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Is the chemical industry on the cusp of a feedstock revolution?
It seems likely but only if viable technologies for alternative

raw materialssuch as biomass, carbon dioxide, and recycled
plasticscan be developed.Without new discoveries in catalysis
and processing, the chemical industry will continue to rely on
traditional petroleum conversions, which often consume
enormous amounts of energy, emit greenhouse gases, pollute
and consume water, and rely upon precious metals that are
scarce or obtained from conflict minerals. New sustainable
chemical systems could help mitigate these challenges.
However, we need a more strategic approach to decipher
these data-rich systems and shed light on new directions of
study.
With recent advances in the computer sciences, we now have

the power to use artificial intelligence (AI) to logically guide
sustainable chemistry research by uncovering complex perform-
ance relationships. While AI has impacted areas like
bioinformatics and drug discovery, catalysis and sustainable
chemistry fields have yet to benefit significantly from the data
science revolution.1 There is enormous potential for high-
impact synergies between these fields and computer sciences.2−4

Take catalysis development for example. For more than a
century, researchers have mostly relied on either an Edisonian
trial and error approach or empirical evidence to design catalysts
and reaction systems, but these efforts are time intensive and hit
and miss in terms of results. A plethora of factors affect the
performance of a catalyst, including operating conditions,
elemental composition of the catalysts (metals, supports, and
impurities), morphology of the catalysts (phase, porosity,
surface area, conductivity, and more), and reactor configuration
and operation. Convoluted by the sheer number of variable
combinations, it is exceedingly arduous and time consuming for
researchers to make significant advancements through the
traditional trial-and-error approach. Leveraging state-of-the-art
AI technologies is critical to enable sustainable chemistry and
catalysis researchers to mine, organize, and exploit the myriad
data sources relevant to reaction innovations (e.g., temperatures,
pressures, solvents, metals, supports, molecular makeup, and
reactor configurations).
While AI has several subfields (speech processing, vision, and

robotics), two areas of most use to the sustainable chemistry and
catalysis community are machine learning (ML) and natural
language processing (NLP). Machine learning is a subfield of AI
that is focused on solving practical problems by building a
statistical model of a given data set.5 The key to machine
learning is having a large and high-quality data set in order to
build the statistical model. Otherwise, one is susceptible to the

computer science adage “garbage in, garbage out”. Fortunately,
for chemistry and catalysis researchers, the archival literature in
chemistry and engineering journals contains vast amounts of
high quality experimental and computational data. Unfortu-
nately, this data is not contained in a uniform data set
immediately suitable for machine learning algorithms. It is
spread out over dozens of publishing houses in hundreds of
journals with various html or pdf formats. Nonuniform writing
styles further complicate the data. It is possible to automatically
extract information from human text using natural language
processing, which aims to give meaning to each word of text, so
that computers can decipher human language within the context
of a sentence or paragraph.
We envision that the future of sustainable chemistry and

catalyst design is at the intersection of data-driven research and
fundamental mechanistic studies, leveraging both artificial
intelligence and human intelligence. We aptly call this design
approach CataLST (pronounced catalyst, Figure 1). The steps
in CataLST are (1) Catalog the literature with natural language
processing and data mining, (2) Learn from this knowledge base
using machine learning to uncover new insights, (3) Search for
new catalysts and/or reaction conditions with these fundamen-
tal insights complemented by machine learning, computational
chemistry models, and human intuition, and (4) Test and
validate performance experimentally. This discovery model
holds the potential to be deployed in a versatile manner: at small
scales (e.g., using a limited subset of data from the literature or
laboratory) or at larger scales with bigger data sets for
groundbreaking research. We envision that researchers employ-
ing the CataLST cycle will aid in establishing an “Internet of
Catalysis” (IoC) capable of harnessing data to rationally develop
new catalysts and processes. The IoC holds the potential to
electronically archive curated data from an experiment or
mountain of publications, analyze that data, and then point the
way to a certain molecular construct or set of conditions that will
activate a desired reaction.
For data-driven approaches that are based on experimental

data, several areas of research are ripe for development. First,
new natural language processing algorithms are needed to be
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able to extract information from different subfields for
sustainable chemistry and engineering. For example, one subtask
of natural language processing is named entity recognition,
which classifies words or groups of words to predefined
categories (Figure 2a). Chemical named entity recognition
algorithms have been developed to classify if a particular word is
a chemical,6 but more specialized named entity recognition
algorithms are needed to fully extract relevant experimental data
from the literature. For example, these algorithms need to
identify and distinguish products from reactants, determine a
catalyst structure, and accurately elucidate relevant reaction
conditions.
New deep learning and predictive analytics algorithms hold

the potential to greatly accelerate sustainable chemistry design
(Figure 2B). Deep learning, one of the most rapidly growing
subfields of machine learning, demonstrates remarkable power
in deciphering multiple layers of representations from high-
throughput experiment and/or theoretical calculation data
without the need of designing and tuning specific feature
extractors. By using deeper neural networks that provide a
hierarchical representation of the data, deep learning methods,
such as convolutional neural networks, recurrent neural
networks, and deep generative models (e.g., variational
autoencoders and generative adversarial networks), are shown
to have much more powerful learning capabilities and thus
higher performance and precision for searching for new
catalysts. Deep learning techniques can be fed with raw data
directly, have automatic features, and are able to learn rapidly for
performing various data processing and predictive analysis tasks
efficiently. Many research studies have reported the application
to chemical molecular generation and property predictions.7

