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1. INTRODUCTION

1.1. The Mordell conjecture. Many important developments in arithmetic geometry were motivated by
the Mordell conjecture, stated nearly a century ago. Let X be a smooth projective curve, defined over the
field of rational numbers Q. Its set of rational points X (Q), which consists of all the projective solutions
with rational coordinates to a finite set of equations defining X in some projective space, is an interesting
arithmetic quantity. In 1922, Mordell [Mor22] made the following conjecture:

Conjecture 1.1 (Mordell). Suppose that X is of genus at least two. Then X (Q) is finite.

In a monumental paper, Faltings [Fal83] proved this conjecture. The method of Faltings is ingenious, and
merits a thorough treatment on its own. Indeed, many such are available in the literature, see for instance
[CS86] for an early account. In this paper, we wish to give an introductory account of two recent alternative
approaches towards this conjecture, due to Lawrence-Venkatesh [LV18] and Kim [Kim05, Kim09, Kim10].
The latter method, which is usually called the method of Chabauty—Kim or non-abelian Chabauty in the
literature, has the advantage that in some cases it has been turned into an effective method to determine
the set of rational points X (Q), and we illustrate this by presenting three new examples of modular curves
where this set can be determined, due to Best, Bianchi, and Triantafillou.

Remark 1.2. Mordell’s conjecture, as well as many of the results discussed below, admit analogues where
X is replaced by a smooth hyperbolic curve, including also the cases of a punctured elliptic curve and
1
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P'\{0, 1,00}, when the set of rational points X (Q) is replaced by the set of S-integral points, where
S is a finite set of primes. In this setting, the finiteness of S-integral points is known as Siegel’s theorem.
Both methods presented here are expected to apply to non-proper hyperbolic curves as well. We discuss
the S-unit equation in the context of [LV18] below. Kim [Kim05] proved the finiteness of integral points on
P'\{0,1, 00}, and explicit Chabauty-Kim methods for S-unit equations are due to Dan-Cohen and Wew-
ers [DCW15, DCW16, DC17]. Chabauty-Kim theory for integral points on punctured elliptic curves of rank
0 and 1 is discussed in [Kim10] and [BDCKW13].

Remark 1.3. For the purpose of exposition, we only consider the base field Q. It should be noted that many
results admit appropriate generalizations to number fields [Sik13, Dog19, BBBM19]. The only exception is
our discussion of the method of Lawrence—Venkatesh, where field extensions play an essential role.

1.2. Two recent approaches. After Faltings’ proof, two notable new methods for proving finiteness of
X(Q) for X of genus g > 2 have emerged. In broad strokes, they follow a similar strategy: We start by
choosing a prime p at which the curve X has good reduction, and we study the set of rational points through
the inclusion

(1) X(Q) © X(Q,)

For any field K, we write Gx = Gal(K/K) for its absolute Galois group. The starting point of both
the methods of Chabauty-Kim and Lawrence—Venkatesh is the association of a certain finite-dimensional
Galois representation over Q,, to every point on the curve, giving maps

(2) p: X(K) — Rep(Gk),

for K equal to Q or Q,,. In both the approaches of Lawrence-Venkatesh and Chabauty-Kim, finiteness of
the set X (Q) is obtained from the consideration of a commutative diagram of the following shape:

X(Q) X(Qp) -~._ per

(3) p p AN

res Deris
Rep(Gq) “— Rep(Gq,) ——> MF?/ ~.

While the nature of p is very different in the two approaches, the horizontal maps are the same. First of
all, the map from X (Q) to X(Q,) is simply the natural inclusion, and res,, is the restriction of Galois
representations, making the diagram commutative in both approaches. The map D, is defined using
p-adic Hodge theory. More precisely, it is Fontaine’s crystalline Dieudonné functor from p-adic Galois
representations to filtered ¢-modules. Finally, per), is defined to be the composite of this map with p, and
will be referred to as the (p-adic) period map.

As mentioned above, the maps p which feature in the methods of Lawrence-Venkatesh and Chabauty-
Kim are of a very different nature, and are responsible for the drastic differences between the two ap-
proaches. They may roughly be described as follows:

e The method of Lawrence—Venkatesh starts by considering a family of curves C — X. This is a
so-called Parshin family, where the fibre C,, of a point 2 in X (K) is itself a disjoint union of finite
coverings of X, unramified away from the point x. The association p is then simply

p:xr —> Hit(EI,Qp).

A lemma of Faltings can be used to show that the number of global representations in p(X(Q,))
is finite. The main part of the argument of Lawrence-Venkatesh is to establish that the map per,,
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is finite-to-one. The argument starts by realizing per,, as the quotient of the Hodge filtration map
@, : X(Q,) — Gr(g,2g) by the Frobenius centralizer, and showing that on every residue disk
(1) every orbit of the Frobenius centralizer has positive codimension in Gr(g, 2¢), and
(2) the image of ®,, is Zariski dense.
The former is established via carefully extending the base field and exploiting the semi-linearity
of the Frobenius operator, whereas the latter is established using a monodromy calculation for the
family C. The finiteness of X (Q) follows easily from the above commutative diagram.

e In the method of Chabauty—Kim, one chooses a rational base point b € X (Q) and obtains the asso-
ciation p by considering certain well-chosen unipotent quotients U(b) of the algebraic fundamental
group 7¢(X;b). This choice of quotient typically depends on the specifics of the curve X under
consideration. The association p in the method of Chabauty-Kim is then of the form

p: x — U )

where U(b, z) is obtained by twisting the unipotent quotient U(b) by the path torsor 7$'(X; b, z).
This carries the structure of a Q,,-representation of G'x whenever z is in X (/). All these Galois
representations are twists of U(b), whose unipotence provides a certain rigidity that is crucial for
arithmetic applications. More precisely, Kim shows that the image of p is contained in a set that
naturally carries the structure of an algebraic variety, which is usually referred to as a Selmer variety,
such that the map res,, between the global and local Selmer varieties is algebraic.
This rigidity provides us with a clear strategy to prove finiteness, in the style of the classical

method of Chabauty (see below). Indeed, if we can establish that

(1) the global Selmer variety has positive codimension in the local Selmer variety, and

(2) the image of X (Q,,) is Zariski dense,
then the intersection of the two sets (which contains the set of rational points) must be finite. Prop-
erty (2) is true in great generality, whereas (1) typically requires additional information. Note the
amusing similarity with the two steps in the proof of Lawrence—Venkatesh discussed above.

In spite of the apparent similarity of the two strategies, the different nature of the maps p already lays
bare a crucial difference: In contrast with the unconditional proof of Lawrence-Venkatesh, an additional
piece of information is needed to deduce finiteness from the method of Chabauty-Kim. Typically this either
takes the form of a geometric assumption, such as having a large Néron—Severi rank [BD18, BD19a], or the
assumption of a geometric conjecture, such as the Bloch-Kato conjecture, see [Kim09].

1.3. Finding rational points explicitly. At first glance, it may seem from the above comments that the
conditional nature of the proof of finiteness obtained from the method of Chabauty-Kim puts the method at
a significant disadvantage, especially when compared to the unconditional proof of Lawrence—Venkatesh.
However, recent developments [BD18, BD19a, BDM ' 19] have shown that in certain examples where ad-
ditional geometric information is known, the method for proving finiteness can in fact be turned into a
method to explicitly determine the finite set X (Q).

To explain the ideas, we briefly remind the reader of the method of Chabauty-Coleman [Cha41, Col85],
of which an excellent exposition may be found in McCallum—-Poonen [MP12]. In this method, one chooses
a rational base point b in X (Q) and attaches to every other point a torsor of the p-adic Tate module V' of
the Jacobian .J. More precisely, if K is either Q or Qp, this torsor is obtained by the composition

(4) p: X(K) — J(K) — H(Gg,V)
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where the first map is the Abel-Jacobi embedding attached to the choice of base point b, and the second
map attaches to a point x in J(K) the torsor of V' obtained from the inverse limit of the preimages of
under the multiplication-by-p™ map on the Jacobian, i.e.

(5) Q,®z, (%in [p"}‘l(x)> :

Such torsors are classified by the cohomology group H' (G, V') and satisfy certain Selmer conditions' which
are denoted by the subscript f. This association p is familiar from the context of the classical method of
descent, used to compute the Mordell-Weil group of the Jacobian.

We now obtain the commutative diagram:

X(Q)

._ ber,
(6) p P
N
1 resp Hl G Vv ~ 0 1\V
Hf(GQaV) f( Q,> )*)H (XaQX)

representing perhaps the simplest instance of the Chabauty-Kim strategy towards the Mordell conjecture
discussed above, where U is taken to be the abelianization V of the fundamental group. In this situation, the
relevant filtered ¢-modules are classified by the dual to the space of holomorphic differentials on X, which
is of dimension ¢, and the isomorphism is provided by the Bloch—Kato logarithm. With suitable finiteness
conditions f, the dimension of H} (Gq, V) can be bounded above by the rank r of the Q-rational points of
the Jacobian of X. The discussion of how to prove finiteness of X (Q) using the method of Chabauty-Kim
then specializes to the classical argument of Chabauty, who deduces finiteness under the assumption that
r<g.

Going one step further, we note that the p-adic period map per,, has the following concrete description:

) pery () = (w— [ o)

where the integration is taken in the sense of Coleman [Col85]. Our ability to compute Coleman integrals
[BBK10, Bal15, BT19] often results in an explicit determination of the set X (Q). Since there already exist
several excellent expositions of this method [MP12], we will simply explain the method by showing it in
action for a single example.

Example. Let X be the genus 3 hyperelliptic curve with minimal model*

w?+ (2224 Dw=—25 — 22
A search for points with small coordinates gives that
(8) {ooi,(—1,—2),(—1,0),(0,—1),(0,0)} gX(Q)7
where cot = (1:0:0)and oo™ = (1 : —1 : 0) are the points at infinity. In order to determine the full set

of rational points X (Q), we apply the Chabauty-Coleman method with p = 3; for convenience, we work
with the following model for X:

Xw? =28 42202224324 +23 - 224224+ 1.

IWe are deliberately vague about these finiteness conditions here, but mention that the discussion below can be made unconditional
on the finiteness of the Tate-Shafarevich group of the Jacobian.
2Here X is the curve of absolute discriminant and conductor both equal to 60329 = 23 - 43 - 61 from the database [BPSS].
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We embed X’ into its Jacobian J via the Abel-Jacobi map corresponding to the base point b = (0,1) in
X'(Q). A computation in Magma [BCP97] shows that the Mordell-Weil rank of .J is equal to 1, and the
above discussion then implies that the codimension of the image of ress is at least 2. In fact, it is precisely
equal to 2: the set {wi = zi% 0<i < 2} is a basis for HO(X’7 QL) and we have

pers(0, —1)(wp) = 3(3 +3% +2-3%) mod 3°
pers (0, —1)(w1) = 3(1 + 3% + 3) mod 3°
perg(0, —1)(w2) =3(1 +3*+2-3*+2-3%)  mod 3°.

