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ABSTRACT

We generalize the explicit quadratic Chabauty techniques for integral
points on odd degree hyperelliptic curves and for rational points on genus
2 bielliptic curves to arbitrary number fields using restriction of scalars.
This is achieved by combining equations coming from Siksek’s extension
of classical Chabauty with equations defined in terms of p-adic heights at-
tached to independent continuous idele class characters. We give several
examples to show the practicality of our methods.

1. Introduction

Let K be a number field and let X/K be a smooth projective curve of genus
g > 2. Then, by Faltings’ theorem, the set of rational points X (K) is finite, but
at present no general algorithm for the computation of X (K) is known. When
the Mordell-Weil rank r of the Jacobian J/K is less than g, the method of
Chabauty [16], made effective by Coleman [17, 30], can often be used to compute
a finite subset of X (K,) containing X (K), for any prime p of good reduction
for X. Combined with other techniques such as the Mordell-Weil sieve [14],
this suffices to compute X (K) exactly in many situations. In principle, this
method can be used also to compute rational points on elliptic curves, but it
only applies to the trivial case r = 0.
The method of Chabauty-Coleman relies on the image of the map

(1.1) log: J(K)® K, — H*(Xg,, )"

having positive codimension, which is used to write down abelian integrals van-
ishing at the rational points. Kim [23, 24] proposed to extend this approach to
curves with r > g, by replacing the Jacobian with non-abelian Selmer varieties
and the abelian integrals with iterated Coleman integrals. This requires tech-
niques from p-adic Hodge theory and, in general, appears to be quite difficult
to use for computations of X (K). However, the simplest non-abelian instance
of Kim’s program has been made explicit in various circumstances.

For now suppose that K = Q. The basic idea is to use a p-adic height
function, which is a quadratic form h: J(Q) — Q,. We can decompose h into
asum h = 3 h, of local terms h,: Div’(Xg,) — Q,, where v runs through
all prime numbers and h, (D) = 0 for all but finitely many v if D € Div®(Xg)
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(see [18, 1]). If (1.1) is injective, then we can write down a basis Q of the
quadratic forms on J(Q) ® Q, in terms of products of abelian integrals, and we
can write h as a linear combination h = qug ogq over Q. Hence we find

(1.2) Zaqqfhp :Zh”'

qeQ v#p
The left hand side can be pulled back to X (Q) and extended to a locally analytic
function on a subset S, C X (Q,,). If the pull-back of the right hand side vanishes
on [],,, Sy N X(Q) for some S, C X(Q,) or, more generally, if we can control
the image, then we get a locally analytic function on S, which takes values on
[1, So N X(Q) in an explicitly computable finite subset of Q.

One context in which this idea has been made explicit is the one of integral
points on certain hyperelliptic curves. Suppose that X is hyperelliptic, given by
a model y? = f(z), where f € Z[x] is monic of odd degree and has no repeated
roots. It is shown in [2] that

(1) the function 7(z) := hp(z — 00) is a Coleman function on X (Q,) \ {oo},
which can be expressed as a double Coleman integral ([2, Theorem 2.2]);

(2) for v # p, the function z — h,(z — 0o) takes values on the v-integral
points of X(Q,) in an explicitly computable finite set T,, C Q, (]2,
Proposition 3.3]), which is the set {0} for almost all v.

These results do not use Kim’s approach directly; the first uses p-adic Arakelov
theory whereas the second is based on intersection theory on arithmetic surfaces.
Let U = Spec Z[z,y]/(y* — f(x)). Together with the discussion above, it is then
easy to deduce

THEOREM 1.1 ([2, Theorem 3.1]): Suppose that r = g and that the map in (1.1)
is an isomorphism. Then there exists an explicitly computable finite set T C Q,

and an explicitly computable non-constant Coleman function p: U(Z,) — Q,
such that p(U(Z)) C T.

Here and in the following we write that certain p-adic objects are explicitly
computable if we can provably compute them to any desired p-adic precision;
see Remark 6.1.

The first goal of the present article is to extend Theorem 1.1 to general number
fields. Fix a prime number p such that X has good reduction at all p | p and
fix a nontrivial continuous idele class character x: A} /K* — Q. This choice
induces Q,-linear maps ty : K, — Q,, for all p | p and a p-adic height pairing hX
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with values in Q. This can be decomposed into a sum of local height pairings
and the local heights hi,‘ are of the form tif o7y for some Coleman functions 7.
Following a similar extension of classical Chabauty due to Siksek [34], we work
in X(K ® Qp) rather than in X (K,) for a single place p | p, and we consider
the composition

(1.3) log: J(K) ® Qp — Resg/q(J)(Q) ® Qp — Lie(Resg/q(J))q, -

Let 0: X(K) — X(K ® Q,) denote the embedding induced by the product of
the completion maps K — K ® Q, = lep K.

THEOREM 1.2: Suppose that (1.3) is injective. Then there exists an explicitly
computable finite set TX C Q, and an explicitly computable non-constant lo-
cally analytic function pX: U(Ok ® Z,) — Qp, both dependent on x, such that
pX(e(U(Ok))) C Tx.

Remark 1.3: One can obtain a slight practical improvement of the theorem by
noting that the sets TX arise, just as in [2], from possible values of the local
components hX, and these values are highly dependent for varying y because
they are just the products of a certain intersection pairing with a constant
depending on x, (see (2.6)). Thus, picking a basis {x;} for the space of idele
class characters one may prove that the vector valued function p = (pX*,...)
takes on o(U(Ok)) a finite computable set of possible values, which is smaller

than the obvious product of the TX:. For simplicity we ignore this point here.

See Theorem 4.2 below and its proof. Note that both Theorem 1.1 and
Theorem 1.2 hold true when g = 1.

The method of [2] was generalized by the first author and Dogra in [6] to
rational points on smooth projective curves, satisfying some additional condi-
tions. In contrast to the proof of Theorem 1.1 in [2], this generalization uses
Kim’s approach directly, relating certain Selmer varieties to p-adic heights as
constructed by Nekovér [31], via p-adic Hodge theory.

In a special case, this was turned into an explicit algorithm to compute a
finite set of p-adic points containing the rational points of X. In particular, let
X be a bielliptic curve of genus 2 over a number field K. Then X admits degree
2 maps ¢, p2 to two elliptic curves Fy and Es, respectively.

THEOREM 1.4 ([6, Theorem 1.4]): Suppose that K is Q or an imaginary qua-
dratic field in which p splits, and that E, and FEs each have rank 1 over K; let
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p | p. Then there exist a nontrivial continuous idele class character x, an explic-
itly computable finite set TX C Q, and an explicitly computable non-constant
Coleman function pX: X (K,) — Q,, such that pX(X(K)) C TX.

This explicit result from [6] can alternatively be proved only from properties
of the local heights on the elliptic curves E; and Theorem 1.1 for each FE;.
Therefore, our approach to Theorem 1.2 can be used to extend this elementary
proof of Theorem 1.4 to general number fields K.

THEOREM 1.5: Suppose that (1.3) is an injection for each E;; let Q; denote
a set of Q,-valued functions on E;(K ® Q,) which restricts to a basis of qua-
dratic forms on E;(K). For every nontrivial continuous idele class character
X, there exist explicitly computable constants oy, , 85, € Q, and an explicitly
computable finite set TX C Q, such that the function

pX:X(K®Qp)—>Qp

defined by
p(2) =Y (h¥(#1(2)) — hiy (02(2p)) — 25 (2 (2p)))
plp
- Y asa(@@)+ D BLaea(2)
1€Q1 q2€Q2
satisfies

PXo(X(K))) c T
here X(K ® Q) is the subset of X(K ® Q,) where pX is well-defined and
o(X(K)) is its intersection with (X (K)).

See Theorem 5.2 for a more precise formulation. If we want to use Theo-
rem 1.2 (respectively Theorem 1.5) to actually compute integral (respectively
rational) points, then we need enough functions pX so that their common zero
set is finite. In order to achieve this, we require at least [K : Q] = dim Resg /g X
such functions.

Over the rational numbers, the space of continuous Q,-valued idele class
characters has dimension 1, so up to a scalar factor, Theorem 1.2 (respectively
Theorem 1.5) only leads to one locally analytic function which vanishes at the
integral (respectively rational) points. In general, the dimension of this space is
at least ro+1, where r5 is the number of conjugate pairs of non-real embeddings
of K into C (with equality if Leopoldt’s conjecture holds). Hence we can expect
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r9 + 1 independent functions. Combining our functions with Siksek’s work, we
expect that generically, we get a method to compute integral or rational points

when
(1.4) r+1k(0Ox) <[K:Q]-g.

As in Siksek’s work, our approach will usually fail if X can be defined over a
subfield F' of K and if

rk(Jac(X)/F) +1k(Of) > [F: Q] - g.

It would be interesting to investigate conditions which guarantee that our
functions cut out a finite set. See recent work of Dogra [20] and of Hast [22] for
discussions of finiteness issues related to ours, but working directly with Kim’s
approach.

However, the focus of this article is on developing methods for computing inte-
gral or rational points, not on theoretical conditions guaranteeing finiteness. To
illustrate the practicality of our method, we give several examples ! , combining
our techniques with the Mordell-Weil sieve following [3] and [6, Appendix BJ.
In particular, we compute

e the Oy /—3)-integral points on the genus 2 curve defined by y* = z° —

z* + 2% + 22 — 22 + 1, see Example 6.5. Its Jacobian is an optimal
quotient of Jo(188) and has rank 2 over Q and rank 4 over Q(v/—3).

e the Q(i)-rational points on the bielliptic modular curve Xo(91)", see
Example 7.1. Note that Theorem 1.4 does not apply here, since the
Mordell-Weil rank of the Jacobian of X((91)" over Q(¢) is 4. Its rank
over Q is 2.

e the Q(v/34)-rational points on the bielliptic curve X : y? = 26 + 22 +1,
see Example 7.2. Inspired by a problem in Diophantus’ Arithmetica,
Wetherell determined the rational points on X in his thesis [38]. The
rank of the Jacobian of X over Q is 2 and the rank over Q(v/34) is 3.

It is immediate that Siksek’s method does not apply to these examples because
the respective ranks are too large. They might be amenable to an approach via
elliptic curve Chabauty as in [13] (the relevant Galois group in the first example
is of order 10), but to our knowledge the only existing implementations of this

1 We focus on examples over quadratic fields because some of the restrictions of our method
are much easier to satisfy for such fields than for a higher degree number field, see
Remark 6.6.
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method require the base field to be Q. We are also not aware of any method for
computing integral points on hyperelliptic curves over number fields that could
have succeeded in the first example.

