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ABSTRACT

We generalize the explicit quadratic Chabauty techniques for integral

points on odd degree hyperelliptic curves and for rational points on genus

2 bielliptic curves to arbitrary number fields using restriction of scalars.

This is achieved by combining equations coming from Siksek’s extension

of classical Chabauty with equations defined in terms of p-adic heights at-

tached to independent continuous idele class characters. We give several

examples to show the practicality of our methods.

1. Introduction

Let K be a number field and let X/K be a smooth projective curve of genus

g ≥ 2. Then, by Faltings’ theorem, the set of rational points X(K) is finite, but

at present no general algorithm for the computation of X(K) is known. When

the Mordell-Weil rank r of the Jacobian J/K is less than g, the method of

Chabauty [16], made effective by Coleman [17, 30], can often be used to compute

a finite subset of X(Kp) containing X(K), for any prime p of good reduction

for X. Combined with other techniques such as the Mordell-Weil sieve [14],

this suffices to compute X(K) exactly in many situations. In principle, this

method can be used also to compute rational points on elliptic curves, but it

only applies to the trivial case r = 0.

The method of Chabauty-Coleman relies on the image of the map

(1.1) log : J(K)⊗Kp → H0(XKp
,Ω1)∨

having positive codimension, which is used to write down abelian integrals van-

ishing at the rational points. Kim [23, 24] proposed to extend this approach to

curves with r ≥ g, by replacing the Jacobian with non-abelian Selmer varieties

and the abelian integrals with iterated Coleman integrals. This requires tech-

niques from p-adic Hodge theory and, in general, appears to be quite difficult

to use for computations of X(K). However, the simplest non-abelian instance

of Kim’s program has been made explicit in various circumstances.

For now suppose that K = Q. The basic idea is to use a p-adic height

function, which is a quadratic form h : J(Q) → Qp. We can decompose h into

a sum h =
∑
v hv of local terms hv : Div0(XQv ) → Qp, where v runs through

all prime numbers and hv(D) = 0 for all but finitely many v if D ∈ Div0(XQ)
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(see [18, 1]). If (1.1) is injective, then we can write down a basis Q of the

quadratic forms on J(Q)⊗Qp in terms of products of abelian integrals, and we

can write h as a linear combination h =
∑
q∈Q αqq over Qp. Hence we find

(1.2)
∑
q∈Q

αqq − hp =
∑
v 6=p

hv.

The left hand side can be pulled back to X(Q) and extended to a locally analytic

function on a subset Sp ⊂ X(Qp). If the pull-back of the right hand side vanishes

on
∏
v 6=p Sv ∩X(Q) for some Sv ⊂ X(Qv) or, more generally, if we can control

the image, then we get a locally analytic function on Sp which takes values on∏
v Sv ∩X(Q) in an explicitly computable finite subset of Qp.
One context in which this idea has been made explicit is the one of integral

points on certain hyperelliptic curves. Suppose that X is hyperelliptic, given by

a model y2 = f(x), where f ∈ Z[x] is monic of odd degree and has no repeated

roots. It is shown in [2] that

(1) the function τ(z) := hp(z−∞) is a Coleman function on X(Qp) \ {∞},
which can be expressed as a double Coleman integral ([2, Theorem 2.2]);

(2) for v 6= p, the function z 7→ hv(z −∞) takes values on the v-integral

points of X(Qv) in an explicitly computable finite set Tv ⊂ Qp ([2,

Proposition 3.3]), which is the set {0} for almost all v.

These results do not use Kim’s approach directly; the first uses p-adic Arakelov

theory whereas the second is based on intersection theory on arithmetic surfaces.

Let U = SpecZ[x, y]/(y2−f(x)). Together with the discussion above, it is then

easy to deduce

Theorem 1.1 ([2, Theorem 3.1]): Suppose that r = g and that the map in (1.1)

is an isomorphism. Then there exists an explicitly computable finite set T ⊂ Qp
and an explicitly computable non-constant Coleman function ρ : U(Zp) → Qp
such that ρ(U(Z)) ⊂ T .

Here and in the following we write that certain p-adic objects are explicitly

computable if we can provably compute them to any desired p-adic precision;

see Remark 6.1.

The first goal of the present article is to extend Theorem 1.1 to general number

fields. Fix a prime number p such that X has good reduction at all p | p and

fix a nontrivial continuous idele class character χ : A∗K/K∗ → Qp. This choice

induces Qp-linear maps tχp : Kp → Qp for all p | p and a p-adic height pairing hχ



4 BALAKRISHNAN, BESSER, BIANCHI AND MÜLLER Isr. J. Math.

with values in Qp. This can be decomposed into a sum of local height pairings

and the local heights hχp are of the form tχ
p
◦ τp for some Coleman functions τp.

Following a similar extension of classical Chabauty due to Siksek [34], we work

in X(K ⊗ Qp) rather than in X(Kp) for a single place p | p, and we consider

the composition

(1.3) log : J(K)⊗Qp → ResK/Q(J)(Q)⊗Qp → Lie(ResK/Q(J))Qp .

Let σ : X(K) ↪→ X(K ⊗ Qp) denote the embedding induced by the product of

the completion maps K ↪→ K ⊗Qp =
∏

p|pKp.

Theorem 1.2: Suppose that (1.3) is injective. Then there exists an explicitly

computable finite set Tχ ⊂ Qp and an explicitly computable non-constant lo-

cally analytic function ρχ : U(OK ⊗Zp)→ Qp, both dependent on χ, such that

ρχ(σ(U(OK))) ⊂ Tχ.

Remark 1.3: One can obtain a slight practical improvement of the theorem by

noting that the sets Tχ arise, just as in [2], from possible values of the local

components hχv , and these values are highly dependent for varying χ because

they are just the products of a certain intersection pairing with a constant

depending on χv (see (2.6)). Thus, picking a basis {χi} for the space of idele

class characters one may prove that the vector valued function ρ = (ρχ1 , . . .)

takes on σ(U(OK)) a finite computable set of possible values, which is smaller

than the obvious product of the Tχi . For simplicity we ignore this point here.

See Theorem 4.2 below and its proof. Note that both Theorem 1.1 and

Theorem 1.2 hold true when g = 1.

The method of [2] was generalized by the first author and Dogra in [6] to

rational points on smooth projective curves, satisfying some additional condi-

tions. In contrast to the proof of Theorem 1.1 in [2], this generalization uses

Kim’s approach directly, relating certain Selmer varieties to p-adic heights as

constructed by Nekovář [31], via p-adic Hodge theory.

In a special case, this was turned into an explicit algorithm to compute a

finite set of p-adic points containing the rational points of X. In particular, let

X be a bielliptic curve of genus 2 over a number field K. Then X admits degree

2 maps ϕ1, ϕ2 to two elliptic curves E1 and E2, respectively.

Theorem 1.4 ([6, Theorem 1.4]): Suppose that K is Q or an imaginary qua-

dratic field in which p splits, and that E1 and E2 each have rank 1 over K; let
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p | p. Then there exist a nontrivial continuous idele class character χ, an explic-

itly computable finite set Tχ ⊂ Qp and an explicitly computable non-constant

Coleman function ρχ : X(Kp)→ Qp, such that ρχ(X(K)) ⊂ Tχ.

This explicit result from [6] can alternatively be proved only from properties

of the local heights on the elliptic curves Ei and Theorem 1.1 for each Ei.

Therefore, our approach to Theorem 1.2 can be used to extend this elementary

proof of Theorem 1.4 to general number fields K.

Theorem 1.5: Suppose that (1.3) is an injection for each Ei; let Qi denote

a set of Qp-valued functions on Ei(K ⊗ Qp) which restricts to a basis of qua-

dratic forms on Ei(K). For every nontrivial continuous idele class character

χ, there exist explicitly computable constants αχq1 , β
χ
q2 ∈ Qp and an explicitly

computable finite set Tχ ⊂ Qp such that the function

ρχ : X̃(K ⊗Qp)→ Qp

defined by

ρχ(z) :=
∑
p|p

(hχp (ϕ1(zp))− hχp (ϕ2(zp))− 2χp(x(zp)))

−
∑
q1∈Q1

αχq1q1(ϕ1(z)) +
∑
q2∈Q2

βχq2q2(ϕ2(z))

satisfies

ρχ(σ(X̃(K))) ⊂ Tχ;

here X̃(K ⊗ Qp) is the subset of X(K ⊗ Qp) where ρχ is well-defined and

σ(X̃(K)) is its intersection with σ(X(K)).

See Theorem 5.2 for a more precise formulation. If we want to use Theo-

rem 1.2 (respectively Theorem 1.5) to actually compute integral (respectively

rational) points, then we need enough functions ρχ so that their common zero

set is finite. In order to achieve this, we require at least [K : Q] = dim ResK/QX

such functions.

Over the rational numbers, the space of continuous Qp-valued idele class

characters has dimension 1, so up to a scalar factor, Theorem 1.2 (respectively

Theorem 1.5) only leads to one locally analytic function which vanishes at the

integral (respectively rational) points. In general, the dimension of this space is

at least r2 +1, where r2 is the number of conjugate pairs of non-real embeddings

of K into C (with equality if Leopoldt’s conjecture holds). Hence we can expect
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r2 + 1 independent functions. Combining our functions with Siksek’s work, we

expect that generically, we get a method to compute integral or rational points

when

(1.4) r + rk(O×K) ≤ [K : Q] · g .

As in Siksek’s work, our approach will usually fail if X can be defined over a

subfield F of K and if

rk(Jac(X)/F ) + rk(O×F ) > [F : Q] · g.

It would be interesting to investigate conditions which guarantee that our

functions cut out a finite set. See recent work of Dogra [20] and of Hast [22] for

discussions of finiteness issues related to ours, but working directly with Kim’s

approach.

However, the focus of this article is on developing methods for computing inte-

gral or rational points, not on theoretical conditions guaranteeing finiteness. To

illustrate the practicality of our method, we give several examples 1 , combining

our techniques with the Mordell-Weil sieve following [3] and [6, Appendix B].

In particular, we compute

• the OQ(
√
−3)-integral points on the genus 2 curve defined by y2 = x5 −

x4 + x3 + x2 − 2x + 1, see Example 6.5. Its Jacobian is an optimal

quotient of J0(188) and has rank 2 over Q and rank 4 over Q(
√
−3).

• the Q(i)-rational points on the bielliptic modular curve X0(91)+, see

Example 7.1. Note that Theorem 1.4 does not apply here, since the

Mordell-Weil rank of the Jacobian of X0(91)+ over Q(i) is 4. Its rank

over Q is 2.

• the Q(
√

34)-rational points on the bielliptic curve X : y2 = x6 + x2 + 1,

see Example 7.2. Inspired by a problem in Diophantus’ Arithmetica,

Wetherell determined the rational points on X in his thesis [38]. The

rank of the Jacobian of X over Q is 2 and the rank over Q(
√

34) is 3.

It is immediate that Siksek’s method does not apply to these examples because

the respective ranks are too large. They might be amenable to an approach via

elliptic curve Chabauty as in [13] (the relevant Galois group in the first example

is of order 10), but to our knowledge the only existing implementations of this

1 We focus on examples over quadratic fields because some of the restrictions of our method

are much easier to satisfy for such fields than for a higher degree number field, see

Remark 6.6.
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method require the base field to be Q. We are also not aware of any method for

computing integral points on hyperelliptic curves over number fields that could

have succeeded in the first example.

The outline of the paper is as follows: After setting some notation, we give an

explicit description of continuous idele class characters and the p-adic heights

associated to them in Section 2. We then recall Siksek’s extension of Chabauty-

Coleman in Section 3. In Section 4 we extend the quadratic Chabauty tech-

niques for integral points on odd degree hyperelliptic curves introduced in [2]

and prove Theorem 1.2. Similarly, Section 5 is devoted to an extension of the

explicit methods for bielliptic curves of genus 2 from [6] and contains a proof

of Theorem 1.5. We then turn to algorithmic details of these methods and give

several examples for curves of small genus defined over quadratic fields in Sec-

tions 6 and 7. Finally, we discuss how we can provably find the solutions of the

power series equations resulting from our methods in Appendix A.