Thus, we may choose generators o = agwp — ajw; and 5 = bowy — baws for the Q5-vector space

{we HY(X', Q) : ress(c)(w) = 0 forall c € Hy(Gq, V) }

such that
) apg = 1+334+3* mod 3° ap = 3+334+42-3*  mod3®
bp = 143242-33+2.34 mod 3° by = 3+334+2.3% mod 3°.

By construction, we have
(10) X'(Q) C {z € X'(Q3) : persg(z)(a) = 0 and pers(x)(B8) = 0} =: T;

a computation shows that 7 contains precisely 6 points and hence that the inclusion in (8) is in fact an
equality. Explicitly, suppose for instance that we want to compute all z € 7 which reduce to the point
(1:1:0)in X'(F3). For v € {a, 8} we have

per, (1)) = pery(1:1:0)(7) + [ T /( R

(1:1:0) 1:1:0)
expanding in terms of the local parameter ¢ = z(z) ! and formally integrating yields
perg(z)(a) = (2-3+3%) -2 +(2-371 +24+2-34+3%) - mod (3%t
perg(z)(B) =3-t+(2-37 1 +14+3+2-3%) -3 mod (33, ¢4).

The i-th coefficient of the local expansion of pers(z)(«) or pers(x)(5) has valuation bounded from below
by —ords(7); from Newton polygon considerations, we deduce that

e per;(z)(a) hasadouble zero att = 0, a simple zero at some ¢ € Z3 which satisfies t = 2-3% mod 33,
and no other zero in 3 Z3;

e pery(z)(B) has a simple zero at t = 0, two simple zeros congruent modulo 32 to 2 - 3 and 3,
respectively, and no other zero in 3 Zs.

Therefore, the intersection of the zero sets of pers(z)(a) and pers(z)(8) in the residue disk of the point
(1:1:0)in X'(F3)isprecisely {(1:1:0)} C X'(Q).

We emphasize that neither « nor § on their own would have sufficed to determine X (Q), as each of
pers(z)(a) and pers(x)(8) vanishes at some points x € X'(Q3) \ X’(Q) which we can only compute
modulo 3" for a choice of n. More generally, for curves X of genus g with rank g — 1 Jacobians, the
Chabauty-Coleman method typically provides us with only one locally analytic function whose zero set 7
contains X (Q). It is then often the case that 7 contains some points that we cannot recognize as points
in X(Q). In such situations, the Mordell-Weil sieve (see §6.7 for a discussion) can often be used to prove
that the p-adic approximations of these points that we have computed cannot be approximations of points

in X(Q).
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1.4. Integral points on higher-dimensional varieties. Both methods (Lawrence-Venkatesh and Chabauty-
Kim) could be applied to the problem of finding integral points on higher-dimensional varieties as well. To

fix ideas, let X be a smooth variety over Q. If X has large nonabelian fundamental group, one can hope

to construct a nontrivial p-adic local system on X. This will attach a Galois representation to every point

x € X(Q), giving rise to a period map p as above. In the higher-dimensional setting, one can no longer con-
clude finiteness of integral points; rather, these methods give the weaker result that X (Z) is not dense for
the p-adic analytic topology. See [Had11, Section 9] for a result of this form. (In dimension one, non-density
for the analytic topology is equivalent to finiteness.)

It is sometimes possible to strengthen p-adic non-density to Zariski using tools from transcendence
theory. In [LV18, Section 9] it is shown that in certain moduli spaces of hypersurfaces, the integral points
are not Zariski dense. The key input is a recent transcendence result for period mappings, due to Bakker
and Tsimerman [BT17]. This opens the possibility that one might prove finiteness of integral points by an
inductive approach: taking X'’ to be the Zariski closure of the integral points in X, one would hope to use
the method of [LV18] to prove that, if dim X’ > 1, the integral points cannot be dense in X’. To make this
work one would need uniform control on the monodromy of the given family, restricted to all subvarieties
X' CX.

2. THE METHOD OF LAWRENCE-VENKATESH: FINITENESS

In this section, we will discuss the main ideas of the approach towards Mordell’s conjecture due to
Lawrence and Venkatesh. For simplicity, our main focus will be to explain the method in the case of X =
P'\{0,1, 00} where the proof is especially simple. Finally, we make some comments about the obstacles
one faces in making this approach effective, in the example of the 2-unit equation.

Recall from the introduction that we start by constructing a map p which attaches a Galois representation
to any point on X. In the method of Lawrence-Venkatesh, the map p arises from the cohomology of the
fibres of a certain Parshin family C — X, see §2.2. In the case of X = P'\{0, 1, 00}, which we discuss
first, this family is a simple modification of the classical Legendre family of elliptic curves.

2.1. The S-unit equation. To explain some of the ideas in the proof, we discuss the case of the S-unit
equation in more detail. This has the benefit of being substantially simpler, while still containing many of
the main ideas that go into the proof of the Mordell conjecture. To illustrate the ideas of the proof, we will
start with a version of the Parshin family for which the period map per,, fails to be finite-to-one. Then we
will give a correct argument, in which a nontrivial Galois action on H” of the fibers supplies the key missing
ingredient.

Take K = Q and S a finite set of primes. We denote the set of S-units by O and will consider the
S-unit equation given by

(11) z+y=1, z,y € OF,

whose solution set is finite by Siegel’s theorem. This statement represents an attractive toy case for the
Mordell conjecture; its geometric proof along the lines sketched above takes place on X = P*\{0, 1, 00}.
Note that we may enlarge .S without loss of generality, so that we may as well assume that S contains 2.
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The role of the Parshin family is played by the Legendre family over Og. Denoting x for the coordinate
on X = Pé)s \{0, 1, oo}, this family C — X’ is given by the equation

(12) C:w*=z(z—-1)(z—x).

This family gives us a Galois representation p(z) on the étale cohomology group Hg, (Cz, Q,), where pis a
prime not below any places in S, which is unramified in K. This gives the following diagram:

X(OS) ‘X(Ov) -~ per

(13) p p oS

Deis
{Iso classes p} — {Iso classes p, } ——> MF?/ ~ .
Let us now make a first attempt to deduce finiteness from the above diagram. There are two major consid-
erations to the strategy, corresponding to global and local aspects. The local considerations revolve around
a careful analysis of the period map, via a monodromy calculation.

a. Global representations. The Mordell conjecture will ultimately be reduced to a finiteness statement
about a certain set of global Galois representations, due to Faltings. More precisely, the proof of [Fal83, Satz
5] deduces the following consequence from the classical theorem of Hermite-Minkowski:

Lemma 2.1. Fix integers w,d > 0, and fix a number field K and a finite set S of primes of Ok . There are,
up to conjugation, only finitely many semisimple Galois representations p : Gx — GLq(Q,,) such that

(a) p is unramified outside S, and
(b) p is pure of weight w, i.e. for every prime p ¢ S all the eigenvalues of Frobenius at p are algebraic
integers, all of whose conjugates have complex absolute value | O /p|"/2.

It should be noted that this does not make the approach of Lawrence-Venkatesh depend on the work of
Faltings in an essential way, as this lemma is comparatively simple in Faltings’ overall argument.

The semisimplicity hypothesis in Faltings’ lemma is essential: there can be infinitely many nontrivial ex-
tensions between Galois representations. * In fact, Faltings shows that all the representations we consider—
which arise as subquotients of the étale cohomology of a curve—are semisimple. This fact requires the full
weight of Faltings’ argument in [Fal83]. In order to give an independent proof of Mordell’s conjecture, it
is necessary to contemplate the possibility that some of these representations might not be semisimple. In
potential algorithmic applications, we know this situation cannot arise, so we will content ourselves here
with mentioning that in [LV18] this is addressed by showing that all but finitely many representations in
our family must be simple. This is a consequence of results of the following form:

(1) Ifthe global representation p(z) has a (global) subrepresentation, then the local representation must
be of a particularly special form.
(2) There are finitely many z in X (Q,,) where the local representation p(x) takes this special form.

b. The period map. The more subtle points of the argument of Lawrence-Venkatesh lie in the study
of the period map per,, where one systematically enlarges the base field to gain control over the Frobe-
nius centralizers. Let us explain the need for this step, by first approaching the problem naively using the
unadjusted Legendre family above.

3As we will see in the next section, the existence of families of non-trivial extensions of a fixed set of Galois representations is
precisely what underlies the method of Chabauty—-Kim.
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Recall that we want to show finiteness of the set of solutions to the S-unit equation. Since we already
established the finiteness of the set of isomorphism classes of global representations p(z) that can arise, it
is tempting to try and show that the fibres of the period map per,, are finite. However, this is not true: The
filtered ¢-modules that arise in the image of per, necessarily are of the form Hiz(Ca, Q,), and on every
good residue disk of X (Q,,) the Frobenius operator ¢ has a constant characteristic polynomial

(14) f=al?> +bT +c €Z,[T)

which has two roots in C,, whose valuations sum up to 1. The number of residue disks is finite, and for
each of these finitely many polynomials f, the filtered ¢-module belongs to a finite number of possible
isomorphism classes, which is most easily seen with a simple case-by-case analysis:

e If f is irreducible, then we may pick a basis e; for Fil' and set 5 = ¢(e1). Then {e;, €5} is a basis
for Hly. With respect to this basis, we have Fil' = (e;) and

¢—(‘1) ‘2)

o If f isreducible, then it must have distinct roots of valuations 0 and 1, corresponding to eigenvectors
e1, 2 which necessarily span Hjz. Then we either have Fil' = (e1) or (ey), or we can rescale the
eigenvectors to obtain Fil' = (e; + ey).

In conclusion, we see that there is only a finite number of possible isomorphism classes of filtered ¢-modules
attached to the representations p(x), and therefore the period map appearing in (13) cannot possibly have
finite fibres! Furthermore, we see from this discussion exactly what the problem is, since we had in each
case so much freedom in choosing our basis, so as to move around the Hodge filtration Fil* while respecting
the Frobenius operator.

We can rephrase the problem as follows. Fix a pair (V, ¢) of a two-dimensional vector space and linear
endomorphism; in our situation, (V, ¢) will arise as the crystalline cohomology Hg;(C., / Z,,), which only
depends on the reduction of = modulo p. The possible filtrations Fil' C V are classified by the Grassman-
nian Gr(Fil' C V). The centralizer Z(¢) acts on Gr(Fil' C V'), and the orbits of this action are in bijection
with isomorphism classes (V, ¢, Fil') of filtered ¢-module with underlying ¢-module (V, ¢). In the setting
just described, Z(¢) has a Zariski-dense orbit on Gr(Fil' C V), so most such filtered ¢-modules belong to

a single isomorphism class.

Interlude: Semilinearity. Let us take a short break to recall some crystalline theory. So far we have
been applying p-adic Hodge theory, in particular the crystalline comparison theorem, to schemes C,, over
Q,,. In general, suppose L, is an unramified extension of Q,,, and C, is a scheme over L,, admitting a
smooth model over Or,,. Then L, is Galois over Q,,, with cyclic Galois group generated by a Frobenius
element Fr that acts as the p-th power map on the residue field. The crystalline-de Rham cohomology
Hi(C, / L,) has the structure of a filtered ¢-module, where ¢ is now a semilinear operator: it satisfies

(15) ¢(Av) = Fr(X)o(v).