The outline of the paper is as follows: After setting some notation, we give an
explicit description of continuous idele class characters and the p-adic heights
associated to them in Section 2. We then recall Siksek’s extension of Chabauty-
Coleman in Section 3. In Section 4 we extend the quadratic Chabauty tech-
niques for integral points on odd degree hyperelliptic curves introduced in [2]
and prove Theorem 1.2. Similarly, Section 5 is devoted to an extension of the
explicit methods for bielliptic curves of genus 2 from [6] and contains a proof
of Theorem 1.5. We then turn to algorithmic details of these methods and give
several examples for curves of small genus defined over quadratic fields in Sec-
tions 6 and 7. Finally, we discuss how we can provably find the solutions of the
power series equations resulting from our methods in Appendix A.

It would be interesting to extend the explicit results in [5] and [7] to general
number fields. We have not attempted this, but rather focused on extending
those quadratic Chabauty results which do not require p-adic Hodge theory.
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1.1. NoTATION. We fix, once and for all, the following notation.

K a number field

Ok the ring of integers of K,

d the extension degree [K : Q)],

(ri,72) the signature of K,

K the rank r; + 72 — 1 of the unit group O,
hx the class number of K ,

K, the completion of K at a place v,

P an odd prime number, unramified in K ,
P1,.- s Pm C Ok the primes of Ok lying above p,

oj: K — Kj = K,, the completion of K at p;,

o the ring of integers of K,

&q a generator of q"% if g C K is a prime ideal .
(K ®Qp)Y HT:l Homg, (K, Qp).

2. p-adic heights

2.1. CONTINUOUS IDELE CLASS CHARACTERS. In this section, we recall contin-
uous idele class characters

X:ZX1J:AF</K**>QP

and discuss how to construct them explicitly. These characters are of great
importance in Iwasawa theory, as they correspond to Z,-extensions of K. We
shall not use this interpretation; for us, the main application is the explicit
construction of p-adic heights in §2.2.

First we note the following:

e For any prime q t p we have xq(O}}q) = 0 because of continuity. So if
Tq is a uniformizer in K, then x4 is completely determined by xq(mq).
Equivalently, we can use x4(q), where ¢ is the underlying prime number,

or Xq(&q)-
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e For any j € {1,...,m}, there is a Q,-linear map t;‘ such that we can
decompose
N Xpj
(2.1) 0; Qp,
K

because xyp, takes values in the torsion-free group (Qp,+). We call the

t3 trace maps.

Remark 2.1: If a continuous idele class character x is ramified at p;, that is, if
the local character xp; does not vanish on O, then we can extend log; to

(2.2) log;: K7 — K;
in such a way that the diagram (2.1) remains commutative.

By the above, a continuous idele class character of K determines an element
tX of (K ® Q,)". We now show that the converse also holds.

LEMMA 2.2: A continuous idele class character x: A% /K* — Q, is uniquely
determined by

= (tf,...,t5) € (K®Q,)Y
where the t3 are as in (2.1).

Proof. We first show that tX determines x,, for 1 < j < m. Indeed, since
0i(&p,) is a unit in O; for i # j, we have

Xp, (05(&;)) ZXpl i(&p,)) = *Zti‘((bgi(ai(fpj)))a
i#] i#]

SO Xp; is completely determined by ¢X.

Now let q be a prime not dividing p. Then x4 is determined by its value
on &, (embedded into K, via 04) and vanishes on O3. Hence xq is completely
determined by tX, since

m

Xa(oq(&q)) ZXP ci(&q)) th log;(0i(&q))) - u
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More generally, the proof of Lemma 2.2 shows that every t € (K ® Q)Y
determines a character x: A}, — Q, via (2.1). We now investigate which
t e (K®Q,)Y give rise to a continuous idele class character.

LEMMA 2.3: A homomorphism
t=(t1,...,tm) € (K®Q,)"

gives rise to a continuous idele class character x if and only if

(2.3) t1(logy (01(€))) + - .. + tm(l0g,, (om(€))) = 0
for all e € O}

Proof. Suppose that y is a continuous idele class character, determined by ¢ =
tX € (K ®Q,)" as in Lemma 2.2. Note that for a unit € € O}, the value x,4(¢)
depends only on ¢4 for q | p and is 0 for all other primes q. Hence (2.3) must
be satisfied.

Conversely, suppose that t € (K ® Q)" and let x denote the character
x: Ax — Q, associated to ¢ as in Lemma 2.2. Given € K*, we need to show
that x(8) = 0. Suppose that (8) = [[q;* is the decomposition of the fractional
ideal (), for primes q; of K. Then

(,BhK) - Hq;”‘ei = H(ngi)ei - (Hf;:) ’

so that g'x = Hfszu for some unit v € OF. But since the construction of x
was done so that x(&q) = 0 for every q and x(u) = 0 for every unit, we see that
x(B"%) = 0 and hence x(8) = 0. n

We deduce the following result:

COROLLARY 2.4: The continuous idele class characters of K form a Q,-vector
space Vi of dimension > ro + 1. If Leopoldt’s conjecture [26] holds for K,
then we have dimg, Vi = re + 1. In particular, this holds if K /Q is an abelian

extension.

Proof. The space Vi has dimension precisely d — rx = ro + 1 if the equa-
tions (2.3) are independent; otherwise its dimension is larger. Leopoldt’s con-
jecture [26] predicts that the p-adic regulator of K is nonzero, which is equiv-
alent to independence of the equations (2.3). Brumer [15] proved Leopoldt’s
conjecture for abelian K/Q. |
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Remark 2.5: For our applications it suffices that dimg, Vx > ro + 1.

Remark 2.6: Corollary 2.4 is classical, see for instance [28], but our proof yields
a method for actually determining a basis of Vi, provided we know the class
number Ay, fundamental units and a method for computing, for each prime q
of K, a generator {; € K™ of the principal ideal qhx.

Example 2.7: If t = (t1,...,tm) € (K ® Qp)Y, where t; = trg, /g, then the
equation (2.3) translates into the trivially satisfied equation log(Ng /q(e)) =0.,.
This choice of ¢ gives rise to a continuous idele class character x¥¢, which one
obtains by composing the usual idele class character over Q (corresponding to
ty = idg,) with the norm on the idele class group. We call x¢ the cyclotomic
character; it cuts out the cyclotomic Z,-extension of K. Note that in the case of
a totally real number field, if Leopoldt’s conjecture holds, then every continuous
idele class character is a scalar multiple of x<¥¢ by Corollary 2.4.

Example 2.8: If p is totally split in K, then the trace maps correspond to scalar
multiplication on K; = Q,, so by Lemma 2.3, the space Vx of continuous idele
class characters is isomorphic to the subspace of all (c1,...,¢cq) € QZ such that

(2.4) c1log(or(e)) + ...+ cqlog(oq(e)) =0

for all e € O%.

Example 2.9: Let K be imaginary quadratic. Denote by c¢: A} /K* — A} /K*
the involution induced by complex conjugation. We say that a continuous idele
class character x € Vi is anticyclotomic if y o c = —x. Such characters cut out
the anticyclotomic Z,-extension of K and play an important role in Iwasawa
theory. The space Vi of continuous idele class characters is spanned by the
cyclotomic character and any nontrivial anticyclotomic character.

If we assume, in addition, that p splits completely in K, then it turns out
that x € Vi is anticyclotomic if and only if

c1+c=0

in the notation of Example 2.8. In this case, we call the character x*"* corre-

sponding to the choice ¢; = 1 and ¢3 = —1 the anticyclotomic character. See |9,

§1] for an explicit construction of yt.

2.2. COLEMAN-GROSS p-ADIC HEIGHT PAIRINGS. We keep the notation of §2.1.
Let X/K be a smooth projective geometrically irreducible curve of genus g > 0
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with good reduction at pq,...,p,, and let J denote its Jacobian. The rank
rk(J/K) will be denoted by r. We fix, for every j € {1,...,m}, a splitting

Hir(X/K;) = H(X/K;,Q") @ W;,

such that W is isotropic with respect to the cup product pairing. For instance,
when p; is ordinary, we can take the unit root subspace with respect to Frobe-
nius.

There are several ways of attaching a p-adic height pairing
(2.5) X J(K) x J(K) = Q,

to a continuous idele class character x € Vi, see for instance the work of Schnei-
der [33], Mazur-Tate [29], Coleman-Gross [18] and Nekovér [31]. The pairing
hX depends on our fixed choices of W;. If the reduction is ordinary, W is the
unit root subspace of Frobenius at all j, and x is ramified above p, the construc-
tions of Schneider, Mazur-Tate, Coleman-Gross and Nekovai are all known to
be equivalent. The p-adic height pairing is bilinear and functorial, see [29, §3.4].
It is furthermore symmetric, since we assume all W; to be isotropic. Denote by
B the space of Q,-valued bilinear forms on J(K) ®z Q,. The function Vi — B
mapping x to hX is Qp-linear. The dimension of its image is bounded from
above by

1 1
min {dime Vi, T(T;)} > min {7"2 + 1, T(T’;—)} ,

where the inequality is an equality if Leopoldt’s conjecture holds for K (see
Corollary 2.4). Lower bounds on the dimension are much more difficult. For
instance, when the reduction is ordinary, the cyclotomic height attached to the
unit root splitting has been conjectured to be non-degenerate by Schneider, but
this remains open to date.

As in [2], we follow the approach of Coleman-Gross. Let x = > xv € Vi
be a nontrivial continuous idele class character, with corresponding trace maps
X = (tF,...,t%) € (K ® Qp)Y. Coleman and Gross construct local bi-additive
symmetric p-adic height pairings hX for every non-archimedean place v of K on
divisors of degree 0 with disjoint support. Then they define the global p-adic
height pairing to be their sum hX = )" hX; this turns out to respect linear
equivalence and hence gives a well-defined symmetric bilinear pairing (2.5).

Following Gross [21, §5], the first- and second-named author removed in [1]
the condition that the divisors have to be relatively prime for the local p-adic
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height pairings to make sense. For this, p-adic Arakelov theory as developed by
the second-named author [10] was used. This extension to arbitrary divisors of
degree 0 requires the choice of a tangent vector for every @ € X. If one chooses
such vectors consistently for all primes, then one obtains that the sum of the
local height pairings is independent of this choice.

We now recall the construction of the local height pairings. First let q be a
prime of K not dividing p. Then the local height pairing hy determined by q
is defined in terms of intersection theory, as follows: Let D, D’ be divisors on
X/K4 of degree 0 and with disjoint support. Fix a proper regular model X
of X/K, over Spec Ok, and extend D and D’ to Q-divisors D, D" on X which
have intersection multiplicity 0 with every vertical divisor. Then we define, as
in [18],

(2.6) hy (D, D") := xq(mq)(D - D),

where 7 is a uniformizer in Ky and (D-D’) € Q is the intersection multiplicity.
A choice of tangent vector makes it possible to define the intersection between
two divisors with common component, which can be used to extend the defini-
tion (2.6) in a straightforward way, see [21, §6] and [1, Proposition 2.4]. One
can define the height pairing at all p; such that x; is unramified in an analogous
way.

