
Design and Performance Evaluation of
Optimizations for OpenCL FPGA Kernels

Anthony M. Cabrera and Roger D. Chamberlain
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, Missouri, USA
{acabrera, roger}@wustl.edu

Abstract—The use of FPGAs in heterogeneous systems are
valuable because they can be used to architect custom hardware
to accelerate a particular application or domain. However, they
are notoriously difficult to program. The development of high
level synthesis tools like OpenCL make FPGA development more
accessible, but not without its own challenges. The synthesized
hardware comes from a description that is semantically closer to
the application, which leaves the underlying hardware implemen-
tation unclear. Moreover, the interaction of the hardware tuning
knobs exposed using a higher level specification increases the
challenge of finding the most performant hardware configuration.
In this work, we address these aforementioned challenges by
describing how to approach the design space, using both informa-
tion from the literature as well as by describing a methodology
to better visualize the resulting hardware from the high level
specification. Finally, we present an empirical evaluation of the
impact of vectorizing data types as a tunable knob and its
interaction among other coarse-grained hardware knobs.

I. INTRODUCTION

As the era of transistor scaling and Moore’s law wanes,
systems designers are looking beyond the horizon of gen-
eral purpose processors towards heterogeneous systems that
incorporate hardware accelerators like GPUs and FPGAs.
FPGAs are particularly interesting in that they can be used
as a platform to architect custom hardware without having
to fabricate an ASIC. While the programmability of FPGAs
has traditionally been out of reach for those without extensive
hardware knowledge, advances in high level synthesis (HLS)
have made FPGAs more accessible by allowing for those who
want to program FPGAs to use a language that is semantically
closer to the application to be accelerated. This, in turn, makes
hardware-software co-design more accessible.

To this end, the hardware flexibility of FPGAs, paired with
incrementally easier programmability through HLS, can be
used to realize the vision of post-Moore systems that incorpo-
rate heterogeneous compute components. This improvement in
programmability, however, is not without its own challenges.
While FPGA hardware can be described using a higher level
of abstraction, it is often unclear what hardware results from
a specified kernel of computation. Often, the inclusion or
exclusion of one line or even a keyword can imply a non-trivial
amount of hardware and can have a large impact on the design
that is inferred. Furthermore, the choice of design paradigm of
an FPGA kernel comes with its own challenges, i.e., should a

design be architected as a wide vectorized compute unit that
executes multiple threads or a deeply pipelined compute unit
that is controlled by a single thread? Each paradigm, addition-
ally, comes with its own coarse-grained design knobs that are
specific to that paradigm. Even when the best execution model
is chosen, the knobs must be tuned for optimal performance
along with other optimizations that may be applicable. We will
show that, even for seemingly simple kernels, there are design
choices and optimizations to be made whose interaction and
performance are not immediately obvious. The situation is, in
fact, analogous to the need to optimize codes for good cache
performance in the HPC community, which is primarily an
empirical task [14], even today [10].

The major contributions of this work are as follows: we use
the conversion of EBCDIC to ASCII characters as a case study
to architect an FPGA-accelerated instance of this application
using the Intel FPGA SDK for OpenCL. We describe the
the design of two versions of the kernel that reflect the two,
aforementioned design paradigms. We discuss the qualifiers
and attributes that are used for both design paradigms and
those that are specific to each paradigm, and how those
choices impact the hardware that is inferred. We contribute
design, experimentation, and performance results to the cur-
rently sparse literature targeting the Intel HARPv2 platform
using OpenCL, though our findings should be applicable to
any OpenCL-compliant FPGA. This includes describing our
methodology for overcoming the available tools for OpenCL
kernel development on the platform and justifying design
decisions through this methodology. We present a heuristic for
pruning the design space, which can reduce development time.
We empirically show the interactions between design choices
in order to show find the most performant design given the
implemented design features.

II. BACKGROUND AND RELATED WORK

A. Intel HARPv2 CPU+FPGA Platform

The Intel Hardware Accelerator Research Program (HARP)
tightly integrates a server-grade CPU and FPGA. The HARPv2
system, which serves as the target platform in this work, is the
second iteration in this program, and combines a 14-core Intel
Broadwell Xeon CPU with an Intel Arria 10 GX1150 in the
same chip package. Both the CPU and FPGA share a common

off-chip system memory that can be accessed coherently by
both devices. This is in contrast to traditional solutions in
which an FPGA is connected via PCIe slot.