It would be interesting to extend the explicit results in [5] and [7] to general

number fields. We have not attempted this, but rather focused on extending

those quadratic Chabauty results which do not require p-adic Hodge theory.
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1.1. Notation. We fix, once and for all, the following notation.

K a number field ,

OK the ring of integers of K ,

d the extension degree [K : Q] ,

(r1, r2) the signature of K ,

rK the rank r1 + r2 − 1 of the unit group O∗K ,
hK the class number of K ,

Kv the completion of K at a place v ,

p an odd prime number, unramified in K ,

p1, . . . , pm ⊂ OK the primes of OK lying above p ,

σj : K ↪→ Kj := Kpj the completion of K at pj ,

Oj the ring of integers of Kj ,

ξq a generator of qhK if q ⊂ K is a prime ideal .

(K ⊗Qp)∨
∏m
j=1 HomQp(Kj ,Qp).

2. p-adic heights

2.1. Continuous idele class characters. In this section, we recall contin-

uous idele class characters

χ =
∑
v

χv : A∗K/K∗ → Qp

and discuss how to construct them explicitly. These characters are of great

importance in Iwasawa theory, as they correspond to Zp-extensions of K. We

shall not use this interpretation; for us, the main application is the explicit

construction of p-adic heights in §2.2.

First we note the following:

• For any prime q - p we have χq(O∗Kq
) = 0 because of continuity. So if

πq is a uniformizer in Kq, then χq is completely determined by χq(πq).

Equivalently, we can use χq(q), where q is the underlying prime number,

or χq(ξq).
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• For any j ∈ {1, . . . ,m}, there is a Qp-linear map tχj such that we can

decompose

(2.1) O∗j
χpj //

logj

  

Qp,

Kj

tχj
>>

because χpj takes values in the torsion-free group (Qp,+). We call the

tχj trace maps.

Remark 2.1: If a continuous idele class character χ is ramified at pj , that is, if

the local character χpj does not vanish on O∗j , then we can extend logj to

(2.2) logj : K∗j → Kj

in such a way that the diagram (2.1) remains commutative.

By the above, a continuous idele class character of K determines an element

tχ of (K ⊗Qp)∨. We now show that the converse also holds.

Lemma 2.2: A continuous idele class character χ : A∗K/K∗ → Qp is uniquely

determined by

tχ = (tχ1 , . . . , t
χ
m) ∈ (K ⊗Qp)∨

where the tχj are as in (2.1).

Proof. We first show that tχ determines χpj for 1 ≤ j ≤ m. Indeed, since

σi(ξpj ) is a unit in Oi for i 6= j, we have

χpj (σj(ξpj )) = −
∑
i6=j

χpi(σi(ξpj )) = −
∑
i6=j

tχi (logi(σi(ξpj ))) ,

so χpj is completely determined by tχ.

Now let q be a prime not dividing p. Then χq is determined by its value

on ξq (embedded into Kq via σq) and vanishes on O∗q. Hence χq is completely

determined by tχ, since

χq(σq(ξq)) = −
m∑
i=1

χpi(σi(ξq)) = −
m∑
i=1

tχi (logi(σi(ξq))) .
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More generally, the proof of Lemma 2.2 shows that every t ∈ (K ⊗ Qp)∨

determines a character χ : A∗K → Qp via (2.1). We now investigate which

t ∈ (K ⊗Qp)∨ give rise to a continuous idele class character.

Lemma 2.3: A homomorphism

t = (t1, . . . , tm) ∈ (K ⊗Qp)∨

gives rise to a continuous idele class character χ if and only if

(2.3) t1(log1(σ1(ε))) + . . .+ tm(logm(σm(ε))) = 0

for all ε ∈ O∗K .

Proof. Suppose that χ is a continuous idele class character, determined by t =

tχ ∈ (K ⊗Qp)∨ as in Lemma 2.2. Note that for a unit ε ∈ O∗K the value χq(ε)

depends only on tq for q | p and is 0 for all other primes q. Hence (2.3) must

be satisfied.

Conversely, suppose that t ∈ (K ⊗ Qp)∨ and let χ denote the character

χ : A×K → Qp associated to t as in Lemma 2.2. Given β ∈ K∗, we need to show

that χ(β) = 0. Suppose that (β) =
∏

qeii is the decomposition of the fractional

ideal (β), for primes qi of K. Then

(βhK ) =
∏

qhKeii =
∏

(ξqi)
ei =

(∏
ξeiqi

)
,

so that βhK =
∏
ξeiqiu for some unit u ∈ O∗K . But since the construction of χ

was done so that χ(ξq) = 0 for every q and χ(u) = 0 for every unit, we see that

χ(βhK ) = 0 and hence χ(β) = 0.

We deduce the following result:

Corollary 2.4: The continuous idele class characters of K form a Qp-vector

space VK of dimension ≥ r2 + 1. If Leopoldt’s conjecture [26] holds for K,

then we have dimQp VK = r2 + 1. In particular, this holds if K/Q is an abelian

extension.

Proof. The space VK has dimension precisely d − rK = r2 + 1 if the equa-

tions (2.3) are independent; otherwise its dimension is larger. Leopoldt’s con-

jecture [26] predicts that the p-adic regulator of K is nonzero, which is equiv-

alent to independence of the equations (2.3). Brumer [15] proved Leopoldt’s

conjecture for abelian K/Q.
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Remark 2.5: For our applications it suffices that dimQp VK ≥ r2 + 1.

Remark 2.6: Corollary 2.4 is classical, see for instance [28], but our proof yields

a method for actually determining a basis of VK , provided we know the class

number hK , fundamental units and a method for computing, for each prime q

of K, a generator ξq ∈ K∗ of the principal ideal qhK .

Example 2.7: If t = (t1, . . . , tm) ∈ (K ⊗ Qp)∨, where tj = trKj/Qp , then the

equation (2.3) translates into the trivially satisfied equation log(NK/Q(ε)) = 0 ,.

This choice of t gives rise to a continuous idele class character χcyc, which one

obtains by composing the usual idele class character over Q (corresponding to

t1 = idQp) with the norm on the idele class group. We call χcyc the cyclotomic

character; it cuts out the cyclotomic Zp-extension of K. Note that in the case of

a totally real number field, if Leopoldt’s conjecture holds, then every continuous

idele class character is a scalar multiple of χcyc by Corollary 2.4.

Example 2.8: If p is totally split in K, then the trace maps correspond to scalar

multiplication on Kj
∼= Qp, so by Lemma 2.3, the space VK of continuous idele

class characters is isomorphic to the subspace of all (c1, . . . , cd) ∈ Qdp such that

(2.4) c1 log(σ1(ε)) + . . .+ cd log(σd(ε)) = 0

for all ε ∈ O∗K .

Example 2.9: Let K be imaginary quadratic. Denote by c : A∗K/K∗ → A∗K/K∗

the involution induced by complex conjugation. We say that a continuous idele

class character χ ∈ VK is anticyclotomic if χ ◦ c = −χ. Such characters cut out

the anticyclotomic Zp-extension of K and play an important role in Iwasawa

theory. The space VK of continuous idele class characters is spanned by the

cyclotomic character and any nontrivial anticyclotomic character.

If we assume, in addition, that p splits completely in K, then it turns out

that χ ∈ VK is anticyclotomic if and only if

c1 + c2 = 0

in the notation of Example 2.8. In this case, we call the character χanti corre-

sponding to the choice c1 = 1 and c2 = −1 the anticyclotomic character. See [9,

§1] for an explicit construction of χanti.

2.2. Coleman-Gross p-adic height pairings. We keep the notation of §2.1.

Let X/K be a smooth projective geometrically irreducible curve of genus g > 0
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with good reduction at p1, . . . , pm and let J denote its Jacobian. The rank

rk(J/K) will be denoted by r. We fix, for every j ∈ {1, . . . ,m}, a splitting

H1
dR(X/Kj) = H0(X/Kj ,Ω

1)⊕Wj ,

such that Wj is isotropic with respect to the cup product pairing. For instance,

when pj is ordinary, we can take the unit root subspace with respect to Frobe-

nius.

There are several ways of attaching a p-adic height pairing

(2.5) hχ : J(K)× J(K)→ Qp

to a continuous idele class character χ ∈ VK , see for instance the work of Schnei-

der [33], Mazur-Tate [29], Coleman-Gross [18] and Nekovář [31]. The pairing

hχ depends on our fixed choices of Wj . If the reduction is ordinary, Wj is the

unit root subspace of Frobenius at all j, and χ is ramified above p, the construc-

tions of Schneider, Mazur-Tate, Coleman-Gross and Nekovář are all known to

be equivalent. The p-adic height pairing is bilinear and functorial, see [29, §3.4].

It is furthermore symmetric, since we assume all Wj to be isotropic. Denote by

B the space of Qp-valued bilinear forms on J(K)⊗Z Qp. The function VK → B
mapping χ to hχ is Qp-linear. The dimension of its image is bounded from

above by

min

{
dimQp VK ,

r(r + 1)

2

}
≥ min

{
r2 + 1,

r(r + 1)

2

}
,

where the inequality is an equality if Leopoldt’s conjecture holds for K (see

Corollary 2.4). Lower bounds on the dimension are much more difficult. For

instance, when the reduction is ordinary, the cyclotomic height attached to the

unit root splitting has been conjectured to be non-degenerate by Schneider, but

this remains open to date.

As in [2], we follow the approach of Coleman-Gross. Let χ =
∑
v χv ∈ VK

be a nontrivial continuous idele class character, with corresponding trace maps

tχ = (tχ1 , . . . , t
χ
m) ∈ (K ⊗Qp)∨. Coleman and Gross construct local bi-additive

symmetric p-adic height pairings hχv for every non-archimedean place v of K on

divisors of degree 0 with disjoint support. Then they define the global p-adic

height pairing to be their sum hχ =
∑
v h

χ
v ; this turns out to respect linear

equivalence and hence gives a well-defined symmetric bilinear pairing (2.5).

Following Gross [21, §5], the first- and second-named author removed in [1]

the condition that the divisors have to be relatively prime for the local p-adic
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height pairings to make sense. For this, p-adic Arakelov theory as developed by

the second-named author [10] was used. This extension to arbitrary divisors of

degree 0 requires the choice of a tangent vector for every Q ∈ X. If one chooses

such vectors consistently for all primes, then one obtains that the sum of the

local height pairings is independent of this choice.

We now recall the construction of the local height pairings. First let q be a

prime of K not dividing p. Then the local height pairing hχq determined by q

is defined in terms of intersection theory, as follows: Let D,D′ be divisors on

X/Kq of degree 0 and with disjoint support. Fix a proper regular model X
of X/Kq over SpecOKq

and extend D and D′ to Q-divisors D,D′ on X which

have intersection multiplicity 0 with every vertical divisor. Then we define, as

in [18],

(2.6) hχq (D,D′) := χq(πq)(D · D′) ,

where πq is a uniformizer in Kq and (D·D′) ∈ Q is the intersection multiplicity.

A choice of tangent vector makes it possible to define the intersection between

two divisors with common component, which can be used to extend the defini-

tion (2.6) in a straightforward way, see [21, §6] and [1, Proposition 2.4]. One

can define the height pairing at all pj such that χj is unramified in an analogous

way.

Let j ∈ {1, . . . ,m} such that χj is ramified and consider the trace map

tχj : Kj → Qp. Suppose that D and D′ are divisors of degree 0 on X/Kj . If

they have disjoint support, then their local height pairing at pj determined by

χ is defined as

hχpj (D,D
′) := tχj

(∫
D

ωD′

)
,

where ωD′ is a differential of the third kind with residue divisor D′, normalized

with respect to Wj as in [18, §3]. The integral is a Coleman integral; it depends

on the branch logj : K∗j → Kj of the logarithm determined by χ, see Remark 2.1.

To extend this to divisors with common support, one uses that

hχpj (D,D
′) = tχj (GD(D′))

where GD is the p-adic Green function on XKj (Kj) \ supp(D) defined in [10].

The choice of a tangent vector at every point of X makes it possible to define

GD[D′] ∈ Kj for any D′ of degree 0, so that GD[D′] = GD(D′) when D and

D′ have disjoint support. The general formula for the local height pairing of D
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and D′ given in [1, Proposition 3.4] is then

hχpj (D,D
′) = tχj (GD[D′]).