Let j € {1,...,m} such that x; is ramified and consider the trace map
t;‘: K; — Qp. Suppose that D and D’ are divisors of degree 0 on X/K;. If
they have disjoint support, then their local height pairing at p; determined by

hy,(D, D) ==t} (/ wD/> ,
D

where wp is a differential of the third kind with residue divisor D’, normalized

X is defined as

with respect to W; as in [18, §3]. The integral is a Coleman integral; it depends
on the branch log;: K7 — K of the logarithm determined by x, see Remark 2.1.
To extend this to divisors with common support, one uses that

hy, (D, D) = t3(Gp(D"))

where Gp is the p-adic Green function on X, (K;) \ supp(D) defined in [10].
The choice of a tangent vector at every point of X makes it possible to define
Gp|[D'] € K; for any D’ of degree 0, so that Gp[D'] = Gp(D’) when D and
D’ have disjoint support. The general formula for the local height pairing of D



14 BALAKRISHNAN, BESSER, BIANCHI AND MULLER Isr. J. Math.

and D’ given in [1, Proposition 3.4] is then
hy, (D, D') = t3(Gp[D']).

Example 2.10: The local cyclotomic height pairings for D, D’ € Div’(X) with
disjoint support are given by

hy;"(D, D) = trg, /g, ( / (D,)wajw))

for j € {1,...,m} and

1
hg“(D, D) = e log(N(&)) - (D, D')q.,

for primes q 1 p.

anti

Example 2.11: We now describe the anticyclotomic height h*"* := hX™" when
K is imaginary quadratic, see Example 2.9. In our notation, the local heights

hg?“ are

Wo,(p) and h?-?“(D’D/):_/ oy D)

h;?ti(Dv D/) = /

o1 (D)

and the local heights away from p are given by

i 1 02(&q)
p(D D= —1lo ( ) .(D,D")g.
q ( ) hK g o1 (é-q) ( )q

Using these formulas, we get a practical method for computing h*"*. See [9)
for an alternative algorithm.

3. Chabauty over number fields

In this section, we recall a refinement of the method of Chabauty and Coleman
over number fields. The idea is that by viewing the K-rational points on X/K
as the Q-rational points on the Weil restriction of scalars Resx/q(X) and using
Qp-valued (rather than K,-valued, for a single p | p) integrals, one can often
compute X (K) when the rank of the Jacobian over K is greater than g. This was
first suggested by Wetherell at a talk at MSRI in 2000, but he never published
the details. Siksek [34] later gave a Chabauty-Coleman method over number
fields inspired by Wetherell’s work. This allows one to compute X (K) in many
cases using a combination of his idea with the Mordell-Weil sieve. See also
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Triantafillou’s work [36] for a recent application to hyperbolic curves of genus
0 and S-unit equations.

We keep the notation of the previous section. We also assume that there
is a rational point Py € X(K), and we let ¢: X — J := Jac(X) denote the
Abel-Jacobi map corresponding to it. We write X (K ® Q,) for the subset
X(Kq)x- - xX(Kp)of X(Q,)™. Let o: X(K) — X(K®Q,) be the embedding
induced by o;: X(K) — X(Kj).

Siksek’s goal is to explicitly construct d = [K : Q] locally analytic functions

Pls---5Pd" X(K®Qp) _>Qp

such that
(i) we have p;(c(X(K)))=0forall 1 <1 <d;
(ii) the set
B:={ze X(K®Q,): p(z) =0 forall 1<1<d}

is finite.

We need (at least) d such functions to cut out a finite subset of X (K ® Q,) for
reasons of dimension.

With a view toward explicit computations and generalizations, we now discuss
how the functions p; can be constructed in terms of Coleman integrals. Let
je{l,...,m} and let z; € X(K;). If wis a holomorphic 1-form on X/Kj,
then the integral | FZ,; w is an element of K;. We can compose it with a trace
map t; € Homg, (K;,Q,) to obtain a locally analytic function

X(Kj)g)@p, Zjl—>tj </:w> .

For every j € {1,...,m}, we fix a basis (¢; 1, ...,t;4,) of Homg, (K}, Q,), where
dj = [K; : Qp]; we also fix a basis (wo,...,wy—1) of H(X/K, Q).

Definition 3.1: Let i € {0,...,g—1},let j € {1,...,m}and let k € {1,...,d;}.

We define
£ () =t ( [ o <wi>> cQ,

Py
for z = (21,...,2m) € X(K ® Qp). For Q € X(K), we set

fi(j7k)(Q) — fi(j’k)(U(Q)) ]
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We fix an ordering of the fi(j *) and label their restrictions to X (K) as follows:

va"'vfdgfl:X(K)%Qp~

Extending these functions to Galois-equivariant functions f;: X (K ®Qp) — @p
in the obvious way and then to J(K) ®z Q, by additivity, we obtain Q,-valued
linear functionals

(3.1) Josooos fag—1: J(K) @z Qp — Qp .

We fix some more notation: Let (J(K)® Q,)¥ = Homg, (J(K) ®z Qp,, Qp), let

U= Span(@p (an ey fdgfl) - (J(K) ® Qp)\/ )
and let
n = dg — dimg, (U)

denote the maximal number of independent relations between the f;.
Suppose that

(3.2) n>d

and fix a set of d independent relations in U. These relations, pulled back via the
Abel-Jacobi map ¢, extend to explicitly computable locally analytic functions

Ply---5Pd: X(K®Qp) _>QP
such that
pi(o(X(K))) =0

for all [ = 1,...,d. Then, provided the common zero set B of pi,...,pq is
finite, we can explicitly determine X (K), by first computing B (to suitable p-
adic precision) and then identifying o (X (K)) C B using the Mordell-Weil sieve,
if g > 2. See [34] for details.

As mentioned previously, over Q the condition r < ¢ is a sufficient criterion
for the method of Chabauty-Coleman to work. But when K # Q, it is much
more delicate to predict whether the zero set B is finite, as we have to deal with
systems of multivariate power series (see also Appendix A). Since dimg, (J(K)®
Qp)Y =r, we have n > dg — r. Therefore one might guess that for finiteness of
B it should be sufficient that

(3:3) r <d(g—1).
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This is not the case, as one can find examples where B is infinite because X
can be defined over some subfield F' of K over which rk(J/F) > [F: Q](g — 1);
see [34] for a discussion. Siksek asks whether B is finite whenever

(3.4) rk(Jac(Y)/F) < [F :Q](g — 1)

for all subfields F' and for every smooth projective curve Y/F such that ¥ xp
K > X. This was shown to be false by Dogra [20]; he constructs a hyperelliptic
genus 3 curve X with minimal field of definition K := Q(v/33) covering a genus
2 curve X(/Q whose Jacobian Jy satisfies rk(Jp/Q) = 2. This X satisfies
the condition (3.4), but the functions p; vanish in the preimage of X((Q,) in
X(K ®Qyp), so B is infinite. Dogra also shows that B is finite whenever r <
d(g—1) and Hom(J(K)q 4, J(K)g,s,) is trivial for any two distinct embeddings
01,09: K — Q, i.e. whenever J and its conjugates do not share an isogeny
component over Q.

When r > d(g — 1), then the method of Siksek is in general not applicable.

In the following two sections, we discuss how to extend it using p-adic heights.

4. Quadratic Chabauty for integral points on odd degree hyperelliptic
curves over number fields

Suppose that X/K is hyperelliptic, given by an equation X : y?> = f(x), where
f € Oklz] is a separable polynomial of degree 2¢g + 1 > 3 which does not
reduce to a square modulo any prime. Let ¢ be the Abel-Jacobi map with
respect to oo = (1 : 0 : 0) € X(K). We denote by U the affine scheme
Spec Ok [2,y]/(y* — f(2)).

For the case K = Q, the first, second and fourth author showed in [2, 3] how to
compute U(Z) C X (Q) when r = g using a locally analytic function constructed
in terms of the cyclotomic p-adic height. We now show how to generalize this
idea to arbitrary number fields. Generically, we expect our method to work
when

(4.1) r+rg <dg.
More precisely, we try to construct explicitly computable functions
P15 Pd: U(OK ®Zp) — Qp

which are locally analytic on p-integral points and explicitly computable finite
subsets TW, ... T@ ¢ Qy such that
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(i) we have p(o(U(Ok))) € T® for all 1 <1 < d;
(ii) the set

B:= {gEU(OK®Zp)5 pi(z) € T for all 1§l§d}

is finite.

As in Section 3, let U be the Q,-span of the linear functionals fi,..., fag—1:
J(K)®Q, — Q,. We show how to construct such functions py, ..., pg when (4.1)
and the following condition are satisfied:

Condition 4.1: U = (J(K) ® Q,)".

The finiteness of B turns out to be much more difficult to prove. If Condi-
tion 4.1 is satisfied, then we have dimg, U = r and hence

(4.2) n+r=dg;

in particular, we need to have r < dg for Condition 4.1 to hold, and if r = dg,
then Condition 4.1 is equivalent to surjectivity of the map in (1.3). We order
the f; so that (fo,..., fr—1) is a basis of (J(K)® Q,)".

In §2.2 we discussed how a continuous idele class character y gives rise to
a p-adic height pairing hX. So let x € Vi be nontrivial with associated trace
maps tX = (¢,...,t%) € (K ® Q,)Y. We choose the basis (wp,...,wg—1) of
H°(X/K, Q') given by wy, := 2*dz /2y and we denote the differentials on X/K;
obtained via o; by wy as well. In order to define the local height pairings for
arbitrary divisors of degree 0, we fix a choice of tangent vector for every point
Q € X as in [2]. Namely, we take the tangent vector induced by wq by duality
for all affine points. For the point oo, we pick the dual of the value of wy_1
at co. We denote by (@o,...,wy—1) the unique basis of W) which is dual to
(wo, ..., wy—1) with respect to the cup product pairing. For z € X(Kj;) \ {oo}
we define the double Coleman integral

z9—1
7i(2) = —2/ Z wiw; € Kj,
bo =0
where by is the tangential basepoint determined by our choice of tangent vector
at co. Note that 7; depends on the branch log;: K7 — K; determined by
x. This is not reflected in our notation, since we are mostly interested in the
restriction of 7; to U(O;).
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THEOREM 4.2: Suppose that Condition 4.1 is satisfied. Then there are ex-
plicitly computable constants cvzxj € Q, and an explicitly computable finite set
TX C Q, such that the function

P U0k ®Zy) — Q,
defined by

P =) ) - Y aSfil@)fi),

j=1 0<i<j<r—1
satisfies
pX(ocU(OKk))) CT*.

Proof. Setting g;;(P,Q) = 3(fi(P)f;(Q) + f;j(P)fi(Q)), we obtain a basis
(gij: 0 <i < j <r—1) of the space of Q,-valued bilinear forms on J(K)®z Q,,
since the latter has dimension 7(r +1)/2 and the g;; are independent. Because
hX is a Q,-valued bilinear form on J(K) ®z Qp, we can find constants ag‘j €Q,
such that
(4.3) =Y alg;.