This is important because semilinear automorphisms have small centralizers: it’s not easy for an auto-
morphism of V' to both respect the action of L,, and commute with ¢. This is made precise in the following
lemma, which was proved in Lawrence-Venkatesh [LV18, Lemma 2.1].

Lemma 2.2. Let L, be an unramified extension of Q,, of degree e, and let ¥r : L, — L, be the Frobenius
endomorphism that acts as the p-th power map on the residue field. Let V' be an L,-vector space of dimension
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d,and ¢ : V — V a Fr-semilinear automorphism. Define the centralizer Z(¢) of ¢ in the ring of L,-linear
endomorphisms of V via

Zp)={f:V — Van L,-linear map, f¢ = of};

itisa Qp—vector space. Then
dimq, Z(¢) = dimr, Z(¢°),
where ¢¢ : V' — V is now Ly-linear. In particular, dimq  Z(¢) < (dimy, V)2

c. Finiteness. Armed with this tool, we now return to the failed finiteness argument above, and take
advantage of semilinearity to resolve the issues we were having. More precisely, we bound the size of
Frobenius centralizers by considering instead the modified Parshin family

(16) E:w?=z2(z—1)(z —t), 8 = .

For every field K and z in X (K), the fiber E, is a geometrically disconnected curve whose H' is the algebra
K|t]/(t® — x). Suppose K = Q,, and « is a unit in Q,, which is not a square®. Then E, is a curve defined
over L, = Q, [21/8], the degree-8 unramified extension of Q,,- We want to show that the map

: X(0,) — (MF?/ ~)

is finite-to-one. On each p-adic residue disk 2, C X(0O,), the ¢-module (V,¢) = H., (E,) is constant;

only the filtration varies. Thus we can regard per,, as a map

per, : Q, — Gr(Fil' CV) — Gr(Fil' CV)/Z(¢).

per,

Since per,, is an analytic map from a one-dimensional source, to show it is finite-to-one, we need only show
that it is not constant; in other words, that the image of ®,: , — Gr(Fil' C V) is not contained in a
single orbit of Z(¢). This follows from the following two results:

(1) Every orbit of Z(¢) has positive codimension in Gr(Fil' C V).
(2) The image of ®,, is Zariski dense.

The first of these two follows from the bound in Lemma 2.2; the second, from a complex monodromy
calculation. It is essential that L, have large degree over Q,, which comes from the assumption that x is
not a square in Q.

The Zariski density of the image of ®,, is obtained by comparing it with the complex period map ®¢.
Let’s recall the construction of ®c. The family E of elliptic curves over X gives rise to a variation of
Hodge structure on X. Let Q¢ be a contractible open subset of X*", containing some basepoint ¢ in
X (K), for K a number field. Over ¢, the family E splits as the disjoint union of eight families of elliptic
curves B, ... E®)_ (The monodromy action of 7 (X) preserves the splitting but permutes the eight
components.) Choose an integral basis B for the fiberwise Betti cohomology of each elliptic curve Vg) =

Hy (ETZO)) over xg. With respect to this basis, the Hodge filtration is described by a map

8
bc: Qc — HGr(Fill c vy,
=1

where the Grassmannian classifies one-dimensional subspaces of the two-dimensional V' (*),
41t is enough to consider x of this form by an elementary argument based on the fact that, if - is both a square and a solution to

the S-unit equation in some number field K, then 4/ satisfy the S-unit equation as well. However, this does necessitate some care
in the choice of p.
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The importance of ®¢ to us comes from the fact that ®¢ and ®,, are, in a suitable sense, the same. (See
[LV18, Section 3.4] for details.) Both period maps satisfy the same algebraic differential equation, coming
from the Gauss—Manin connection. It follows that in suitable local coordinates, the (complex) power series
representation of ®¢ and the (p-adic) power series representation of @, both have all their coefficients in
the number field K, and the two power series agree. This means we can compare the images of the two
period maps, and Lemmas 3.1 and 3.2 of [LV18] yield the following result:

Lemma 2.3. The image of ®c is Zariski dense if and only if the image of ®,, is Zariski dense.

The advantage of this result is that establishing the Zariski-density of the map ®¢ boils down to an
explicit monodromy calculation, see [LV18, Eqn. 3.11].

Lemma 2.4. If the image of the monodromy representation of E contains a Zariski-dense subset of Spg, then
the image of ®¢ is Zariski dense in Gr(Fil' C V).

Proof. Let X be the universal cover of X , and extend ®¢ to a map
dc: X — Gr(Fil' C V).

This map @ is 71 (X )-equivariant, where 71 (X) acts on the Grassmannian through the monodromy
representation. Since the image of monodromy is Zariski dense, the extended ®¢ has Zariski-dense
image. By analytic continuation, the restriction of ®¢ to ()¢ has Zariski-dense image as well. O

Lemma 2.5. The image of the monodromy representation

8
7T1(X,5L‘() —>Aut<H E()>

contains a Zariski-dense subset of Spo(Z)8.

Proof. This is a calculation in classical topology, see [LV18, Lemma 4.3]. O

2.2. The Mordell conjecture over general K. After our discussion of the S-unit equation, we now make
a brief foray into the general case, and outline how to adapt this argument to prove Mordell’s conjecture.
Suppose X is a smooth projective curve of genus at least 2 over K. We will define the Parshin family over
X, implicitly dependent on a parameter q. It will replace the Legendre family in the S-unit argument.

Let ¢ > 3 be a prime number, and let Aff(g) be the non-abelian group of affine-linear transformations
x +— ax + b over F. The action of Aff(¢) on F, realizes Aff(g) as a subgroup of the symmetric group S,.
Note also that Aff(q) surjects onto .

Definition 2.6. Let X be a curve over K, and x € X (K) a point of X. An Aff(q)-cover of X, branched at x,
is a curve Z and a map Z — X, satisfying the following properties.

e 7 — X is étale over X — {x}, but not étale over x.

o 7 — X isof degreeq.

e For any choice of basepoint xo, and for an appropriate identification of the fiber over xo with F,, the
monodromy map 71 (X, xo) — S, corresponding to the cover Z has image Af(q).

For every x in X (K), there are finitely many isomorphism classes of Aff(q)-covers Z — X branched
at . The Parshin family ¥ — X is characterized by the property that the fiber Y, is geometrically the
disjoint union of these finitely many curves.
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In the S-unit argument, the key semilinearity bound came from taking an 8-th root of = (along with
the elementary assumption that z is not a square). Here the corresponding bound comes from the torsion
on the Jacobian J of X, which is guaranteed to have a nontrivial Galois structure. Specifically, for any
Aff(q)-cover of X, the composed map

m (X —{z}) — Aff(q) — F;

gives a degree-(¢ — 1) cover of X that turns out to be unramified everywhere, even over z. This cover
in turn corresponds to a (¢ — 1)-torsion point on the dual of the Jacobian. We choose ¢ and p so that the
Frobenius at p acts with sufficiently large orbits on J[g — 1]; this in turn guarantees that the components
of each fiber Y, are defined over large p-adic fields, so we can leverage the semilinearity lemma 2.2.

As with the S-unit equation, a calculation in the classical topology is needed to show that the Parshin
family has big monodromy. Fix X and z, and let Z1, ..., Z be the Aff(q)-covers of X branched at 2. We
want to determine the image of the monodromy action

Mon: m (X,z) — Aut <H H}B(Zz)>

as an algebraic group. The cohomology of each Z; contains a copy of Hy (X); define’
Hp,(Zi) = Hp(Z:)/ Hp(X).
The map Mon descends to an automorphism of [ [, Hp (Z;). We need the following big monodromy result.

Theorem 2.7. The Zariski closure of the image of

Mon: 71 (X,z) — Aut <H H%q(&))

contains the group

This theorem is really saying that the image of monodromy is as big as possible: we know for abstract
reasons that the identity component of the Zariski closure of the image is no larger than the product of
symplectic groups. We say a few words about the main ideas that go into the proof:

The monodromy action of 71 (X, z) on the covers Z; extends to an action of the full mapping class group®
MCG(X — {z}). By the Birman exact sequence, 7 (X, =) is a normal subgroup of MCG(X — {z}). Since
the symplectic group is simple modulo center, we can deduce Theorem 2.7 if we know that the Zariski
closure of the image of

Mon: MCG(X — {z}) — Aut (H Hlljr(Zq;)>

contains said product of symplectic groups. The benefit to working with the full mapping class group is
that we now have access to Dehn twists, a particularly simple class of automorphism that is amenable to
explicit calculation. Dehn twists map to unipotent automorphisms via Mon, and the proof concludes by
producing a collection of unipotent automorphisms that generates the full symplectic group.

5The symbol “Pr” stands for “primitive.”
The mapping class group is the group of topological automorphisms of the topological surface X fixing the point x, up to isotopy
fixing . The book of Farb and Margalit [FM12] is an excellent introduction and reference on mapping class groups.
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The study of mapping class group representations like Mon is a big subject in geometric topology.
Looijenga [Lo097] studied the analogous question for abelian covers. Grunewald, Larsen, Lubotzky, and
Malestein [GLLM15] study (unramified) covers of compact surfaces, and in a recent paper [ST18] Salter and
Tshishiku study covers whose covering group is the Heisenberg group. These results are stronger than
ours: they all show that the image of the representation has finite index in an appropriate arithmetic group,
rather than merely being Zariski dense.

3. THE METHOD OF LAWRENCE-VENKATESH: EFFECTIVITY

We now discuss the extent to which we expect the work of Lawrence-Venkatesh to yield a method for
explicitly determining the set X (K) in examples. Since it is so recent, it is unsurprising that this aspect of
the method of Lawrence-Venkatesh does not yet seem to be addressed in the literature. In this section we
adopt a more speculative tone, merely making some brief comments about various ingredients that would
likely be needed to parlay this method into an algorithm for bounding the number of rational points on a
curve over a number field; which would yield, in a weak sense, a form of “algorithmic Mordell”

Roughly speaking, a potential form of such a hoped-for algorithm is as follows.

Algorithm 3.1. Take as input a number field K, a smooth projective curve X over K, and a power v" of a
good’ prime ideal v of Ok . Return as output a finite list of points® in X (O,), to any desired finite precision
which is guaranteed to include all the rational points of X.

It should be mentioned that such an algorithm, until an efficient implementation proves the contrary, is at
risk of being prohibitively slow so as to be useless from a practical standpoint. The essential difficulty lies in
enumerating Galois representations with prescribed ramification; modularity results for the representations
in question, if known, could speed up the algorithms significantly. One possible approach to the calculation
is proposed in what follows. It has four essential components, each of which we briefly discuss below.
It should be noted that whereas many of the separate ingredients have been extensively studied in the
literature, the method of Lawrence—Venkatesh has so far not been made effective, and therefore the ideas
in this section are tentative. It would be very interesting to explore the effectivity of this method further,
and make a serious attempt at a computational version of this method.

Remark 3.2. An algorithm of the above form may return extraneous points, not corresponding to a rational
point. This phenomenon arises also in Chabauty’s method, though in the example in §1 it was circumvented
by exhibiting two independent analytic sets, which was possible since g —r = 2. Likewise, it is conceivable
that one can circumvent in the method of Lawrence—Venkatesh by varying the choice of ¢ in the covering
group Aff(q). Alternatively, one could attempt to apply the Mordell-Weil sieve, see §6.7.