Example 2.10: The local cyclotomic height pairings for D, D′ ∈ Div0(X) with

disjoint support are given by

hcyc
pj (D,D′) = trKj/Qp

(∫
σj(D′)

ωσj(D)

)
for j ∈ {1, . . . ,m} and

hcyc
q (D,D′) = − 1

hK
log(N(ξq)) · (D,D′)q ,

for primes q - p.

Example 2.11: We now describe the anticyclotomic height hanti := hχ
anti

when

K is imaginary quadratic, see Example 2.9. In our notation, the local heights

hanti
pi are

hanti
p1

(D,D′) =

∫
σ1(D′)

ωσ1(D) and hanti
p2

(D,D′) = −
∫
σ2(D′)

ωσ2(D) .

and the local heights away from p are given by

hanti
q (D,D′) =

1

hK
log

(
σ2(ξq)

σ1(ξq)

)
· (D,D′)q .

Using these formulas, we get a practical method for computing hanti. See [9]

for an alternative algorithm.

3. Chabauty over number fields

In this section, we recall a refinement of the method of Chabauty and Coleman

over number fields. The idea is that by viewing the K-rational points on X/K

as the Q-rational points on the Weil restriction of scalars ResK/Q(X) and using

Qp-valued (rather than Kp-valued, for a single p | p) integrals, one can often

computeX(K) when the rank of the Jacobian over K is greater than g. This was

first suggested by Wetherell at a talk at MSRI in 2000, but he never published

the details. Siksek [34] later gave a Chabauty-Coleman method over number

fields inspired by Wetherell’s work. This allows one to compute X(K) in many

cases using a combination of his idea with the Mordell-Weil sieve. See also
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Triantafillou’s work [36] for a recent application to hyperbolic curves of genus

0 and S-unit equations.

We keep the notation of the previous section. We also assume that there

is a rational point P0 ∈ X(K), and we let ι : X ↪→ J := Jac(X) denote the

Abel-Jacobi map corresponding to it. We write X(K ⊗ Qp) for the subset

X(K1)×· · ·×X(Km) ofX(Q̄p)m. Let σ : X(K) ↪→ X(K⊗Qp) be the embedding

induced by σj : X(K) ↪→ X(Kj).

Siksek’s goal is to explicitly construct d = [K : Q] locally analytic functions

ρ1, . . . , ρd : X(K ⊗Qp)→ Qp

such that

(i) we have ρl(σ(X(K))) = 0 for all 1 ≤ l ≤ d;

(ii) the set

B := {z ∈ X(K ⊗Qp) : ρl(z) = 0 for all 1 ≤ l ≤ d}

is finite.

We need (at least) d such functions to cut out a finite subset of X(K ⊗Qp) for

reasons of dimension.

With a view toward explicit computations and generalizations, we now discuss

how the functions ρl can be constructed in terms of Coleman integrals. Let

j ∈ {1, . . . ,m} and let zj ∈ X(Kj). If ω is a holomorphic 1-form on X/Kj ,

then the integral
∫ zj
P0
ω is an element of Kj . We can compose it with a trace

map tj ∈ HomQp(Kj ,Qp) to obtain a locally analytic function

X(Kj)→ Qp ; zj 7→ tj

(∫ zj

P0

ω

)
.

For every j ∈ {1, . . . ,m}, we fix a basis (tj,1, . . . , tj,dj ) of HomQp(Kj ,Qp), where

dj = [Kj : Qp]; we also fix a basis (ω0, . . . , ωg−1) of H0(X/K,Ω1).

Definition 3.1: Let i ∈ {0, . . . , g−1}, let j ∈ {1, . . . ,m} and let k ∈ {1, . . . , dj}.
We define

f
(j,k)
i (z) := tj,k

(∫ zj

P0

σj(ωi)

)
∈ Qp

for z = (z1, . . . , zm) ∈ X(K ⊗Qp). For Q ∈ X(K), we set

f
(j,k)
i (Q) := f

(j,k)
i (σ(Q)) .
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We fix an ordering of the f
(j,k)
i and label their restrictions to X(K) as follows:

f0, . . . , fdg−1 : X(K)→ Qp .

Extending these functions to Galois-equivariant functions fi : X(K⊗ Q̄p)→ Q̄p
in the obvious way and then to J(K)⊗Z Qp by additivity, we obtain Qp-valued

linear functionals

(3.1) f0, . . . , fdg−1 : J(K)⊗Z Qp → Qp .

We fix some more notation: Let (J(K)⊗Qp)∨ = HomQp(J(K)⊗Z Qp,Qp), let

U = SpanQp(f0, . . . , fdg−1) ⊂ (J(K)⊗Qp)∨ ,

and let

n = dg − dimQp(U)

denote the maximal number of independent relations between the fi.

Suppose that

(3.2) n ≥ d

and fix a set of d independent relations in U . These relations, pulled back via the

Abel-Jacobi map ι, extend to explicitly computable locally analytic functions

ρ1, . . . , ρd : X(K ⊗Qp)→ Qp

such that

ρl(σ(X(K))) = 0

for all l = 1, . . . , d. Then, provided the common zero set B of ρ1, . . . , ρd is

finite, we can explicitly determine X(K), by first computing B (to suitable p-

adic precision) and then identifying σ(X(K)) ⊂ B using the Mordell-Weil sieve,

if g ≥ 2. See [34] for details.

As mentioned previously, over Q the condition r < g is a sufficient criterion

for the method of Chabauty-Coleman to work. But when K 6= Q, it is much

more delicate to predict whether the zero set B is finite, as we have to deal with

systems of multivariate power series (see also Appendix A). Since dimQp(J(K)⊗
Qp)∨ = r, we have n ≥ dg − r. Therefore one might guess that for finiteness of

B it should be sufficient that

(3.3) r ≤ d(g − 1).
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This is not the case, as one can find examples where B is infinite because X

can be defined over some subfield F of K over which rk(J/F ) > [F : Q](g − 1);

see [34] for a discussion. Siksek asks whether B is finite whenever

(3.4) rk(Jac(Y )/F ) ≤ [F : Q](g − 1)

for all subfields F and for every smooth projective curve Y/F such that Y ×F
K ∼=K X. This was shown to be false by Dogra [20]; he constructs a hyperelliptic

genus 3 curve X with minimal field of definition K := Q(
√

33) covering a genus

2 curve X0/Q whose Jacobian J0 satisfies rk(J0/Q) = 2. This X satisfies

the condition (3.4), but the functions ρl vanish in the preimage of X0(Qp) in

X(K ⊗ Qp), so B is infinite. Dogra also shows that B is finite whenever r ≤
d(g−1) and Hom(J(K)Q̄,σ1

, J(K)Q̄,σ2
) is trivial for any two distinct embeddings

σ1, σ2 : K ↪→ Q̄, i.e. whenever J and its conjugates do not share an isogeny

component over Q̄.

When r > d(g − 1), then the method of Siksek is in general not applicable.

In the following two sections, we discuss how to extend it using p-adic heights.

4. Quadratic Chabauty for integral points on odd degree hyperelliptic

curves over number fields

Suppose that X/K is hyperelliptic, given by an equation X : y2 = f(x), where

f ∈ OK [x] is a separable polynomial of degree 2g + 1 ≥ 3 which does not

reduce to a square modulo any prime. Let ι be the Abel-Jacobi map with

respect to ∞ = (1 : 0 : 0) ∈ X(K). We denote by U the affine scheme

SpecOK [x, y]/(y2 − f(x)).

For the case K = Q, the first, second and fourth author showed in [2, 3] how to

compute U(Z) ⊂ X(Q) when r = g using a locally analytic function constructed

in terms of the cyclotomic p-adic height. We now show how to generalize this

idea to arbitrary number fields. Generically, we expect our method to work

when

(4.1) r + rK ≤ dg .

More precisely, we try to construct explicitly computable functions

ρ1, . . . , ρd : U(OK ⊗ Zp)→ Qp

which are locally analytic on p-integral points and explicitly computable finite

subsets T (1), . . . , T (d) ⊂ Qp such that
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(i) we have ρl(σ(U(OK))) ⊂ T (l) for all 1 ≤ l ≤ d;

(ii) the set

B :=
{
z ∈ U(OK ⊗ Zp) : ρl(z) ∈ T (l) for all 1 ≤ l ≤ d

}
is finite.

As in Section 3, let U be the Qp-span of the linear functionals f1, . . . , fdg−1 :

J(K)⊗Qp → Qp. We show how to construct such functions ρ1, . . . , ρd when (4.1)

and the following condition are satisfied:

Condition 4.1: U = (J(K)⊗Qp)∨.

The finiteness of B turns out to be much more difficult to prove. If Condi-

tion 4.1 is satisfied, then we have dimQp U = r and hence

(4.2) n+ r = dg ;

in particular, we need to have r ≤ dg for Condition 4.1 to hold, and if r = dg,

then Condition 4.1 is equivalent to surjectivity of the map in (1.3). We order

the fi so that (f0, . . . , fr−1) is a basis of (J(K)⊗Qp)∨.

In §2.2 we discussed how a continuous idele class character χ gives rise to

a p-adic height pairing hχ. So let χ ∈ VK be nontrivial with associated trace

maps tχ = (tχ1 , . . . , t
χ
m) ∈ (K ⊗ Qp)∨. We choose the basis (ω0, . . . , ωg−1) of

H0(X/K,Ω1) given by ωk := xkdx/2y and we denote the differentials on X/Kj

obtained via σj by ωk as well. In order to define the local height pairings for

arbitrary divisors of degree 0, we fix a choice of tangent vector for every point

Q ∈ X as in [2]. Namely, we take the tangent vector induced by ω0 by duality

for all affine points. For the point ∞, we pick the dual of the value of ωg−1

at ∞. We denote by (ω̄0, . . . , ω̄g−1) the unique basis of Wj which is dual to

(ω0, . . . , ωg−1) with respect to the cup product pairing. For z ∈ X(Kj) \ {∞}
we define the double Coleman integral

τj(z) = −2

∫ z

b0

g−1∑
i=0

ωiω̄i ∈ Kj ,

where b0 is the tangential basepoint determined by our choice of tangent vector

at ∞. Note that τj depends on the branch logj : K∗j → Kj determined by

χ. This is not reflected in our notation, since we are mostly interested in the

restriction of τj to U(Oj).
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Theorem 4.2: Suppose that Condition 4.1 is satisfied. Then there are ex-

plicitly computable constants αχij ∈ Qp and an explicitly computable finite set

Tχ ⊂ Qp such that the function

ρχ : U(OK ⊗ Zp)→ Qp

defined by

ρχ(z) :=
m∑
j=1

tχj (τj(zj))−
∑

0≤i≤j≤r−1

αχijfi(z)fj(z) ,

satisfies

ρχ(σ(U(OK))) ⊂ Tχ .

Proof. Setting gij(P,Q) := 1
2 (fi(P )fj(Q) + fj(P )fi(Q)), we obtain a basis

(gij : 0 ≤ i ≤ j ≤ r−1) of the space of Qp-valued bilinear forms on J(K)⊗ZQp,
since the latter has dimension r(r+ 1)/2 and the gij are independent. Because

hχ is a Qp-valued bilinear form on J(K)⊗Z Qp, we can find constants αχij ∈ Qp
such that

(4.3) hχ =
∑

0≤i≤j≤r−1

αχijgij .

If q is a prime of K and z ∈ X(Kq) \ {∞}, we write

hχq (z) := hχq ((z)− (∞), (z)− (∞)) ,

where the right hand side is determined by our choice of tangent vectors. Then,

we have

(4.4) hχpj (z) = tχj (τj(z))

for z ∈ X(Kj) \ {∞} by [2, Theorem 2.2].