0<i<j<r—1

If g is a prime of K and z € X(K,) \ {oo}, we write
hg(2) = hg((2) = (0), (2) = (00)),

where the right hand side is determined by our choice of tangent vectors. Then,

we have

(4.4) hy, (2) = 5 (75(2))
for z € X(Kj) \ {o0} by [2, Theorem 2.2].

Now let q be a prime of K not dividing p. Let X be a desingularization
in the strong sense of the Zariski closure of X in weighted projective space
Po,, (1,9+1,1). Let 2 € X(K;) and extend the divisor (2) —(c0) to a Q-divisor
D, on X such that D, has intersection multiplicity 0 with all vertical divisors on
X. Then we have hi(z) = xq(mq)D?2 . The proof of [2, Proposition 3.3] (which
treats the special case K = Q and h = h®°) shows that if z € U(Of,), then
the value of hg (z) depends only on the irreducible component I', of the special
fiber of X that z reduces to and is explicitly computable from I',. Furthermore,
this value is 0 if z reduces to a smooth point modulo q and if ordg(fag+1) =0,
where fog41 is the leading coefficient of f.
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For @ € U(Ok) we conclude that

px(U(Q))Zth(TJ(Uj(Q)))— > asfi@)15(Q)

0<i<j<r—1

215, (@Q) = ((Q) = (00),(Q) = ()
- h(Q)

atp

indeed takes values in an explicitly computable finite set. |
Remark 4.3: Theorem 1.2 follows at once from Theorem 4.2.

Remark 4.4: Let us make the following remark concerning the dependence on
the branch of the logarithm. The function 7; is a double Coleman integral.
On residue discs where the integrands have no singularities, it is rigid analytic.
However, there will be a finite number of residue discs where 7; will be more
complicated. Near a point where one of the integrands has a singularity, there
will be a disc D where the function is given by a polynomial of degree at most
2 in log(z) with coefficients which are rigid analytic functions on D, with z a
uniformizing parameter on D sending the singular point to 0 (these discs could
in general be smaller than residue discs if the integrands have several singular
points in the same residue disc). We note that in fact, due to their source
in Green functions, the 7; are simpler: On such a disc D they will be of the
form ¢(z) + clog(z), where ¢ is rigid analytic and ¢ is a constant. Solving
even a simple polynomial equation involving both z and log(z) is far more
complicated, if possible at all, than an analytic equation. This is one reason
why certain quadratic Chabauty techniques do not find all rational points but
only those that avoid certain residue disks. On the other hand, whenever one
stays away from these problematic disks the equation does not depend on the
chosen branch of the logarithm. The dependence on the branch only appears
when trying to compute the global height pairing.

Remark 4.5: Our assumption that f does not reduce to a square modulo any
prime is only required to apply [2, Proposition 3.3]. Of course, we can always
scale the variables to make f monic, and then it is automatically satisfied.
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T(TTH)) independent height pairings

We can expect at most min(dimg, Vi,
hX. Recall that dimg, Vi > 7241 (with equality if Leopoldt’s conjecture holds
for K). The set of all z € U(Ok ® Q) such that pX(z) € TX holds for the
corresponding functions can only be finite when ro + 1 = d, i.e. when K = Q
or K is an imaginary quadratic field.

In general, we need at least d — (12 + 1) = rx additional functions U(Ox ®
Qp) = Q, to cut out a finite subset of U(Ox ® Q) containing o(U(Ok)). It
is natural to take these from the relations among the functions f;, as in §3.
Therefore we need the maximal number n of independent relations to be at
least rx. Because of (4.2), this means that we want rx + r < dg, which is
precisely (4.1), to hold.

Let p1,. .., pro41: U(OK ®Z,) — Q, be functions coming from p-adic heights
associated to nontrivial continuous idele class characters y € Vi as above, with
corresponding finite sets T Qp. Assuming that (4.1) holds, we obtain
functions pr,42,...,pd: X(K ® Qp) — @, which vanish in ¢(X(K)) from in-
dependent relations among the f; as in Section 3. Set T = {0} C Q, for
ro +2 <[ <d. Then

B:={2cU(Ox@ZL,): p(z) €TV forall 1<1<d}

contains o(U(Ok)) and is explicitly computable. Thus, we get a method to
p-adically approximate U(Of) in practice whenever B is finite.
In analogy with the results of Dogra [20], we raise the following

Question 4.6: Suppose that Condition 4.1 is satisfied and that we have
(4.5) tk(Jac(Y)/F)+rp <[F:Q]-g

for every subfield F' C K and for every smooth projective curve Y/F such that
Y xp K & X. Is it true that B can only be infinite for geometric reasons?

Remark 4.7: Siksek’s method always succeeds in constructing a set B containing
X (K), provided that » < d(g—1). As was explained at the end of Section 3, this
assumption on the rank is however not sufficient to guarantee finiteness of B.
On the contrary, even definability of a set B is not ensured by (4.5). If K =Q
and (4.5) holds, then either Condition 4.1 is satisfied or classical Chabauty is
applicable (or both). For general K, it is instead possible to construct examples
where (4.5) holds, but we are neither in the situation of Condition 4.1 nor in
Siksek’s. Indeed, let X be a genus 2 hyperelliptic curve over an imaginary
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quadratic field K. Suppose that X does not not descend to @Q and that its
Jacobian splits as the product of two elliptic curves Fy and Es. If rk(E;/K) =3
and tk(F3/K) = 1 and E; cannot be defined over Q, then we expect that
dimg, (U) = 3. For example, consider the hyperelliptic curve over Q(i)

X:y? = (14i — 6)2° + (—3i + 5)a* + 20iz® — 1527 — 6iz + 1.
Its Jacobian splits as the product of

Er:y? =2 + (=30 — 10)2® + (54i + 72)
Ey:y? =2 + (=3i — 10)x + (=3i — 9)

of respective ranks 3 and 1. Let P = (2,-3i —7), Q@ = (7i + 1,—6i + 22) €
E1(Q(7)) and let wo be an invariant differential on E;. Then, choosing p = 13,
we get (f;l(P) wg)(f;z(@ wo) # (f;Q(P) wo)(f:ol(Q) wp), so (1.3) is surjective for
FE;. Thus the dimension of U for J is 3.

When K = Q it is conjectured by Waldschmidt that it is sufficient that J is
simple of Mordell-Weil rank at most g for Condition 4.1 to hold (see [37]). The
situation is expected to be more complicated for higher degree number fields,

see [32, Remark 6.4].

Remark 4.8: The equations attached by Theorem 4.2 to dependent height pair-
ings can sometimes be independent. To see this, consider an elliptic curve E
over Q of rank 0. Then all global height pairings are identically zero on E(Q);
nevertheless, the cyclotomic height (with respect to a choice of splitting) gives
an equation whose zero set is, in general, not identical to E(Qp)iors, i-6. to
the zero set of the p-adic logarithm on E(Q,). See [4, 11] for computational
evidence and relations with a conjecture of Kim on effectiveness.

This phenomenon in rank 0 also provides us with an example of how dif-
ferent choices of splittings of the de Rham cohomology can lead to linearly
independent equations. Indeed, recall from Section 2.2 that the cyclotomic p-
adic height pairing on £/Q depends on a choice of subspace W C Hig (E/Q,),
complementary to the space of holomorphic form and isotropic with respect to
the cup product pairing. The latter condition is automatically satisfied in the
elliptic curve case and we see that the local height at p is then given by

hW)(z) = 2Ds(2) + ew (/ wo)2 ,

oo
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where Ds(z) is the dilogarithm (a double Coleman integral), ¢y € Q, depends
on W, and f; wp is the p-adic logarithm. Choosing two different subspaces
W1, Wy we then get h,(gwl)(z) =0= hz(,WZ)(z) if and only if héw)(z) =0=J wo
for any W. Thus, for all z € U(Z,) such that 3" (z) = 0 but JZ wo # 0, we
have hl(,WQ)(z) # 0; examples of such z can be found in the computations for
[4, 11].

In contrast, when r = g, different splittings will not result in independent
equations, see [7, Remark 3.12].

5. Quadratic Chabauty for rational points on bielliptic curves over
number fields

Let X/K be the genus 2 bielliptic curve

y? = aga® + agxt + as2® + ao (a; € Ok)

which has degree 2 maps @1, @2 to two elliptic curves:

(5.1) Ep: y? = 23 + ay2® + agaez + aoaé 1(z,y) = (aﬁfﬂza agy)

Ey: y? = 2® + apa® + agaor + agal, p2(z,y) = (a2, agyz™?).

When K is either Q or an imaginary quadratic field and both F; and E5 have
Mordell-Weil rank 1 over K, it was shown in [6] that a suitable choice of contin-
uous idele class character of K gives rise to a locally analytic function on X (K)
which vanishes on X (K), provided that K; ~ Q, and X has good reduction at
each p;.

In this section, we combine the ideas of [6] with those of Section 4 to approx-
imate X (K) inside X (K ® Q,) when K is an arbitrary number field and p is
a prime, unramified in K, above which the given model for X has everywhere
good reduction. As in Sections 3 and 4, we do not investigate here whether the
systems of d equations in d variables that we define have finitely many zeros.

For ease of exposition, and since we assumed in Section 3 that X possesses a
K-rational point, we now restrict to curves X for which the defining polynomial
is monic, i.e. for the rest of this section we take

(16:]..
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Then X can be embedded into its Jacobian J via the Abel-Jacobi map with
respect to one of co™ = (1: 41 :0) € X(K). The proof of the main theorem
(Theorem 5.2 below) can easily be adapted to allow for any ag € Ok

For the construction, it is sufficient to work under Assumption 5.1 below and

(5.2) tk(J/K) +rr < dg = 2d.
For each A € {J, E1, Ex}, let

f647~~7f£,(14)713 A(K) @z Qp = Q@

be the Q,-valued linear functionals of Section 3 on A (here by g(J) we mean
the genus of X) and define, for 0 <14 < j < dg(A) — 1, the bilinear form gg‘} by

GA(P.Q) = LA PIUQ) + [MQIAP), for P.Q e AK) 20,

Let x be a nontrivial continuous idele class character of K and for each k € {1, 2}
let hX-Fr be the global p-adic height pairing of Section 2 on Ej with respect
to x. Similarly, for a prime q of K, denote by hf{’E’“ the local height at q. We
work under the following assumption:

Assumption 5.1: Condition 4.1 holds for each of Fy and Fs. For this, it is
necessary that

rk(Ey/F) < [F:Q] for ke {1,2}
for all subfields F' of K and for all Ek/F isomorphic to E} over K.