3.1. Enumerating global Galois representations. Faltings’s finiteness lemma for Galois representations
(Lemma 2.1) can be made effective; we expect this to be the most computation-intensive part of the algo-
rithm. Recall that we want to enumerate all global Galois representations

p: G — GLd(Zp)
that could arise from our family, in the sense of Lemma 2.1. We know the following about p:
"The method of LV requires p to satisfy a certain Galois-theoretic condition; here we will simply call primes satisfying that condition
“good” primes. The condition is needed to guarantee that a certain extension of K is of large degree, and is analogous to the

requirement in the S-unit equation above that x not be a square in Q. Choosing a good p presents no algorithmic difficulty.
8possibly with multiplicities
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e We are given a finite set S of places of K, outside of which p is unramified.
e For every prime p ¢ S, all the eigenvalues of Frobenius at p are Weil numbers of weight 1/2.
o The representation p is semisimple.

On the one hand, we can list all possible mod-p™ representations for any n. First, one enumerates all
possible residual representations

pP1 - GK — GLd(Fp).

This is a straightforward application of Hermite—Minkowski finiteness. The residual representation has
finite image, so it corresponds to an extension L; of K of degree at most |GL4(F),)|. The ramification
condition translates to a bound on the discriminant of L. One can find all possible number fields L; by a
targeted Hunter search [Coh00, §9.3]. However, the time complexity of such a search (for fixed K and S) is
doubly exponential in the degree [L; : K], so it may be necessary to further refine the search using more
specifics of the situation at hand.

Second, for each residual representation, one lifts successively to mod-p™ representations
pn+ G — GLa(Z /p"),

which correspond to a tower of fields L,,. The successive extensions L,11/L,, are abelian, so they can be
found by class field theory. (Everything we need from class field theory can be done algorithmically; see
[Coh00].) To do this, we need to compute ideal class groups and unit groups of number fields whose degrees
grow exponentially in n; this is again a computationally expensive task.

On the other hand, given the residual representation p;, the Faltings—Serre method (see for example
[Del85]) allows one to compute effectively a finite set of primes p1, ..., ps such that for any semisimple p
lifting po, the rational representation

Gg — GLd(Qp)
is determined by the Frobenius traces
TI'(FI‘W p)

at these finitely many primes. (In general, there may be multiple isomorphism classes of integral representa-

tion, as the rational representation may have more than one stable Z,-lattice.) The condition on Frobenius
eigenvalues guarantees that there are only finitely many possible values for Tr(Fr,, |p), for each i. We can
choose ng large enough that, for each fixed i € {1,..., s}, no two of these possible values are congruent
modulo p™°. Then any mod-p™° representation p,,, can lift to at most one semisimple p-adic representation.

The strategy, then, is as follows. First, make a list of all (finitely many) possible tuples
(TI‘(FI'pi

p))ie{l,...,s};

we’ll call such a tuple a candidate. As described above, we can enumerate all mod-p™ representations for
some n > ng. We compute their Frobenius traces and match them with candidates, discarding candidates
that don’t match any representation, and vice-versa. We can repeat this procedure for any desired n; the
list of candidates will get shorter, as spurious candidates are deleted.

3.2. Computing the Parshin family. Before we get to the purely local part of the computation, which
consists of describing the p-adic period map per,,, we are faced with the problem of finding an explicit set
of algebraic equations defining the Parshin family

C — X,
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whose fibres are finite covers of X branched over the variable point z. This is an instance of the Riemann—
Hurwitz problem. Computational work on branched covers of curves is particularly well-developed in the
case of Belyi covers of P; see [SV14] for an overview. The covers appearing in our setting are solvable,
and we expect that explicit calculations on the Jacobian could provide a fruitful approach.

The solvability of the covering group Aff(g) has the following geometric interpretation. Suppose Z — X
is an Aff(q)-cover, branched at x. Let Z%! be the Galois closure of Z; this is a cover of X of degree q(q— 1),
ramified only above 2 and having Galois group Aff(g). The quotient map Aff(q) — F* gives a curve Z*,
corresponding by the Galois correspondence to qu. Thus we have the tower of covers

7% — 7% T X,

In this tower, Z? is an unramified abelian cover of X of degree ¢ — 1,and Z Gal i5 an abelian cover of Z2
of degree ¢, ramified at exactly the points of 7! (x). The curve Z can be recovered as a quotient of Z%2!,

This suggests the following strategy to compute the Parshin family Y, each of whose fibers is a union of
Aff(q)-covers Z. First, we attempt to compute abelian covers (both unbranched and branched) of arbitrary
curves, by finding torsion points on algebraic generalized Jacobians. To describe one strategy’, we will
restrict attention to unramified covers and the (ungeneralized) Jacobian. In this setting, we want to find a
divisor D on the curve X, along with a meromorphic function f on X such that

div(f) =rD,

which amounts to looking for r-torsion on the Jacobian of X. The Jacobian has an algebraic incarnation
as a variety classifying divisor classes on X and an analytic incarnation as a complex torus. It is of course
trivial to identify torsion points on the analytic Jacobian; what we need is to describe them as points on the
algebraic Jacobian.

Fix a basepoint b € X (C). By integration we can compute coordinates on the analytic torus Jac X,
along with the analytic Abel-Jacobi map

X — JacX.
In the other direction, let g be the genus of X. We want to invert the map
(17) Sym? X — Jac X,

to realize a point of the analytic Jacobian as a divisor on X. This map is a birational equivalence, but
not an isomorphism. On a Zariski-dense subset of Jac X, the map can be inverted, for example, by theta
function methods [Mum83, Theorem II.3.1], by Puiseux series methods [CMSV19], or by computations
in Grassmannians arising from Riemann-Roch theory [KM04, CMSV19]. A general algorithm appears in
[CMSV19, §3.3].

If we can compute arbitrary abelian covers, we could try to determine all the covers Z% for any fixed
point z; from there one computes Z by Galois theory on the function field. In other words, we can compute
the fiber Y,, of the Parshin family over any given point z € X. To compute the Parshin family as an algebraic
family, we are faced with the need to interpolate these fibers, perhaps by Puiseux series methods.

9An alternative approach to computing covers of curves is by Hensel lifting from a finite field, as in [Mas19].
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3.3. Computing the p-adic period map. We now come to the local part of the computation, where a
description of the p-adic period map per,, reduces to a computation with p-adic cohomology in families.
There is a vast literature on this subject, and this step is therefore likely to be more accessible and efficient
than the others'’. We give a brief overview of some results in the literature, for more detailed treatments

that address also the history of the subject, see Kedlaya [Ked09, Ked07].

The basic problem is the following: Suppose we are given a curve C, over a p-adic field K, and want
to compute the filtered ¢-module structure of Hj; (C,, /K, ). Representing this space by differentials of the
second kind, the Hodge filtration is easily worked out, and it is the Frobenius operator ¢ that forms the
essence of this problem. When C,, is hyperelliptic, Kedlaya [Ked01] introduced an efficient algorithm, a
variant of which we will see in action for the examples of the genus 2 curves in §6. There are two main
ingredients for the computation:

e An appropriate lift of Frobenius on the functions in a (p-adic analytic) open subset of C,,
e A reduction algorithm in de Rham cohomology, that writes an arbitrary differential as the sum of
an exact differential and a linear combination of our basis differentials.

By applying the reduction in cohomology to the image of a set of basis differentials under this Frobenius
lift, we may obtain a matrix of the Frobenius operator ¢, up to some precision v™.

This method has seen extensive developments since [Ked01], notably by Lauder [Lau04, Lau06] who
introduced the fibration method. This method makes use of the Frobenius structure on the sheaf of relative
¢-th de Rham cohomology H{, (X/S) of a smooth morphism X — S between smooth varieties over K.
The variation of the de Rham cohomology of the fibres in this family is described by the Gauf3—Manin
connection

Ve : H(X/5) — Q5 0 HG(X/S),
which gives a system of differential equations known as the Picard—Fuchs equations, whose study was taken
up in the 19" century. Suppose we find a local lift of Frobenius ¢ on S, then the pullback of the relative de
Rham cohomology H{, (X/S) by ¢ is isomorphic as a vector bundle with connection to the original one. In
concrete terms, let us suppose that S is a curve, then we may express this in matrix form as

ot ot

by choosing a local coordinate ¢ on S, and a basis of the relative de Rham cohomology, with respect to
which we obtain a matrix F'(t) describing the Frobenius operator on the fibres, and N (¢)dt describing the
Gaufl—-Manin connection. This equation is very useful. For instance, if F'(t) can be computed for a single

(18) NFdt+ 2P - (%(t)) F$(N)dt

value of t = ¢, then we may solve these p-adic differential equation using F'(¢¢) as an initial condition.
Lauder [Lau04, Lau06] uses this idea to compute the Frobenius action in families. It is surprisingly versatile,
applying both to individual curves with a map to P! as well as families of curves. It has been developed
in many subsequent papers of which we mention the recent algorithms of Tuitman [Tuil6, Tuil7], and the
references contained therein, which vastly extend the range of applicability of these ideas.

3.4. Compare the global Galois representations with the p-adic periods. We suggest two approaches.
The first is to use p-adic Hodge theory, along the lines of Fontaine—Laffaille theory [FL82]. We are given a
mod-p™ global Galois representation, presented as a polynomial whose splitting field is its kernel. We can
determine the corresponding local representation at p, in terms of extensions of Q,,. Fontaine and Laffaille

Omdeed, the algorithms mentioned here are crucial ingredients for the effective method of Chabauty-Kim, as we will see in §6.
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define a functor Ug from a certain category of finite-length filtered ¢-modules to the category of Galois
representations [FL82, §0.6]. One expects that Fontaine-Laffaille theory can be made algorithmic: given a
mod-p" Galois representation, we should be able to determine whether it is in the image of this functor, and
if so, describe the underlying filtered ¢-module. We can then compare these ¢-modules with the ¢-modules
arising from the p-adic period map, to determine a list of candidate points.

Our second approach avoids filtered ¢-modules entirely, by working directly with Galois representations.
It is a consequence of Fontaine—Laffaille theory that the mod-p” local Galois representation p, depends only
on the reduction of x modulo v™*!. Using this, we can compute explicitly all the possibilities for the local
Galois representation at p, and match them explicitly with the list of “candidates” from the global Galois
calculation. In other words, for each candidate p, we obtain a list of mod-v™*+! points of X, the local
representations at which agree modulo p™ with p. For each of these mod-v"*1 residue classes, we then use
the period map per,, to compute a bound on the number of rational points in the class.

4. THE METHOD OF CHABAUTY-KIM: FINITENESS

In this section, we discuss the approach to Mordell’s conjecture due to Minhyong Kim. It follows the
same pattern as the method of Chabauty-Coleman discussed in the introduction, and as such it depends
on some geometric input, replacing the condition r < g by something weaker, which may be done at the
cost of replacing the p-adic Tate module V' by a more sophisticated quotient of the fundamental group. We
discuss in some detail the particular case of a quotient arising from a geometric correspondence [BD18,
BD19a, BDM 19] using the geometric language of Edixhoven-Lido [EL19].