Now let q be a prime of K not dividing p. Let X be a desingularization

in the strong sense of the Zariski closure of X in weighted projective space

POKq
(1, g+1, 1). Let z ∈ X(Kq) and extend the divisor (z)−(∞) to a Q-divisor

Dz on X such that Dz has intersection multiplicity 0 with all vertical divisors on

X . Then we have hχq (z) = χq(πq)D2
z . The proof of [2, Proposition 3.3] (which

treats the special case K = Q and h = hcyc) shows that if z ∈ U(OKq
), then

the value of hχq (z) depends only on the irreducible component Γz of the special

fiber of X that z reduces to and is explicitly computable from Γz. Furthermore,

this value is 0 if z reduces to a smooth point modulo q and if ordq(f2g+1) = 0,

where f2g+1 is the leading coefficient of f .
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For Q ∈ U(OK) we conclude that

ρχ(σ(Q)) =
m∑
j=1

tχj (τj(σj(Q)))−
∑

0≤i≤j≤r−1

αχijfi(Q)fj(Q)

=
m∑
j=1

hχpj (Q)− hχ((Q)− (∞), (Q)− (∞))

= −
∑
q-p

hχq (Q)

indeed takes values in an explicitly computable finite set.

Remark 4.3: Theorem 1.2 follows at once from Theorem 4.2.

Remark 4.4: Let us make the following remark concerning the dependence on

the branch of the logarithm. The function τj is a double Coleman integral.

On residue discs where the integrands have no singularities, it is rigid analytic.

However, there will be a finite number of residue discs where τj will be more

complicated. Near a point where one of the integrands has a singularity, there

will be a disc D where the function is given by a polynomial of degree at most

2 in log(z) with coefficients which are rigid analytic functions on D, with z a

uniformizing parameter on D sending the singular point to 0 (these discs could

in general be smaller than residue discs if the integrands have several singular

points in the same residue disc). We note that in fact, due to their source

in Green functions, the τj are simpler: On such a disc D they will be of the

form ϕ(z) + c log(z), where ϕ is rigid analytic and c is a constant. Solving

even a simple polynomial equation involving both z and log(z) is far more

complicated, if possible at all, than an analytic equation. This is one reason

why certain quadratic Chabauty techniques do not find all rational points but

only those that avoid certain residue disks. On the other hand, whenever one

stays away from these problematic disks the equation does not depend on the

chosen branch of the logarithm. The dependence on the branch only appears

when trying to compute the global height pairing.

Remark 4.5: Our assumption that f does not reduce to a square modulo any

prime is only required to apply [2, Proposition 3.3]. Of course, we can always

scale the variables to make f monic, and then it is automatically satisfied.
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We can expect at most min(dimQp VK ,
r(r+1)

2 ) independent height pairings

hχ. Recall that dimQp VK ≥ r2 + 1 (with equality if Leopoldt’s conjecture holds

for K). The set of all z ∈ U(OK ⊗ Qp) such that ρχ(z) ∈ Tχ holds for the

corresponding functions can only be finite when r2 + 1 = d, i.e. when K = Q
or K is an imaginary quadratic field.

In general, we need at least d − (r2 + 1) = rK additional functions U(OK ⊗
Qp) → Qp to cut out a finite subset of U(OK ⊗ Qp) containing σ(U(OK)). It

is natural to take these from the relations among the functions fi, as in §3.

Therefore we need the maximal number n of independent relations to be at

least rK . Because of (4.2), this means that we want rK + r ≤ dg, which is

precisely (4.1), to hold.

Let ρ1, . . . , ρr2+1 : U(OK⊗Zp)→ Qp be functions coming from p-adic heights

associated to nontrivial continuous idele class characters χ ∈ VK as above, with

corresponding finite sets T (k) ⊂ Qp. Assuming that (4.1) holds, we obtain

functions ρr2+2, . . . , ρd : X(K ⊗ Qp) → Qp which vanish in σ(X(K)) from in-

dependent relations among the fi as in Section 3. Set T (l) = {0} ⊂ Qp for

r2 + 2 ≤ l ≤ d. Then

B := {z ∈ U(OK ⊗ Zp) : ρl(z) ∈ T (l) for all 1 ≤ l ≤ d}

contains σ(U(OK)) and is explicitly computable. Thus, we get a method to

p-adically approximate U(OK) in practice whenever B is finite.

In analogy with the results of Dogra [20], we raise the following

Question 4.6: Suppose that Condition 4.1 is satisfied and that we have

(4.5) rk(Jac(Y )/F ) + rF ≤ [F : Q] · g

for every subfield F ⊂ K and for every smooth projective curve Y/F such that

Y ×F K ∼=K X. Is it true that B can only be infinite for geometric reasons?

Remark 4.7: Siksek’s method always succeeds in constructing a set B containing

X(K), provided that r ≤ d(g−1). As was explained at the end of Section 3, this

assumption on the rank is however not sufficient to guarantee finiteness of B.

On the contrary, even definability of a set B is not ensured by (4.5). If K = Q
and (4.5) holds, then either Condition 4.1 is satisfied or classical Chabauty is

applicable (or both). For general K, it is instead possible to construct examples

where (4.5) holds, but we are neither in the situation of Condition 4.1 nor in

Siksek’s. Indeed, let X be a genus 2 hyperelliptic curve over an imaginary
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quadratic field K. Suppose that X does not not descend to Q and that its

Jacobian splits as the product of two elliptic curves E1 and E2. If rk(E1/K) = 3

and rk(E2/K) = 1 and E1 cannot be defined over Q, then we expect that

dimQp(U) = 3. For example, consider the hyperelliptic curve over Q(i)

X : y2 = (14i− 6)x5 + (−3i+ 5)x4 + 20ix3 − 15x2 − 6ix+ 1.

Its Jacobian splits as the product of

E1 : y2 = x3 + (−3i− 10)x2 + (54i+ 72)

E2 : y2 = x3 + (−3i− 10)x+ (−3i− 9)

of respective ranks 3 and 1. Let P = (2,−3i − 7), Q = (7i + 1,−6i + 22) ∈
E1(Q(i)) and let ω0 be an invariant differential on E1. Then, choosing p = 13,

we get (
∫ σ1(P )

∞ ω0)(
∫ σ2(Q)

∞ ω0) 6= (
∫ σ2(P )

∞ ω0)(
∫ σ1(Q)

∞ ω0), so (1.3) is surjective for

E1. Thus the dimension of U for J is 3.

When K = Q it is conjectured by Waldschmidt that it is sufficient that J is

simple of Mordell-Weil rank at most g for Condition 4.1 to hold (see [37]). The

situation is expected to be more complicated for higher degree number fields,

see [32, Remark 6.4].

Remark 4.8: The equations attached by Theorem 4.2 to dependent height pair-

ings can sometimes be independent. To see this, consider an elliptic curve E

over Q of rank 0. Then all global height pairings are identically zero on E(Q);

nevertheless, the cyclotomic height (with respect to a choice of splitting) gives

an equation whose zero set is, in general, not identical to E(Qp)tors, i.e. to

the zero set of the p-adic logarithm on E(Qp). See [4, 11] for computational

evidence and relations with a conjecture of Kim on effectiveness.

This phenomenon in rank 0 also provides us with an example of how dif-

ferent choices of splittings of the de Rham cohomology can lead to linearly

independent equations. Indeed, recall from Section 2.2 that the cyclotomic p-

adic height pairing on E/Q depends on a choice of subspace W ⊂ H1
dR(E/Qp),

complementary to the space of holomorphic form and isotropic with respect to

the cup product pairing. The latter condition is automatically satisfied in the

elliptic curve case and we see that the local height at p is then given by

h(W )
p (z) = 2D2(z) + cW

(∫ z

∞
ω0

)2

,
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where D2(z) is the dilogarithm (a double Coleman integral), cW ∈ Qp depends

on W , and
∫ z
∞ ω0 is the p-adic logarithm. Choosing two different subspaces

W1,W2 we then get h
(W1)
p (z) = 0 = h

(W2)
p (z) if and only if h

(W )
p (z) = 0 =

∫ z
∞ ω0

for any W . Thus, for all z ∈ U(Zp) such that h
(W1)
p (z) = 0 but

∫ z
∞ ω0 6= 0, we

have h
(W2)
p (z) 6= 0; examples of such z can be found in the computations for

[4, 11].

In contrast, when r = g, different splittings will not result in independent

equations, see [7, Remark 3.12].

5. Quadratic Chabauty for rational points on bielliptic curves over

number fields

Let X/K be the genus 2 bielliptic curve

y2 = a6x
6 + a4x

4 + a2x
2 + a0 (ai ∈ OK)

which has degree 2 maps ϕ1, ϕ2 to two elliptic curves:

E1 : y2 = x3 + a4x
2 + a2a6x+ a0a

2
6, ϕ1(x, y) = (a6x

2, a6y)(5.1)

E2 : y2 = x3 + a2x
2 + a4a0x+ a6a

2
0, ϕ2(x, y) = (a0x

−2, a0yx
−3).

When K is either Q or an imaginary quadratic field and both E1 and E2 have

Mordell-Weil rank 1 over K, it was shown in [6] that a suitable choice of contin-

uous idele class character of K gives rise to a locally analytic function on X(Kj)

which vanishes on X(K), provided that Kj ' Qp and X has good reduction at

each pj .

In this section, we combine the ideas of [6] with those of Section 4 to approx-

imate X(K) inside X(K ⊗ Qp) when K is an arbitrary number field and p is

a prime, unramified in K, above which the given model for X has everywhere

good reduction. As in Sections 3 and 4, we do not investigate here whether the

systems of d equations in d variables that we define have finitely many zeros.

For ease of exposition, and since we assumed in Section 3 that X possesses a

K-rational point, we now restrict to curves X for which the defining polynomial

is monic, i.e. for the rest of this section we take

a6 = 1.
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Then X can be embedded into its Jacobian J via the Abel-Jacobi map with

respect to one of ∞± = (1 : ±1 : 0) ∈ X(K). The proof of the main theorem

(Theorem 5.2 below) can easily be adapted to allow for any a6 ∈ OK .

For the construction, it is sufficient to work under Assumption 5.1 below and

(5.2) rk(J/K) + rK ≤ dg = 2d.

For each A ∈ {J,E1, E2}, let

fA0 , . . . , f
A
dg(A)−1 : A(K)⊗Z Qp → Qp

be the Qp-valued linear functionals of Section 3 on A (here by g(J) we mean

the genus of X) and define, for 0 ≤ i ≤ j ≤ dg(A)− 1, the bilinear form gAij by

gAij(P,Q) =
1

2
(fAi (P )fAj (Q) + fAj (Q)fAi (P )), for P,Q ∈ A(K)⊗Qp.

Let χ be a nontrivial continuous idele class character of K and for each k ∈ {1, 2}
let hχ,Ek be the global p-adic height pairing of Section 2 on Ek with respect

to χ. Similarly, for a prime q of K, denote by hχ,Ekq the local height at q. We

work under the following assumption:

Assumption 5.1: Condition 4.1 holds for each of E1 and E2. For this, it is

necessary that

rk(Ẽk/F ) ≤ [F : Q] for k ∈ {1, 2}

for all subfields F of K and for all Ẽk/F isomorphic to Ek over K.

Possibly after reordering the gEkij , we can then find

αχ,Ekij , 0 ≤ i ≤ j ≤ rk(Ek/K)− 1,

such that

(5.3) hχ,Ek =
∑
i,j

αχ,Ekij gEkij .

By abuse of notation, we also write hχ,Ek(P ) for hχ,Ek(P, P ) and similarly

for gEkij . Embed Ek(K) in Ek(K ⊗ Qp) via σ. Note that, while hχ,Ek only

makes sense as a function of Ek(K), each gEkij is the restriction of a function on

Ek(K ⊗ Qp), which we also denote by gEkij . Furthermore, if z ∈ Ek(K ⊗ Qp),
we write hχ,Ekpj (z) for hχ,Ekpj (zj), which is locally analytic away from the disk of

the point at infinity ∞Ek .
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Let Q1 = (0,
√
a0) ∈ E1(K(

√
a0)), Q2 = (0, a0) ∈ E2(K) and, for a point

P ∈ X(Kj), denote by ]P [ the residue disk centered at P in X(Kj). For k = 1, 2,

define

X(k)(K ⊗Qp) =
m∏
j=1

(
X(Kj) \

(
]σj(ϕ

−1
k (Qk))[ ∪ ]σj(ϕ

−1
k (−Qk))[

))
X(k)(K) = σ(X(K)) ∩X(k)(K ⊗Qp),

where, if Q1 is not defined over K, we let σj(ϕ
−1
1 (±Q1)) = (0,±

√
σj(a0)) if

a0 ∈ O2
j and ]σj(ϕ

−1
1 (±Q1))[= ∅ otherwise.

