aQ d§+/ (—85]9(175)(1)—175)+8§h5(h—h8)>d§.
R

In what follows, for simplification, we use the notation:

Q:={¢ | (p(v) —p(0:))(€) < 03}

We split Y into four parts Yy, V3, ¥; and Y, as follows:

Y =Y+ Y+ Y+ Y,

where
Vyi= —gop [ alb) —po)ds — | aQuinde — [ aogp(ie)(w — i)
+— / adehe (p(v) — p(.))de,
Y, = / (h j ) ;Ep(ﬁe)fdg
_ / (©.)) (h _j. P ;Ep(ﬁs))d&

Y, = /Qaaghg (h — e — (”);Wa))dg,

Vo= - | aQuinds— [ adep(a)(o e

_ 7 |2 - -
—/ a"tha‘der/ adehe(h — he)de.
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Notice that Y} consists of the terms related to v — 1., while ¥} and ¥} consist of terms related
to h—h.. While Y} is quadratic, and Y; is linear in h—h,. Since {€ | |p(v)—p(9.)| < d3} C 9,
Y,(U) is the same as Y, (v) in Proposition 4.2. Therefore we need show that Y, (U) — Y, (U),
Y,(U), Yi(U) and Y5(U) are negligible by the good term G.

For the bad terms Bs, in (4.16), we will use the following notations :

(4.35) Bs, = B+ By + By + B3 + By + Bs,

where
B = . | adetipuln.)ds.
B = [ o) =p@)(h—hode. B =5 [ dlp(w) - (i) P
B = [ v (p(0) = (7)) 26 o(0) = (7))
B = | a/(plo) = p(5)) (0" — o) k().
B = | adelote) = p(5:)) (0 = P2)0cp(i ).

We also recall the notations G; , gf, G2,D in (4.18) for the good terms.
We now state the following proposition.

Proposition 4.3. There exist constants €y, 0y, C, C* > 0 (in particular, C'" depends on the
constant 03 in Proposition 4.1) such that for any € < &y and 50_15 < A< 0y < 1/2, the
following statements hold true.

1. For any U such that |Y (U)| < &2,

(p (U) — Go(0)) + (§)292<U>) :
+ () g<U>)+ L),

) ) -BO) < [50),

(439)  [Bo(U)| + [Ba(U)] + [B5(U)] < Co (D(U) + (Ga(U) = Ga(0)) + 5G2(01))

—~

(4.36)  |Bi(U) —

y\m

(437) 1By (V) <6 ( )

2
(4.40) mﬂmgﬁ%+cawwy

2

C*
2. For any U such that |Y (U)| < e2 and DU) < T%,

(4.41)
Yo(U) = Yy (0) + (0P + %) + [¥a(U)
2 1/4
<ot < D) + (Ga(U) - Go(0) + G5 (U) + (2) 6w+ (5)" 92<U>> .

To prove this proposition, we will control the bad terms in different ways for each case
of small or big values of v, which all correspond to the big values of |p(v) — p(v:)| (as
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|p(v) — p(0:)| > 03). For that, we set
(4.42) p(vs) = p(:) := ¥, (p(v) — p(32)),  p(Ws) — p(3:) =5, (p(v) — p(22)),
where 9§ and d)gs are one-sided truncations of 15, defined in (4.30), i.e.,

U3, (y) = inf(33,y), ¥§,(y) = sup(—ds,y).

Notice that the function v, (resp. o) represents the truncation of small (resp. big) values
of v corresponding to |p(v) — p(vc)| > 03.

(443) (p(@b) — p(@g)) ]-{p(v)—P(f’s)

We also note that

(4.44) = (¢ — 1) (p(v) — p(0.

Therefore, using (4.31), (4.42) and (4.44), we have
(4.45)

D) = /R 0o |0 (p(v) — p(i)[2d
- /Rm’ﬁ'a& (P(v) = (0)) P (L ipw)—p(oe) <05} + Lip(w)—p(@e)>ds) T Lip(o)—p(5)< 85} )A€
= D)+ [ av®|Oc(o(v) ~ p(o)) P + [ av®|Oc(o(v) — plon)) P
R R
zA&wﬂ%umo—pwaﬂ%¢+A;wﬂ&@u»—m%»F%.

On the other hand, since Q(v|v:) > Q(0]0.), we have

(4.46) || / 0/|Qv]5:) € > Go(U) = |o| / 0] (QQle) — Qo) dé >0,

which together with (4.32) yields

2

(4.47) 0< Go(U) = Go(U) < Go(U )<c%.

We first present a series of following lemmas.
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Lemma 4.5. Under the same assumption as Proposition 4.3, we have

(4.48) / d!||p(v) — p(oy)|Pde + / 1@||p(v) — p(@)|de < \fimm,

(4.49) /R ||

Ip(v) — p(3e)|* — |p(y) —p(@s)|2‘1{p(u)—p(ag)§63} d¢ < \/iD(U)-

(4.50) /R @/ Polp(v) — p(o)? dg + /R @/[071p(v) — p(@)| g < CX (DU) + £Ga(V) ),

(4.51) /Ra’|2

Proof. Proof of (4.48): We split the proof into two steps.

Vlp(v) = p(3:) = 7 |p(3) — p(3)?| dé < ON (D(U) + $G2(1))

Step 1: Note first that since (y — d3/2)+ > 03/2 whenever (y — d3)+ > 0, we have

(4.52) (y—03)+ < (y—03/2)+ 1y 5550y < (¥ — I3/2)+ (W) < 523(?4 —03/2)7%.

Hence, to show (4.48), it is enough to show it only for the quadratic part, with v, defined
with d3/2 instead of d3. We will keep the notation 7, in Step 2 below.

Step 2: First, using (4.45), we find that for any £ € R,

3
p(v) — p(@)(€)] < /g 10 (p(0) — ()| L)ooy €

¢
(4.53) <C : VP72 10 (p(v) — P()) | L (o) —p(o.) <5} E
0

<¢y/lel+ VD).

For any ¢ such that |(p(v) —p(v))(&)| > 0, we have from (4.44) that |(p(v) — p(0:))(&)| > Is.
Thus using (3.11) and (3.8), we have Q(v(§)|0:(£)) > «, for some constant o > 0 depending
only on é3. Thus,

Q(v]oe)

(4.54) Lpw)-p@)>0p = —



Since 1{\P(”U)—P(”Db)|>0} < 1{|p(’u)—p(1‘))\>0}7 using (4.53), (4.54) and (4.32), we estimate

/ 1d/||p(v) — p(ow)|dé
R

o) s [ o

|d[|p(v) — p(vp)|* d€

S/||<1f

(4.55) < sup . ’p(v)_pOjs)‘ /|

[7 PN g<

wopw) [l (|£| 1) de

e>1/2
ds+2/ [!a|£|d€>

onn (3 12
/ o [[p(v) — p(vp)|*d€ < C\/§D(U).

Indeed, using (4.32) and (4.1) (recalling |a'| = (A\/e)|?%|), we have

2 € —cel¢|
/|a||p p(9)|? d¢ < O )<\E+A€/slz;ﬂe mds),

and for the last term, we take Jy small enough such that for any /) < dy,

/5 |01 {p(w)—p(a)|>0} 4€

Therefore we have

>

29

A —cel€] d :i —cl¢] d é _§|§|d _% 75\/* \/7
€/|s|zl\ﬁe €l de E/Qﬁe |5\5§54|2ﬁe e= 22

As mentioned in Step 1, recall that v, = vy, 5/2 in the above estimate. Then using (4.44),

we have

/ 0/ o p(v) — ploy, ) de = / 0! Po? (— (p(v) — p()) — 63)% de
R R
< / 0/ PoP(—(plv) — p(ie)) — b3/2)7 de
= [ 1P lpt0) = plong )

< C\/:D(U).

For the linear part, using (4.44) and (4.52) with y := —(p(v) — p(?e)), we have

P lbt0) = plang s < - [ 10 lpto) — plan, )P
R

< C\/:D(U).

(4.56)

(4.57)

Hence, we obtain (4.48).
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Proof of (4.49): Since it follows from (4.43) that

Ip(0) — (V)| 1 gp(0)—p(o) <55} = [P(0) = P(0) |1 (o) —p(s.)<ss} < 935
using (4.48), we have

\p(v) - p('DE)‘z - |p(7_)b) - p(ﬁe)‘g 1{p(v)—p(176)§53} d§

- / @ l1p(0) — p@)1p(0) + P(T) — 20(5) Lipe)p(ony iy 0
(4.58) .
< /R |a'||p(v) — p()| (Ip(v) — p(Bs)| + 2|p(Ts) — P()]) Lip(o)—p(a.)<as} A€

< [ 161 (to) ~ ptan) + 2lp(0) — p(an)]) dfsc\fjw).

Proof of (4.50): Thanks to (4.52), it is enough to show the quadratic part, with v defined
with d3/2 instead of d3. For this case, we will keep the notations o5 and v, below without
confusion.

We first decompose the quadratic part into two parts:

/ la! PP |p(v) — p(o)? dé = / a8 |p(v) — p(ay) 2 dé + / 0/ 208 |p(v) — (o) 2 d
R R R

=:Qp =:Qs

First, using the condition 8 = v — a < 1, we have

WPlp(v) = p(w)*,
@il = [ 1P <o

< C/]R ' [|o = B1L () —p(a0) <85 /23 dE-
To control the right hand side, we use (3.10) as follows: If [v — o] > 0, using (3.11), we find
0 — 9| > min(c; '63/2,v-/2 — o).
Taking d, in 2) of Lemma 3.1 such that ey < 6,/2 and min(c; 'd3,v_/2 — &9) > ds, we use
(3.10) with w = 7, v = v and v = v to find that there exists a constant C' > 0 such that
(4.59) Clo = 9] < Q(v]2e) — Q(0]e).