4.1. Quotients of the fundamental group. To motivate an interest in unipotent quotients of the algebraic
fundamental group for Diophantine applications, it is instructive to first recall the section conjecture of
Grothendieck [Gro97], which states that the map

p: X(Q — H'(Gq,n{(X,b),
x b [ (X b, ) |
which attaches to every rational point the class of the Galois representation defined by the corresponding
path torsor of the algebraic fundamental group, should be an isomorphism. In other words, every torsor of
the fundamental group should necessarily arise from a rational point. This provides us with the tantalizing

possibility of studying the set of such torsors in lieu of the set X (Q). Unfortunately, the cohomology set
that classifies these torsors does not seem to have much structure with which we can work.

On the other end of the spectrum, we already saw that the twists of the p-adic Tate module V' of the
Jacobian J of X, which is essentially the abelianization of the fundamental group, are classified by an
object which is very closely related to .J, and which therefore has a tremendous amount of structure. That
said, this association only gives us enough information under the additional assumption that r < g.

In summary, we could roughly describe the situation by saying that the association

(19) p: X(Q) — H'(Gq,n{'(X,b))
in the section conjecture has a target with too little structure, whereas the association
(20) P X(Q) — Hi(Gq,V)

appearing in the method of Chabauty-Coleman has a target with too much structure. The latter statement
is meant in the sense that p factors through the Jacobian, and in situations where > g this kills some
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crucial non-abelian information needed to understand X (Q). In the method of Chabauty-Kim, we allay
the difficulties inherent to both settings by working with a suitable intermediate quotient, balancing the
availability of structure on the sets H' against our ability to explicitly describe the target. We consider
quotients of the fundamental group that are unipotent.'’

The strategy for proving finiteness follows the same pattern as our discussion of the method of Lawrence-
Venkatesh. First, one attempts to gain sufficient control over the set of global representations involved, and
second, one studies the local representations via the analytic properties of an associated period map.

a. Global representations. A general theorem of Kim ([Kimo05, Proposition 2] and [Kim09, p. 118])
states that if U is a unipotent quotient satisfying certain technical assumptions which we will not state
here, the set H}(G K, U) carries the structure of an algebraic variety, dubbed Selmer variety, such that the
localization map

(21) H}(Gq,U) — H}(Gq,,U)

between the global and local Selmer varieties is algebraic. The algebraic nature of this map allows us to gain
control over the image of the global Selmer variety, typically by showing that the global Selmer variety is
of lower dimension than the local Selmer variety, so that the image cannot be Zariski dense.

b. The period map. As was the case in the method of Lawrence-Venkatesh, the control of global
representations can be turned into a proof of finiteness by controlling a p-adic period map. In the method
of Chabauty-Kim, this means concretely that one establishes that the association

(22) p: X(Q,) — H}(Gq,,V),

of the path torsor of U attached to a point, has an image which is Zariski dense. Typically, the quotient U
is of a “motivic” nature, in which case the association p in (22) has a de Rham realisation

(23) per, : X(Q,) — MF?

P
which can be expressed as a linear combination of iterated Coleman integrals of differentials. A general
theorem of Kim [Kim09, Theorem 1] establishes the linear independence of such iterated integrals, which
often implies the Zariski density of the image of (22) by p-adic Hodge theory.

c. Finiteness. In conclusion, we are left with the following attractive strategy to study the set of rational
points X (Q): Suppose that we can construct a specific finite-dimensional unipotent quotient U satisfying
the technical hypotheses required for the representability of the Selmer varieties, such that furthermore

(1) we can prove that dim H}(GQ7 U) < dim H}c (Gq,. V),
(2) the quotient is “motivic”, so that we have a p-adic period map

per, : X(Q,) — MF?

p

which is a linear combination of iterated integrals of differentials on X, and
(3) we can find a computable condition on elements of the image of per,, to come from a point in X (Q).

Ustrictly speaking, quotients of the Q,-unipotent étale fundamental group studied in Deligne [Del89].
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Once we manage to find a quotient U satisfying these conditions, we consider the diagram

X(Q) X(Q,) - e,
(24) p P .
1 1 Dcris \‘
H(Gq,U) H;(Gq,, U) ————— MF?.

The first two conditions on U are the active ingredients for deducing finiteness. The first condition is the
analogue of the condition “r < ¢” appearing in the method of Chabauty—-Coleman, and allows us to control
the image of the global Selmer variety. When combined with a concrete understanding of the period map
per,, provided by the second condition (for instance, enough to show Zariski-density of (22), see [Kim09,
Theorem 1]) the above commutative diagram implies that X (Q,,) intersects the image of the global Selmer
variety in a finite set of points. In particular, this shows that X (Q) is finite.

Finding suitable quotients that satisfy the first two conditions is the subject of many works, and is typi-
cally done by considering quotients U arising from powers of the augmentation ideal, see for instance Kim
[Kim05, Kim09], Coates-Kim [CK10] and Ellenberg-Hast [EH17]. The third condition is relevant for the
explicit determination of X (Q) and will reappear later.

4.2. Geometric correspondences on X. We now discuss one instance where such a quotient can be
constructed, under the additional assumption that the Jacobian J of X has non-trivial Néron-Severi rank,
following [BD18, BDM™19]. To offer a different perspective on the constructions in loc. cit. we opt for
the more geometric reformulation of this theory following the beautiful work of Edixhoven-Lido [EL19].
It should be noted that in [EL19] this geometric viewpoint is retained to find a method for the effective
determination of X (Q), but in §5 we instead opt for the cohomological language of [BD18, BDM ™ 19].

Recall that the Néron—Severi group of a smooth proper variety is the group of components of its Picard
scheme. In the situation at hand, we have chosen a base point b in X (Q), which gives us an associated
Abel-Jacobi map X — J. By functoriality, we obtain the following diagram:

1 — Pic®(J) Pic(.J) NS(J) — 0
@ H | |
1 — Pic’(X) —— Pic(X) Z 0.

The Néron-Severi group NS(.J) is a finitely generated group, of rank rkxg which is called the Néron—Severi
rank of J. Now suppose (see Remark 4.1) that we have a non-trivial class Z in NS(.JJ) which maps to zero in
Z ~ NS(X) in the above diagram. Then, by the identification of Pic’(.J) with Pic”(X) there is a unique lift
of Z to an element of Pic(J) which is trivial when restricted to X. In other words, Z uniquely determines
a (non-trivial) line bundle .Z7 on J which is trivial when restricted to X, and hence we obtain a lift of the
Abel-Jacobi map

(26) L7 l

This lifting of the Abel-Jacobi map, or equivalently this trivialization of the line bundle . restricted to X,
is a priori uniquely determined up to multiplication by elements of Q*. As explained in Edixhoven-Lido
[EL19], one can determine it up to Z* = {41}, and hence essentially uniquely, at the cost of taking a
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small'? tensor power of %7 by spreading out the geometry over Z and working with the Néron model of
J. In conclusion, we obtain an essentially unique lift

(27) X — fZX = IsomJ(O,fz).

The scheme £ is a G,,-torsor'” over the Jacobian .J. We define U to be the Q, -étale fundamental
group of .27 . This group is non-abelian, and may be understood geometrically as follows. One can show
(see for instance Bertrand—-Edixhoven [BE19, § 4] for the arguments in the C-analytic setting) that there is
a co-final system of étale coverings

T (L) — L)
obtained by composing the pullback of the map [n] on the Jacobian with the n'! power map on fibres. The
Galois group U, of this étale cover is a central extension

1 — pp, — U, — Jn] — 0,

so that U is a Heisenberg group, and as a Galois representation it is an extension of V' by Q,(1). Suppose
that z is a point in X (K) for K equal to Q or Q,,. Then in analogy with (5) we obtain a torsor of U from
the inverse limit of the preimages of  under the maps 7, i.e.

(28) QP ®Zp (1&1 Wnl(l')> ) Tn ¢ ($Z><)®n — ZZX

Such torsors are classified by the cohomology group H' (G, U) and satisfy certain local conditions which
we will not make explicit here. In conclusion, we obtain an association p analogous to (4):

(29) p: X(K) — ZF(K) — H}(Gk,U).

Remark 4.1. Note that the above discussion hinges on the assumption that we can find a non-trivial class
Z in NS(J) which maps to zero in NS(X). Such a class always exists when rkng > 1, which is true for
many examples of interest. Notably, this includes modular curves, which typically have a large supply of
such classes induced by Hecke correspondences. See Siksek [Sik17] for more details.

Remark 4.2. The work of Alexander Betts [Bet17] establishes a precise relationship between the association
of path torsors to points in % and the theory of p-adic heights. He proves that a certain quotient
27(Q,) — H}(Gk,U) — Q,

defined by purely Galois theoretic conditions coincides with the Néron log-metric on the pointed line bundle
(Z7,b), in the language of loc. cit. In section § 5, the theory of p-adic heights will play a central role.

4.3. Finiteness of X (Q). The quotient U attached to a Néron-Severi class Z as above has dimension
2g + 1 as a Q,-vector space. More precisely, as a Galois representation, it is an extension of the form

(30) 0 —Q,(1) —U-—V-—0,

where Q,,(1) is the one-dimensional representation given by the cyclotomic character. The simple nature of
this one-dimensional graded piece is responsible for the proof that the quotient U satisfies the first condition
on our wish list in §4.1. Indeed, this can be deduced from the statements

H}(Gq .Q,(1) = Z*&Q, = 0,

31 ~
Y (G, Q1) = Z:5Q, = Q

121t suffices to take the least common multiple of the exponents of the Néron component groups at all primes of bad reduction.
3Since the class of its line bundle in Pic(.J) maps to a non-zero element of NS(.J), this G, -torsor is not a group.
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which result, via the simple argument in [BD18, Lemma 3.1], in the statements
(32) dimH}(Gq ,U) <
. 1
dimH;(Gq,,U) = g+1
The quotient U is also motivic in nature, as its geometric definition via the G,,,-torsor D?ZX shows. In
particular, besides the Galois representation U, there is also a de Rham realisation UdR, which is a quotient

of the de Rham fundamental group of X, see [Kim05, Kim09] for more precise definitions. The theorem of
Kim [Kim09, Theorem 1] discussed in §4.1 then implies that the image of X (Q,,) under p is Zariski dense.

This allows us to deduce finiteness of X (Q) for certain curves X. Suppose that r = g, so that we are
just outside of the range where the method of Chabauty—Coleman applies, and assume furthermore that
the Néron-Severi rank rkyg of .J is at least 2, so that there exists a quotient U as above. The diagram (25)
implies, via the two properties we just discussed, that the intersection of X (Q,,) with the global Selmer
variety is finite. Since this set contains X (Q), finiteness of the latter set follows.

In fact, one can refine the above discussion by constructing a quotient which is an extension of V' by
the direct sum of characters Qp(l)@(’kNS_l), resulting via the same reasoning in the following finiteness
statement, which is a special case of Balakrishnan-Dogra [BD18, Lemma 3.2].

Theorem 4.3. Suppose that X is a smooth projective curve over Q. Then X (Q) is finite whenever
(33) r < g+rknys — 1.