Possibly after reordering the 95’“7 we can then find

E . .
o@‘j’ Eo0<i<j<rk(Ey/K)-1,

such that

(5.3) hX’E’“ — Z a;fjkagiEjk.
i,j

By abuse of notation, we also write hX:x(P) for hEr(P, P) and similarly
for 95’“ Embed Ei(K) in Ex(K ® Q,) via 0. Note that, while hX-F+ only
makes sense as a function of Fy(K), each gg
Ey(K ® Q,), which we also denote by gg’“ Furthermore, if z € E(K ® Q,),

we write h?fj’.E’“ (2) for h;‘;E’“ (z;), which is locally analytic away from the disk of

k is the restriction of a function on

the point at infinity cog, .
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Let Q1 = (0,\/ag) € Ey(K(y/ag)), Q2 = (0,a0) € E2(K) and, for a point
P € X(Kj), denote by | P[ the residue disk centered at P in X (K;). For k =1, 2,
define

XO(K @@,) = [T (X(E)\ (o5 (e (@) U o (0 (=Qi))D)

j=1

XO(K)=o(X(K)NX®(K&Q,),

where, if Q; is not defined over K, we let o;(p; " (£Q1)) = (0,4+\/0;(ao)) if
ag € OF and Joi(p1 (£Q1))[= 0 otherwise.

If ag is not a square in K, we need to extend the local and global heights
on Ei/K to Ei/L where L = K( /ag). Let x’ be the continuous idele class
character of L defined by composing the trace maps of y with the field traces
Ly /Ky, at each p’ | p; and normalised so that it restricts to 2x on Aj /K*.
Write

RO (Qy) = hX F1(Qy)

and, for a prime q of K,

1

T e (@),
(Lo : Kq]

hif’El (@) =

where ¢’ is any prime of L above q. Since Gal(L/K) acts on Q1 by multiplication
by 41 and by definition of X/, the quantity hif’El(Ql) is well-defined and all
properties of hﬁf’El for points over K hold for Q.

The following result is a version of Theorem 1.5 which is computationally
more useful, since the function of Theorem 1.5 is defined only on a proper
subset of X*) (K ® Q,) for each k.

THEOREM 5.2: For each k € {1,2}, there exists an explicitly computable finite
set TX'F C Q, such that the locally analytic function pX*: X")(K®Q,) — Q,,
defined by
B ) )
Z%X P (pail(z)) — b P (on(z) + Qi) — ™ (u(2) — Qi)

_22 aX B3 kngi;‘s k @3 k + 2Zax Ekgw )) + oRXErk (Qk)

takes values in TX'* when restricted to X (®)(K).
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Proof. Let q be any prime of K and ¢ € {1,2}. By [6, Lemma 7.4], the lo-
cal height hX’Ee satisfies the quasi-parallelogram law, i.e. for all points P, R €
E¢(Kq) such that P,R, P £ R # oop,, we have

(5.4) BB (P+R)+ Y (P—R) = 2051 (P)+ 20 F (R) — 2 (a(R) —(P)).
This, together with (5.3), implies that pX*(X*)(K)) is contained in

Tk . — {Z W (n(20) + Qi) + BY P (pr(za) — Qi) — 20 (03 (24)) ¢
atp

(z0) € [T X(K)\ fgi <iQk>}}.
qtp

The elementary proof of finiteness of T%* given in [11, Proposition 6.5] when
K = Q and y is the cyclotomic character uses properties of the local heights
away from p that hold also in this more general setting. Any detail that is
omitted here can thus be deduced from [11]. Let ¢ 1 p and define

Wl = {RP4(P) : P € Ey(Ky),z(P) € Og}.

As in the proof of Theorem 4.2, W?’E" is finite and identically zero for almost
all g. On the other hand, if P € Ey(K,) with z(P) € O, then

(5.5) WP (P) = xq(2(P)).
Let 2 € X(K,) \ {¢p ' (£Qx)} and define
wX Pk (2) = hX P (or(2) + Qi) + hX P (or(2) — Qi) — 20y (p3k(2)).
If i(2) = 0o, , then wl ™ (2) = 20X PF (Qr) — 201 "°*(Qs_1); otherwise, by
(5.4), we have
27 wX B (2) = BEER (or(2)) + WP Qi) — Xq(2(2r(2))) — B (03-k(2))
= P (pr(2)) + WY (Qr) + xa(2(93-1(2))) = Xalao) — B (p3x(2).

If 0 < ordg(z(z)) < ordg(ag)/2, then both z(¢1(2)) and x(p2(2)) are integral
and

Xa(2(¢1(2))) € {nxq(mq) : 0 < n < ordg(ag)}
In the remaining cases, exactly one of z(p1(z)) and z(p2(z)) is non-integral.

Thus, by (5.5) and finiteness of Wg© Pt we deduce that wy’ Er(2) takes values
in a finite set T,° ok Furthermore, since Q) is an integral point and ag divides
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the discriminant of Es, ch(’k C {0} for all primes g that divide neither the
discriminant of E; nor the one of Es. [ |

Assuming Leopoldt’s conjecture, we have ro + 1 choices of independent char-
acters x and then Theorem 5.2 gives at most ro + 1 independent locally analytic
functions on each X*)(K ® Q,) vanishing on the global points X*)(K). As
in Section 4, we construct rx other functions using the relations among the
functionals £/ imposed by our assumption (5.2). In practice, each such relation
can be reduced to a relation among the flE * for some k.

Remark 5.3: As soon as m > 1 and ag € (’)32- for some j, we have
XK 0Q)UXP(K©Q,) ¢ X(K®Qy).

Thus, in order to turn the method outlined in this section into a strategy to
compute X (K), one also needs to deal with the residue disks that are not
covered by Theorem 5.2. If, for instance, there are no K-rational points in
these disks, then we can use the Mordell-Weil sieve to prove this. See also
Remark 5.4 for a class of examples where we can immediately prove that there
exist no K-rational points in such disks.

Remark 5.4: A quadratic Chabauty computation over number fields can some-
times be replaced with several quadratic Chabauty computations over Q. For
example, suppose that X is defined over Q and that we want to determine X (K),
where K = Q(v/d) for some square-free d € Q. Assume that rk(F;/Q) =
tk(F>/Q) = 1, tk(E1/K) = 2 and E3(K) = Ey(Q). If P € X(K), then
02(P) € Ex(K) = F2(Q) and so z(P)? € Q, y(P)/x(P) € Q. It follows that
computing X (K) is equivalent to computing X (Q) and X’(Q) where
X' P :x6+%x4+%x2+%.

The curve X’ is a genus 2 bielliptic curve whose corresponding elliptic curves
are the quadratic twists B¢ and B¢~ g E,. In particular, rk(E¢ ' /Q) = 1
and rk(Egr2 /Q) = 1. Quadratic Chabauty can thus be used to determine both
X(Q) and X'(Q).

We also note that, even when p is split in K, in this example we have
o(X(K)) = XW(K)u X (K).

Indeed, X(K ® Q,) \ (XM(K ® Q,) UX® (K ®Q,)) consists of those points
(21,22) € X(Qp) x X(Qp) such that z; € {(0,+/ao)}, z; € {ooF} if {i,j} =



28 BALAKRISHNAN, BESSER, BIANCHI AND MULLER Isr. J. Math.

{1, 2}, where /aq is a fixed square root of ag in Q,. Suppose that (21, 22) = o(2)
for some z € X(K). Then x(z1)? = z(22)? since ps(2) € F2(Q). In particular,
ord,(z(z1)) = ordy(z(z2)): a contradiction.

6. Algorithms and examples for integral points over quadratic fields

To illustrate our method, we give detailed algorithms for carrying out the pro-
cess described in Section 4 for elliptic curves over real and imaginary quadratic
fields and curves of genus 2 over imaginary quadratic fields. We then apply
these algorithms in several examples. Because of current limitations of our im-
plementation, we restrict to the case where p is split in K, so that the Coleman
integration takes place over Q,. The extension to more general good primes p
is straightforward.

We keep the notation of Section 4. Let K be a quadratic number field and let
p be a prime number such that pOx = p1ps is split. Let x1,..., Xr,+1 € Vi be
independent continuous idele class characters. By Example 2.8, they correspond
to pairs ¢(®) = (cgk), cék)) € Q2 such that hy¥(z) = cgk) -7j(z) for all j € {1,2}
and z € X(Kj) \ {oo}. Writing

k
Bk .— pxE — Z agj)gij»
0<i<j<r—1
we get
d
X k k
(6.1) pe(2) = (2) = > i) = Y ol fil2) f(2)
j=1 ,J

for z e U(Ok R Zy).

Algorithms for the case K = Q are discussed in great detail in [3]; they
readily generalize to more general number fields K provided p is totally split.
For instance, it is easy to see that the sets T() can be computed in practice
using the method of [3, §3.4]. The p-adic heights can be computed using a
straightforward adaptation of [8, Algorithm 3.8], and we deduce the constants
agf) as in [3, §3.2]. For the p-adic analytic computations we use Sage [35], the
remaining computations are done in Magma [12].
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Remark 6.1: Since [3, §3] contains a detailed precision analysis for each of these
algorithms, we deduce that the p-adic objects in our results above are indeed ex-
plicitly computable in the sense described in the introduction; they are provably
computable to any desired finite precision.

We want to construct two functions pp, po that map
o(U(Ok)) CU(Ok @ L)

into an explicitly computable finite set 71 (T(z), respectively) and have a finite
common solution set. Once we have done this, we have to check if each solution
2z = (21, 22) actually comes from a K-rational point, that is, whether z; = 01(Q)
and zy = 02(Q) for some Q € U(Ok). We can use, for instance, that if this is
the case, then we must have z(z1)z(22) € Q and z(z1) + z(22) € Q.

The functions fl-(j . u (Ok ®Z,) — Q, are given by

19() = /Oo "

the corresponding linear functionals in (J(K) ® Q)" will also be denoted by
fi(J)'

6.1. ELLIPTIC CURVES OVER REAL QUADRATIC FIELDS. Let E/K denote an
elliptic curve over a real quadratic field? K given by a Weierstrass equation®
with good reduction at both p; and ps. We set fy = él) and f1 = 82).
Equation (4.1) is satisfied if and only if r = rk(E/K) = 0 or 1; we assume
that » = 1. It follows that there is a linear dependence fy = bf1 between the
functionals fy and f1 on E(K) ® Q, The first function p; is constructed using
the cyclotomic p-adic height pairing h%°. By (6.1), we have

p1(z) = p¥(2) = T1(21) + T2(22) — afo(2)?,

where

cyc 2
h®¢ = agoo = afy,

2 The algorithm described in this subsection works also when K is imaginary; however,
while in the real case the rank assumption here is optimal, in the imaginary case we can
work with curves of larger rank, as is explained in §6.2.

3 The setup in the previous section required an equation of the form y? = f(z), but for
elliptic curves we can extend it easily to cover general Weierstrass equations.
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that is, a = aé%)). We can compute a by comparing h¥¢(Q) and f2(Q) for some
nontorsion point @ € E(K). Letting T := T} denote the finite set of values

that —3° . hg"(2q — 00) can take for (2q) € [[,, U(Ok, ), we then must have

p1(01(Q),02(Q)) € T

for all Ok-integral points @ € E(K).
The second function comes from the dependence between fy and f; and is

zZ1 z2
pz(g):/ wo—b/ wo

we have pa(01(Q),02(Q)) = 0 for all Q € E(K). We can use any nontorsion
Q € E(K) and compare fp(Q) to f1(Q) to find b.
Note that, if ' is defined over Q and w € T, we can always reduce the system

qtp

given by

p1(21,22) = w
pa(21,22) =0
to one equation in one variable. Indeed, first observe that
o if tk(E/Q) = rk(E/K) = 1, then for every Q € E(K) there exists n
such that nQ € F(Q). Thus, by linearity, fo(Q) = f1(Q);
o if rk(E/Q) = 0, then for every @ € E(K) we have Q + Q° € E(Q) =
E(Q)tors, where Q€ is the Galois conjugate of . We deduce that
fo(@) + f1(Q) = fo(Q@ +Q°) =0.