Therefore, using |a’| < e\, we find
(4.60) @l <€ [ WPQUIm) - Q) de < CoA (V)
R

On the other hand, to control s, we will first derive a point-wise estimate (4.63) as
below:
Using |a’| = (\/¢e)|0L|, together with (4.2) and (4.32), we get

Y Qi) de = [ i) de
2e Vv < - a V| U
“1/e : inf|_1/c1/ 0] Jr
c g2 £\ 2
< o= —c(2).
- C)\s)\ C(A)
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Therefore, there exists &y € [—1/¢,1/e] such that Q(v(&),7:(&)) < C(g/N)?. For §p small
enough, and using (3.16), we have
€

|(p(v) = p(2:))(%0)] < €5

Thus, if dg is small enough such that Ce/A < d5/2, then we have from the definition of v
that

(p(v) = p(v5))(é0) = 0.
Therefore, for any € € R,

13
W2(p(v) — p(3,))(E)] = ' /£ 96 (v*/2(p(v) — p(.)) dc|.

To control the right-hand side by the good terms, we observe that since v%/2 = p(v)_(7_o‘)/ 2,
we have

0e (VP2 (p(v) = p(v5))) = D¢ (p(v) "=V ((p(v) - p(2s)))
= p(v)~ /0 (p(o) — p(5))
Ty PO TP o 1y ) 4 p(en)]

2 p(v)
— o829 ey 1@ a2 P(0) —p(Ts) -
v v Us v v Vg
£ ((p(v) — p(s)) o o) :((p(v) — p(2e))
=K
v gppv) —p(s), o
— v Ve
2 p(v) (%)
In particular, note that (by the definition of @) the part K above can be rewritten by
p(v) — p(Us ~ p(v) — p(Us _
K= PPy omsmOe(0) — p(52) = PO g () — (o).

p(v) p(v)

Then, using |0zp(2:)| < C|v] and

we have
10¢ (v*2(p(v) = p(B:)))| < CVP?(10¢((p(v) — p(0:))] + [BL).
Therefore, using (4.45), we have that for any £ € R,

3
0#/2(p(v) — p(5,)) (€)] = ] /£ 26 (v72(p(v) — p(5,))) df]

13
< /5 10 (V%2 (p(v) — P(5))) | L (p0)—p() 565 /214
0

3
< /5 VP2(10e((p(v) = P(05)] + [N L (o) p(a)55/2) 4E
0

1 -
<Cy/lel+ - (\/WJr \//RalvéIW1{p<v>—p<@g>>53/z}d5)‘
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Using the condition f = v — a > 0, we have

8
) v
/a!vé’%ﬂl{p(v) 2)>05/2} € = /avaP Tl O [* L (p(0)—p(5) 52 /24
(4.61) R B
< C/RQWQI [0 = B[ L{p(0)—p(s.)>d0/2} dE-

In addition, using (3.8) and |0.| < C'$|d’|, we have

(162) [Pl = e < O [ Q1010

Therefore we obtain that

46y YEeR () —pe)(©) < Oyl + (VD + 5 VaD))

Now, using (4.14) with (4.1), we have

Q. < c(Pw)+ (5) ) )% [ €l + 1y

< O\ (D(U) + (%) QQ(U)>.

Therefore, this and (4.60) complete the estimate:

5
[P lbt) ~ plo) P de < €3 (D) + 56:0))
Hence using the similar estimates as in (4.56) and (4.57) (i.e., using (4.44) and (4.52) with

y := [p(v) — p(¥:)]), we obtain (4.50).
Proof of (4.51): We first separate it into two parts:

L1 [e2loe)  p(@) P~ 0¥ lp(o) ~ p(a) | de
R
PRI v) — p(Ve 2_p(v) — 1752 d|2|v? — 3B |p(v) — ?752 .
< [ WP (o) = @) = o) = @) P de+ [ 1o Plo” = 07| ln(o) )

-~

=1 =:15

Using the same arguments as in (4.58), it follows from (4.50) that

I

IN

/R 0/ o (1p(v) — p(@) + 285]p(v) — p(D)]) de
CN (D) + EQQ(U)) .

For I, we first separate I into two parts:

/ 1/ PJo? — o ||p(ay) — () ? dé + /R 1/ PJo? — 08|lp(os) — () de .

:Ié’ ZIZS

IN
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Using the assumption 5 < 1, we have
VP — 176
EE 55/ |a,|2q|“ = UL {p(w)—p(i) <55} 4
R v — 7
<C [ 1Pl = o110y

e /R 1/ P(Qule) — Q(05.)) dE < CaAGH(U).

Likewise, we use 8 > 0 to have
72 ‘” ‘
I3 < 53 \a | [0 = 0L gp(0)—p()>65} A€

<c /R o awl{p@),p@sw d€ < C=XGy(U).

Lemma 4.6. Under the same assumption as Proposition 4.3, we have

(4.64) /R @] p(o]5e) — p(o]a)] dé

2 _
gcv€<9wy+6)gxm)+c@xm—gxwy
o) [ lal1QMelo) — Qo] de -+ [ Idlo~ ol dé < € (G2(U) - Ga(0)
R R
Proof. Following the proof of [33, Lemma 3.3] together with (4.47), we have

[ l11Qel) - Gl de + [ la'llo ol de
R R
< [ 101(QUuli) - Q(alin)) dé < C (Ga(U) ~ Ga(D)).

Following the proof of [33, Lemma 3.3], we have
/R a/| [p(o]ie) — p(olie)| de
< /R @] [p(v) - p(D)] dé +C / a/] Qo) — Q(ol5.)) de.

=1 =:1I2

First, using (4.47), we have B
I; < C(G2(U) = Go(U)) -

We separate I; into three parts:

I = / @] Ip(v) — p(®s)] dE + / 10| (0) — P(B2)] Loco jay dE + / 101 1p(0) — p(83)] Lyomo._ oy dE.
R R R

=111 =:I12 =3

By (4.48), we have
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For I15, we first observe that

WP lp) = p(s)|* = p(0) " [p(v) = PP pv)—p(i) 565}

(4.66) = (W) = 1 (p(0)—p(ae)>83} [P(V) — p(ﬁs)lw%a

Since (by the smallness of £y and d3)
Ip(v) — p(vs)] loycv_j2y 2 Ip(v) — p(e)| lryco_joy — Ip(vs) — p(0e) lry<o_y2}
> [p(v) = p(0e)| Lpcv_s2y — 03
(4.67) > |p<v /2) = p(3v-/4)| - &
> 2 Ip(o-/2)  p(Bv_ /1)
using (4.66), we have
_ _\2
Ip(v) — p(vs)| liycw_j2y < Clp(v) — p(’Us)‘ 7 < Cvﬁ‘p P(US)‘ .
Then it follows from (4.63) that for all £ € R,

469 1) ) e © < (I + 1) () + (5) 6.

Therefore, using (4.68) together with the same estimate as in (4.55), we have
(4.69)

I < / en 5 1P~ PO Lo + / y 5 P08) =P L

gc(D<U>+ @(U)) (\/?3 [ i1l de -+ /5 N \Fla'\lﬂd£>
<C (D(U) - U)) <\/§+)\5/§|>1\/T6_08|E’€\d5>

€ €\2
< C\/: <D(U) +(3) Qz(U)) .
For I3, since [p(v) — p(¥s)] 1y>v_ 2y < p(v—/2), we have

lp(v) —p(vs)|,
=/R|0/| P [V — 0|1y /23 {p(v)—p(5)>55} 4&

< C/R |a'|[v = |1 gu>0_ j23nip)—p(5) 585} € < C (G2 (U) — Go(U)) .

Hence, we have

n< c\/f <D(U) n (i)Qgg(U)> +C (G(U) — G2(0))

which gives (4.64).
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Lemma 4.7. Under the same assumption as Proposition 4.3, we have

@) [ o) - 0|1 hulde < 0 (D) + (5) 020) + 55 @)

amy [ @l +lo- nde <05 (p)+(5) @®).

Proof. Proof of (4.70): We first separate it into two parts:
[ o) = plao |1~ i ag
< [ 1) = (@it = R+ [ 1allpto) = p(ac)|1n — el de

= J1 =:Js

We use the definition of v5; and Holder’s inequality to have

Bi= [ 1 llotw) = o] b= el de

(L rw-sora)” (] i)
To estimate [, [a||p(v) —p(@s)‘Qdf, using (4.66) and (4.63), we find that for any £ € R,
4 () - P <o (1 + 1) o (P + () %(U)) -

Following the similar arguments as in (4.55), and using (4.72) with ¢ := %704 (note 1 < ¢ <2

by 0 < o < ), we obtain

A!a’l\p(v)—p(vs)\%g
= d'[[p(v) — p(vs)* d d||p(v) — p(vs)|* d
Jos oy ) = [ o) —pta
D(U) + (i)%(U)) (;/R|GI,Q(U\@E)(15+2/|§>(A)W Ia’llf\qd£>

+ A |£|2eck] df)

9
g4\ et €l>(2)"

Therefore,

22— £\ 2 a/2 , AN
COr/—— — allh—he|"d .
Jp < : (D(U)+<)\> QQ(U)) (/QC\ | | 5)

Using the Young’s inequality (recall 1 < ¢ < 2), we have

1

e o ) € ()7 (-]
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Since (4.32) yields

we have
€\2 C re\2
< _ — e —
<00+ (5) )+ £ (5) o)
For Ja, we use ‘p(f}) — p(f;a)‘ < 43 and Young’s inequality to have
. 1
J2 < 53 /Qc \a'Hh - ha‘ df < 591 (U) + C/]% ’a/’].{p(v)_p(ﬂe)>63} d§

"
:ZJ21

To control Ja1, we observe that since (y — d3/2)+ > d3/2 whenever (y — d3)4 > 0, we have

_ - 0
(4.73) Ip(v) = p(Vs,/2)| = (Ip(v) — (V)| — d3/2)+ > jl{p(v)fp(f)g)>63}‘
Then, using (4.73) and (4.72) (with ¢ := + L) and following the same estimates as in (4.55),
we have

Jo1 < C/R || [p(v) = p(@syy2) P11 () (o) 585} 46
€ €\2

< — - .

<5 (o0+ (5) )
Therefore,

B < 36T (0) + c\/i (D(U) + (§)2g2<U)> .

Hence we obtain (4.70).

Proof of (4.71): The proof follows from the above estimate for Jio as follows:
£\ 2

/ ’a’ | ‘Ué + ‘U - UED df < C/ |a ‘1{p (v)—p(0e)>03} d€ < C\/:( (U) + (X) QZ(U)> .