Many other instances of finiteness are known to follow from the method of Chabauty-Kim, and in gen-
eral finiteness was proved by Kim [Kim09] under the assumption of the Bloch-Kato conjecture. We will
not discuss these results here, but rather turn to the question of how to explicitly determine the set X (Q).

5. THE METHOD OF CHABAUTY-KiIM: EFFECTIVITY

In this section, we discuss how to use the method of Chabauty-Kim to compute the rational points
on X in the simplest instance of Theorem 4.3: the case r = g and rknyg > 1. Whereas the method of
Chabauty—Coleman relies on detecting global points via linear relations in the image of per,,, we will provide
a computable condition on filtered ¢-modules in the image of per,, to come from a point in X (Q) via bilinear
relations, thereby addressing the third item in our wish list in §4.1.

5.1. Heights on Selmer varieties. Looking for bilinear relations, one is naturally led to p-adic heights.
Classically, these were defined as bilinear pairings on J(Q) but since it is crucial that the non-abelian
method of Chabauty—-Kim factors through a non-abelian Selmer variety rather than the abelian variety J,
we instead prefer to utilize a more general approach due to Nekovar [Nek93, §2]. Namely, he constructs a
continuous bilinear pairing

(34) h: Hy(Gq,V) x Hj(Gq,V*(1)) — Q,,
depending on some auxiliary choices, including the choice of a splitting of the Hodge filtration
(35) s5: Vig/ Fil’ Vg — Vi .

The global height h decomposes as a sum of local heights h,,, where v runs through the finite primes
of Q. Briefly, the idea is to lift a pair in H}(GQ, V) x H;(GQ, V*(1)) to a mixed extension of p-adic
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Galois representations with graded pieces Q,,, V and Q, (1) and to define h,, on it. As explained in [BD18,
Section 5], we can construct such a representation from a torsor P € H;(GQ, U), where U is attached to a
Néron-Severi class as in §4.2, by twisting a certain quotient of the universal enveloping algebra of the Q,,-
unipotent étale fundamental group by P. There is an analogous local construction for P € H}(GQH ,U).

We will assume throughout that 7 = g and that the p-adic closure of .J(Q) has finite index in J(Q,). **
Then there are isomorphisms

res,

HL(Gq.V) =22 HY(Gq,. V) —%= H(Xq ,02")".
By Poincaré duality we obtain maps

m: Hy(Gk,U) —H’(Xq,, 2" ® H'(Xq,,0")"
for K € {Q,Q,}.

For ease of exposition, we shall assume for all v # p that h,, = 0 for torsors coming from X (Q,,). The
local height h,, will be discussed in more detail below. The main point is that it factors through D, so we
obtain the following refinement of diagram (24):

X(Q) X(Qp) - - per,
pl pl \\\\
res Dcris b
(36) H}(Gq,U) H}(Gq,, V) MF?

T v

HO(XQpa Ql)v ® HO(XQpa Ql)v T QP 4
where hy, is now defined on the image of H}‘ (Gq,.U).

If (¢);) is a basis of the dual space of HO(XQP, QN ® HO(XQP , ')V, then there are constants a; € Q,,
such that h = ). o;1);. We deduce that the locally analytic function

(37) Q: X(Q,)—Q,; zm Z a;ithi(m(p(x))) — hy(per,(x))

vanishes along X (Q); furthermore, one can show that it has only finitely many zeroes (see [BD19a]). We
can use this function for the explicit computation of X (Q) if we have algorithms to

(i) compute the o for a suitable explicitly computable basis ;.
(i) expand the function x + hy,(per,()) into convergent power series on residue disks.
We can easily solve (i) given z1, . .., 2, € X(Q) such that
{m(p(x;))}i=1,..,m is a basis for HO(XQp7 QY e HO(XQP,Ql)V;

in this case we only need to compute hy,(per,(x;)) and 7(p(x;)). If we choose an End(J)-equivariant
splitting in (35), then the global height is also Endg(J)-equivariant, thus reducing the number of points
x; required. Nevertheless, there need not exist enough points z;, in which case we can solve (i) using
generators of J(Q) ® Q and a construction of p-adic heights on J due to Coleman and Gross [CG89].

141f the latter condition fails, we may apply classical Chabauty as in §1.3.
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Remark 5.1. 1t is possible to write down functions vanishing in X (Q) with finitely many zeroes when
r < g+ rkns — 1 using p-adic heights [BD18, Proposition 5.9]. More generally, one can extend Nekovar’s
construction to construct such functions when r < g2, conditional on the conjecture of Bloch-Kato,
see [BD19a, §4]. This has only been made explicit in the special case of the Kulesz—Matera-Schost family
of bielliptic genus 2 curves, see the (unconditional) Theorem 1.2 of [BD19a].

5.2. Local heights. Inthe remainder of this section we focus on (ii). We first discuss in more detail the local
height h,, following [Nek93, §4]. Let P € H}(GQv , U) and denote by Mp the mixed extension of 7(P)
mentioned above. Then h,(Mp) is constructed using Dis(Mp), which is a mixed extension of filtered
¢-modules with graded pieces Q,,, Vir := HéR(XQP)V = Deris(V) and Q,(1).

For simplicity, we only describe 1, on the image of X (Q,,). The family (Dcris(M,(s))). interpolates in
the following sense: There is a filtered connection Az = Az (b) with Frobenius structure such that we have

(38) Deris(Mp(z)) ~ 2" Az forall x € X(Qp).

Suppose that we have isomorphisms

s?(b,x) Q, dVar © Q,(1) = ar Ay
sFil(b, ) Q,OVar © Q,(1) = 2t Ay
where s? is Frobenius-equivariant, and s™! respects the filtrations, and suppose we can write them as
1 0 0 1 0 0
(39)  s°(b,x)= | aub ) 1 0 sF(b, ) = 0 1 0
Yo(b,x)  Bhb,z) 1 V(b ) By (b) 1

Note that we make a choice of basis differentials on the affine open Y (see § 5.3) so that s% (b, x) and s™'! (b, z)
are of this form. The splitting s in (35) induces idempotents

s1 ¢ Vi — s(Var/Fil’ V)
so Vg — Fil° Vig.

With respect to our choices, Nekovai’s local height at p is
40)  hy(pery(x)) = 75(b, ) — yEa (b, ) = BE(b, @) - 51(tg)(b, ) — By (b) - s2(0eg) (b, 7).

So in order to solve (ii) we need to compute the entries of (39), which means computing the Hodge
filtration and the Frobenius structure on Az. For (i), we also need to explicitly compute the composition
m o p. With respect to the dual basis of our chosen basis differentials on Y, the map 7 o p is given by

(41) Top:Y(Q,) = H'(Xq,, 0" ® H'(Xq,,0")"

o aglb)T () @ (B700.0) - BE0) - ().

g

Note in particular that the first factor is the Abel-Jacobi map AJy, (), sending z to the functional w + |, bw w.

5.3. Computing the Hodge filtration. We work in an affine open subset Y of X. Suppose that we have
#(X \ 'Y)(Q) = d and choose differentials wy, . . . ,wag14—2 € HO(YQ, Q1) on Y such that the following

conditions are satisfied:
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(1) The differentials wy, . ..way—1 are of the second kind (residue zero) on X and form a symplectic
basis of Hgy(Xq) with respect to the cup product pairing. We let w denote the column vector
(LUO, NN ngg_l)T.

(2) The differentials wyy, . .., wag4q—2 are of the third kind (all poles have order one) on X.

Universal properties give that the rank 2¢ 4 2 vector bundle Az has a connection, a Hodge filtration,
and a Frobenius structure, as discussed in [BDM*119, §4,5]. Here, we give algorithms that describe these
objects.

Recall that we have a non-trivial class Z in NS(.J) mapping to 0 in NS(X). This is equivalent to the
choice of an endomorphism of Hj, (X) satisfying several conditions (see [BDM* 19, §4.4]), and we describe
a method to compute this in the case of modular curves in Section 6. We denote the matrix of the corre-
spondence Z on Hi; (X/ Q) also by Z, where we act on column vectors.

Choose a trivialization
s0: Oy ®(Q,0Vir © Q,(1)) — Azly

such that, with respect to this trivialization, the connection V on Ax is given by

V=d+A,
where
0 0 0
A=—| w 0 0o |,
n wi'Z 0

where 7) is a differential of the third kind on X that is uniquely determined by the following two properties:

(1) Itis in the space spanned by wag, . .., w244+4—2, and
(2) The connection V extends to a holomorphic connection on all of X.

The Hodge filtration on Ay is determined completely from the Hodge filtration on its graded pieces, via
universal properties. Here is an algorithm to compute the Hodge filtration:

Algorithm 5.2 (Computing the Hodge filtration on Ay).

(1) Let L/ Q denote a finite extension over which all the points of X \ Y are defined. Compute local
coordinates at each x € (X\Y)(L).

(2) For each z € (X\Y')(L), compute power series for w,, the expansion of the vector of differentials
w at ¥ to large enough precision, which means at least mod t%+, where d,, is the order of the largest
pole occurring.

(3) Compute the vector €2, defined by

dQ, = —wy,.
(4) Compute 7 as the unique linear combination of wag, . . . ,wag+4—2 such that
dQrzZ0, —n
has residue zero at all z € (X\Y')(L). To do this, carry out the following:
(a) Using local coordinates at each x € (X\Y)(L), rewrite wag, . .., wWag+d—2.

(b) Solve for 1 by comparing residues.
(5) Solve the system of equations for g,, in L((t;))/L[t.] such that

dg, = QLZdQ¥, —n.
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(6) Compute the vector of constants brjj = (bg, . ..,b25—1) € QY and the function ypj characterized
by ")/Fﬂ(b) = O and

(42) gz +Yril — BI,NTQ, — QTZNNTQ, € L[t,]

where N is the 2g X g matrix which has the zero matrix of dimension g and the identity matrix of
dimension g as blocks. Set By = B (b) = (0,...,0,by,...,b2g—1)T.

Remark 5.3. We note that [BD19a, Lemma 6.5] simplifies some of the calculations in the case of a hyperel-
liptic curve X: in this case, we have that 7 = 0 and Bp; = (0,...,0)T.

5.4. Computing the Frobenius structure. The Frobenius structure on Az can be determined explicitly
in terms of double Coleman integrals, as discussed in [BDM ™19, §5]. Here is an algorithm to compute it:

Algorithm 5.4 (Computing the Frobenius structure on Ay).

(1) Use Tuitman’s algorithm [Tuil6, Tuil7] to compute the matrix of Frobenius F' and a vector f of
overconvergent functions such that

o*w=df + Fw,

where ¢ is a certain lift of Frobenius.
(2) Let by, xo be Teichmiller representatives of b, x respectively. Compute the matrix

A= I(l’,.’Eo)+ . I(bo, b)i,
where we define for any pair 21,72 € X(Q,,) the parallel transport matrices

1 0 0
I (21, 20) = f;f w 1 01,
i) xro o
Loin+ [[ieTZw £ [PwTZ 1
where 7 is as computed in Algorithm 5.2 (see also Remark 5.3).