If a0 is not a square in K, we need to extend the local and global heights

on E1/K to E1/L where L = K(
√
a0). Let χ′ be the continuous idele class

character of L defined by composing the trace maps of χ with the field traces

Lp′/Kpj at each p′ | pj and normalised so that it restricts to 2χ on A∗K/K∗.
Write

hχ,E1(Q1) =
1

2
hχ
′,E1(Q1)

and, for a prime q of K,

hχ,E1
q (Q1) =

1

[Lq′ : Kq]
hχ
′,E1

q′ (Q1),

where q′ is any prime of L above q. Since Gal(L/K) acts on Q1 by multiplication

by ±1 and by definition of χ′, the quantity hχ,E1
q (Q1) is well-defined and all

properties of hχ,E1
q for points over K hold for Q1.

The following result is a version of Theorem 1.5 which is computationally

more useful, since the function of Theorem 1.5 is defined only on a proper

subset of X(k)(K ⊗Qp) for each k.

Theorem 5.2: For each k ∈ {1, 2}, there exists an explicitly computable finite

set Tχ,k ⊂ Qp such that the locally analytic function ρχ,k : X(k)(K⊗Qp)→ Qp,
defined by

ρχ,k(z) :=
m∑
j=1

2h
χ,E3−k
pj (ϕ3−k(zj))− hχ,Ekpj (ϕk(zj) +Qk)− hχ,Ekpj (ϕk(zj)−Qk)

−2
∑
i,j

α
χ,E3−k
ij g

E3−k
ij (ϕ3−k(z)) + 2

∑
i,j

αχ,Ekij gEkij (ϕk(z)) + 2hχ,Ek(Qk),

takes values in Tχ,k when restricted to X(k)(K).
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Proof. Let q be any prime of K and ` ∈ {1, 2}. By [6, Lemma 7.4], the lo-

cal height hχ,E`q satisfies the quasi-parallelogram law, i.e. for all points P,R ∈
E`(Kq) such that P,R, P ±R 6=∞E` , we have

(5.4) hχ,E`q (P+R)+hχ,E`q (P−R) = 2hχ,E`q (P )+2hχ,E`q (R)−2χq(x(R)−x(P )).

This, together with (5.3), implies that ρχ,k(X(k)(K)) is contained in

Tχ,k :=

{∑
q-p

hχ,Ekq (ϕk(zq) +Qk) + hχ,Ekq (ϕk(zq)−Qk)− 2h
χ,E3−k
q (ϕ3−k(zq)) :

(zq) ∈
∏
q-p

X(Kq) \ {ϕ−1
k (±Qk)}

}
.

The elementary proof of finiteness of Tχ,k given in [11, Proposition 6.5] when

K = Q and χ is the cyclotomic character uses properties of the local heights

away from p that hold also in this more general setting. Any detail that is

omitted here can thus be deduced from [11]. Let q - p and define

Wχ,E`
q = {hχ,E`q (P ) : P ∈ E`(Kq), x(P ) ∈ Oq}.

As in the proof of Theorem 4.2, Wχ,E`
q is finite and identically zero for almost

all q. On the other hand, if P ∈ E`(Kq) with x(P ) 6∈ Oq, then

(5.5) hχ,E`q (P ) = χq(x(P )).

Let z ∈ X(Kq) \ {ϕ−1
k (±Qk)} and define

wχ,Ekq (z) = hχ,Ekq (ϕk(z) +Qk) + hχ,Ekq (ϕk(z)−Qk)− 2h
χ,E3−k
q (ϕ3−k(z)).

If ϕk(z) =∞Ek , then wχ,Ekq (z) = 2hχ,Ekq (Qk)− 2h
χ,E3−k
q (Q3−k); otherwise, by

(5.4), we have

2−1wχ,Ekq (z) = hχ,Ekq (ϕk(z)) + hχ,Ekq (Qk)− χq(x(ϕk(z)))− hχ,E3−k
q (ϕ3−k(z))

= hχ,Ekq (ϕk(z)) + hχ,Ekq (Qk) + χq(x(ϕ3−k(z)))− χq(a0)− hχ,E3−k
q (ϕ3−k(z)).

If 0 ≤ ordq(x(z)) ≤ ordq(a0)/2, then both x(ϕ1(z)) and x(ϕ2(z)) are integral

and

χq(x(ϕ1(z))) ∈ {nχq(πq) : 0 ≤ n ≤ ordq(a0)}.

In the remaining cases, exactly one of x(ϕ1(z)) and x(ϕ2(z)) is non-integral.

Thus, by (5.5) and finiteness of Wχ,E`
q , we deduce that wχ,Ekq (z) takes values

in a finite set Tχ,kq . Furthermore, since Q` is an integral point and a0 divides
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the discriminant of E2, Tχ,kq ⊆ {0} for all primes q that divide neither the

discriminant of E1 nor the one of E2.

Assuming Leopoldt’s conjecture, we have r2 + 1 choices of independent char-

acters χ and then Theorem 5.2 gives at most r2 +1 independent locally analytic

functions on each X(k)(K ⊗ Qp) vanishing on the global points X(k)(K). As

in Section 4, we construct rK other functions using the relations among the

functionals fJi imposed by our assumption (5.2). In practice, each such relation

can be reduced to a relation among the fEki for some k.

Remark 5.3: As soon as m > 1 and a0 ∈ O2
j for some j, we have

X(1)(K ⊗Qp) ∪X(2)(K ⊗Qp) ( X(K ⊗Qp).

Thus, in order to turn the method outlined in this section into a strategy to

compute X(K), one also needs to deal with the residue disks that are not

covered by Theorem 5.2. If, for instance, there are no K-rational points in

these disks, then we can use the Mordell-Weil sieve to prove this. See also

Remark 5.4 for a class of examples where we can immediately prove that there

exist no K-rational points in such disks.

Remark 5.4: A quadratic Chabauty computation over number fields can some-

times be replaced with several quadratic Chabauty computations over Q. For

example, suppose that X is defined over Q and that we want to determine X(K),

where K = Q(
√
d) for some square-free d ∈ Q. Assume that rk(E1/Q) =

rk(E2/Q) = 1, rk(E1/K) = 2 and E2(K) = E2(Q). If P ∈ X(K), then

ϕ2(P ) ∈ E2(K) = E2(Q) and so x(P )2 ∈ Q, y(P )/x(P ) ∈ Q. It follows that

computing X(K) is equivalent to computing X(Q) and X ′(Q) where

X ′ : y2 = x6 +
a4

d
x4 +

a2

d2
x2 +

a0

d3
.

The curve X ′ is a genus 2 bielliptic curve whose corresponding elliptic curves

are the quadratic twists Ed
−1

1 and Ed
−2

2
∼=Q E2. In particular, rk(Ed

−1

1 /Q) = 1

and rk(Ed
−2

2 /Q) = 1. Quadratic Chabauty can thus be used to determine both

X(Q) and X ′(Q).

We also note that, even when p is split in K, in this example we have

σ(X(K)) = X(1)(K) ∪X(2)(K).

Indeed, X(K ⊗ Qp) \ (X(1)(K ⊗ Qp) ∪X(2)(K ⊗ Qp)) consists of those points

(z1, z2) ∈ X(Qp) × X(Qp) such that zi ∈ {(0,±
√
a0)}, zj ∈ {∞±} if {i, j} =
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{1, 2}, where
√
a0 is a fixed square root of a0 in Qp. Suppose that (z1, z2) = σ(z)

for some z ∈ X(K). Then x(z1)2 = x(z2)2 since ϕ2(z) ∈ E2(Q). In particular,

ordp(x(z1)) = ordp(x(z2)): a contradiction.

6. Algorithms and examples for integral points over quadratic fields

To illustrate our method, we give detailed algorithms for carrying out the pro-

cess described in Section 4 for elliptic curves over real and imaginary quadratic

fields and curves of genus 2 over imaginary quadratic fields. We then apply

these algorithms in several examples. Because of current limitations of our im-

plementation, we restrict to the case where p is split in K, so that the Coleman

integration takes place over Qp. The extension to more general good primes p

is straightforward.

We keep the notation of Section 4. Let K be a quadratic number field and let

p be a prime number such that pOK = p1p2 is split. Let χ1, . . . , χr2+1 ∈ VK be

independent continuous idele class characters. By Example 2.8, they correspond

to pairs c(k) = (c
(k)
1 , c

(k)
2 ) ∈ Q2

p such that hχkpj (z) = c
(k)
j · τj(z) for all j ∈ {1, 2}

and z ∈ X(Kj) \ {∞}. Writing

h(k) := hχk =
∑

0≤i≤j≤r−1

α
(k)
ij gij ,

we get

(6.1) ρk(z) := ρχk(z) =
d∑
j=1

c
(k)
j τj(zj)−

∑
i,j

α
(k)
ij fi(z)fj(z)

for z ∈ U(OK ⊗ Zp).
Algorithms for the case K = Q are discussed in great detail in [3]; they

readily generalize to more general number fields K provided p is totally split.

For instance, it is easy to see that the sets T (k) can be computed in practice

using the method of [3, §3.4]. The p-adic heights can be computed using a

straightforward adaptation of [8, Algorithm 3.8], and we deduce the constants

α
(k)
ij as in [3, §3.2]. For the p-adic analytic computations we use Sage [35], the

remaining computations are done in Magma [12].
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Remark 6.1: Since [3, §3] contains a detailed precision analysis for each of these

algorithms, we deduce that the p-adic objects in our results above are indeed ex-

plicitly computable in the sense described in the introduction; they are provably

computable to any desired finite precision.

We want to construct two functions ρ1, ρ2 that map

σ(U(OK)) ⊂ U(OK ⊗ Zp)

into an explicitly computable finite set T (1) (T (2), respectively) and have a finite

common solution set. Once we have done this, we have to check if each solution

z = (z1, z2) actually comes from a K-rational point, that is, whether z1 = σ1(Q)

and z2 = σ2(Q) for some Q ∈ U(OK). We can use, for instance, that if this is

the case, then we must have x(z1)x(z2) ∈ Q and x(z1) + x(z2) ∈ Q.

The functions f
(j)
i : U(OK ⊗ Zp)→ Qp are given by

f
(j)
i (z) =

∫ zj

∞
ωi ;

the corresponding linear functionals in (J(K) ⊗ Qp)∨ will also be denoted by

f
(j)
i .

6.1. Elliptic curves over real quadratic fields. Let E/K denote an

elliptic curve over a real quadratic field2 K given by a Weierstrass equation3

with good reduction at both p1 and p2. We set f0 := f
(1)
0 and f1 := f

(2)
0 .

Equation (4.1) is satisfied if and only if r = rk(E/K) = 0 or 1; we assume

that r = 1. It follows that there is a linear dependence f0 = bf1 between the

functionals f0 and f1 on E(K)⊗Qp The first function ρ1 is constructed using

the cyclotomic p-adic height pairing hcyc. By (6.1), we have

ρ1(z) := ρcyc(z) = τ1(z1) + τ2(z2)− αf0(z)2,

where

hcyc = αg00 = αf2
0 ,

2 The algorithm described in this subsection works also when K is imaginary; however,

while in the real case the rank assumption here is optimal, in the imaginary case we can

work with curves of larger rank, as is explained in §6.2.
3 The setup in the previous section required an equation of the form y2 = f(x), but for

elliptic curves we can extend it easily to cover general Weierstrass equations.
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that is, α = α
(1)
00 . We can compute α by comparing hcyc(Q) and f2

0 (Q) for some

nontorsion point Q ∈ E(K). Letting T := T (1) denote the finite set of values

that −
∑

q-p h
cyc
q (zq −∞) can take for (zq) ∈

∏
q-p U(OKq

), we then must have

ρ1(σ1(Q), σ2(Q)) ∈ T

for all OK-integral points Q ∈ E(K).

The second function comes from the dependence between f0 and f1 and is

given by

ρ2(z) =

∫ z1

∞
ω0 − b

∫ z2

∞
ω0 ;

we have ρ2(σ1(Q), σ2(Q)) = 0 for all Q ∈ E(K). We can use any nontorsion

Q ∈ E(K) and compare f0(Q) to f1(Q) to find b.