0

Lemma 4.8. Under the same assumption as Proposition 4.3, we have

(4.74) / WM de < CA(D(U) +(Go(U) = Go(1)) +( ) gg(U)>

(4.75) / o/

< C\ <D(U) +(G2(U) — Go(0)) + ( ) Qz@))

|v —v5|2 |—,8

v?’Q‘dg
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Proof. Proof of (4.74): We first have

L T g /\ ’2d§+/ i 1 ”8'2d5

=1

Since 0 < 8 < 1, we have

\v ol
= 0 [ 110 = 5101 ptenyesny 46 = € [ Jo/PE—0] o = 10t < €

< 0/ 0P| = D11 p(0) - p(5.) <85} dE < C/ o/ [* (Q(v]o:) — Q(vl0.)) d¢
R R
< Ce (G2(U) = Go(U)) -

For I, we separate it into two cases of « > 1 and o < 1.
Case of a« > 1 : Since 8 < v —1 by a > 1, we observe

v P <M =Q) as v—0,
we have

v B8P — o N o
I;= [ |d? | oI )1{p(v)fp(ﬁ€)>53} (Q(v]ve) — Q(v|v)) d

R Q(U‘ﬁa) - ( |U£
<C | |d?(Q]oe) — Q(0]3:)) dé < CeA (Go(U) — Go(U)) .

Case of 0 < a < 1 : Since 170‘ < 1 and

e

vp(0) 3 Q) = v () T o =l = 1,
using (4.59), we have

’Uﬁ_652 Ufpra >3 _ l1-—a ~ — |~
o= [ TR0y )5 (el - QGelen) d
R 0Blp(o) — p(os)] 5 (Qu]5:) — Q(ol))
<c /R d/Plp(w) — p()|'5° (Q(u]de) — Q(ol5.)) de.

Then, using the fact from (4.66) and (4.63) that

3

(o) - oo 5 < (e + 1) (PO + (5) a0,

we have
e\ 2 Yia /9 1 +7a - i~
1.<o(pw)+ (—) 0.) " [ 1k (Ie+1) " @ulo) - Quln)de.
Notice that since 0 < = <1by0<a<l, we have

-« l1-a
1\ v+ 1\ v+
o (!f\ +1)7 < coe (g4 1)

l1—a l—a
< CetTa ne @l (Jeg| + 1)77e < O
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Thus, we have

I < CA( )+ (;) gfz(U)>m (G2(U) — Go(T)) .

Now, using the Young’s inequality with % = ﬁ and % 5T , = 1, and then (4.32), we have
I, < 0A< +(5 ) ) +OX (Ga(U) — Ga(D))
< C/\< ( ) ) +CON (Go(U) — Go(T)) .

Hence we complete the proof
Proof of (4.75): Since C~! < v” < C and [v° — v§| < C, we have

/| |‘\v —vs U’B—’UE ‘dﬁ

. . 7P| .
s4|a'\2<w\|v@—v£\2 o a2+ e a7 4
mf 1,3 38 - [v? — 97|
sc/m S 5 (10— 2| 2 — o)) + ) e
R v v
1 1
< [ WP~ o+ C [ 0Pl - 0%l e,
R vP R v?

=:J

By (4.74), it remains to estimate the term .J. For that, we separate it into two parts:
1 _ 1 _
J = / |a/‘27’7)ﬁ — 0 1pcn 2100020} d§+/ |a/‘27|vﬁ — 0P|l jacyp<an ) dE.
R v R v

:ZJl :ZJQ

Using the same argument as (4.67) together with the definition of v, we have

|Uﬁ - @B‘l{v<v,/2}u{v>2v,} >C >0,

which yields
1
< c/ P — o2 de.
R v
Since

v —0|1gy_ j2<0<au_y < 1P/ (v-/2)||p(v) — p(D)],
we have

1 v
J2—/| '1P— | — ||‘ v =01y jpco<an_y d§
SC/RW| |U_@’1{v,/2§v§2v,}d§

<c /R 10/ |p(v) — p@) Lo j2cvcaoy dE.

Therefore, (4.50) and (4.74) give the desired result. O
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4.8.1. Proof of Proposition 4.3. Proof of (4.36): It follows from (4.64) together with || <
C%ld’| that

_ 2 _
Bi(U) - Bi(0)] < O (D(U) +(5) G0+ (@) - %(U))) .
Proof of (4.37): By (4.70), we have
- €\? 1,
B,0)1 <00 (20) + (5) 60)) + 505 @)
Proof of (4.38): We use (4.43) and (4.49) to have
_ - £
B5(0)~ B O)] = | [ (1(0) = b6 = o0 = (00)) Ly ] < /50O,
Proof of (4.39): Using Young’s inequality together with % <a <1, we first find

C
B(V)| < 80D(0) + 5 [ 1o lplo) ~ p(oo) de,
0JR

[ — 3P
‘7

By(U)| < / 10/110ep(52)° () — p(62) 2 de + / a/||ep(5:-) d,

=:Bg

2
vt —v
Bs()| < D) + /|a |2’ P e,

Using (4.51) and (4.75) together with [9¢p(0.)| < C5la’| and dy te < A < &9, we have

1Bs(U) = Bo(0)| + [B:(U) = B+ (0)| < Oy (D) + 562(V))

IBs(U) = Bs(U)| + [Bo(U) = By(U)| < Cy (D(U) +(00) - 6:0) + (5) 92<U>) .
Therefore, we have
5 9
S 1Bi(U) < S B(0)| + CoD(U) + Oy <(QQ(U) — Go(0)) + ;gg(U)) .
1=3 =6

Since |a'| < Ce, we have

Zw <o /|a\ﬂ|p (va)l2d£+06/|a\ G

Using C~! <o < C and (3.16) together with |p(v) — p(7:)| < d3, we have

/ &0 |p(o) — p(i) 2 dé < C / 1d/|Qo]5:) de < CG(T).
R R
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|v W2 2 =P e
d 2 ) d
/R'“ s<c/|a\ Q) de

< C/R 1'|Q(0]5.) dE < CGa(T),

Moreover, since

we have
Z|B )| < Céo~ 92( 7).

Hence we have the desired estimate (4.39).

Proof of (4.40): First, using (3.15), (3.16) and (4.32), we have

_ _ , , g2
B1(0)+ 55 @) < € [ IWlQuinde < [ 1d1Quli)de < ¢

Then, it follows from (4.35), (4.36)-(4.39) and (4.47) that

By ()] < O + OV (D) + Ga0)) < €5 + CV/aD(D)

Proof of (4.41): We split the proof in three steps.
Step 1: First of all, we use the notations Y%, Y5, Y5 and Y, for the terms of Yy as follows:

P 5 -
Y= /Q Qufin)de - /Q adep(o)(w =)= | o e | adhe(n oy
=Yy =Yy =Yy =Yy
We use (4.48),(4.49), (4.65) together with (4.43) to have
Yo(U) = Yo(U )|+|Y1( ) = (U)!+|Y23(U)—Y2‘S(U)!
(476) <cC / I(]lpv) — Ip(e) = p(@)?] + [Qu]5.) — Qo)

o= 0]+ |p(o) - pwm) i < O\ 5DW) + € (6(0) - 6(0).

On the other hand, (4.71) yields
(4.77)
5

_ _ , o o N 2
YO+ O < [ Qi) +lo- )<y (0 + (5) 6w)).
Next, by the definitions of Gi© in (4.18), we have
V0)|+ W) < CG; W)+ €61 )+ [ | lpo) — o) de
< O(Gr () + G5 (U) + 1By, (U),

Moreover, since

6 (V) < C [ 1) (= Fel + 1p(0) = pl02)) d < € [ [alh = F g + €15, (V)]
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using (4.40), we have

_ 2
Y3+ )] < C [ [allh =Rl dg + O + CVEDW).
R

Therefore, using (4.32), (4.47), and the assumption D(U) < C*e?/), it follows from (4.76),
(4.77) and the above estimate that

2
Y(U) = Yy(O)| + [P )] + Y5 ()] + Y3 (0)] + [%(U)] < O

Step 2: First of all, using Young’s inequality and (3.16), (4.38), we estimate

[ o0 =pt5) (. - p(“)_p@a))ds‘

(1) gt ()" [ Wit -piipas
() s ()" o+ mo) -5

A\ V4 e\ /4 - €
< <> GHu)+cC (X) (QQ(U) + )\D(U)) .
Therefore, this estimate, (4.76) and (4.77) yield

Yy (U) = Yo (U)| + Y7 (U)| + Y5 (U)] + Y5 (U)] + [V (U)]

1/4
< C\/iD(U) +C (G2(U) = G2(U)) + CGy (U) +2 (2) gru+c (

€

A)M G:(U).

Step 3: For the remaining terms, using Holder’s inequality together with |h.| < C Sla'l, we
estimate

S 2 £\? / ’ T2 62 _
vk sc(5)"([1ade) [ - i i < c56r )
2 _ ) — (o)) 2 2
P < e (5) ([lade) [l (n-io- 2220 e < oo,
Therefore, this together with Stepl and Step2 yield
Yy (U) = Yo(O)]? + |Y5(U)* + [Vi(U)] + Y5 (U)
< (1Y (U) = Yy (O)] + [YEU)] + [Y5(U)] + Y5 (U)] + [Y(U)])* + |YE(U)]? + [V(U) P

g2 € = /4 € ¥
<t ( D) + (G(U) ~ 6:(0)) + 67 (U) + (A) g+ (5)" g2<U>> .

4.9. Proof of Proposition 4.1. We now prove the main Proposition 4.1. We split the
proof into two steps, depending on the strength of the dissipation term D(U).
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Step 1: We first consider the case of D(U) > 40*%, where the constant C* is defined as in
Proposition 4.3. Then using (4.40) and taking dy small enough, we have

r) <L+ (14205) 185, @)1 - 670) - 61 0) - (1-05) 6a(0) - (1 - D)
< 2|Bs, (U)| = (1 = 60)P(U)
< gc*i - (1 ~ 6o — 20\/%) D(U)

A
2

€ 1
<20*— —- =D <
<20 - JDW) <0,

which gives the desired result.
Step 2: We now assume the other alternative, i.e., D(U) < 4C*§.