Furthermore,

z 2’
/ wo :/ wo < z—2' € E(Qp)tors-
(o) o0
Suppose that rk(E/Q) = 1 and that we want to find all @ € U(Ok) such
that (01(Q),02(Q)) = (P1, P2) € E(F,) x E(F,). If there are no torsion points
in E(Q,) reducing to P; — P,, then the above shows that no such Q exists.
Otherwise, we solve

p1((x(5),y(s)), (x(5), y(s)) + R) = w

where (z(s),y(s)) is a parametrization for the points in E(Q,) reducing to Py
and R is the unique torsion point? in £(Q,) such that P,—P; = R (cf. Example
6.3). The case rk(E/Q) = 0 is very similar.

4 Since p is odd, the group E1(Qp) of Qp-points on the formal group at p is torsion-free.
Therefore, E(Qp)tors can be realized as a subgroup of E(]Fp).
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Example 6.2: Consider the elliptic curve 199.1-cl1 [27] over K = Q(a), where a
is a root of 22 — z — 1. It admits the global minimal model

E:y*+y=2"+(a+1)2°+az.

The prime p = 11 is the smallest prime splitting in K. The curve has everywhere
good reduction, except at (—3a + 16), where it has Kodaira symbol I;: thus,
T = {0}. The common zero set of p; and ps contains the integral points

+£(—1,0),%(0,0), +(a, 2a), £(—2a + 3,4a — 7), £(a + 1,30 + 1), +(—a, 0),
+(42a + 27, —420a — 259), £(—6a + 8, —18a + 29), £(—a + 1,a — 2)
and 138 other pairs of points in o1(E)(Qp) X 02(E)(Qp), where ¢;(E)/Q, is

the curve obtained from the Weierstrass equation for E via the embedding
oi: K — Q.

Example 6.3: Consider the elliptic curve with LMFDB label 192.a3 [27]
E:y?=a2% 2% —da -2

and let K = Q(v/3). We have that rk(E/K) = rk(F/Q) = 1 and that p = 13
is of good ordinary reduction for E and is split in K. As explained above, in
this setting we can reduce our computations to finding solutions to power series
equations in one variable. Note in particular that #E(F,) = 12 # 0 mod p, so
each residue disk contains precisely one torsion point of E(Q)).

The only inputs in this computation which come from our specific choice of
quadratic field K are the reduction type of E at the bad primes (and conse-
quently the set T') and the choice of prime p, since we require that p is split.

For this reason, it is not surprising that, besides recovering the integral points

+(3,2), (—1,0), (1 £ +/3,0), £(25 + 15v/3, 180 =+ 104+/3)

we also recognize in our zero set the points

i(—li\/—?) —3+/-3
2 2

all of which belong to the 2-saturation of E(Q).

),i(—lii,Q),

6.2. ELLIPTIC CURVES OVER IMAGINARY QUADRATIC FIELDS. The following
brief discussion on elliptic curves over imaginary quadratic fields will be use-
ful for the computation of rational points on bielliptic curves over imaginary
quadratic fields of §7.1. Let K be an imaginary quadratic number field and
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let E be an elliptic curve defined over K with r = rank(E/K) = 2, such that
E has good reduction at both p; and ps. Suppose that fy and f; are linearly
independent. Note that:

LEMMA 6.4: Suppose that E as above can be defined over Q. Then fy and f;
are linearly independent if and only rk(E/Q) = 1.

Proof. If tk(E/Q) = r (resp. tk(E/Q) = 0), then fo = f1 (resp. fo = —f1) on
E(K) (cf. also the discussion before Example 6.2). Conversely, suppose that
rk(E/Q) = 1 and that fy and f; are linearly dependent on E(K) ® Q. Since
neither of fy and f; is identically zero on F(K) (as E(K) contains points of
infinite order), then there exists o € Q, such that fo = afi. Let P € E(Q) of
infinite order. Then fo(P) = f1(P) and hence o = 1. Thus, for all Q € E(K),
we have f 1@ wo = fUZ(Q) wp, so that 01(Q — Q°) € E(Qp)tors, where Q° is
the Galois conjugate of Q. Let R € E(K)iors such that Q@ = Q¢ + R and let
n be the additive order of R. Then n@Q = nQ°¢, i.e. nQ € E(Q), contradicting
tk(E/K) > rk(E/Q). |

Under our assumption, the bilinear forms g;; (0 <4 < j < 1) generate B, the
space of Qp-valued bilinear forms on E(K)® Q,. Hence the p-adic heights h®°
and h® can be expressed as linear combinations

cyc _ antl_ anti
h E a” ‘gi;j and h E ;i Gig-

Using independent nontorsion points P,Q € E(K), we can find all a;j° (resp.
a2%) by computing fo(P), £1(P), fo(Q), /1(Q) and AV(P), hV(Q), heve(P +

Q) (vesp. 18 (P), I8(Q). W (P + Q)
When F is defined over Q, we have agy’ = af}° and afi¥ = 0, ofs® = —ai7t.

Indeed, for all Ry, Ry € E(K), we have h%¥°(Ry, Ry) = h®°(R§, RS) and hence

(agy’ — afi%)(goo (R, R2) — g11(Ra, Ra)) =

the first claim then follows since the g;; are a basis for B. Similarly, the anti-
cyclotomic height pairing changes of sign if we first act by Galois, proving the

second claim.

6.3. GENUS 2 CURVES, IMAGINARY QUADRATIC FIELDS. Suppose that X : y? =
f(x) has genus 2 and rank 4 over an imaginary quadratic field K. Let p be a
split prime of good, ordinary reduction and let 01,09: K < Q, denote the two
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embeddings corresponding to the primes pq,p2 of K above p. Then we have 4
functionals fi(] )i g (K) ®z Qp — Qy, extended linearly from the functions

) 0;(Q)
19Q) = / w,

oo

on X (K), which we assume to be independent. For simplicity, we renumber
them

fo=t =1 =AY =P
As in the proof of Theorem 4.2, the functions g;;(P,Q) = %(f;(P)f;(Q) +

fi(Q)f;(P)), for 0 < i < j < 3 form a basis of the bilinear forms on J(K)®zQ,.
We can express the p-adic height pairings A% and h*"* in terms of the Jij:

cyc antl _ anti
h® g a "“g;; and h E ag gij.

In order to compute the constants a5 ; ¢ and aan“ we find divisors Dy,..., D4 €

Div® (X) such that the corresponding points generate a finite index subgroup of
J(K) modulo torsion. Then we have, for each pair (k,!), the relationships

1
hY (D, D) = Y ag®- (2 (fi(Dk) f;(D1) +fj(Dk)fi(Dl)))
0<i<j<3
and
. . 1
W (Dy, D) = > (2 (fi(Dk) f5(D1) +fj(D/c)fi(Dl))> ~
0<i<j<3
That is, we can solve the linear system relating the height pairings A®° and

h2"Y to the natural basis (g;;: 0 < i < j < 3) to recover the aijc and the aan“.

Every Og-integral point Q on X must satisfy
p(01(Q),02(Q)) € T; p*™(01(Q), 02(Q) € T*,

where

pY(2) = T1(21) + T2(22) Zaijcfl z)f;(2)
panti(g) _ (Zl . 7_2 2,2 Zaantl ; )

and where 7°7 and T2"" are the respective possible values for the sum of the
local heights away from p of an Og-integral point on X.
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Example 6.5: We consider the curve
X:oyl=a -t a3 42?22 +1
over K = Q(+v/—3) and note that rk(J/Q) = 2 and rk(J/K) = 4. Let
P, =(0,1), Py =(1,1), Py = (V=3,2V/-3+1),
Py = <;(¢?3+ 1), %(—\/—TH 1)) . Q= (;(—@+ 1), %(@+ 1)) ,
Q= (=L1),  Q3=(25), Qi=(429),

and let D; = (P;) — (Q;) for ¢ = 1,...,4. The points [D1],[D2],[Ds], [D4]
generate a finite index subgroup G of J(K). The smallest good ordinary split
prime for this curve is p = 7.

We recover the following Og-integral points on X:

(*17 il)a (\/TSa j:(Q\/jg + 1))a (07 :I:]‘)ﬂ (27 :|:5)ﬂ (47 :I:29)a
(V=3+1,£(—V=3+4)),(—V-3,£(—2v=-3+ 1)), (1, £1),

(—V=3+1,£(vV-3+4)), <—;\/?3+ %,i (;\/T:H ;)) ,

(;VTS+;,¢ (—;@+;)>

We apply the Mordell-Weil sieve to show that these are indeed the only integral
points. To this end, we apply quadratic Chabauty for the primes 7 and 19. The
subgroup G is not saturated at 3, so we use the modified Mordell-Weil sieve as
described in [6, Appendix B]. In the notation given there, we used the auxiliary
integer N = 10 and 20 primes of K to rule out all but one pair of residue
classes modulo 74 and 193, respectively; the largest norm of a prime used in
this computation was 4591. In order to show that the remaining pair does not
correspond to an integral point either, we used the auxiliary integer N = 8.

Remark 6.6: It appears to be difficult to find examples over number fields K
of degree > 2 for which the computation of integral points using our method is
applicable in practice. Some restrictions are due to external components of our
algorithms. For instance, we need to compute the Mordell-Weil rank r, find r
independent points in J(K'), compute regular models and intersections over K
(the Magma-command RegularModel uses arithmetic in K, not in a completion)
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and apply the Mordell-Weil sieve over K. These computations often fail or are
prohibitively expensive for number fields of degree > 2.

Therefore our current implementation is also limited to quadratic fields. To
go beyond this, we would have to algorithmically compute a basis of the space of
continuous idele class characters, extend our implementation of the root finding
methods discussed in Appendix A. Moreover, the Coleman integration and p-
adic heights routines, currently restricted to QQ,,, would have to be extended to
finite extensions to be able to deal with generators of (a finite index subgroup
of) J(K)/tors that do not split into sums of points over Q,,.

7. Examples for rational points

In this section we present examples for Section 5, of which we retain the no-
tation, when K is a quadratic field °. To simplify the exposition, we further
assume that X is defined over Q. We let p be an odd prime which splits in K
and such that X has good reduction at each prime above p. For simplicity we
assume that ag is a square in K.