Note that, if E is defined over Q and w ∈ T , we can always reduce the systemρ1(z1, z2) = w

ρ2(z1, z2) = 0

to one equation in one variable. Indeed, first observe that

• if rk(E/Q) = rk(E/K) = 1, then for every Q ∈ E(K) there exists n

such that nQ ∈ E(Q). Thus, by linearity, f0(Q) = f1(Q);

• if rk(E/Q) = 0, then for every Q ∈ E(K) we have Q + Qc ∈ E(Q) =

E(Q)tors, where Qc is the Galois conjugate of Q. We deduce that

f0(Q) + f1(Q) = f0(Q+Qc) = 0.

Furthermore, ∫ z

∞
ω0 =

∫ z′

∞
ω0 ⇐⇒ z − z′ ∈ E(Qp)tors.

Suppose that rk(E/Q) = 1 and that we want to find all Q ∈ U(OK) such

that (σ1(Q), σ2(Q)) = (P1, P2) ∈ E(Fp)× E(Fp). If there are no torsion points

in E(Qp) reducing to P1 − P2, then the above shows that no such Q exists.

Otherwise, we solve

ρ1((x(s), y(s)), (x(s), y(s)) +R) = w

where (x(s), y(s)) is a parametrization for the points in E(Qp) reducing to P1

and R is the unique torsion point4 in E(Qp) such that P2−P1 = R (cf. Example

6.3). The case rk(E/Q) = 0 is very similar.

4 Since p is odd, the group E1(Qp) of Qp-points on the formal group at p is torsion-free.

Therefore, E(Qp)tors can be realized as a subgroup of E(Fp).
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Example 6.2: Consider the elliptic curve 199.1-c1 [27] over K = Q(a), where a

is a root of x2 − x− 1. It admits the global minimal model

E : y2 + y = x3 + (a+ 1)x2 + ax.

The prime p = 11 is the smallest prime splitting in K. The curve has everywhere

good reduction, except at (−3a + 16), where it has Kodaira symbol I1: thus,

T = {0}. The common zero set of ρ1 and ρ2 contains the integral points

±(−1, 0),±(0, 0),±(a, 2a),±(−2a+ 3, 4a− 7),±(a+ 1, 3a+ 1),±(−a, 0),

±(42a+ 27,−420a− 259),±(−6a+ 8,−18a+ 29),±(−a+ 1, a− 2)

and 138 other pairs of points in σ1(E)(Qp) × σ2(E)(Qp), where σi(E)/Qp is

the curve obtained from the Weierstrass equation for E via the embedding

σi : K ↪→ Qp.

Example 6.3: Consider the elliptic curve with LMFDB label 192.a3 [27]

E : y2 = x3 − x2 − 4x− 2

and let K = Q(
√

3). We have that rk(E/K) = rk(E/Q) = 1 and that p = 13

is of good ordinary reduction for E and is split in K. As explained above, in

this setting we can reduce our computations to finding solutions to power series

equations in one variable. Note in particular that #E(Fp) = 12 6≡ 0 mod p, so

each residue disk contains precisely one torsion point of E(Qp).
The only inputs in this computation which come from our specific choice of

quadratic field K are the reduction type of E at the bad primes (and conse-

quently the set T ) and the choice of prime p, since we require that p is split.

For this reason, it is not surprising that, besides recovering the integral points

±(3, 2), (−1, 0), (1±
√

3, 0),±(25± 15
√

3, 180± 104
√

3) ,

we also recognize in our zero set the points

±
(
−1±

√
−3

2
,
−3±

√
−3

2

)
,±(−1± i, 2) ,

all of which belong to the 2-saturation of E(Q).

6.2. Elliptic curves over imaginary quadratic fields. The following

brief discussion on elliptic curves over imaginary quadratic fields will be use-

ful for the computation of rational points on bielliptic curves over imaginary

quadratic fields of §7.1. Let K be an imaginary quadratic number field and
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let E be an elliptic curve defined over K with r = rank(E/K) = 2, such that

E has good reduction at both p1 and p2. Suppose that f0 and f1 are linearly

independent. Note that:

Lemma 6.4: Suppose that E as above can be defined over Q. Then f0 and f1

are linearly independent if and only rk(E/Q) = 1.

Proof. If rk(E/Q) = r (resp. rk(E/Q) = 0), then f0 = f1 (resp. f0 = −f1) on

E(K) (cf. also the discussion before Example 6.2). Conversely, suppose that

rk(E/Q) = 1 and that f0 and f1 are linearly dependent on E(K) ⊗ Qp. Since

neither of f0 and f1 is identically zero on E(K) (as E(K) contains points of

infinite order), then there exists α ∈ Qp such that f0 = αf1. Let P ∈ E(Q) of

infinite order. Then f0(P ) = f1(P ) and hence α = 1. Thus, for all Q ∈ E(K),

we have
∫ σ1(Q)

∞ ω0 =
∫ σ2(Q)

∞ ω0, so that σ1(Q − Qc) ∈ E(Qp)tors, where Qc is

the Galois conjugate of Q. Let R ∈ E(K)tors such that Q = Qc + R and let

n be the additive order of R. Then nQ = nQc, i.e. nQ ∈ E(Q), contradicting

rk(E/K) > rk(E/Q).

Under our assumption, the bilinear forms gij (0 ≤ i ≤ j ≤ 1) generate B, the

space of Qp-valued bilinear forms on E(K)⊗Qp. Hence the p-adic heights hcyc

and hanti can be expressed as linear combinations

hcyc =
∑

αcyc
ij gij and hanti =

∑
αanti
ij gij .

Using independent nontorsion points P,Q ∈ E(K), we can find all αcyc
ij (resp.

αanti
ij ) by computing f0(P ), f1(P ), f0(Q), f1(Q) and hcyc(P ), hcyc(Q), hcyc(P +

Q) (resp. hanti(P ), hanti(Q), hanti(P +Q)).

When E is defined over Q, we have αcyc
00 = αcyc

11 and αanti
01 = 0, αanti

00 = −αanti
11 .

Indeed, for all R1, R2 ∈ E(K), we have hcyc(R1, R2) = hcyc(Rc1, R
c
2) and hence

(αcyc
00 − α

cyc
11 )(g00(R1, R2)− g11(R1, R2)) = 0;

the first claim then follows since the gij are a basis for B. Similarly, the anti-

cyclotomic height pairing changes of sign if we first act by Galois, proving the

second claim.

6.3. Genus 2 curves, imaginary quadratic fields. Suppose that X : y2 =

f(x) has genus 2 and rank 4 over an imaginary quadratic field K. Let p be a

split prime of good, ordinary reduction and let σ1, σ2 : K ↪→ Qp denote the two
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embeddings corresponding to the primes p1, p2 of K above p. Then we have 4

functionals f
(j)
i : J(K)⊗Z Qp → Qp, extended linearly from the functions

f
(j)
i (Q) =

∫ σj(Q)

∞
ωi,

on X(K), which we assume to be independent. For simplicity, we renumber

them

f0 = f
(1)
0 , f1 = f

(2)
0 , f2 = f

(1)
1 , f3 = f

(2)
1 .

As in the proof of Theorem 4.2, the functions gij(P,Q) = 1
2 (fi(P )fj(Q) +

fi(Q)fj(P )), for 0 ≤ i ≤ j ≤ 3 form a basis of the bilinear forms on J(K)⊗ZQp.
We can express the p-adic height pairings hcyc and hanti in terms of the gij :

hcyc =
∑
i,j

αcyc
ij gij and hanti =

∑
i,j

αanti
ij gij .

In order to compute the constants αcyc
ij and αanti

ij , we find divisors D1, . . . , D4 ∈
Div0(X) such that the corresponding points generate a finite index subgroup of

J(K) modulo torsion. Then we have, for each pair (k, l), the relationships

hcyc(Dk, Dl) =
∑

0≤i≤j≤3

αcyc
ij ·

(
1

2
(fi(Dk)fj(Dl) + fj(Dk)fi(Dl))

)
and

hanti(Dk, Dl) =
∑

0≤i≤j≤3

αanti
ij ·

(
1

2
(fi(Dk)fj(Dl) + fj(Dk)fi(Dl))

)
.

That is, we can solve the linear system relating the height pairings hcyc and

hanti to the natural basis (gij : 0 ≤ i ≤ j ≤ 3) to recover the αcyc
ij and the αanti

ij .

Every OK-integral point Q on X must satisfy

ρcyc(σ1(Q), σ2(Q)) ∈ T cyc ; ρanti(σ1(Q), σ2(Q) ∈ T anti ,

where

ρcyc(z) = τ1(z1) + τ2(z2)−
∑
ij

αcyc
ij fi(z)fj(z)

ρanti(z) = τ1(z1)− τ2(z2)−
∑
ij

αanti
ij fi(z)fj(z)

and where T cyc and T anti are the respective possible values for the sum of the

local heights away from p of an OK-integral point on X.
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Example 6.5: We consider the curve

X : y2 = x5 − x4 + x3 + x2 − 2x+ 1

over K = Q(
√
−3) and note that rk(J/Q) = 2 and rk(J/K) = 4. Let

P1 = (0, 1), P2 = (1, 1), P3 =
(√
−3, 2

√
−3 + 1

)
,

P4 =

(
1

2
(
√
−3 + 1),

1

2
(−
√
−3 + 1)

)
, Q1 =

(
1

2
(−
√
−3 + 1),

1

2
(
√
−3 + 1)

)
,

Q2 = (−1, 1), Q3 = (2, 5), Q4 = (4, 29),

and let Di = (Pi) − (Qi) for i = 1, . . . , 4. The points [D1], [D2], [D3], [D4]

generate a finite index subgroup G of J(K). The smallest good ordinary split

prime for this curve is p = 7.

We recover the following OK-integral points on X:

(−1,±1), (
√
−3,±(2

√
−3 + 1)), (0,±1), (2,±5), (4,±29),

(
√
−3 + 1,±(−

√
−3 + 4)), (−

√
−3,±(−2

√
−3 + 1)), (1,±1),

(−
√
−3 + 1,±(

√
−3 + 4)),

(
−1

2

√
−3 +

1

2
,±
(

1

2

√
−3 +

1

2

))
,(

1

2

√
−3 +

1

2
,±
(
−1

2

√
−3 +

1

2

))
.

We apply the Mordell-Weil sieve to show that these are indeed the only integral

points. To this end, we apply quadratic Chabauty for the primes 7 and 19. The

subgroup G is not saturated at 3, so we use the modified Mordell-Weil sieve as

described in [6, Appendix B]. In the notation given there, we used the auxiliary

integer N = 10 and 20 primes of K to rule out all but one pair of residue

classes modulo 74 and 193, respectively; the largest norm of a prime used in

this computation was 4591. In order to show that the remaining pair does not

correspond to an integral point either, we used the auxiliary integer N = 8.

Remark 6.6: It appears to be difficult to find examples over number fields K

of degree > 2 for which the computation of integral points using our method is

applicable in practice. Some restrictions are due to external components of our

algorithms. For instance, we need to compute the Mordell-Weil rank r, find r

independent points in J(K), compute regular models and intersections over K

(the Magma-command RegularModel uses arithmetic in K, not in a completion)
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and apply the Mordell-Weil sieve over K. These computations often fail or are

prohibitively expensive for number fields of degree > 2.

Therefore our current implementation is also limited to quadratic fields. To

go beyond this, we would have to algorithmically compute a basis of the space of

continuous idele class characters, extend our implementation of the root finding

methods discussed in Appendix A. Moreover, the Coleman integration and p-

adic heights routines, currently restricted to Qp, would have to be extended to

finite extensions to be able to deal with generators of (a finite index subgroup

of) J(K)/tors that do not split into sums of points over Qp.

7. Examples for rational points

In this section we present examples for Section 5, of which we retain the no-

tation, when K is a quadratic field 5. To simplify the exposition, we further

assume that X is defined over Q. We let p be an odd prime which splits in K

and such that X has good reduction at each prime above p. For simplicity we

assume that a0 is a square in K.