We will use Proposition 4.2 to get the desired result. First of all, we have (4.34), and for
the small constant d3 of Proposition 4.2 associated to the constant C of (4.34), we have

‘p(l_)) _p(ﬁs)| < (53-
Using

Yy(U) =Y (U) — (Y4(U) = Yy(U)) = Y3 (U) = Yi(U) - Ys(U),
we have
YD) <4 (|Y(U)]? + Y,y (U) = Yy (O) + [Y(U) P + [¥a(U)]* + [Ys(U))
which can be written as
—4Y(U)]? < =Yy (U)]? + 4]y (U) = Yo (O)? + 4Y5(U)]? + 4Yi(U)]? + 4]Y5(U) .

Now, let us take dp small enough such that 6y < 3. (In fact, since we see from the proofs
of Lemma 4.5-4.8 that the constants C' in Proposition 4.3 depend on 3 as algebraically
negative power of it, we take dy smaller enough if needed.)

Then we find that for any e < g9(< d3) and /X < §o(< 49),

2
R < = 4 sy )+ 60185, (0)
=7 (U) -G W) = (1= 803 ) Ga(U) — (1= 80)D(U)
LA

o T (Bi0) + BLO)) + b0 (1BU(O)| + B (0)])
(1 83) Ga0) — (1~ 82)D(O)

+;§3 (1Y) = Y, (@)F + %(U)P + V(O + [V (U))

X

<

1

5
+(1+605) (rzsa(U) = By(O)] + 185 (U) = B (O)] + 1By (V)| + 3 rBz»<U>r>

1=3

—Js
61 (U) - G (U) - 3 (62(U) ~ Ga(D)

538

_ EXgz(U) — (03 — 60)D(U),
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where we used D(U) < D(U) by (4.45). We claim that J;, Ja are controlled by the last line
above. Indeed, it follows from (4.36)-(4.39) and (4.41) that for any e/\ < do(< 49),

1/4
n<is ([jD(U) (@) - a@) +6; )+ (2) e+ (5)" %(U))

< O ()" (PW) + @) - 60)) + 65 (W) + 61 W) + S00)

= 573 A A

< 10 (D) + (Ga(U) = Ga(0) + G5 (U) + G (U) + 562(D) )
J2 < OVbo (D(U) + (62(U) = Ga(0) + G2(0)

< 105 (D) + (G:(U) - 62(0)) + $6:(0)

Therefore, we have

YO

<
R(U) < v

+ (Bu(U) + B; (0) + 055 (1By(0)] + 1B (U)])

— (1-85) G2(0) - (1= 8)D(0).

Since the above quantities Y;(U), B1, By (U),G2(U) and D(U) depends only on o through
U, and B1(U) = Z1(v) and Bf (U) = Z; (v), it follows from Proposition 4.2 that R(U) < 0.
Hence we complete the proof of Proposition 4.1.

5. PROOF OoF THEOREM 1.1

5.1. Proof of (1.12) : Well-prepared initial data. For a given datum (v°, u°) satisfying
(1.11), let {(vg,up)r>0 be a sequence of truncations defined by

’UO]_{TSUOST—l} if —r l<ao<rh
vp =14 v_ if o < —r 1,
o if x> r71,
and
u01 if —rl<ax<rl
{7r_1§u0§7‘_1} 1 T ST ST 5
Uy =13 U if z < —r71,
Uy if @ > 1.
Then, we consider a mollification of the above sequence: using ¢, (z) := %qﬁl(\%) where
¢1 is a smooth mollifier with supp¢; = [—1, 1], consider a double sequence {(vy", uy”)}rv>0
defined by

v __r v __ 7
vy =V K du, Uy = Uy *k Py

First, we will show

T 0 e
(5.1) lim lim/RQ(vS’Vlﬁ(y))dzp—/_ Q(vo\v_)d:v+/o Q(v°|vy )d.

r—0v—0
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For a fixed r, since vy — vf a.e., and (%) — v_ a.e. <0 as v — 0, using

Q"19(2)) = Qilv-) = (QUE") — Qwp) + (Qv-) - Q(E(%)) )

1%

—(QGE) -~ Q@) (05" = 9(3)) = Q) (" = v5) = ((5) =),

AN

we have
Q(vg’l’\f;(g)) = Q(vplv-) ae. <0, as v—0.
Likewise,
Q(UG’”W(%)) — Q(vylvy) ae. x>0, as v— 0.
Moreover, since
[og — 9] < max(r™!, ve) L <1y,

we have

Q(vg"[v

L rv _ /L _
0(2) < Gl —o()* < G — ol + 15 (5) — o)
< max(r~ 2701)1{\$|§r*1+1} + |1~) — 1_J|2, v <1

Since 1gjp<p-1413 + |17 — 17|2 € L'(R), the dominated convergence theorem implies

i [ Qi) dx—/ Qoo da:+/ Quflv-)de

Furthermore, since Q(vj|v) < Q(v°|v) € LY(R) and v — v° a.e. as r — 0, we have

h_I,% / Q(vg|v— dx+/ Q(vg|vy)dz / Q(vYv_) dx—i—/ Q(°|vy)dx

which completes (5.1).
Hence by the diagonal extraction of (5.1), there exists a sequence (still denoted by vf) such

that
0 oo
ii_r)lg)/@(v(’ﬂﬁ(i))da::/ Q(vo\v_)dx—i—/ Q(v°|vy )da

In particular, we have from the above construction that v§ converges to v° in L} (R), and
especially :

(5.2) vy =0 in W S(R), s> 0.

loc

where this convergence will be used in the proof of (5.37).
Using the same argument as above, we show
(5.3)
1 a a 2
lim lim | = (uo tu (p(vg’y)v> — @ (z) — v (p (f)”(z))w) ) dx :/
R 2 T x

r—0v—0 —o©

00 ’uo _ l_L‘Q

dzx,
2
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where " (z) = u(x/v) and 0¥ (z) = 0(z/v).
Indeed, since |[v5| < 77! for any small r > 0, we have

v (pe)7) | = o p(g) )] e = (Bu()),

o ey -1 1Y
L@ Y a
<2 Ol [ k(20|
< C(r)Vv,
which means
Hy(p(vg’”)%) 5 (R)%O as v — 0.

Moreover, since 17’(%) — 0 a.e. as v — 0, we have

ro ((r,u)g) _~<§)_ ((g))% 2_) uf —u_|? for ae. z <0,
Yo TV P . \y YAPUL . lub —uy|? for a.e. > 0.

Furthermore, since

(i 09, ~5(2) - (o 2))7))

<2 <|u6’y —al? +

(@)

<C(r) (1{|x\§r*1+1} +a—al’ + | ¢y (@) + | (90)\2> =:g(x),

< C(’I“) (1{|z<r—1+1} + ‘fL — ’EL|2 +

and g € L*(R), the dominated convergence theorem implies
f ; 0"+ ( ( rV)g) ~(x) (~ (x))% 2d
- ) Ny) —a(=) - — x
ulg%) R 2 Yo 7P T “ v AP v z

:/O us—uPdH/m ju—
e 2 0 2

Furthermore, since |uf, — @|? < |u® — 4|? € LY(R) and u, — u

0 o 2 0o |, 2 0o 1,0 _ =2
lim( 7|u0 u_| dr + 7|u0 U] dm) = L il dx,
roo\ ) 2 0 2 2

o —00

O a.e. as r — 0, we have

which completes (5.3). Hence, using the diagonal extraction as before, there exists a se-
quence (still denoted by w) such that

[e3

lim % (w42 (pB)7), — () v (p (@V(”:));)xf o= /

v—0 R T — 00 2

5.2. Proof for the main part of Theorem 1.1. We here present a proof for the second
part (ii) of Theorem 1.1.
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5.2.1. Uniform estimates in v. Let {(v”,u")},~0 be a sequence of solutions on (0,7") to
(1.1) with the initial datum (v§,ug). Our starting point is to apply Theorem 1.2 to the
below functions:

v(t,z) =v"(vt,vx), o(z):=0"(ve), u(t,z)=u"(vt,vx), u(z):=ua"(vr).

That is, using (1.18) in Theorem 1.2 together with (4.14), we have

3

E((v, u)(t,2)|(0, ) (x — X (t)))dw

+/0T /Z (w(t, 2)|5(z — X(2))) dadt
+/OT /OO

VIt 2) |0, (p(u(t, 2)) — p(3(x — X (1)) | dedt
C/oo E((vg,up)(va)|(v,@)(z))dz.

8

(e o]

Then by the change of variables t — t/v, z — /v, we have

/_OO E, (o, u)(t, 2)| (8, @) (z — X, (1)) da

T 0
[ [ 1 @100 )l o - X, (1) dode
+u/ / V=0 (¢, 2) |0, (p(v” (t, 7)) — p(B (2 — X, (£)))) | *dadt
< [ B @)l 7)),

where X, (t) :== vX(t/v), and

(5.4)  BEy((or,u)|(v2,u2)) = % (u1 + V(p(vl)%>x — g — I/(p(vg)%>m>2 + Q(v1]va).

For simplification, we introduce the variables:

@

(5.5) h” :=u” + l/(p(v”)?)x, R = + y<p(6”)%)x,

Then, recalling (1.8), the above estimate implies
/_Z (0", h)(t,2) (3, 1) (@ — X, (1)) da
[ 1eNe w i @ - X)) e
+y/ / Yy=e 0, (p(” (1, 2)) — p(a* (@ — X, (1)) [ dedt

<C/ ((vf, ug)|(”,a"))dx.



Therefore, using (1.12), we find that

for any 0 € (0, 1), there exists v, such that for all v < v,

/ (W B D)) (3 ) (& — X (1)) de

T [e’)
(5.6) T /0 [ 1@ )i (@ - X, (1) doc

T poo
+ V/O /_OO(UV)’Y—CV‘&C (p(vl’(t’gg)) _p({)l/(x N Xy(t))))Fdl‘dt

< C& + 6,
where

& = /OO n((vo,u0)|(@,ﬂ))d:c.

—0o0

5.2.2. Proof of (1.13). We first prove the weak convergence (1.13).

47

e Convergence of {v"},~¢ : For the given two end states vy, we first fix a constant

M > 1 such that

(min{v_, vy}, max{v_,vy}) C (M~ M).

Then we fix the constant kg > 1 in Lemma 3.2, and set

(5.7) K :=max{3M, ko}.

For the constant K > 1, let 1) be a continuous function defined by

B z, fK'<z<K,
(5.8) Y(x)=< K7', ifex< K
K, ifz>K.
Then we set

(5.9) v i=(vY), v i=0Y -

e

Note that the truncation v” will be used in the proof of (1.14) below.