B. Designing Kernels with OpenCL

Traditionally, programming an FPGA requires domain spe-
cific knowledge of digital systems design, which is not a skill
of most software developers. Also, the designs are historically
expressed at the register-transfer level (RTL) using languages
like VHDL, Verilog, or SystemVerilog. High level synthesis
(HLS) addresses both of these issues. Specifically, we use
the HLS framework provided by the Intel FPGA SDK for
OpenCL [7]. HLS effectively allows a programmer to express
a computational kernel at a higher abstraction level than
RTL, allowing the programmer to focus on the functional
specification. This kernel is then translated into an equivalent
RTL description by the Intel tools which will be fed into the
traditional FPGA synthesis flow. From this point forward, we
will refer to the tools that take the OpenCL specified kernel
to perform the high level synthesis, logic synthesis, place, and
route steps collectively as the hardware compiler.

There are two main execution models for designing an
OpenCL kernel to target synthesizable FPGA hardware. The
first is the multiple work item (MWI) case, in which the work
to be executed is divided among multiple threads that are to
be scheduled for execution on one or more compute units.
This execution model is frequently used on GPUs, whose
compute units are comprised of many SIMD vector units that
are well suited to take advantage of data-level parallelism. The
other execution model is the single work item (SWI) case, in
which one thread is responsible for executing the entirety of
a compute kernel. This is often best for targeting FPGAs, in
which the hardware compiler can account for non-trivial data
dependencies and build a custom compute pipeline for the
kernel. However, the choice between the two models is non-
trivial, as evidenced by Jiang et al. [8].

Though there are many examples in the literature of using
HLS frameworks to program FPGAs, we highlight instances
that are most relevant to this work. Zohouri et al. focus on
the portability aspect of using OpenCL kernels intended for
GPUs on FPGAs [17]. Sanaullah et al. propose a framework
for describing OpenCL kernels that relies on the stacking of
optimizations that should apply generally to all kernels [12].
However, they prescribe that the most performant version of
any OpenCL kernel will use the SWI design paradigm and
ignore the MWI paradigm. In this work, we explore both
paradigms and find that, in our particular application, that the
MWI paradigm results in the best performance. Jin and Finkel
perform a hardware design space search [9] similar to this
work, but do not show the effect of varying the vectorized data
types and their interaction with the available coarse-grained
knobs. Additionally, they do not show the impact of scaling
the input size. In all cases, none of these works target the
Intel HARPv2 CPU+FPGA platform using OpenCL. There is
a only a small body of literature showing case studies that use
the Intel HARPv2 platform in this way [1], [3], [4], [13], [16].

1 __attribute__((num_compute_units(NUMCOMPUNITS)))
2 __attribute__((reqd_work_group_size(WGSIZE,1,1)))
3 __attribute__((num_simd_work_items(NUMSIMD)))
4 __kernel void
5 k_e2a(__global const uchar* restrict src,
6 __global uchar* restrict dst) {
7 unsigned char e2a_lut[256] =
8 {
9 0, 1, 2, 3,156, 9,134,127, /* e2a chars 0-7 */

10 151,141,142, 11, 12, 13, 14, 15, /* 8-15 */
11 ...
12 48, 49, 50, 51, 52, 53, 54, 55, /* 240-247 */
13 56, 57,250,251,252,253,254,255 /* 248-255 */
14 };
15
16 unsigned int i = get_global_id(0);
17 uchar orig_char = src[i];
18 uchar xformd_char;
19
20 xformd_char = e2a_lut[orig_char];
21
22 dst[i] = xformd_char;
23 }

Listing 1: Baseline Implementation of the MWI e2a kernel
using the OpenCL API and syntax.

III. BASELINE KERNEL DESIGN

A. EBCDIC to ASCII Kernel

In this work, we use the transformation of 8-bit EBCDIC
characters to 7-bit ASCII characters (taken from the Data
Integration Benchmark Suite [2]) as our case study application
for designing and optimizing an FPGA-based implementation.
We will henceforth refer to this as the e2a application.
The application proceeds by reading a 9.2 MB EBCDIC-
encoded file from disk, counting the number of elements
to be transformed, and then performing the conversion to
ASCII characters. The conversion is the section of the original
computation that we isolate as an OpenCL kernel, whose code
is shown in Listing 1. The conversion is performed by using
the EBCDIC character as an index (line 20, Listing 1) into a
256 character look up table (line 7-14, Listing 1) that maps the
input EBCDIC character to the appropriate ASCII character.