(3) Explicitly solve the system
dg™ = df7ZF,

dh = WWFTZf+df7Zf —gTw+ ¢*n—pn,
h(b) = 0.
Then compute the matrix
1 0 0
M(bo,l‘o) = (]—F)_lf 1 0 (370)

= (87U —F)'f+h) g'(F-p~" 1
(4) Finally, compute the matrix

1 0 0

55 (b,x) 0 s?(b,x) = A-M(bg,20) = [ ap(b,z) 1 0

Ys(b,x)  B(b,x) 1
Remark 5.5. If X is a hyperelliptic curve, say the smooth projective model of the affine curve Y : 32 = f(z),
where f is monic and has no repeated roots, then we can use Kedlaya’s algorithm [Ked01] or Harrison’s
generalization [Har12] in Step (1) above. In fact, Tuitman’s approach generalizes the approach of Kedlaya
and Harrison. Note that the SageMath implementation of Kedlaya’s algorithm takes the convention that
Frobenius acts on columns, while the Magma implementation of Tuitman’s algorithm as used here takes

the convention that Frobenius acts on rows and thus differs by a transpose.
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Remark 5.6. Computing the action of Frobenius in Step (1) gives us a way to compute Coleman integrals:
in particular, if by = ¢(bo) and zo = ¢(x¢) are Teichmiiller points, we compute the Coleman integral as

/ Y= (1- P) " (F(xo) — F(bo)) -

bo

6. EXAMPLES

We illustrate the practicality of the method of Chabauty—Kim discussed in Section 5 by applying it to
three new examples of curves whose rational points were previously unknown. They are all curves of the
form

(43) Xo(N)" 1= Xo(N)/wn

where N is prime and wyy is the Atkin-Lehner involution, and therefore they have a unique rational cusp,
and their non-cuspidal rational points classify unordered pairs of elliptic curves that are related by an N-
isogeny. The (non-)existence of non-CM points is of great interest, as it was shown by Elkies [Elk04] that

every non-CM Q-curve is isogenous to one parametrised by a rational point on some Xo(M)™.

We consider the cases N = 67, 73, and 103. For each value of N, the curve Xo(N)™ is of genus 2 and
its Jacobian has real multiplication. Thus, the rank of the Néron-Severi group is equal to 2, and the method
outlined in Section 5 produces exactly one non-trivial locally analytic function on Xo(N)*(Q,,) vanishing
on the set of rational points Xo(N)"(Q). Hence, unlike in the Chabauty—Coleman example at the end of
Section 1, we need in addition the Mordell-Weil sieve (see §6.7) to extract the set of rational points from
the larger quadratic Chabauty set.

We discuss the computation for N = 67 in some detail and briefly summarize the cases N = 73 and
N = 103. These computations use the computer algebra system Magma [BCP97] and were started by
Best, Bianchi, and Triantafillou at the workshop “Arithmetic Statistics and Diophantine Stability” at the
Fondation des Treilles in July 2018. More details can be found at https://ngtriant.github.io/
papers/BBBLMTV_Data.pdf

Remark 6.1. In [BGX19], the authors apply a combination of elliptic curve Chabauty with covering tech-
niques to determine the rational points on X((N)™" for several composite squarefree values of N such
that Xo(/N)™ has genus 2. It would be interesting to determine the rational points on the 13 remaining
hyperelliptic curves Xo(N)* for squarefree N; all of them have genus 2.

6.1. An explicit model for X(67)". As is explained in [Mur92, Gal96], an affine model for the genus
2 curve X((67)" can be found explicitly as follows. Let f be the unique, up to conjugation, newform of
level 67, weight 2, which is furthermore invariant under the Atkin-Lehner involution wg7. The complex
vector space spanned by f and its Galois conjugate f¢ is isomorphic to the space of regular differentials on
X0(67)F, and we may choose a basis g; and go for this space such that g; = g+--- and go = ¢>+- - -. Note
that f and f¢ can be computed up to arbitrary ¢-adic precision using Magma [BCP97]. Then z = Z—; and
Yy = g% fl—z are related by an equation of the form y? = p(z), for some monic polynomial p(z) of degree 6
whose coefficients can be determined from the g-expansions. Such an equation gives a model for X (67);

while g2 is unique, a certain choice of g; yields

YVig? =2 +22° +2* — 203 + 227 —da 41 [=: for(z)].
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S

FiGURre 1. The reduction of Xp(N)* at N.

See [Mur92] for more details; for other examples of computations of models of higher genus modular curves,
see [Gal96]. The projective closure X adds two points at infinity, co™ and oo™, corresponding to (1 : 1 : 0)
and (1 : —1 : 0) respectively. By an explicit search, we quickly find several points in X (Q). Indeed,

(44) X(Q) ) {OO+7 oo, (Oa :t]-)v (_17 :|:3), (17 :t]-)a (_27 17)} .
Leprevost [Lep99] also found these points and conjectured that we have equality in (44).

Our goal is to use the machinery set up in Section 5, combined with the Mordell-Weil sieve, to show that
X (Q) consists precisely of these 10 points.

Using the explicit model Y, several arithmetic properties of X(67)" can be deduced. For instance,
Magma’s implementation of 2-descent shows that the rank’ of Jo(67) " (Q) is exactly 2. Alternatively, one
can avoid the use of a model and draw the same conclusion from the Gross-Zagier-Kolyvagin-Logachev
theorem [GZ86, KL89], by computing that (provably [Ste00, Chapter 3]) L(f,1) = 0 and (numerically
[Cre97, Doko04]) L'(f,1) # 0.

6.2. The reduction of X(/N)T. Recall that the method outlined in Section 5 uses some global and local
p-adic heights in the sense of Nekovar. Although these depend on some auxiliary choices that we have not
made yet at this stage, we have already remarked that we can always ignore all the local heights at primes
v # p of potential good reduction. More generally, by work of Betts—Dogra [BD19b, Corollary 1.2.2], the
map X (Q,) — Q, induced by the local height at v # p takes at most as many values as the number of
irreducible components of a regular semi-stable model at v. Note that X (V)™ has good reduction at all
primes away from N. Using an argument analogous to [BDM™ 19, Theorem 6.6], we can show that for all
primes N there is a regular semi-stable model Xy(IN)" of X(/N)™ whose special fibre is isomorphic to a
projective line intersecting itself g times, where ¢ is the genus of Xo(/N)™" (see Figure 1). The proof, which
will be contained in [BDM™20], constructs such a model starting from the semi-stable Deligne—Rapoport
model of X (), and showing that the quotient by the Atkin-Lehner involution remains semi-stable due
to a lemma of Raynaud. The self-intersections correspond to conjugate pairs of supersingular j-invariants
in F2 \ F (see [DR73,V, §1] and [Ogg?75, §3]). In particular, the special fibre of X(/N)™ consists of only
one component, so the work of Betts—Dogra implies that there are no non-trivial contributions at v # p.

6.3. Preliminary choices.

A prime p and a base point b. Since by §6.2 the curve Xo(/N)™ has good reduction at all primes away from
N, we could let our fixed p be any prime different from N; we pick p = 11. This choice may seem slightly
peculiar to the reader familiar with the classical Chabauty—Coleman method, where it is often advantageous
to choose the smallest possible prime of good reduction. The prime 11 has two main advantages for our
purposes. First, the polynomial fs7 has no linear factors over Q;; and, as a result, the lift of Frobenius that
we use in §6.5 extends to all of X (Q;;). While it is possible to deal with disks containing a point with
zero y-coordinate by working with a different lift of Frobenius or by using the trick discussed in [BDM " 19,

15Since the newforms of weight 2, level 67, which are invariant under we7 form a single Galois orbit, the Mordell-Weil rank over
Q is necessarily a multiple of the genus, i.e. of 2.



TWO RECENT p-ADIC APPROACHES TOWARDS THE (EFFECTIVE) MORDELL CONJECTURE 27

§5.5], our choice of p makes both the exposition and the computation significantly shorter. The second
advantage of the prime 11 is somewhat post-hoc, coming from the final Mordell-Weil sieve step. Indeed,
it turns out that Jo(N)™(F,) has order divisible by 112 for several small primes ¢ (including ¢ = 31 and
g = 137), which makes the Mordell-Weil sieve particularly efficient for proving that points of X (Q;;) are
not in X (Q).

We choose b = (1, 1) for the base point. Note that b lies in both our affine patch and in the affine patch
at infinity. One advantage of b over other possible base points is that b will be a Teichmiiller point for a
convenient lift of Frobenius.

A basis for the de Rham cohomology of Xo(67)T. It is well known that HO(YG, Q1) has basis given by (the
classes of) the differentials

(45)

) ) ) )

y oy Y Y )

and that, inside of HO(YG, Q'), we can identify Hj(X) with those differentials which have residue 0 at

both points of X \ Y = {co™, 00~ }. By working with the expansion of each differential in (45) in terms of
+

{dw xdr z?dx z%dx ;L'4dx}

the uniformizer ¢+ = x~! at 0co™, we construct a new basis wy, . . . ,w, satisfying the properties (1) and

(2) of §5.3. In particular, we may take

d d d
wo= -, wy=(-1-2) ", w=(-2+z-2°—a%) =,
Y Y Y
1 d d
w3:§(1—m2—m3)-—x, w4=(—x—x2)-—x
From now on, w will denote the column vector (wyp, . ..,ws)T.

6.3.1. A Néron-Severi class. The choice of a Néron-Severi class Z as in Section 4 is equivalent to the choice
of an endomorphism of Hly (X), satisfying a list of conditions (see [BDM* 19, §4.4]). Let £ be a prime of
good reduction for X. In order to compute the action of the Hecke operator Ty € End(Hj(X/Q,)) on
the whole of Hjz (X/ Q,), rather than just on Fil® Hi (X/ Q,), we use the Eichler-Shimura formula

T, =Fr] +£- (Fx])~t.

The matrix of Frobenius Fry with respect to the basis w may be computed using Tuitman’s algorithm (we
briefly postpone a discussion of this to Step (1) of §6.5, since this matrix for £ = p, as well as one additional
output of Tuitman’s algorithm, are both needed at that step), and we identify the operator T, with its
matrix representation with respect to w. Note that the Eichler-Shimura formula holds for X (67) and thus
for X((67)", since the Atkin-Lehner involution commutes with 7} at all £ # 67.

To obtain from T, an endomorphism corresponding to a class Z € NS(.J) which maps to zero in NS(X),
we first consider Tr(7y) - I4 — 47}, which has trace zero, and then multiply on the right by the inverse of
the cup product matrix on w. For example, choosing ¢ = 11, we obtain the non-trivial endomorphism with
matrix representation

0 -8 12 8

8 0 -8 -—12
-12 8 0 0
-8 12 0 0
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Since the Néron-Severi group has rank 2, choosing a different Hecke operator would only change the
matrix Z by a multiplicative constant factor.

Remark 6.2. Using Tuitman’s algorithm, we can compute the entries of Ty only up to some ¢-adic precision.
In our case, this would suffice to carry out the steps of the quadratic Chabauty computation, since we have
chosen ¢ = p. It should however be possible to prove that Z is given exactly by the above matrix, and we
may assume that this is the case, as doing so does not affect the computation in any crucial way.