7.1. RANK 4 OVER IMAGINARY QUADRATIC FIELDS. Let X/Q be as above and
let K be an imaginary quadratic field. If rk(Fy/Q) = 1 and rk(E;/K) = 2
for each k, then (5.2) and Assumption 5.1 are both satisfied in view of Lemma
6.4. Theorem 5.2 with x = x¢ and x = " provides us, for each k € {1,2},
with two locally analytic functions p®* and p** on X*) (K ® Q,) and
finite sets TY%F and T®-*  Varying k and looking at the intersection B* of
the loci p¥F(z) € TY* and p*t#*(z) € Tanthk we obtain a set of points

containing all the points in (X (K)) that do not map to (co¥, (0, £4/ag)) or to
((0, £4/ag), 0coF) under reduction to X (F,) x X (F,).

As already mentioned, the discussion of §6.2 is used in the computation of
the constants of Theorem 5.2. To p-adically approximate the set B¥, we need
to compute roots of systems of two equations in two variables. We do so using
Algorithm 1, Lemma A.3 and the discussion in Appendix A. Note that p®F*
anti, k

and p are both invariant under the automorphisms 6: (z,y) — (+x, +y) of
X. Thus, from the points in B* reducing to (P,Q) € X(F,) x X (F,) we can

5 We focus on examples over quadratic fields for the same reasons as discussed in Re-
mark 6.6.
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deduce the points in B* reducing to (6(P),8(Q)). This cuts down the number
of pairs of residue disks that we need to consider.

Example 7.1: Consider
X = Xo(91)T : y? = 25 — 32% + 1922 — 1.

The associated elliptic curves E; (91.al [27]) and E3 (91.b2 [27]) each have rank
1 over Q and applying quadratic Chabauty with p = 5 recovers the rational
points

(7.1) {oo®, (1,44), (—1,+4), (1/3,£28/27), (—1/3,£28/27)}

together with 2 other 5-adic points up to automorphisms. We now carry out
quadratic Chabauty for p = 5 and K = Q(%), over which the elliptic curves F;
and F5 attain rank 2. Denote by T<* and T@":* the explicitly computable

anti

finite sets of Theorem 5.2 for y = x¥° and x = x*"", respectively.

Claim 1: Tcyc,l — Tcyc,2 — Tanti,l — Tanti,Q — {0}

Proof. X((91)* has bad reduction at 7 and 13. Furthermore, E; and E, are
minimal at the primes of Q(¢) above 7 and 13 and the reduction type at all
these primes is 1. i

Besides the Q-rational points listed in (7.1), in B! U B? we also recover the
following points defined over Q(i):

(7.2) (0,44, (£(—2i + 1), £(—8i + 12)), (£(2i + 1), £(8i + 12)),

as well as 20 other 5-adic points up to automorphisms (z,y) — (£z, +y). We
apply the Mordell-Weil sieve to show that these p-adic points do not correspond
to Q(i)-rational points and that there are no Q(¢)-rational points mapping to
the pairs of points

(c0F, (0, £v/—1)), (0, £v/—1), 00 ).

This proves that all Q(4)-rational points on X(91)" are either listed in (7.1)
or in (7.2).

A technical remark (with reference to Appendix A): there are four pairs
of residue disks in X (F,) x X(F,), up to automorphism, such that a root in
Z/pZ x Z/pZ of the corresponding system of equations is also a root modulo
p of the determinant of the Jacobian matrix. Of these, two correspond to the
global points (0,7) and oo (and thus the determinant of the Jacobian matrix
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has a zero at those points by Remark A.2), another one lifts to no root in
Z/p"Z x Z/p™Z for sufficiently large n and for the remaining one we can apply
the multivariate Hensel’s lemma after lifting the root modulo some small power
of p (cf. Algorithm 1). Furthermore, the strategy outlined after Remark A.2
also shows that there are no other points in the residue disks of (0,¢) and oo.
Therefore, we conclude that the approximations that we have computed are in
one-to-one correspondence with the elements in B'UB? (up to automorphism).
Amongst the 20 extra points, we recognize the pair of rational points z =
((1,4),(—=1,4)). Indeed, z; and z3 both map to (1,4) in E1(Q) and map to the
torsion points (—1,—4) and (—1,4) in E2(Q). Thus ggz (p2(2)) = 0. The claim
then follows since the local heights are invariant under pre-multiplication by
—1.

Finally, note that, since 78"¥ = {0}, in this case B! U B? is closed under
(21,22) — (22,21). Quotienting by this symmetry, the 20 extra pairs of points
become 14.

7.2. RANK 3 OVER REAL QUADRATIC FIELDS. Keep the notation of the begin-
ning of Section 7 and let K now be a real quadratic field®. Then (5.2) forces
rk(J/K) < 3. Since we need Assumption 5.1 to also hold, we suppose here that
tk(F1/K) = 2, rk(E1/Q) = 1 and rk(E3/K) = 1. This is sufficient by Lemma
6.4 and by the non-degeneracy of the p-adic logarithm on an elliptic curve.

For a fixed k € {1,2}, Theorem 5.2 determines only one function p§ and one
finite set T* in this case; the second function p2 that we need comes from the
dependence of f£2 and f{* (see also §6.1). Let

B¥ ={ze XM (K ®Q,): pk(z) € TF, pa(2) = 0}.

Note that it suffices to run through X (F,) x X (F,)/ ~ where (P,Q) ~ (R,T)
if and only if P =T and Q = R, as our equations are symmetric with respect
to the two embeddings of K into Q, (cf. the discussion of §6.2). As before, we
can also use the invariance of our zero sets under the hyperelliptic and bielliptic
automorphisms of X to reduce even further the number of pairs of disks that
we need to consider.

In view of Remark 5.4, the resulting algorithm is often an alternative to
a series of quadratic Chabauty computations over the rationals. This is in
particular the case in the following example.

6 The strategy also works if K is imaginary. See also footnote 2 in §6.1.
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Example 7.2: Consider
Xy =ab+ 224+ 1.
In [11, Example 6.3] quadratic Chabauty over Q was used to provide an alter-
native proof of Wetherell’s result [38] that
X(Q) = {00, (0,+1), (£1/2,+9/8)}.

Let K = Q(v/34). We have tk(F;/Q) = 1, tk(E1/K) = 2 and rk(E»/Q) =
rk(F3/K) = 1. We now determine X (K') exactly, by applying quadratic Chabauty
over K with the split prime p = 3. We may choose

p2(z1) © p2(z2) 5
)= [l [T

where 0o := cog,. Denote by T* the explicitly computable finite set of Theorem
5.2 for y = x<°.

Claim 2: T' = {0,2log2, 3 log2}, T? = {—2log 2, —4log 2, — 2 log 2}.

Proof. The elliptic curves F; and Fs have everywhere good reduction except
at the primes above 2 and 31. Furthermore, the models

El:y22x3+x+l, E21y22x3+x2+1

are globally minimal also over K. The prime 31 is inert in K and E; and FEs
have reduction type I3 with Tamagawa number 1 at 310g. Thus, the only
nontrivial contributions to 7% can come from the unique prime q of K above 2.
The curve E; has Tamagawa number 1 (and Kodaira symbol I) at g, so thl
is identically zero on integral points. The curve E; has reduction type I with
Tamagawa number 4 at q and we have

0 if |z]q = 1,
he(z,y) = ; .
—log2or — log2 if [z[q <1

(see e.g. [11, Proposition 2.4]); in particular, b (Q2) = —log 2.

For z € X(K,), p1(2) # £Q1 resp. pa(2z) # £Q2, let
gt (2) = hg' (91(2) + Q1) + hg (1(2) — Q1) — 2hg* (02(2))
2(2) = hl? (92(2) + Q2) + Al (92(2) — Q2) — 2hL (¢1(2)).
Using the quasi-parallelogram law (5.4), we find

o If [z(2)]q <1, then wf* (z) = 0 and wl?(z) = —2log 2.

w
w
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o If |2(2)|q > 1, then
Eir(z) €421 2,2 10g 2 d wh2(z) € {41 2~ 21og2
wy (2 og,iog an wy* (2 og 2, iog .
[ |

Since Fo(K) = E2(Q) (as rank(F2/K) = rank(Es/Q) and FEa(K)tors =
{oo}), Remark 5.4 tells us that X(K) ¢ X(W(K ®Q,)UX® (K ®Q,) and, in
particular, X (K) C B* U B2. We have

X (F3) = {ooF, (0, £1), (£1,0)}.

It follows from the observations at the beginning of §7.2 that it suffices to
consider the points in X*)(K ® Q,) reducing to one of the following pairs of
residue disks in X (F3) x X (F3):

(00T, 00T), (00T, 007), (00T, (1,0)) with k = 1;

((07 1)7 (0’ 1))7 ((0’ 2)7 (O’ 1))’ ((07 2)’ (170))7 ((170)’ (17 O))7 ((1’ 0)7 (27 0))
with k& = 2.

By Claim 2, the intersection of B* with a residue pair (for & dependent on the
pair and chosen as above) is given by the union of the zeros of three systems
of two equations in two variables (by a similar argument to the one at the end
of Remark 5.4, some pairs could be excluded a priori from containing points in
X (K) by valuation considerations, but we leave them all in the computation
here). Using the algorithms of Appendix A, we recover in B! U B? exactly the
points in Table 1 (the residue pairs contained in X*)(K ® Q,) that intersect
BF trivially are not listed).
Besides recovering representatives of the points in

11 44909 11 44909
X@u { <mm’ 249696 \/371> ’ (_204\/374’ 519696 \/371> }

up to automorphisms, our zero sets contain some points z = (21, 22) € X(Q,) x
X (Q,) which we do not recognize as points coming from X (K). Using one of
the following arguments, we can prove that each of these points is indeed not
K-rational. Suppose that z € o(X(K)). Then, since Ey(K) = E(Q), the
computed approximations of ¢s(z1) and @a(z2) must agree. If this holds, let
©2(z) be either of pa(z1) and @a(22).



40 BALAKRISHNAN, BESSER, BIANCHI AND MULLER Isr. J. Math.

(O1) If pa(2) is in the formal group at p, it was shown in [11, Example 6.3]
that we must have ord,(z(p2(2))) < —4.

(O2) Else, since E2(Q) is generated by Q2 = (0, 1), if 2(z) = nQ2 for some
n € Z, then

o0

on the other hand, Q2 € F»(F3) has order 6. Thus, if p(2) = n2Q>,
we also have
n = ng mod 6.

If ny # ne mod 3, then z &€ o(X(K)).
The extra points in the residue pair ((0,1), (0,1)) are precisely the extra points

of the computation over Q ([11, Example 6.3]). Also note that the criterion
(0O1) could be deduced from (02).



residue pair

recovered in BF

if not in X (K), why?