It is clear that this application is relatively simple. It was
chosen for precisely this reason: to enable us to investigate
issues of configuration and parameter tuning without the
additional issues present with a complex algorithm. Despite
its simplicity, it is representative of a broad class of prob-
lems that are (1) embarrassingly parallel and (2) relatively
straightforward, algorithmically. For example, a number of the
applications (although clearly not all) from CommBench [15],
DIBS [2], and MiBench [5] are of this type.

B. Baseline OpenCL MWI Kernel Design

1) Memory Access Hardware Compiler Hints: The const
keyword is applied to the global input buffer src (line 5,
Listing 1) to tell the hardware compiler that this buffer is read-
only. The hardware compiler, in turn, will be given permission
to perform more aggressive optimizations regarding loads from
this buffer [6]. Both the src and dst (lines 5 and 6, Listing 1)
global memory buffers are both preceded by the restrict
keyword. This hints to the hardware compiler to “trust” the

1 __attribute__((max_global_work_dim(0)))
2 __kernel void
3 k_e2a(__global const uchar* restrict src,
4 __global uchar* restrict dst),
5 unsigned int total_work_items) {
6 unsigned char e2a_lut[256] = { ... }
7 uchar orig_char, xformd_char;
8 unsigned int i;
9

10 #pragma unroll UNROLL
11 for (i = 0; i < total_work_items; ++i)
12 {
13 orig_char = src[i];
14 xformd_char = e2a_lut[orig_char];
15 dst[i] = xformd_char;
16 }

Listing 2: Implementation of SWI e2a kernel.

programmer’s global memory accesses–this is a guarantee that
there will be no pointer aliasing among these global buffers,
and that there is no need to account for load and/or store
dependencies between the buffers.

2) Choosing the Execution Model: As mentioned in Section
II-B, selecting between MWI and SWI execution models is
not trivial. To determine the most performant model, we
implement a version for both and perform a design space
search using the coarse-grained hardware knobs specific to
each execution model, whose code is shown in Listings 1
and 2, respectively. For the MWI model, there are three knobs:
number of compute unit replicates (NUMCOMPUNITS), the
required work-group size (WGSIZE, i.e., the number of local
work items that will belong to a work-group), and the SIMD
factor (NUMSIMD, i.e., how many times to replicate the data
path). These knobs are set in lines 1-3 of Listing 1.

The SWI kernel code, shown in Listing 2, is similar to
the MWI kernel, even though their execution models are
orthogonal. One difference is the extra argument that tells the
kernel how many times to perform the data transformation
(total_work_items in line 6, Listing 2). All of the
work to be executed is wrapped in a for loop whose exit is
conditioned on total_work_items. Another difference is
that there is only one coarse-grained knob associated with this
execution model: the loop unroll factor for the for loop in
line 11 of Listing 2. This is supplied as a compiler hint set by
the tunable parameter UNROLL in line 10 of Listing 2.

To perform the design space search, we proceed using the
same methodology outlined by Cabrera and Chamberlain [1].
We first determine what values each knob can assume. The
design space becomes WG ∈ {64, 128, 256, 512, 1024}, NCU
∈ {1, 2, 4, 8}, and NS ∈ {1, 2, 4, 8, 16} for the MWI kernel,
and UNROLL ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024} for
the SWI kernel. We then take the Cartesian product of all
sets of assumable values and build each resulting kernel and
empirically measure its performance. Through this process,
we determine that the best version is achieved using the MWI
design paradigm where WGSIZE = 1024, NUMCOMPUNITS
= 8, and NUMSIMD = 16 for the input EBCDIC file size
of 9.2 MB. We find that, generally, MWI kernels benefit

mostly from increasing the knobs to their highest assumable
values, which we will use as a design heuristic in Section IV.
In particular, larger work-group sizes allow for work to be
chunked in a spatially local way. Increasing NUMCOMPUNITS
and NUMSIMD increases throughput by inferring multiple
I/O interfaces and widening those interfaces, respectively.
Additionally for the latter case, these wider interfaces allow for
more data to be statically coalesced for access, which makes
better use of the available bandwidth. This configuration now
becomes the baseline kernel design from which we will make
additional optimizations.