7.1. Rank 4 over imaginary quadratic fields. Let X/Q be as above and

let K be an imaginary quadratic field. If rk(Ek/Q) = 1 and rk(Ek/K) = 2

for each k, then (5.2) and Assumption 5.1 are both satisfied in view of Lemma

6.4. Theorem 5.2 with χ = χcyc and χ = χanti provides us, for each k ∈ {1, 2},
with two locally analytic functions ρcyc,k and ρanti,k on X(k)(K ⊗ Qp) and

finite sets T cyc,k and T anti,k. Varying k and looking at the intersection Bk of

the loci ρcyc,k(z) ∈ T cyc,k and ρanti,k(z) ∈ T anti,k, we obtain a set of points

containing all the points in σ(X(K)) that do not map to (∞±, (0,±√a0)) or to

((0,±√a0),∞±) under reduction to X(Fp)×X(Fp).
As already mentioned, the discussion of §6.2 is used in the computation of

the constants of Theorem 5.2. To p-adically approximate the set Bk, we need

to compute roots of systems of two equations in two variables. We do so using

Algorithm 1, Lemma A.3 and the discussion in Appendix A. Note that ρcyc,k

and ρanti,k are both invariant under the automorphisms θ : (x, y) 7→ (±x,±y) of

X. Thus, from the points in Bk reducing to (P ,Q) ∈ X(Fp) × X(Fp) we can

5 We focus on examples over quadratic fields for the same reasons as discussed in Re-

mark 6.6.
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deduce the points in Bk reducing to (θ(P ), θ(Q)). This cuts down the number

of pairs of residue disks that we need to consider.

Example 7.1: Consider

X = X0(91)+ : y2 = x6 − 3x4 + 19x2 − 1.

The associated elliptic curves E1 (91.a1 [27]) and E2 (91.b2 [27]) each have rank

1 over Q and applying quadratic Chabauty with p = 5 recovers the rational

points

(7.1) {∞±, (1,±4), (−1,±4), (1/3,±28/27), (−1/3,±28/27)}

together with 2 other 5-adic points up to automorphisms. We now carry out

quadratic Chabauty for p = 5 and K = Q(i), over which the elliptic curves E1

and E2 attain rank 2. Denote by T cyc,k and T anti,k the explicitly computable

finite sets of Theorem 5.2 for χ = χcyc and χ = χanti, respectively.

Claim 1: T cyc,1 = T cyc,2 = T anti,1 = T anti,2 = {0}.

Proof. X0(91)+ has bad reduction at 7 and 13. Furthermore, E1 and E2 are

minimal at the primes of Q(i) above 7 and 13 and the reduction type at all

these primes is I1.

Besides the Q-rational points listed in (7.1), in B1 ∪ B2 we also recover the

following points defined over Q(i):

(7.2) (0,±i), (±(−2i+ 1),±(−8i+ 12)), (±(2i+ 1),±(8i+ 12)),

as well as 20 other 5-adic points up to automorphisms (x, y) 7→ (±x,±y). We

apply the Mordell-Weil sieve to show that these p-adic points do not correspond

to Q(i)-rational points and that there are no Q(i)-rational points mapping to

the pairs of points

(∞±, (0,±
√
−1)), ((0,±

√
−1),∞±).

This proves that all Q(i)-rational points on X0(91)+ are either listed in (7.1)

or in (7.2).

A technical remark (with reference to Appendix A): there are four pairs

of residue disks in X(Fp) × X(Fp), up to automorphism, such that a root in

Z/pZ × Z/pZ of the corresponding system of equations is also a root modulo

p of the determinant of the Jacobian matrix. Of these, two correspond to the

global points (0, i) and ∞ (and thus the determinant of the Jacobian matrix
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has a zero at those points by Remark A.2), another one lifts to no root in

Z/pnZ×Z/pnZ for sufficiently large n and for the remaining one we can apply

the multivariate Hensel’s lemma after lifting the root modulo some small power

of p (cf. Algorithm 1). Furthermore, the strategy outlined after Remark A.2

also shows that there are no other points in the residue disks of (0, i) and ∞.

Therefore, we conclude that the approximations that we have computed are in

one-to-one correspondence with the elements in B1∪B2 (up to automorphism).

Amongst the 20 extra points, we recognize the pair of rational points z =

((1, 4), (−1, 4)). Indeed, z1 and z2 both map to (1, 4) in E1(Q) and map to the

torsion points (−1,−4) and (−1, 4) in E2(Q). Thus gE2
ij (ϕ2(z)) = 0. The claim

then follows since the local heights are invariant under pre-multiplication by

−1.

Finally, note that, since T anti,k = {0}, in this case B1 ∪ B2 is closed under

(z1, z2) 7→ (z2, z1). Quotienting by this symmetry, the 20 extra pairs of points

become 14.

7.2. Rank 3 over real quadratic fields. Keep the notation of the begin-

ning of Section 7 and let K now be a real quadratic field6. Then (5.2) forces

rk(J/K) ≤ 3. Since we need Assumption 5.1 to also hold, we suppose here that

rk(E1/K) = 2, rk(E1/Q) = 1 and rk(E2/K) = 1. This is sufficient by Lemma

6.4 and by the non-degeneracy of the p-adic logarithm on an elliptic curve.

For a fixed k ∈ {1, 2}, Theorem 5.2 determines only one function ρk1 and one

finite set T k in this case; the second function ρ2 that we need comes from the

dependence of fE2
0 and fE2

1 (see also §6.1). Let

Bk = {z ∈ X(k)(K ⊗Qp) : ρk1(z) ∈ T k, ρ2(z) = 0}.

Note that it suffices to run through X(Fp) ×X(Fp)/ ∼ where (P,Q) ∼ (R, T )

if and only if P = T and Q = R, as our equations are symmetric with respect

to the two embeddings of K into Qp (cf. the discussion of §6.2). As before, we

can also use the invariance of our zero sets under the hyperelliptic and bielliptic

automorphisms of X to reduce even further the number of pairs of disks that

we need to consider.

In view of Remark 5.4, the resulting algorithm is often an alternative to

a series of quadratic Chabauty computations over the rationals. This is in

particular the case in the following example.

6 The strategy also works if K is imaginary. See also footnote 2 in §6.1.
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Example 7.2: Consider

X : y2 = x6 + x2 + 1.

In [11, Example 6.3] quadratic Chabauty over Q was used to provide an alter-

native proof of Wetherell’s result [38] that

X(Q) = {∞±, (0,±1), (±1/2,±9/8)}.

Let K = Q(
√

34). We have rk(E1/Q) = 1, rk(E1/K) = 2 and rk(E2/Q) =

rk(E2/K) = 1. We now determineX(K) exactly, by applying quadratic Chabauty

over K with the split prime p = 3. We may choose

ρ2(z) =

∫ ϕ2(z1)

∞
ωE2

0 −
∫ ϕ2(z2)

∞
ωE2

0 ,

where∞ :=∞E2
. Denote by T k the explicitly computable finite set of Theorem

5.2 for χ = χcyc.

Claim 2: T 1 =
{

0, 2 log 2, 5
2 log 2

}
, T 2 =

{
−2 log 2,−4 log 2,− 9

2 log 2
}

.

Proof. The elliptic curves E1 and E2 have everywhere good reduction except

at the primes above 2 and 31. Furthermore, the models

E1 : y2 = x3 + x+ 1, E2 : y2 = x3 + x2 + 1

are globally minimal also over K. The prime 31 is inert in K and E1 and E2

have reduction type I1 with Tamagawa number 1 at 31OK . Thus, the only

nontrivial contributions to T k can come from the unique prime q of K above 2.

The curve E1 has Tamagawa number 1 (and Kodaira symbol I∗0) at q, so hE1
q

is identically zero on integral points. The curve E2 has reduction type I∗1 with

Tamagawa number 4 at q and we have

hE2
q (x, y) =

0 if |x|q = 1,

− log 2 or− 5
4 log 2 if |x|q < 1

(see e.g. [11, Proposition 2.4]); in particular, hE2
q (Q2) = − log 2.

For z ∈ X(Kq), ϕ1(z) 6= ±Q1 resp. ϕ2(z) 6= ±Q2, let

wE1
q (z) = hE1

q (ϕ1(z) +Q1) + hE1
q (ϕ1(z)−Q1)− 2hE2

q (ϕ2(z))

wE2
q (z) = hE2

q (ϕ2(z) +Q2) + hE2
q (ϕ2(z)−Q2)− 2hE1

q (ϕ1(z)).

Using the quasi-parallelogram law (5.4), we find

• If |x(z)|q ≤ 1, then wE1
q (z) = 0 and wE2

q (z) = −2 log 2.
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• If |x(z)|q > 1, then

wE1
q (z) ∈

{
2 log 2,

5

2
log 2

}
and wE2

q (z) ∈
{
−4 log 2,−9

2
log 2

}
.

Since E2(K) = E2(Q) (as rank(E2/K) = rank(E2/Q) and E2(K)tors =

{∞}), Remark 5.4 tells us that X(K) ⊂ X(1)(K ⊗Qp)∪X(2)(K ⊗Qp) and, in

particular, X(K) ⊆ B1 ∪B2. We have

X(F3) = {∞±, (0,±1), (±1, 0)}.

It follows from the observations at the beginning of §7.2 that it suffices to

consider the points in X(k)(K ⊗ Qp) reducing to one of the following pairs of

residue disks in X(F3)×X(F3):

(∞+,∞+), (∞+,∞−), (∞+, (1, 0)) with k = 1;

((0, 1), (0, 1)), ((0, 2), (0, 1)), ((0, 2), (1, 0)), ((1, 0), (1, 0)), ((1, 0), (2, 0))

with k = 2.

By Claim 2, the intersection of Bk with a residue pair (for k dependent on the

pair and chosen as above) is given by the union of the zeros of three systems

of two equations in two variables (by a similar argument to the one at the end

of Remark 5.4, some pairs could be excluded a priori from containing points in

X(K) by valuation considerations, but we leave them all in the computation

here). Using the algorithms of Appendix A, we recover in B1 ∪B2 exactly the

points in Table 1 (the residue pairs contained in X(k)(K ⊗ Qp) that intersect

Bk trivially are not listed).

Besides recovering representatives of the points in

X(Q) ∪
{(

11

204

√
34,± 44909

249696

√
34

)
,

(
− 11

204

√
34,± 44909

249696

√
34

)}
up to automorphisms, our zero sets contain some points z = (z1, z2) ∈ X(Qp)×
X(Qp) which we do not recognize as points coming from X(K). Using one of

the following arguments, we can prove that each of these points is indeed not

K-rational. Suppose that z ∈ σ(X(K)). Then, since E2(K) = E2(Q), the

computed approximations of ϕ2(z1) and ϕ2(z2) must agree. If this holds, let

ϕ2(z) be either of ϕ2(z1) and ϕ2(z2).
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(O1) If ϕ2(z) is in the formal group at p, it was shown in [11, Example 6.3]

that we must have ordp(x(ϕ2(z))) ≤ −4.

(O2) Else, since E2(Q) is generated by Q2 = (0, 1), if ϕ2(z) = nQ2 for some

n ∈ Z, then

n ≡ n1 :=

∫ ϕ2(z)

∞ ωE2
0∫ Q2

∞ ωE2
0

mod 3;

on the other hand, Q2 ∈ E2(F3) has order 6. Thus, if ϕ2(z) = n2Q2,

we also have

n ≡ n2 mod 6.

If n1 6≡ n2 mod 3, then z 6∈ σ(X(K)).

The extra points in the residue pair ((0, 1), (0, 1)) are precisely the extra points

of the computation over Q ([11, Example 6.3]). Also note that the criterion

(O1) could be deduced from (O2).
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X
X

X
X

Q
U

A
D

R
A

T
IC

C
H

A
B

A
U

T
Y

O
V

E
R

N
U

M
B

E
R

F
IE

L
D

S
4
1

residue pair k recovered in Bk if not in X(K), why?