Since
o < max { (K" = "), (v = K) |,

and M~! < #’(z — X,) < M, we use (3.12) in Lemma 3.2 to have

Y| < C’Q(U”W”(a} — X,,)).
Then it follows from (5.6) that for all v < v,

/ Y |dz < C(E +1).

Therefore, {v¥},~¢ is bounded in L*°(0,T; L*(R)). Moreover, since the definition (5.9)

implies that {v”},~0 is bounded in L>*((0,T) x R) € L*>(0,T; L

1
loc

(5.10) {v"},~0 is bounded in L>(0,T; L}, .(R)).

Therefore, there exists v, such that

(511) v = Vo 1N Mloc(<07T) X R)7

(R)), we obtain that
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and
Voo € L(0,7T; L (R) + M(R)).
e Convergence of {u"},~o :
We split the proof into two steps.

Step 1: We will first show convergence of {h"},~0.
For the given two end states u+, we first fix a constant L > 1 such that

L L
(min{u—7 u+}7 ma.X{’LL_, U+}) C ( - 5, 5) .
Then let @ be a continuous function defined by
xz, if |z] <L,
(5.12) plx)=< —L, ifz<—-L,
L, ifx>0L.

Then we set
(5.13) R :=p(h"), hl:=h"—-h".

Note that the truncation h” will be used in the proof of (1.14) below.
Likewise, since

h| < masc { (=h* = L)y, (" = L) },
and —L < h¥(x — X,)) < L, we have
0] < max { (<R = L)y, (b = L)1 } < 07 = B (@ = X)),

Then it follows from (5.6) that for all v < v,
/ |hY|)Pdz < C(E +1).
—00

Therefore, {h"},~0 is bounded in L°°(0,T; L?(R)). Moreover, since {h"},~0 is bounded in
L>®((0,T) x R) C L*(0,T; L? (R)), we have

loc
(5.14) {h"},>0 is bounded in L>(0,T; L% (R)).
Therefore, there exists us, € L>(0,T; L7 (R)) such that
(5.15) R — uy in L®(0,T; LL . (R)).

Step 2: We now prove that u” — us in Miec((0,7) x R).
Since u” = h" — V(p(v”)%) , it is enough to show that
xT

(5.16) V(p(v”)%)x —0 in M((0,T) x R).
In fact, since
<p(vl/)%)z = %p(yv)%p(vu)x _ %(Uy)ﬁp(vy)x, (recall 8 = 7 — ),

it is enough to show that

(5.17) v(v)Pp(v”), =0 in M((0,T) x R).
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For that, we separate v(v”)?p(v"), into two parts:

v(v") p(v")e = v (") (p(v”) —p(0"(z — Xu(t)))) + (") p(0" (x — X, (1)))a

=:J1

For any ¥ € C.((0,7) x R), using (5.6) and (3.8) together with the condition 0 < § < 1,
we find that for all v < v,

/ J1¥dzdt < V\// ()P |(p(v”) — p(2* (z — ‘ \I/dxdt\// (vV)BUdzdt
R+ xR R+ xR R+XR
< C’\/>1 /& + \// l{vu<3v T 1{v”>3v }) Wdzxdt
R+XR

< CVrE + 1\/1 + / [V — (2 — Xy (1)) L{ow>30_) Vdzdt
R+ xR B

< CVrvE + 1\/1 + /R+ RQ (v |ov(x — X, (t))) Vdzdt

< CVryé +1 \/ /upp v”,h”)(t,w)|(f1”,ﬁ”)(az—X,,(t)))dxdt
< CVv(& +1)

Likewise, we find that for all v < v,

/ JoUdzdt < vC (0" (x — Xy(t))) 21 {pr<3o_y Ydrdt
Rt xR Rt xR B

+v / (v")Pp(0" (x — X (t)))al(ur>3, ) Vdzdt
R+ xR

<vC |(0") (z)|dzdt
R+ xR

sov [ @Y @IQ @ — X)) L sy Wi
Rt xR
< yc/ 1 (2)|da + C(Eo + 1),
R

Therefore we have
/ v(”)Pp(v"),Udzdt — 0 as v — 0,
R+t xR
which implies (5.17), and thus,
(5.18) U’ = Us  In Mie((0,T) x R).

Hence we complete the proof of (1.13).
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5.2.3. Convergence of {X,},~0.
Lemma 5.1. There exists Xoo € BV(0,T) such that
(5.19) X, = X in LY0,T), wup to subsequence as v — 0.
Proof. First, since X}, (t) = X'(t/v), it follows from (1.19) that
X0(0)] < C(1+ £ (1)),
where f,(t) := f(%). Notice that (1.19) and (1.12) imply that for any v < v,

S ~
1ol = VIl o) < VC/ 1((vo, h)|(0, b)) dx

< c(/oo n((0°, u0)| (v, a))da + 1).

—00

Thus, f, is uniformly bounded in L'(0,7T). Therefore, X/, is uniformly bounded in L (0, T).
Moreover, since X, (0) = 0 and thus,

t
Xl <cerc [ s
0

X, is also uniformly bounded in L'(0,T).
Therefore, by the compactness of BV (see for example [1, Theorem 3.23|), we have the
desired convergence. O
5.2.4. Proof of (1.14). Consider a mollifier

1 .t
(5.20) ¢(t) ;== =¢(=) for any e > 0,

e’ e

where ¢ : R — R is a nonnegative smooth function such that fR ¢ =1 and supp ¢ = [-1,1].
For the truncations v”, h” defined by (5.9), (5.13) with L, K fixed, we let

T ~
L= [ 6.09) [ n(@ )|, 7)o = X, (s) dods,

Using the definition of the truncations together with (5.6) and fOT ¢ = 1, we find that for
all v < vy,

T
(5.21) L, < / ¢e(s) / n((v”, k") (s,z)|(0", ") (z — X, (s)))dzds < C& + 6.
0 R
Then we have the following.

Lemma 5.2. For the fized constants L, K, let

T
R, = /0 0:05) [ (2" 2°)(5,0)| (5, 0) (& — Xoo(s) s,

Then

L,—-R,

— 0 up to a subsequence as v — 0.
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Proof. Since h”, h, @ are bounded, we have
1B — Rz = X2 — B — a(x — Xoo)?| < Ol (x — X,) — iz — Xuo)].
We separate the right-hand side into two parts:
W (x — X,) — itz — Xoo)| < |WY (2 — X)) — iz — X)) |+ |a(z — X)) — a(z — Xoo)| -

=:I1 =:15

Since h¥ = @ + vp(t")., using ||@” — 1 r) = V|| — Ul L1 (), We have

1oy = 1B = all i gy < 118 — @l gy + vlp(E")all iy < Cr.

Moreover, since ||I2||11r) = [u— — u4 || X, — Xool, it follows from Lemma 5.1 that
T 1 R
| o) [ 51 =@ = X6 — |1~ e — Xoc() s
0 R

<Cv+ C/OOO ¢e(5)| X (s) — Xoo(s)|ds — 0.

Likewise, since v” is bounded, using the definition of Q(:|-), we have
Q0" (2 — X)) — Qu"]3(z — X))
< Q" (x — X)) — QUola — Xeo))| + | Q3 (& — X)) [i¥ (2 — X,) — 5z — Xoo)|
(] + ol — X)) Q7 (2 — X,)) — @ (0l — Xeo))]
< C’@”(w - X)) —o(x — Xoo)|.
Therefore, following the same computations as above, we have the desired result. O

Recalling (5.8) and (5.12), we now consider

/ / b (5)n((0", B)(5,2)|(5, ) (5 — Xoo(5)))drds
(0,7)xR

+ //vVe[Kl,K] $:Q(v”[v(z — XOO))d$dS+//W¢[Kl,K] $=Q(v"|v(z — Xoo))dads .

=:J3 =:Jy

Note that (using (5.21))
Ji+J3s<R,=(R,—L,)+ L, < (R, —L,)+ C& + 0.

For Jo, we use the fact that since @, h” € (min{u_,u;}, max{u_,us}) C (—L/2,L/2), we
find

|h —t(z — Xoo)| < 3|0 — BV (z — X,)| forall B ¢ [-L, L].
Then using (5.6),

9

Ja < 2// qﬁg‘h”—ﬁ”(x—Xl,)fdxdsSC(EO—HS).
vé[-L,L]
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Likewise for Jy4, since v,0" € (min{v,,v+},max{v,,v+}) C (M_I,M), using (3.13) in
Lemma 3.2 with the choice (5.7), we have

Jy < C’// $=Q(v"|0" (z — X,))dzds < C(E + 0).
wW¢[K—1 K]

Therefore, we have

Yit,x) —u(lx — s))[2
[[ e XelP
(0,T)xR

+ //0 . de(s)Q(V(t, z)|v(x — Xoo(s)))dsdz < |R, — L,| + C(& + 9).

(5.22)

Now, it remains to show that the left-hand side of (5.22) is lower semi-continuous with
respect to the weak convergences (5.11) and (5.15).
First of all, using the weak lower semi-continuity of the L?-norm (for example see [22])
together with (5.15), we have

l ol 1 2) Z T~ Xl
OT)xR

< liminf // Pe(s) [ (¢ @) = e XOO(S)Nstdac.
0,T)xR

(5.23)

v—0 2

However, since vo, is a measure in space as voo € L>(0,T; L*°(R) + M(R)), we may use
the generalized relative functional (1.9) to handle the measure v.
In the following lemma, we show the weakly lower semi-continuity of the functional

dQ(v[o(z — Xoo))

in the left-hand side of (5.22). In fact, Lemma 5.3 deals with more general case where
{v"},>0 is the sequence of measures. Without loss of generality, we only handle the case of
v_ > vq, and set

(5.24) Qu ={(t,z) € (0,T) xR | z < Xoo(t)}.
Since X € BV (0,T), we have that

(5.25) Lebesgue measure on R? of 9Qy; (:= the boundary of /) is zero,
and the complement of Oy (:= the closure of Q) in (0,7) x R is as follows:
(5.26) Q) ={(t,2) € (0,T) xR | x > X (1)}
Note that

_ e for (t,x) € Qur,
(5.27) o(r — Xool(t)) = { v, for (t,2) € (Car)°.