Deep learning-based generative models are typically used in
conjunction with predictive QSPR models to relate learned
feature representations of molecular descriptors to target
chemical, physical, or biological properties of catalysts. In
addition to overperforming other machine learning methods in

property predictions, deep learning has recently demonstrated
the capability to produce property predictions comparable to
density functional theory (DFT) calculations.8 With the
advances of deep learning algorithms, more powerful
architectures of generative models, and increasing availability
of experimental and computational chemistry data, it is expected
that deep learning techniques have great potential for improving
the effectiveness and accuracy of AI-based catalyst design for
sustainable chemistry applications.
In addition to catalyst development, machine learning can be

utilized for solving complex chemical engineering problems. For
example, the design and discovery of sustainable pathways often
require developing multiscale process systems engineering
(PSE) methods addressing systems which are complex and
vary across different time and length scales. ML-based models
can be utilized for developing highly accurate surrogate models
to circumvent the need of representing chemical phenomena via
complex and nonlinear relationships.9 As one example, if we
were to solve a complex chemical engineering supply chain
problem, we could replace the chemical phenomena occurring
inside unit operations with the help of ML-based surrogate
models. These could then be integrated within the broader
supply chain level to capture both the process-level and supply
chain-level aspects. This strategy could significantly improve the
tractability of large-scale PSE problems. Another example is CO2
capture, utilization, and storage (CCUS). The overall cost of
CO2 capture depends on multiple and often contradicting
factors at materials, process, and supply chain levels.10 ML can
contribute to all levels. At the materials level, chemistry-
informed machine learning can be applied to perform efficient
screening of adsorbents, solvents, and membranes for CO2
capture, natural gas purification, hydrogen storage, and
separation. At the process level, reliable estimations of
physicochemical, equilibrium, and transport properties are
critical. ML can be used to efficiently predict these properties
of chemicals and materials for conceptual design, synthesis, and
intensification of chemical process flowsheets.11 ML can be also
applied to analyze and improve process economics and safety in
the chemical process industry (CPI). ML models can be
developed to provide real time assessment of a plant’s safety and
operability, providing significant value to plant operators. These
models can be translated to track various safety metrics (e.g., fire,
toxic release, hazard, and risk) and safety-critical material
properties.12 At the supply chain level, key interests are in
performing systems analysis for nationwide or regional supply
chain structures that would use the most appropriate sources,
technologies and materials, transportation networks, and
utilization and demand sites.
Industrially, machine learning and artificial intelligence are

already starting to impact the drug discovery process. Research is
ongoing within large pharmaceutical companies and specialist
companies such as Ex Scientia and Benevolent AI to use
algorithms to design compounds and predict their properties
with the goal of increasing the efficiency of the drug discovery
process and thereby the speed to market. From a sustainability
perspective, the drug discovery process is often the subject of
less attention than the larger-scale drug development process,
where there is a far greater probability of any given process
transferring into manufacturing. However, the drug discovery
process has been estimated to produce between 200,000−
2,000,000 kg of waste a year,13 and so not only do these
algorithms hold the promise of improving the speed at which
new treatments can get to patients, they should also minimize

Figure 1. What is the future of sustainable chemistry research?
Interfacing artificial intelligence and human intelligence to (1) Catalog
the literature with data mining, (2) Learn from this knowledge base
using machine learning, and (3) use these insights to Search and Test
new systems.
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the environmental impact of this phase of the industry. The
application of machine learning to synthetic problems has also
generated considerable interest and excitement.14 Again, this has
sustainability implications if it can enable shorter, more efficient,
higher yielding routes to key targets of interest. Already the
technology has developed to such an extent where, in a variant of
the Turing test, a panel of chemistry students showed no
preference for literature routes to machine-suggested synthetic
routes.15 Additionally efforts are underway, through research
partnerships such as the GSK University of Nottingham and
University of Strathclyde Prosperity Partnership,16 to use
algorithms to predict the most environmentally benign routes
to target molecules. This Prosperity Partnership aims to build an
AI-enabled sustainable chemistry community,17 augmenting
tools such as CHEM2118 by developing and deploying models
that are explainable for sustainable chemistry and bringing to
researchers’ fingertips intuitive and interactive tools, which allow
users to define priorities, such as reaction yield, or focus on
longer-term considerations, such as the ease with which the
chemistry can be scaled up to a chemical engineering process.
To drive all of these innovations, more scientists and

engineers need to learn how to integrate AI and ML in their
sustainable chemistry investigations. ACS Sustainable Chemistry
& Engineering (ACS SCE) plans to publish a Virtual Special Issue
(VSI) later this year titled Advances in Sustainable Chemistry
via Artificial Intelligence, featuring methods in which AI has

been used in enhancing sustainable chemistry and engineering.
The content should preferably address the following aspects: (a)
using machine learning algorithms to enhance any aspect of
sustainable chemistry and engineering, (b) using novel chemical
data extraction or mining techniques, and/or (c) interfacing
machine learning with traditional computational chemistry.
While all three aspects are welcome, each manuscript
submission need not address all aspects.
Please note that the foregoing guidelines are meant as

suggestions. Authors are encouraged to add other aspects as
appropriate. If you wish to specifically contribute to the VSI in
preparation, please email us at your early convenience. We look
forward to receiving manuscripts in the important area of
translational sustainable chemistry and engineering.
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Figure 2. Pictorial representation of natural language processing (a) and machine learning (b). (a) Example sentence showing the named entity
recognition tags (colored labels) and part of speech relationships. (b) Artificial neural network that has reaction conditions as the input layer and the
product and efficiency as the output layer.
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Notes
Views expressed in this editorial are those of the authors and not
necessarily the views of the ACS.
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