(00, 00%)

oo™t
(217014 v 34’ ;449960996 34)

11 44909
(_ﬂ 34’_249696 34)

(0,1)
2(z1) = x(2) = £(2-3+2-3% 4+ 0(3%))

ord,(z(p2(2))) = —2

2(21) = £(2-3+3242-334+0(3%)) = —(22)

ordy (z(pa(2))) = —2

(=3, %3)

2(21) =14 3+3° +0(3°) = —x(22), y(21) = —y(22)

(02) with ny = :|:1, Nng = 3

Table 1. Computation of B! U B? for Example 7.2.

SATATI YAIINAN YIAO ALNVAVHO OIIVHAVND XXXX ‘00 TOA

184
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Appendix A. Roots of multivariate systems of p-adic equations

Some of the algorithms of Sections 6 and 7 require us to solve systems of two
p-adic equations in two variables. In particular, in each pair of residue disks we
reduce the problem to that of finding all (¢1,t2) € Z,, x Z,, such that

p1(pt1,pta) =0
( 1) 1(p1p2)
_—O

p2(pt1, pta)
for some py(t1,12), p2(t1,t2) € Qp[[t1, t2]].
The power series p; and py are convergent on pZ, X pZ, and, possibly after

multiplying by a power of p, we may assume that py(pt1,pt2), p2(pti,pta) €

Zp([tr, t2]] \ PZy[[tr, t2]].

A careful study of the valuation of the coefficients of p; and ps allows us to
conclude that if (o, 8) € Z,, x Z,, is a solution to (A.1), then (o mod p™, 5 mod
p") is a solution modulo (p™) to the system

p1(pty, pta) + O(t1,t2)" =0
p2(pt1, pta) + O(t1,t2)" =0

for some integer n. How reversible is this process? In other words, if we find all

(A.2)

the solutions of (A.2) mod p", how do we know if each such solution lifts to a
unique solution to (A.1)?

In some cases, we can apply a multivariate version of Hensel’s lemma (see
Theorem A.1 below). Let us first introduce some notation. Let m € N and,
for an element a = (a1, ...,amn) € Q), define ord,(a) = min;<;<m;m{ord,(a;)}.
Then ord,, satisfies the following properties:

(a) For any k € Q,, ord,(ka) = ord, (k) + ord,(a).
(b) ordy,(a + b) > min{ord,(a),ord,(b)} with equality if ord,(a) # ord,(b).

For f = (f1,..., fm) € Zp[[z1,...,2,]]" and z = (21,...,2y,), define the
Jacobian matrix

ofi  Ofi of1
oz Oxo Tt OTm
Jp(z)=| + . (z).
fm  Ofm O fm
Oz Oxo Tt 0T m
Denote by Z,(z1,...,xm) the subring of Z,[[z1,...,2zn]] consisting of those

power series whose coefficients tend to 0 as the degree of the corresponding
monomials tends to infinity.
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THEOREM A.1 (Multivariate Hensel’s lemma [19, Theorem 4.1]): Let
f=f1, . fm) € Lp(x1,..., 7)™ Assume that a € Z;' satisfies

ordy(f(a)) > 2ord,(det(Js(a))).

Then there is a unique o € Zy' such that f(a) = 0 and ord,(a — a) >
ordy(det(Js(a))). Furthermore, ord,(a — a) > ord,(f(a)) — ord,(det(J¢(a))).

Even though [19] is not the only reference for Theorem A.1 (see for example
also [25, Theorem 23]), the proof given by Conrad in [19] has the advantage of
being constructive: it uses Newton’s method to explicitly find approximations
of o and it shows how fast these converge to a. In particular, with the notation
of the theorem, let a; = a and define, for N > 1,

any1=an — flan) - (Jp(an)™) ™"

By [19, (3.9)], we have the inequality
ordy(an+1 — ax) > ordy(det(Jy(a))) + 2V~ (ord, (f(a)) — 2ord, (det(Jy(a))));
combining this with Property (b) and with the assumption that
ord, (f(a)) — 2ord, (det(J7(a))) > O,

we obtain

ordy(ans — ax) > ord, (det(Jy(a))) + 2V~ (ordy (f(a)) — 2ord, (det(Js(a))))
for all M > N. Thus, taking limits as M — oo,

ord,(a — ay) > ord,(det(J (@))) + 2V (ord, (f(a)) — 2ord, (det(J; (a))))-

We sketch a possible strategy to compute roots of systems of equations of the
form (A.1l), omitting technicalities on precision. This immediately generalizes
to the case where (A.1) is replaced by a system of m equations in m variables
for arbitrary m > 2.

Algorithm 1: Computing roots of (A.1)

Input: A system p = (p1, p2) of the form (A.1).
Output: L — list of roots modulo p™ of p.

(1) Reduce to (A.2).
(2) Compute R, = {(t1,t2) € {0,...,p — 1}?: p(pt1,pta) = 0 mod p}.
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(3) Let a € R,. If ord,(det(J,(a))) = 0, by Theorem A.1 there exists a
unique root a € Z2 of (A.lj such that ord,(a — a) > 0. Compute a to
the desired precision using the discussion following Theorem A.1 and
append it to L.

(4) Let @ € R, such that ord,(det(Jy(a))) # 0. Fix anr > 3, r < n
and naively find R,-(a) = {(t1,t2) € {0,...,p" — 1}* : p(pt1, pt2) = 0 mod
p” and (t1,t2) = a mod p}. For each b € R,r(a) do the following:

(i) if 2ord,(det(J,(b))) < r, compute using Theorem A.l an ap-
proximation of the unique root B € Z2 such that ord,(8 — b) >
ord,(det(.J,(b))) and append it to L. Remove from R,-(a) all &'
such that ord, (b’ — b) > ord,(det(.J,(b))).

(ii) if 2ord,(det(J,(b))) > r, then if r = n append b to L; if r < n,
choose some s > r, s < n, naively find R,:(b) = {(t1,t2) €
{0,...,p® = 1}2 : p(pt1,pt2) = 0 mod p* and (t1,t2) = bmod p"}

and for each ¢ € Ry (b) repeat (i), (ii) with the appropriate modi-

fication in notation.

Remark A.2: If the algorithm never appends to L in 4 (ii), each element in L is
the approximation of a unique root of (A.1) and, conversely, each root of (A.1)
reduces to an element of L. Otherwise, we can try to increase n. However, there
are some residue disks where the systems that we consider provably have roots
at which the determinant of the Jacobian matrix also vanishes, so Theorem
A.1 is not applicable. Indeed, let X be as in Section 5. Then X admits the
automorphisms 0: (z,y) — (+x,+y). Composing ¢ with 6 we obtain either
the identity or multiplication by —1 on FEj. Since local heights are even, it
follows that if a function p comes from a height function as in Theorem 5.2,
then all its partial derivatives vanish” at a K -rational point fixed by a nontrivial
automorphism 6. A function coming from relations of the linear functionals f;
on Ej is odd and will thus have non-simple zeros in the above sense at those
points (z,y) which are fixed by a nontrivial automorphism 6 that projects to
the identity on Fj.

We now explain how to deal with the disks of Remark A.2 where Hensel is not
applicable, for the explicit algorithms that we described in Section 7. Suppose

7 E.g. for the pair of disks containing a point fixed by (z,y) — (—z,y), we can set t1 = z1,
to = z2 as uniformizers. Then p(t1,t2) = p(—t1, —t2) giving vanishing of the partial
derivatives at t1 = to = 0.
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first that we are in the situation of §7.1, of which we retain the notation. Let H
be the subgroup of the automorphism group of X generated by the hyperelliptic
involution and the bielliptic automorphism (z,y) — (—z,y).

LEMMA A.3: Let K and X/Q be as in §7.1. Let P € X(K) such that 0(P) =
P for a nontrivial automorphism 6 € H; if y(P) = 0, further assume that
z(P)? € Q. Let k € {1,2} such that P € X*(K) and let w € T** such that
k(o (P)) = w. Then we can choose local coordinates t; and ty for oy(P)
and oo(P), such that, in the residue pair o1(P) x 02(P) € X (F,) x X (F,), we
have

o0 o0
PRt ) —w = (] 1) = (] - 13) > e (th]tm 2 2J>
=1 i=1

for some c; € Q.

Proof. Write a point in X(Q,) x X(Q,) as ((z1,%1), (z2,y2)). We fix the fol-
lowing choices for t1 and to. If 0(x,y) = (—z,y), let t; = a4; if 6(z, y) = (z, —y),
let t; = y;; finally, if P = oo™, let t; = 1/z;. As observed in Remark A.2, we

have

panti’k(($1, y1)7 (3327 yQ)) = panti’k(e(afh y1)7 9(1‘2, y2))§

our choice of local coordinates then yields

panti,k(tl’ t2) _ panti,k(_tl’ _t2)~

anti,E;

Since by §6.2 we have oy, = 0 for each j € {1,2}, this implies that there

exist some power series f; and fs such that

panti,k(t17t2) — fl (t%) — fQ(t%) + QhZHti,Ek_ (Qk)

In view of our assumptions, we also have that x1(¢;)? = xo(t2)? |t2 —¢+, and thus
that ;(z1(t),31(t1)) = +0;(22(t2), ya(t2)) =, - Since ag™™ = —aj™™
by §6.2, we conclude that f; = fo. Finally, the lemma follows by definition of

w. 1
Remark A.4: Since ha"™Fk(Qy.) = 0, we must have w = 0.

In the notation of Lemma A.3, the points (21, 22) € X® (K ® Q,) reducing
to 01(P) x 02(P) and such that p™'* (2, 25) = w satisfy one of the following:
(i) t1(21) = ta(ze) and p™F(t1(21),t1(21)) € TFe;
(i) t1(21) = —ta(22) and p¥°k(ty (1), ~t2(21)) € TH
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S (Zé;}) tl(zl)thQ(zz)Qifz—%) —0
Pt (1), ta(22)) € TR,
If ¢; # 0, then (0,0) is not a root of (iii), so in Algorithm 1 we can hope for no

(iii)

root to be appended in 4 (ii). We also note that the one-variable power series
of (i) and (ii) are power series in 2.

In the setting of §7.2, we follow a similar strategy (and adopt some of the
notation of the imaginary case). Recall that the second function ps is given by

p2(z1) 5 p2(z2) 5
,02(2172’2) :/ Wo2 _b/ Wo2a

o0 oo
where b = 1 or b = —1, depending on the rank of E5 over Q. We assume here
that b = 1 as in Example 7.2. Let P € X*)(K) be fixed by 6 € H\ {id} and let
t1 and t5 be local coordinates chosen in the same way as in the proof of Lemma
A.3. Then, in the residue disk of o(P), we have

pa(ti,t2)  if po 00 =1id,

pa(—t1, —t2) =
—pg(tl,tQ) if @2 © 0 = —id.

Assume for simplicity that P € X(Q), so the local expansion of fo?(zl) we

evaluated at to gives the local expansion of foiZ(ZQ) w2, We conclude that

(12 —t3)p2(t1,t2) if po200 =1id,

p2(ti,t2) = B ' '
(tl - t2)1)2(t1,t2) lf ©2 O 9 = —ld,

fOI‘ some ﬁQ(tl,tQ) € Qp[[tl,tQH.
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