Lemma 5.3. Assume vy < v_. Consider the set (5.24) and the properties (5.25), (5.26).
Let ® : RT x R — R be any compactly supported nonnegative function.

Let {vF}22 | be a sequence of positive measures in L>°((0,T) x R) + M((0,T) x R) such that
for some constant Cy > 0 (independent of k),

/ 0(t,2) dQ (v¥lo(x — Xeol))) (1.2) < C,
(0,T)xR
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where
4Q (v*15(e — Xoc(®))) (t.2) = Q (vh]0(a — Xoo(t))) ditde + Q' (V (¢, ) | (¢, ),
where dv*(t, ) := v¥(t, z)dtdx + dv¥(t, x) (by Radon-Nikodym’s theorem), and

= O for (t,x) € Qur,
(5.28) V(t,x):= { oy for (7)€ (u)".

Then, there exists a limit voo € L=((0,T) x R) + M((0,T) x R) such that v¥ — vy, in
Mioe(RT x R), and

/ B(t,) dQ (veo|8(z — Xono(t))) (t.) < Co.
(0,T)xR

Proof. Since v* are positive measures in L>((0,T) x R) 4+ M((0,T) x R), Radon-Nikodym'’s
theorem implies that there exist positive measures v¥ € L®(R) + L}(R) and dv* (singular
part of v*) such that

dvf(t,z) = v (t, x)dtdz + dvF(t, z).
To truncate vs by some big constant, we first use the fact that for any € > 0, there exists
€ > 0 with £ > max(2v_, 21);1) such that for all v > &,

(5.29) (1R @)+ = Q) = (IQ'(¥)] - &),
where v := 0(x — X (t)). Indeed, this is straightforwardly verified by the definition of the
relative functional Q(-|-), and Q(v) — 0 as v — 0.

For such a constant £, we define
ok i inf(oh, ),

Q{(U) — { Q,(/U)il ifov 2_51_17 . ) .
QE =) +QE), ifv<g.
Note that v — Q¢(v) is nonnegative and convex C'-function on [0, 00), and Q:(v) = Q'(v)
(by €71 < v, /2 < ¥). Then, we consider its relative functional: for any vy, vy > 0,

Qe(v1v2) == Q¢ (v1) — Qe(v2) — Q% (va)(v1 — v2).
Then, using (5.29), we have
(5.30) dQe (vF1%) > Qe (vE[9)dtdx + (|Qy (V)| — &) (dv* — vidtdx) — 2edv”,
which means that dQg¢(v*|¥) — [Qg(vé“\\_/)dtd:c + (1Qc(V)| - e)(dv* — v?dtdm) — 2edv*] is
nonnegative measure. Indeed, this is verified as follows: If v¥ < &, then vg =¥, and so
LHS := Q¢ (vf|¥)dtdz + |Q¢(V)|dvf = Q(vf|¥)dtdx + |Q¢(V)|dvf > RHS,

where the last inequality follows from the facts that (by Radon-Nikodym’s theorem) the
k k

measure v* — v is positive and vk — vf = (vF - vg) + oF = ok,
If vf > &, then vf = ¢, and using (5.29), LHS > (|Q¢(¥)| — e)vldtdx + |Qy(V)|dv}. Since
v =V dtdx-a.e. (by (5.27) and (5.28)), we have
LHS > (|Qc(V)| — e)dv” = (|Qu(V)| + e)&dtdx + (|Q¢(V)| — &) (dv* — &dtdx) — 2e£dtda
= (|Qc(9)| + e)édtdz + (|Qe (V)| — &) (dv" — vfdtdx) — 2e¢dtda
)

> Qe(&|9)dtdr + (|Q¢(V)| — &) (dv” — vidtdr) — 2e€dtda.

and
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Thus, using £ = vf < vF < oF, we have (5.30).
Therefore, we use (5.30) to have

. k\m(o "
Co > limsup /(OjT)XRCD(t,x) dQ <v |o(x Xoo(t))> (t,z)

k—o0

k—o0

> lim sup /(O L B [Qeloblo(e — Xoo(1)))dtd

+ (1Qe(V)] = )d(v* — vf) — 2¢dv].
We set Q,, := (Qp7)¢, and define
Q0 = {(t,x) € Y | d((t,2)|QC,) > 6}, V5> 0.

Then we define a smooth function ¢ such that

5 1 on (2,
(5.31) V(¢ z) ._{ 0 om0

Then, using this together with the facts that (5.27), (5.28) and |Q¢(v-)| < [Q¢(v+)| by
vy < v_, we have

Cy > lim sup {/ @Qg(vg\v_)dtdx —i—/ @Qg(vf\m)dtd:c + (1Q¢(v-)| = 5)/<I>w‘fd(vk - vf)

Q)] —2) [ 21— udet - of) - 2¢ [ @ant].
Note that since |v§] < ¢ for all k, there exists v, such that
’Uf — 9, in L*°.

Moreover, since the function v — Q¢(v|c) with any constant c is convex, the weak lower
semi-continuity of convex functions (for example, see [22]) implies

lim inf [/ @Qg(l}f]l})dlﬁd&ﬁ%—/ ®Q5(0§|v+)dtdx
Qur Q

k—o0
m

Z/QM @Qg(v*\v_)dtdx—i—/ PQ¢ (vs|vy)dtdx.

Also, since v*¥ — v4 in Mipo(RT x R), and thus
(5.32) v* — vé“ — Voo — Vs in Miee(RT xR)  (by the uniqueness of the decomposition),

we have

(5.33)

Co> [ 0Qolodtde + | Qoo )drde + (1Q4(w-) =) [ @udd(on —0.)

+(Q W) - <) / B(1 — ) d(vme — 1) — 2¢ / Bdv —: R.

By Radon-Nikodym’s theorem, there exist positive measures v, € L>(R) + L*(R) and dv,
(singular part of vy,) such that

(5.34) dveo (t, ) = v, (t, z)dtdx + dvs(t, ).
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Note that since the measure v* —vg is positive, it follows from (5.32) and (5.34) that ve —vx,
v, — Vs and dvs are all nonnegative.
Since dvse — vidtdr = (vq — vs)dtdx + dvs (by the uniqueness of the decomposition), we
rewrite R in (5.33) as

R =R1+ Rz + Rs,

where

Ry = |Q’5(v)!/@¢i§dvs+|Q2(U+)|/@(1_¢?)dvs7
Roie [  @Qg(uufu- it -+ Qo) [ w0t - vds
+ [ 0Qe(ulo s +1Qu(wn)] [ (1= u)(v, ~ v.)itda,

Rs3 = —3€/<I>dvoo +5/<I>v*dtdm.
Using Qy7 € (Q22,)¢ and (5.31), we have
Ry > (QL(v_)] /d)dvs + |Qg(v+)/ Bl
Qs 020

Since ®dwv; is a positive measure, and
(5.35) Q7 UssoSy = (Qr)°,
we have

lim Pdv, :/ Pduv,.
6—0 Q28 (

Thus,

For R2, we use (5.31) to have

Ro> [ @[Qe(onlo) + Q4o (v — 0] deda

+ [ @[Qcudvn) + 1wt — v Jatd:
Then, we have
Ro > / PQ¢ (vo|v-)dtdx +/ DQ¢ (vg|v4)dtde,
Qs Q2

where we used the equality that for any wi,ws > 0 and any ¢ > 0,
Qg (w1 + wale) < Qe(wie) +[Qg(c)wa.
Indeed, it follows from @; < 0 and the definition of Q¢(+|-) that
Qe(wr + walc) — Qe(wile) — Qg (c)|we = Qe(wr 4+ wa) — Q¢(wr) < 0.
Since (5.35) imiplies

lim @Qg(va\v+)dtd:c:/ PQ¢ (vq|vy)dtde,
6—0 Q20 (Qar)e
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we use (5.25) to have
Ry > / BQe (va5(x — Xoo(t)))dbda.

Therefore, we have

R > /@Qg(va]v(x - Xoo(t)))dtdx—i—/@Qé(Vﬂdvs - SE/CI)dUOO,
that is,

/@Qg(valv(:c — Xoo(t)))dtdz + /@\Qg(V)]dvs <R+ SE/deoo.
Therefore, taking & — oo and using Fatou’s lemma, we have

/@Q(vah)(x — Xoo()))dtdx +/<I>]Q'(V)|dvs <R+ 35/@dvoo.
Then taking € — 0, we have

/@Q(va|v(x — Xoo(t)))dtdx + /<D|Q'(V)|dvs <R

This completes the proof.

0

To apply Lemma 5.3 to (5.22), we define a smooth function t{ such that for any R > 0,

Lig<r < U0 (x) < 1jg)<ap

Then, it follows from (5.22) that

f () e = X
OTXR 2

(5.36)

// PR@)Q (t 2)|5(@ — Xoo()))dsdz < | Ry — Ly| + C(Eo + 6).
0T)><]R

Thus, using Lemma 5.3 together with the weak convergence (5.11), we have

/ / 6o ()L () dQ(vao(t, 2)[3(z — Xoo(s)))dsdar
0,T) xR

v—0

.. R v 5 — S sax.
smmd&mmwmwwmwmxamm

Here, the measure v, has the decomposition (5.34), and

dQ (Voo|v(z — Xoo (1)) (t, ) = Q (va|v(z — Xoo(1))) dtdz + |Q"(V (¢, @) dvs(t, 2),

where V (¢, ) is defined by (5.28) with (5.24).
Then, using RT x (—R,R) /' R' x R as R — oo, we have

// 5) dQ(vso(t, )|z — Xoo(s)))dsda
OTVR

. . R v 7 — S sax.
smmMﬁmmwmm@wwuxamw

v—0
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Therefore, this together with (5.36), (5.23) and Lemma 5.2 yields
oty ) — U — Xoo(s))]?
[ ot s = Xl
(0,T)xR

2
+ //(O,T)XR D= () dQ(voo(t, 2)|0(z — Xoo(8)))dsdz < C(E + ).

Taking ¢ — 0 (recall (5.20)), we obtain that
dQ(voo|0(- — Xoo(+))) € L7(0, T3 M(R)),
and, for a.e. t € (0,7),

st ) — iz — Xoolt))? e
/ ¢ dw+</xeRdQ(vw\v(ﬂf Xoo<>>>) (1) < C(&o + 0).