(∞+,∞+) 1

∞+(
11
204

√
34, 44909

249696

√
34
)(

− 11
204

√
34,− 44909

249696

√
34
)

((0, 1), (0, 1)) 2
(0, 1)

x(z1) = x(z2) = ±(2 · 3 + 2 · 33 +O(35)) ordp(x(ϕ2(z))) = −2

((0, 2), (0, 1)) 2 x(z1) = ±(2 · 3 + 32 + 2 · 33 +O(35)) = −x(z2) ordp(x(ϕ2(z))) = −2

((1, 0), (1, 0)) 2
(
− 1

2 ,±
9
8

)
((1, 0), (2, 0)) 2 x(z1) = 1 + 3 + 33 +O(35) = −x(z2), y(z1) = −y(z2) (O2) with n1 = ±1, n2 = 3

Table 1. Computation of B1 ∪B2 for Example 7.2.
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Appendix A. Roots of multivariate systems of p-adic equations

Some of the algorithms of Sections 6 and 7 require us to solve systems of two

p-adic equations in two variables. In particular, in each pair of residue disks we

reduce the problem to that of finding all (t1, t2) ∈ Zp × Zp such that

(A.1)

ρ1(pt1, pt2) = 0

ρ2(pt1, pt2) = 0

for some ρ1(t1, t2), ρ2(t1, t2) ∈ Qp[[t1, t2]].

The power series ρ1 and ρ2 are convergent on pZp × pZp and, possibly after

multiplying by a power of p, we may assume that ρ1(pt1, pt2), ρ2(pt1, pt2) ∈
Zp[[t1, t2]] \ pZp[[t1, t2]].

A careful study of the valuation of the coefficients of ρ1 and ρ2 allows us to

conclude that if (α, β) ∈ Zp ×Zp is a solution to (A.1), then (α mod pn, β mod

pn) is a solution modulo (pn) to the system

(A.2)

ρ1(pt1, pt2) +O(t1, t2)ñ = 0

ρ2(pt1, pt2) +O(t1, t2)ñ = 0

for some integer ñ. How reversible is this process? In other words, if we find all

the solutions of (A.2) mod pn, how do we know if each such solution lifts to a

unique solution to (A.1)?

In some cases, we can apply a multivariate version of Hensel’s lemma (see

Theorem A.1 below). Let us first introduce some notation. Let m ∈ N and,

for an element a = (a1, . . . , am) ∈ Qmp , define ordp(a) = min1≤i≤m{ordp(ai)}.
Then ordp satisfies the following properties:

(a) For any k ∈ Qp, ordp(ka) = ordp(k) + ordp(a).

(b) ordp(a+ b) ≥ min{ordp(a), ordp(b)} with equality if ordp(a) 6= ordp(b).

For f = (f1, . . . , fm) ∈ Zp[[x1, . . . , xm]]m and x = (x1, . . . , xm), define the

Jacobian matrix

Jf (x) :=


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xm

...
. . .

...
∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xm

 (x).

Denote by Zp〈x1, . . . , xm〉 the subring of Zp[[x1, . . . , xm]] consisting of those

power series whose coefficients tend to 0 as the degree of the corresponding

monomials tends to infinity.
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Theorem A.1 (Multivariate Hensel’s lemma [19, Theorem 4.1]): Let

f = (f1, . . . , fm) ∈ Zp〈x1, . . . , xm〉m. Assume that a ∈ Zmp satisfies

ordp(f(a)) > 2 ordp(det(Jf (a))).

Then there is a unique α ∈ Zmp such that f(α) = 0 and ordp(α − a) >

ordp(det(Jf (a))). Furthermore, ordp(α− a) ≥ ordp(f(a))− ordp(det(Jf (a))).

Even though [19] is not the only reference for Theorem A.1 (see for example

also [25, Theorem 23]), the proof given by Conrad in [19] has the advantage of

being constructive: it uses Newton’s method to explicitly find approximations

of α and it shows how fast these converge to α. In particular, with the notation

of the theorem, let a1 = a and define, for N ≥ 1,

aN+1 = aN − f(aN ) · (Jf (aN )T )−1 .

By [19, (3.9)], we have the inequality

ordp(aN+1 − aN ) ≥ ordp(det(Jf (a))) + 2N−1(ordp(f(a))− 2 ordp(det(Jf (a))));

combining this with Property (b) and with the assumption that

ordp(f(a))− 2 ordp(det(Jf (a))) > 0,

we obtain

ordp(aM − aN ) ≥ ordp(det(Jf (a))) + 2N−1(ordp(f(a))− 2 ordp(det(Jf (a))))

for all M > N . Thus, taking limits as M →∞,

ordp(α− aN ) ≥ ordp(det(Jf (a))) + 2N−1(ordp(f(a))− 2 ordp(det(Jf (a)))).

We sketch a possible strategy to compute roots of systems of equations of the

form (A.1), omitting technicalities on precision. This immediately generalizes

to the case where (A.1) is replaced by a system of m equations in m variables

for arbitrary m ≥ 2.

Algorithm 1: Computing roots of (A.1)

Input: A system ρ = (ρ1, ρ2) of the form (A.1).

Output: L – list of roots modulo pn of ρ.

(1) Reduce to (A.2).

(2) Compute Rp = {(t1, t2) ∈ {0, . . . , p− 1}2 : ρ(pt1, pt2) ≡ 0 mod p}.
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(3) Let a ∈ Rp. If ordp(det(Jρ(a))) = 0, by Theorem A.1 there exists a

unique root α ∈ Z2
p of (A.1) such that ordp(α− a) > 0. Compute α to

the desired precision using the discussion following Theorem A.1 and

append it to L.

(4) Let a ∈ Rp such that ordp(det(Jρ(a))) 6= 0. Fix an r ≥ 3, r ≤ n

and naively find Rpr (a) = {(t1, t2) ∈ {0, . . . , pr − 1}2 : ρ(pt1, pt2) ≡ 0 mod

pr and (t1, t2) ≡ a mod p}. For each b ∈ Rpr (a) do the following:

(i) if 2 ordp(det(Jρ(b))) < r, compute using Theorem A.1 an ap-

proximation of the unique root β ∈ Z2
p such that ordp(β − b) >

ordp(det(Jρ(b))) and append it to L. Remove from Rpr (a) all b′

such that ordp(b
′ − b) > ordp(det(Jρ(b))).

(ii) if 2 ordp(det(Jρ(b))) ≥ r, then if r = n append b to L; if r < n,

choose some s > r, s ≤ n, naively find Rps(b) = {(t1, t2) ∈
{0, . . . , ps − 1}2 : ρ(pt1, pt2) ≡ 0 mod ps and (t1, t2) ≡ b mod pr}
and for each c ∈ Rps(b) repeat (i), (ii) with the appropriate modi-

fication in notation.

Remark A.2: If the algorithm never appends to L in 4 (ii), each element in L is

the approximation of a unique root of (A.1) and, conversely, each root of (A.1)

reduces to an element of L. Otherwise, we can try to increase n. However, there

are some residue disks where the systems that we consider provably have roots

at which the determinant of the Jacobian matrix also vanishes, so Theorem

A.1 is not applicable. Indeed, let X be as in Section 5. Then X admits the

automorphisms θ : (x, y) 7→ (±x,±y). Composing ϕk with θ we obtain either

the identity or multiplication by −1 on Ek. Since local heights are even, it

follows that if a function ρ comes from a height function as in Theorem 5.2,

then all its partial derivatives vanish7 at a K-rational point fixed by a nontrivial

automorphism θ. A function coming from relations of the linear functionals fi
on Ek is odd and will thus have non-simple zeros in the above sense at those

points (x, y) which are fixed by a nontrivial automorphism θ that projects to

the identity on Ek.

We now explain how to deal with the disks of Remark A.2 where Hensel is not

applicable, for the explicit algorithms that we described in Section 7. Suppose

7 E.g. for the pair of disks containing a point fixed by (x, y) 7→ (−x, y), we can set t1 = x1,

t2 = x2 as uniformizers. Then ρ(t1, t2) = ρ(−t1,−t2) giving vanishing of the partial

derivatives at t1 = t2 = 0.
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first that we are in the situation of §7.1, of which we retain the notation. Let H

be the subgroup of the automorphism group of X generated by the hyperelliptic

involution and the bielliptic automorphism (x, y) 7→ (−x, y).

Lemma A.3: Let K and X/Q be as in §7.1. Let P ∈ X(K) such that θ(P ) =

P for a nontrivial automorphism θ ∈ H; if y(P ) = 0, further assume that

x(P )2 ∈ Q. Let k ∈ {1, 2} such that P ∈ X(k)(K) and let w ∈ T anti,k such that

ρanti,k(σ(P )) = w. Then we can choose local coordinates t1 and t2 for σ1(P )

and σ2(P ), such that, in the residue pair σ1(P )× σ2(P ) ∈ X(Fp)×X(Fp), we

have

ρanti,k(t1, t2)− w =

∞∑
i=1

ci(t
2i
1 − t2i2 ) = (t21 − t22)

∞∑
i=1

ci

(i−1∑
j=0

t2j1 t
2i−2−2j
2

)
for some ci ∈ Qp.

Proof. Write a point in X(Qp) × X(Qp) as ((x1, y1), (x2, y2)). We fix the fol-

lowing choices for t1 and t2. If θ(x, y) = (−x, y), let ti = xi; if θ(x, y) = (x,−y),

let ti = yi; finally, if P = ∞±, let ti = 1/xi. As observed in Remark A.2, we

have

ρanti,k((x1, y1), (x2, y2)) = ρanti,k(θ(x1, y1), θ(x2, y2));

our choice of local coordinates then yields

ρanti,k(t1, t2) = ρanti,k(−t1,−t2).

Since by §6.2 we have α
anti,Ej
01 = 0 for each j ∈ {1, 2}, this implies that there

exist some power series f1 and f2 such that

ρanti,k(t1, t2) = f1(t21)− f2(t22) + 2hanti,Ek
p (Qk).

In view of our assumptions, we also have that x1(t1)2 = x2(t2)2|t2=t1 and thus

that ϕj(x1(t1), y1(t1)) = ±ϕj(x2(t2), y2(t2))|t2=t1 . Since α
anti,Ej
00 = −αanti,Ej

11

by §6.2, we conclude that f1 = f2. Finally, the lemma follows by definition of

w.

Remark A.4: Since hanti,Ek
p (Qk) = 0, we must have w = 0.

In the notation of Lemma A.3, the points (z1, z2) ∈ X(k)(K ⊗ Qp) reducing

to σ1(P )× σ2(P ) and such that ρanti,k(z1, z2) = w satisfy one of the following:

(i) t1(z1) = t2(z2) and ρcyc,k(t1(z1), t1(z1)) ∈ T k,cyc;

(ii) t1(z1) = −t2(z2) and ρcyc,k(t1(z1),−t1(z1)) ∈ T k,cyc;
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(iii)


∑∞
i=1 ci

(∑i−1
j=0 t1(z1)2jt2(z2)2i−2−2j

)
= 0

ρcyc,k(t1(z1), t2(z2)) ∈ T k,cyc.

If c1 6= 0, then (0, 0) is not a root of (iii), so in Algorithm 1 we can hope for no

root to be appended in 4 (ii). We also note that the one-variable power series

of (i) and (ii) are power series in t21.

In the setting of §7.2, we follow a similar strategy (and adopt some of the

notation of the imaginary case). Recall that the second function ρ2 is given by

ρ2(z1, z2) =

∫ ϕ2(z1)

∞
ωE2

0 − b
∫ ϕ2(z2)

∞
ωE2

0 ,

where b = 1 or b = −1, depending on the rank of E2 over Q. We assume here

that b = 1 as in Example 7.2. Let P ∈ X(k)(K) be fixed by θ ∈ H \{id} and let

t1 and t2 be local coordinates chosen in the same way as in the proof of Lemma

A.3. Then, in the residue disk of σ(P ), we have

ρ2(−t1,−t2) =

ρ2(t1, t2) if ϕ2 ◦ θ = id,

−ρ2(t1, t2) if ϕ2 ◦ θ = −id.

Assume for simplicity that P ∈ X(Q), so the local expansion of
∫ ϕ2(z1)

∞ ωE2
0

evaluated at t2 gives the local expansion of
∫ ϕ2(z2)

∞ ωE2
0 . We conclude that

ρ2(t1, t2) =

(t21 − t22)ρ̃2(t1, t2) if ϕ2 ◦ θ = id,

(t1 − t2)ρ̃2(t1, t2) if ϕ2 ◦ θ = −id,

for some ρ̃2(t1, t2) ∈ Qp[[t1, t2]].
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