6.4. Hodge Filtration on Az. We now compute the Hodge filtration of the vector bundle A attached to
our choice of Néron-Severi class Z and base point b. Since the curve X is hyperelliptic, by Remark 5.3 we
only need to compute yrij, and we can do so using a simplified version of Algorithm 5.2. In particular, for

+

each point at infinity co™, we can compute 2+ and g..+ by formal integration of Laurent series in the

uniformizer ¢+ . Following the steps, we then find that ygj) has a pole of exact order 1 at oo® with residue
—8&. Since ;] must vanish at b, we conclude that

Yril = —8T + 8.

6.5. Frobenius structure on 4z;. We compute the Frobenius structure on Ay using Algorithm 5.4.

Step (1): We first fix a lift of Frobenius ¢. We take ¢(z) = 2P, and extend to Qq;[z] by linearity. Since
Jfe7 has no zeros over F11, we extend this lift to a strict open neighborhood of the tube |Yg, ['° by expanding

T)) — z)P\ 2
o) = /) = - (1 Aol Jor el 2

as an overconvergent Laurent series in Q,, [z, y,y~1]. This lift naturally extends to one-forms.

Next, we compute p-adic approximations of F' and f using Tuitman’s algorithm [Tuil6, Tuil7], a gener-
alization of Kedlaya’s algorithm which incorporates Lauder’s fibration method [Lau06]. Roughly speaking,
we first compute ¢*w;. Then, we reduce pole orders by iteratively subtracting differentials of overcon-
vergent functions (constructed by solving linear systems) until ¢*w; has been reduced to a cohomologous
linear combination of basis differentials j Fj;w;. The sum f; of the functions from each step satisfies

¢ w; = ZFijwj + df; .
J

Note that in our working example, this F' is the matrix Fr, that was computed in §6.3.1 since ¢ was chosen
there to be p = 11 as well.

Step (2): Since b = (1,1) is a Teichmiiller point for ¢, I(by,b)~ = I(b,b)~ is an identity matrix. To

T on each residue disk, we expand the w; in terms of a uniformizer near each Teich-

compute the I(x, xg)
miiller point x( and integrate formally. To compute f;: wTZw, we expand, formally integrate, multiply

terms, and formally integrate again, as in steps (3) and (5) of Algorithm 5.2.

Step (3): The matrices Z and F’ are constants, so g7 = fTZF. We approximate h by iteratively “reduc-
ing” a p-adic approximation (dh)~ to dh = WTFTZf+dfZ f — gTw+ ¢*n— pn as in Tuitman’s algorithm
until we find a; € Q;; and an overconvergent function h. () so that

(dh)~ = ajw; +d(h~).

16the tube consists of all points reducing to Yr,
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’ Disks H x-coordinates of candidate points
1(0, £1)] 0
0+7-114+0-1124+3-113+3- 114 +---

1(1, £1)] 1
146-114+6-1124+8- 112 +7-11% 4 - -

1(6,£5)[ 6+5-11+8-112+2-113+4- 117 4 -+
6+7-11+0-1124+5-113 +1-11% + - --

1(=2,+7)] -2
94+10-11+1-1124+8-113+0- 114 4 --.

1(=1,+£3)] -1
104+3-11+9-1124+10-112 +1-11* + - -

Joo ™| 00
2-117'4+4410-114+9-1124+8- 113 +7-11% + - .-

TaBLE 1. A set of 24 points of X((67)"(Q;;) containing X, (67)"(Q).

Then h..(x) — h~.(b) approximates h(z). The remainder of Steps (3) and (4) are straightforward. The terms
ay(b, ), B,(b,x),74(b, ) cannot be expressed compactly, so we omit them here.

6.6. The local p-adic height and a finite set of p-adic points containing X (Q). We have now as-
sembled all ingredients to compute the quadratic Chabauty function from (37), whose finite set of zeroes
contains X (Q). To find the constants a; in (37), we use the discussion at the end of §5.1.

Set K := Q(v5) = Endo(Jo(67)%) and K, = K ®q Q,. If we pick a K-equivariant splitting
s of the Hodge filtration in formula (40), then the global height % factors through the tensor product
H°(Xq,, ")V @K, H(Xq,,2")". Wenow choose auxiliary points 1 = (=2, 7),z2 = (~1,3) € X(Q).
Since AJy(21) = [w > [;* w] is nonzero, AJy,(x1) is a K)-basis for HO(XQP, Q). Using (41), we com-
pute (7 o p)(x;) in this basis.

We compute h(7(p(xi))) = hp(per,(z;)) using (40), the results of §6.4, §6.5 and the splitting s associated
to the K-equivariant basis (wp, w1, wa, ws — wy ). Writing ¢ for the projection onto the “rational part” and
1)y for the projection onto the “\/5 part,” we find that the function sending z € X (Q,) to

Q(z) := hy(pery(z)) — (5- 114211 +5- 11 + 0- 11" + -+ ) - ¢y (7 (p(x)))
(46) +(4-1140-112 44113 +0- 11" + -+ ) - ha(7(p(z)))
vanishes for all x € X (Q).

We expand () as a power series on each residue disk, find the roots, and repeat the computation on an
affine patch containing the points at infinity to find a finite subset of X (Q;;) which contains X (Q). Using
a Newton polygon argument, we find that every root of @ is simple. In addition to the 10 known rational
points, we find 14 additional 11-adic zeros of @) (listed in Table 1). To show that these points are not rational,
we turn to the Mordell-Weil sieve, described in the following subsection.

6.7. The Mordell-Weil sieve. We assume we are given a smooth projective curve X/ Q, p a prime of
good reduction, a set Xjnown € X(Q) and a set Xexra € X (Qp) known to some finite p-adic precision,

distinct from any of the Xjown to that precision. The goal of the Mordell-Weil sieve, which we describe in
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this section, is to describe extra conditions that the points of X (Q) satisfy that the points in Xy, do not.
See also [Sik15, BS10, BBM17].

We will show that any rational point must be sufficiently close p-adically to an element of Xy,own. To do
this, one proves that for each x € X (Q), there is some y € Xjnown such that [z — y] € J(Q) is p-adically
close to the identity in J(Q). We can get a handle on being p-adically close to 0 € J(Q) using the p-adic
filtration of J(Q,,) by

Ji={xe€J(Q,):z=0 (modp’)}.
The important property of this filtration that we will make use of is that
Jo/J1 = J(Fp), Ji/Jis1 = Fg™7
so that p-adically close rational points must hgve difference in the Jacobian divisible by a large power of p.
Then for any D € J(Q) we have #J(F,) - p* - D € J;11.

The Mordell-Weil sieve locates small cosets within J(Q) (that is, cosets of large index), that contain
the image of X (Q) under the Abel-Jacobi map i,: X — J sending x to [z — b]. The sieve plays off local
information at a finite set of primes v against the global Mordell-Weil group structure to find restrictions
on i,(X(Q)). First we fix a prime v of good reduction and consider the following commutative diagram:

X(Q) —2—— J(Q)
(47) redy , red s,
X(F,) o J(Fy)

The commutativity of the diagram implies that the image of X (Q) along red s, oij is contained in the
image of ¢4 ,. The advantage of this observation is that the bottom row of the diagram deals with finite
objects and information about these may be computed effectively. In particular we can find im 4 ,, given
equations for X. In our setting of a hyperelliptic curve, algorithms for this go back to [Can87], and in
general one can make use of work of Khuri-Makdisi [KM07]. Pulling the computed image im 7, ,, back to
J(Q) gives a union of cosets for the kernel of red s, that contains the image of X (Q). We will want to
pick v so that the kernel of this map provides non-trivial information about cosets of the target subgroup,
which means that the index of the kernel is divisible by p. The Mordell-Weil sieve diagram can be amended
by using several primes v of good reduction or working with residue classes of J(Q); it is also possible to
make use of primes of bad reduction and to go deeper into the filtration (.J;);.

For simplicity, we suppose that 7 = g and we fix a basis D1, ..., Dy of J(Q)/J(Q)torsion- If 7 € X(Q,))
were to be rational, and we expressed

g
in(r) = m;Dj, m; € Z,

j=1

then we would have, via the linearity of the Coleman integral of regular 1-forms on the Jacobian,

x g D;
(48) / wi:ZmJ—/ w;, foreachi e {1,... g}
b 0
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where we identify w; with the holomorphic differential it induces on J via ¢;,. This can be used to determine
the m; for given x € X (Qp) modulo p™ for any n. We are done if we can show for every © € Xy, that
the resulting coset of J(Q)/p™J(Q) does not meet the pullback of 4, , under red s, for some v.

6.7.1. Xo(67)". We now give some details of this computation for X(67)", using the model
y? = a5 4+ 22° + 2t — 223 + 222 — 4z +1;

we have for Xynown the 10 points found in (44). The quadratic Chabauty computation described above also
results in a set Xy, of 11-adic points of cardinality 14, known to finite precision, whose elements are roots
of the function @ in (46), but which do not appear to be rational. See Table 1 for their z-coordinates.

As above, we take b = (1, 1); with this choice D = i,(co™) and Dy = i,(c0™) are generators for J(Q).
For x € Xynown We can find exact coefficients for i, () in terms of this basis. In particular, iy (Xynown) is
given by pairs

(m17 m2) € {(17 O)v (05 1)7 (763 4)7 (7a 73)7 (37 71)7 (723 2)7 (17 l)a (07 O)v (85 75)7 (777 6)} .
Since we are working with p = 11, we look for primes v such that ord; (#J(F,)) is large.

We find that
J(Fs1) ~ (Z/(3-11))% and J(F137) ~Z /3D Z /(3 - 117 - 19)

and the image of J(Q)/112J(Q) inside these groups surjects onto the 11-parts. We pull back the images
of i, 31 and i, 137 to cosets for J(Q)/112.J(Q). Using (48) we compute ij(x) modulo 112 for all # € Xextras
assuming x is rational, and we find that this does not meet our cosets for 31 or 137.

6.7.2. Further examples. In the case of N = 73 we run computations analogous to the ones described above,
using the prime p = 37 for the quadratic Chabauty procedure, and applying the Mordell-Weil sieve with
the prime 9511 to rule out the extra 37-adic points. Likewise for N = 103 we can perform quadratic
Chabauty at p = 3. This gives 6 “extra” 3-adic points, which can be shown to be non-rational by applying
the Mordell-Weil sieve using the prime 397.

6.7.3. Conclusion. In summary, we have shown:

Theorem 6.3. The number of rational points on the Atkin—Lehner quotient modular curves Xo(N)™ for
N € {67,73,103} are as follows:

#Xo(67)7(Q) =10, #Xo(73)7(Q) =10, #Xo(103)"(Q) =8.

According to [Gal96], this shows that X(67)"(Q) contains no exceptional points and that X(73)"(Q)
and X(103)1(Q) contain precisely one exceptional point each, up to the hyperelliptic involution. Here an
exceptional point is a rational point that is neither a cusp nor a CM point.

Furthermore, we may conclude that the table in [Box19, § 4.6] contains all quadratic points on X (67) and
the table in [Box19, § 4.7] contains all quadratic points on X(73), complementing [Box19, Theorem 1.1].

Finally, our theorem implies that the list of j-invariants of Q-curves attached to non-cuspidal rational
points on Xo(N)* given in [BGX19, §4.1] is complete for N € {67,73,103}.
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