Since § > 0 is arbitrary, we obtain

/R oo (t, ) — uéx - Xoo(t))|2d:c + (/xe]R dQ(veo|v(z — Xoo(-)))> (1) < C&,

which gives (1.14).

5.2.5. Proof of v (t = 0) = v". In order to prove (1.15), we will first prove the continuity
of v at t = 0:

(5.37) Voot = 0) = 2.
We first claim that
(5.38) {u”},>0 is bounded in L*(0,T; Li,.(R)).

For that, recall from (5.5) that u” = h¥ — Z/(p(v”)%)x. First, we have (5.14). To get a

uniform boundedness of V(p(vV )?)m, we use the same estimates as in Step 2 for the proof
of (5.16). Indeed, since

/| (0(0")7) | = o
v(@")?) (p(e") = p(8* (2 = X, (0)), | + v(0")? (3" (& = X, (6)))a]

< c(ﬁw)ﬁ\(p(v”) — (@ (= X, (1)), + (1 + QW [3* (¢ — X, (1))

IN

FIEYI0+ QI @ - X)) ).
using (5.6), we have
V(p(v”)%)z is uniformly bounded in L?(0,T; L}, .(R)).
Therefore, we have (5.38).
Then, (5.38) together with the equation v{ —uZ = 0 in (1.1) implies
vY is uniformly bounded in L?(0, T} I/Vl;C“(R))

Hence, by Aubin-Lions lemma, this and (5.10) together with (5.11) imply that (up to a
subsequence)
v = v in C([0,T); W, 5H(R)), s >0,

loc

which together with (5.2) completes the proof of (5.37).
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5.2.6. Proof of (1.15). First of all, since Xoc € BV ((0,T")), there exists a positive constant
r = 7(T) such that || Xoo| peo((0,r)) = 7. Then we consider a nonnegative smooth function
¥ : R — R such that ¢ (z) = ¢¥(—z), and ¢'(x) < 0 for all x > 0, and [¢)'(z)| < 2/r for all
rz € R, and

1, if x| <,
v(w) = { 0, if|z|>2r
On the other hand, let § : R — R be a nonnegative smooth function such that 6(s) = 0(—s),
Jg @ =1 and supp 6 = [—1,1], and let

1,,s—0
O05(s) := 59(5 5 ) for any 6 > 0.

Then for a given ¢ € (0,T), and any ¢ < t/2, we define a nonnegative smooth function
pt5(s) 12/ (95(7) — Os(7 —t)>d7'
0
Since vy — uX = 0 by (1.1),, it follows from (1.13) that the limits vo, and us satisfy
639 [ (ehal)ole)dun(sn) - s (2)un (s, a)dsdr) =0,
[0,T]xR
Since ¢} 5(s) = 05(s) — 05(s — t), we decompose the left-hand side above into three parts as

B+ 1I5+15 =0,

where

1= / 65(5)(x)dvso (5, ),
[0,T]xR

o= / 05 (5 — 1) ()dvas (5, 2),
[0,T]xR

<3,

T
= —/ / o1.5(8)V (T)uoo (s, z)dxds.
o Jr
Using (5.37) and the fact that [ ¥(2)vo(s, dx) is continuous in s, we find that as § — 0 :
1 [ v @ds, 1~ [ vt.ds),
R R

and

T
§ _ /
I — /0 /Rw (2)uoo (s, x)dxds.

Therefore, it follows from (5.39) that

A¢@@m@M%WWWM+A?4W@Mﬂ&@M%=0

=:J1 =:Js

To show (1.15) from the above equation, we will use the stability estimate (1.14) and the
Rankine-Hugoniot condition.
For that, we decompose J; into three parts:

J1 = Ju + Jig + Jis,
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where

Ji = /Rw(x) (v (t, dz) — B( — Xoo(t))d),
Ji2 = /R1/J(33) (v(z — Xoo(t)) — 0(x))da,
Jiz = /Rl/)(x) (v(z) — v°(x))da.

Likewise, we decompose Jy into two parts:

Jo = Ja1 + Jao,

where

Ty = / /R ¥(2) (1o (5,2) — Wl — Xoo(s))) dads,

o = /0 t /R W (2)i(x — Xoo(s))dads.

Since | X (t)| < r for all t € (0,7T), we have
Ji2 + Jaz = (v— = v4) Xoo(t) + t(u— — uy).

Then using the Rankine-Hugoniot condition (1.5),, i.e., 0 = —%— gi

Jiz 4+ Jaz = (Xoo(t) — ot) (v- — vy).

To control Ji; by the initial perturbation & = [ n((v?, u®)|(v,u))dz, we recall the

(unique) decomposition of the measure v, by

dve (t, dx) = v4(t, x)dr + vg(t, dx).

we have

Using (3.8), we have
2r

2r
] < /_ZT [va(t,2) — 5z — Xoo(£))| Loz + /_% [va(t, 2) — 9z — Xoo(t))|Lgusao.
—i—/w(x)vs(t,d:c)
\/» \/Q (va(t,2)|0(z — Xoo(t)))da + k= Q(va (t,2)|0(z — Xoo(t)))dz

C2
! W | @IQ (V)los(t,dz),

where note that [Q'(V)| > |Q'(v_)| > 0 by (5.28).
Thus, we use the stability estimate (1.14) to have

|J11| < CVry/& + C&.

Using the same estimates as above, and (1.12), we have

|J13| < CVry/& + C&.

Likewise,

| Jo1| < = / / oo (s, 2) — Uz — s))|dzds < —t\/&)
[=2r,—r]Ulr,2r]
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Hence we have
(v = v4) [ Xoo(t) = ot < C (& + (14 V&),

which completes the proof.

APPENDIX A. PROOF OF PROPOSITION 4.2

We rewrite the functionals Y, 71, 7>, Ga, D with respect to the following variables

— (V) — (i _ P(0=(§)) = p(v-)
w:=p(v) = p(Te), y: o(0s) —p)

Since p(0-(£)) is increasing in &, we use the change of variable £ € R — y € [0, 1].
Notice that a =1 — Ay and |a — 1] < 03 by (4.12), and

dy — p(d)
(&-1) d¢  ploy) —p(v)’

As in [33, Proposition 3.4], we use the same notations:

where [p(vy) — p(v-)| = &.

A —p'(v_ _
W 2w, e p'(v-)p(v-)
€ v+1

First of all, note that Yy, Z;,Zo, G are respectively the same functionals as Yy, By, B2, G2 in
[33, Proposition 3.4] except for the term % [ a”|p(v) — p(@<)|*d€ in By, which is negligible
by Zs because of |a”| < Celd’| (see [33, (2.29) and (3.31)]).
Thus, it follows from [33, (3.39), (3.34), (3.33), (3.35)] that

1 1
/ W2dy+2/ W dy
0 0

AQ 1
2()476*3|Il| < (1 + C(Eo + 53))/ w2 dy,
0

A2 ay (A 1
s (3 (2) ) [ 0

)\2 a A 1 9 1 1
—20, =G < (-2 =) +Cds W2dy+= [ W3dy+Ceo [ |Wdy.
Te3 o \¢ 0 3 Jo 0

Therefore, it remains to estimate the diffusion D as follows:
First, by the change of variable, we have

D= /01(1 — ) |9, w|*? (;ﬁ{)dy.

> 0.

2
)\72|Yg|2 «_ ™

T3 b3 — O30t

1
+ 053/ w? dy,
0

(A.2)

Since it follows from (3.2) that

5p(5.) = ou(in — v_) + P ZPL),
using (A.1), we find
(A3) 5'5552:2 = 01(0'3(’(78 _’U,) +p(66) _p(U,))
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Since the right-hand side of (A.3) is the same as the one in the proof of [33, Lemma 3.1],
we have
o dy € < B — v B — vy >

= p + =
y(—y)df  oc(v- —vy) \p(ve) —p(v-)  p(vg) —p(0e)
Thus, it follows from the proof of [33, Lemma 3.1] that

W dy e

y(l—y)d§ 2,
Then, using ](vﬂ/f)?) — 1| < 043, we have

1 dy ! VP dy
S (1_ 2,8 (Y gy — (1 — / 20" (Y
D > (1 A)/O o,ulo” (G¢ )y = (=) [ 10y 2592 (G )av

1
13
> -0 (5 -0 cn) [Lua- ol

Qy

< Ce%.

3

1
> (- Cloat =) [yt - wlouPdy,
Oy 0

After the normalization, we obtain

)\2 1
(A4) ~20,%5D < ~(1=Cleo +5) [ y(1—0)|o, WPy
0

To finish the proof, we first observe that for any ¢ < ds,

Reg(v) < —€§3|Yg<v>|2 (14 65)|T ()

+ (1405 (5)) Z20) = (1= (5) ) G20 = (1 = 8)D().
Then, (A.2) and (A.4) together with g9 < d3 imply

)2 1 1 ) 1
2 — < — 2
Oy <€3> R.5(v) < .55 (/0 W*dy + /0 Wdy>

9 1 1 1
o [ Wiy e [ WPy - (1= 0.8 [ - )lo WP dy
0 0 0

To finish the proof, we use the nonlinear Poincaré type inequality [33, Proposition 3.3]
as follow:

2

1
+(1+ 0*53)/ W2 dy
0

Proposition A.1. [33, Proposition 3.3] For a given Cy > 0, there exists d3 > 0, such that
for any 6 < 92 the following is true.
For any W € L%(0,1) such that \/y(1 —y)0,W € L?(0,1), if fol (W (y)]?dy < Cy, then

1 1 1 2
—5</ Wzdy+2/ Wdy>
(A.5) 0 0

1 1 1
o [wsayes [ WPdy- -5 [ ya-ylo,WEdy <o
0 0 0

First, using the same estimate as in [33, (3.38)], we find the constant C; > 0 such that

1
+(1+5)/ W2 dy
0

1
/ W2dy < C;.
0
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Then, let us fix the value of the 2 of Proposition A.1 corresponding to the constant Cj.
We consider § = max(C,,C,)d3, and choose d3 small enough, such that ¢ is smaller than
0. Then we have

22 1 1 1 2 1
20, | 5 ) Res(v) < —— /WQdy+2/ W dy +(1+52)/ W2 dy
g3 ’ ) 0 0 0

9 1 1 1
by [ Whdyrs [ Wldy— (-8 [y - g)lo, W d.
0 0 0

Therefore, using Proposition A.1, we have

)\2
2a'y 673 Re,&(v)goa

which completes the proof.

REFERENCES

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems,.
Ozford Mathematical Monographs, 2000.
[2] S. Bianchini and A. Bressan. Vanishing viscosity solutions to nolinear hyperbolic systems. Ann. of
Math., 166:223-342, 2005.
[3] D. Bresch and B. Desjardins. Existence of global weak solutions for 2d viscous shallow water equations
and convergence to the quasi-geostrophic model. Comm. Math. Phys., 238:211-223, 2003.
[4] D. Bresch and B. Desjardins. On the construction of approximate solutions for the 2d viscous shallow
water model and for compressible navier-stokes models,. J. Math. Pures Appl., 86(9):362-368, 2006.
[5] D. Bresch, B. Desjardins, and C.K. Lin. On some compressible fluid models: Korteweg, lubrication,
and shallow water systems,. Comm. Partial Differential Equations,, 28:843-868, 2003.
[6] S. Chapman and T.G. Cowling. The mathematical theory of non-uniform gases. Cambridge University
Press, London, 3rd ed., 1970.
[7] G.-Q. Chen, H. Frid, and Y. Li. Uniqueness and stability of Riemann solutions with large oscillation in
gas dynamics. Comm. Math. Phys., 228(2):201-217, 2002.
[8] G.-Q. Chen and M. Perepelitsa. Vanishing viscosity limit of the Navier-Stokes equations to the Euler
equations for compressible fluid flow,. Comm. Pure Appl. Math., 63(11):1469-1504, 2010.
[9] E. Chiodaroli. A counterexample to well-posedness of entropy solutions to the compressible Euler sys-
tem. J. Hyperbolic Differ. Equ., 11(3):493-519, 2014.
[10] E. Chiodaroli, C. De Lellis, and O. Kreml. Global ill-posedness of the isentropic system of gas dynamics.
Comm. Pure Appl. Math., 68(7):1157-1190, 2015.
[11] E. Chiodaroli, E. Feireisl, and O. Kreml. On the weak solutions to the equations of a compressible heat
conducting gas. Ann. Inst. H. Poincaré Anal. Non Linaire, 32(1):225-243, 2015.
[12] E. Chiodaroli and O. Kreml. On the energy dissipation rate of solutions to the compressible isentropic
Euler system. Arch. Ration. Mech. Anal., 214(3):1019-1049, 2014.
[13] K. Choi, M.-J. Kang, Y. Kwon, and A. Vasseur. Contraction for large perturbations of traveling waves
in a hyperbolic-parabolic system arising from a chemotaxis model. https://arziv.org/abs/1904.12169.
[14] K. Choi and A. Vasseur. Short-time stability of scalar viscous shocks in the inviscid limit by the relative
entropy method. SIAM J. Math. Anal., 47:1405-1418, 2015.
[15] P. Constantin, T. D. Drivas, H. Q. Nguyen, and F. Pasqualotto. Compressible fluids and active poten-
tials,. Ann. Inst. H. Poincaré Anal. Non Linéaire, To appear, 2019.
[16] C. M. Dafermos. The second law of thermodynamics and stability. Arch. Rational Mech. Anal.,
70(2):167-179, 1979.
[17] C. De Lellis and L. Székelyhidi. The Euler equations as a differential inclusion. Ann. of Math.,
170(3):1417-1436, 2009.
[18] C. De Lellis and L. Székelyhidi. On admissibility criteria for weak solutions of the Euler equations.
Arch. Ration. Mech. Anal., 195(1):225-260, 2010.



(19]
20]
(21]

(22]

63

R. J. DiPerna. Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J.,
28(1):137-188, 1979.

R. J. DiPerna. Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal.,
82(1):27-70, 1983.

R. J. DiPerna. Convergence of the viscosity method for isentropic gas dynamics. Comm. in Math. Phys.,
91:1-30, 1983.

L. C. Evans. Weak convergence methods for nonlinear partial differential equations,. CBMS Regional
Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences,
Washington, DC,, 74, 1990.

E. Feireisl. Vanishing dissipation limit for the Navier-Stokes-Fourier system. Commun. Math. Sci.,
14(6):1535-1551, 2016.

J.-F. Gerbeau and B. Perthame. Derivation of viscous saint-venant system for laminar shallow water;
numerical validation,. Discrete Contin. Dyn. Syst. Ser. B, 1(1)(2001):89-102, 2018.

J. Goodman and Z. Xin. Viscous limits for piecewise smooth solutions to systems of conservation laws.
Arch. Rational Mech. Anal., 121:235-265, 1992.

B. Haspot. New formulation of the compressible navier-stokes equations and parabolicity of the density,.
arXw:1411.5501.

B. Haspot. Porous media, fast diffusion equations and the existence of global weak solution for
the quasi-solution of compressible Navier-Stokes equations,. Hyperbolic Problems: Theory, Numerics,
Applications-Methods and Applications of Analysis,, 20(2):141-164, 2013.

B. Haspot. Existence of global strong solution for the compressible Navier-Stokes equations with de-
generate viscosity coefficients in 1D,. posted on arXiv,, 2014.

B. Haspot. Weak-strong uniqueness for compressible Navier-Stokes system with degenerate viscosity
coefficient and vacuum in one dimension. Commaun. Math. Sci., 15(3):587-591, 2017.

D. Hoff and T. P. Liu. The inviscid limit for the Navier-Stokes equations of compressible isentropic flow
with shock data. Indiana Univ. Math. J., 38:861-915, 1989.

M.-J. Kang. L3-type contraction for shocks of scalar viscous conservation laws with strictly convex flux.
https://arziv.org/pdf/1901.02969.pdf.

M.-J. Kang. Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic mag-
netohydrodynamics. Kinet. Relat. Models, 11(1):107-118, 2018.

M.-J. Kang and A. Vasseur. Contraction property for large perturbations of shocks of the barotropic
Navier-Stokes system. J. Eur. Math. Soc. (JEMS), To appear. hitps://arziv.org/pdf/1712.07348.pdf.
M.-J. Kang and A. Vasseur. Global smooth solutions for 1D barotropic Navier-Stokes equations with a
large class of degenerate viscosities. hitps://arziv.org/abs/1907.12938.

M.-J. Kang and A. Vasseur. Criteria on contractions for entropic discontinuities of systems of conser-
vation laws. Arch. Ration. Mech. Anal., 222(1):343-391, 2016.

M.-J. Kang and A. Vasseur. L2-contraction for shock waves of scalar viscous conservation laws. Annales
de UInstitut Henri Poincaré (C) : Analyse non linéaire, 34(1):139156, 2017.

M.-J. Kang, A. Vasseur, and Y. Wang. L?-contraction for planar shock waves of multi-dimensional
scalar viscous conservation laws. http://arziv.org/pdf/1609.01825.pdf.

N. Leger. L? stability estimates for shock solutions of scalar conservation laws using the relative entropy
method. Arch. Ration. Mech. Anal., 199(3):761-778, 2011.

N. Leger and A. Vasseur. Relative entropy and the stability of shocks and contact discontinuities for
systems of conservation laws with non-BV perturbations. Arch. Ration. Mech. Anal., 201(1):271-302,
2011.

A. Matsumura and Y. Wang. Asymptotic stability of viscous shock wave for a one-dimensional isentropic
model of viscous gas with density dependent viscosity,. Methods Appl. Anal., 17:279-290, 2010.

A. Mellet and A. Vasseur. Existence and uniqueness of global strong solutions for one-dimensional
compressible Navier-Stokes equations. SIAM J. Math. Anal., 39(4):1344-1365, 2007/08.

D. Serre and A. Vasseur. L?-type contraction for systems of conservation laws. J. Ec. polytech. Math.,
1:1-28, 2014.

D. Serre and A. Vasseur. About the relative entropy method for hyperbolic systems of conservation
laws. Contemp. Math. AMS, 658:237-248, 2016.

D. Serre and A. Vasseur. The relative entropy method for the stability of intermediate shock waves; the
rich case. Discrete Contin. Dyn. Syst., 36(8):4569-4577, 2016.



64

KANG AND VASSEUR

[45] V.V. Shelukhin. On the structure of generalized solutions of the one-dimensional equations of a poly-

tropic viscous gas,. J. Appl. Math. Mech., 48(1984), 665-672; translated from Prikl. Mat. Mekh.
48(1984), no. 6, 912-920.

[46] G.G. Stokes. On a difficulty in the theory of sound,. Philos. Mag., 33:349-356, 1848.
[47] A. Vasseur. Time regularity for the system of isentropic gas dynamics with v = 3. Comm. Partial

Differential Equations, 24(11-12):1987-1997, 1999.

[48] A. Vasseur. Recent results on hydrodynamic limits. In Handbook of differential equations: evolutionary

equations. Vol. IV, Handb. Differ. Equ., pages 323-376. Elsevier/North-Holland, Amsterdam, 2008.

[49] A. Vasseur. Relative entropy and contraction for extremal shocks of conservation laws up to a shift. In

Recent advances in partial differential equations and applications, volume 666 of Contemp. Math., pages
385—404. Amer. Math. Soc., Providence, RI, 2016.

[50] A. Vasseur and Y. Wang. The inviscid limit to a contact discontinuity for the compressible navier-

stokes-fourier system using the relative entropy method. SIAM J. Math. Anal., 47(6):4350-4359, 2015.

[61] A. Vasseur and L. Yao. Nonlinear stability of viscous shock wave to one-dimensional compressible

isentropic Navier-Stokes equations with density dependent viscous coefficient,. Commun. Math. Sci.,
14(8):2215-2228, 2016.

[62] S. H. Yu. Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws.

Arch. Rational Mech. Anal., 146:275-370, 1999.

(Moon-Jin Kang)

DEPARTMENT OF MATHEMATIC & RESEARCH INSTITUTE OF NATURAL SCIENCES,
SOOKMYUNG WOMEN’S UNIVERSITY, SEOUL 140-742, KOREA

E-mail address: moonjinkang@sookmyung.ac.kr

(Alexis F. Vasseur)

DEPARTMENT OF MATHEMATICS,
THE UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TX 78712, USA

E-mail address: vasseur@math.utexas.edu