C. Overlapping Data Transfer and Execution

A key feature of the OpenCL environment specific to the
Intel HARPv2 platform is that external memory is shared
between the CPU and FPGA. This removes the problem of
having to transfer data from host memory to FPGA mem-
ory and vice versa. This also allows for data transfer to
directly overlap execution instead of waiting for explicit reads
and writes between host and device memories. While it is
possible to achieve data transfer and computation overlap in
other OpenCL compliant FPGAs, the overlap in the HARPv2
platform is achievable without the need for breaking up a
kernel instance and having to rely on asynchronous methods
or double buffering. The interface to this memory is made
available as an extension to the OpenCL 1.0 specification.
Here, we allocate the src and dst buffers on the host side
using the extension. Figure 1 shows the benefit of this method,
which is congruent with related work [1].

Fig. 1: Execution times of explicit reads and writes to memory
and using the OpenCL 1.0 SVM extension.

D. Visualizing the Hardware

A challenge of using HLS to design hardware is the lack of
ability to visualize what the hardware compiler will synthesize
based on the OpenCL kernel that is authored. To this end,
more recent versions of the Intel tools allow for an abstracted
system level view of the hardware to be synthesized, by
representing the operations to be executed as a control data
flow diagram (CDFG) without having to fully synthesize
a kernel. Historically in high level synthesis, viewing the
abstracted hardware in this form is used to help reason about
data dependencies and what cycle(s) to schedule operations
on [11]. In this work, we will use this visualization as an aid

Fig. 2: Approximate cycle schedule of the control data flow graphs (CDFGs) that represent unbounded (left) and bounded
(right) versions of the e2a kernel.

...
if (i < total_work_items)
{
unsigned int i = get_global_id(0);
uchar orig_char = src[i];
uchar xformd_char;

xformd_char = e2a_lut[orig_char];

dst[i] = xformd_char;
}

Listing 3: Using bounds checking to avoid the “loose ends.”

to understand how a design choice made during the OpenCL
kernel design process will impact the hardware that results.
While this newer version of the tools is not supported by our
target platform, we can still use them to effectively visualize
design choices. This is valuable as the issue of tool versions is
a general problem. We now show a use of this technique that
allowed us to prune the design space and make an informed
design decision by allowing us visualize a poor design choice
made at the OpenCL kernel level and subsequently ignore it.

A requirement of MWI OpenCL kernels is that the work-
group size evenly divides the number of global work-items (the
total amount of work to be done). This is often not a naturally
occurring feature when trying to accelerate applications. Recall
that the optimal work-group size of the e2a kernel was found
to be 1024. Since the global work-item size is not a multiple
of 1024, this requirement is not met. In order to address the
“loose ends,” a common solution is to inflate the global work-
item size to satisfy the requirement. In our case, we could pad
the input file sizes with NULL characters until the input size is
a multiple of 1024 and modify the e2a kernel to implement
bounds checking to make sure that the kernel only processes
meaningful input items. This is done by wrapping lines 16-22
of Listing 1 in an if statement conditioned on the true global
work item size, as shown in Listing 3.

While this is a seemingly innocuous design choice for

kernels targeting CPUs or GPUs with hardware support for
conditional code, this is a costly operation when synthesizing
hardware for the FPGA. Every operation (excluding dead
code) specified in the kernel results in logic that gets syn-
thesized into real hardware. The negative impact of this con-
ditioned execution on the hardware may not be immediately
obvious, so we leverage the system level viewer of a more
recent version of the Intel tools to help better understand the
impact of this choice.

Figure 2 shows the system level view of two versions of
the MWI e2a kernel and the approximate cycle schedules of
the CDFGs for an FPGA in the same product line (Arria 10)
as our target platform. We will refer to the kernel version
with no bounds checking as the unbounded case, and kernels
with bounds checking as the bounded case. The left figure
represents the CDFG and schedule for the unbounded case
and the data path is replicated by a factor of N (i.e., NUMSIMD
= N). It is also the same schedule for the bounded case, but
only when NUMSIMD = 1. The right figure represents the
bounded case where the data path is replicated 4 times.

The intuition behind this juxtaposition is that the schedule
of the unbounded case does not change as the data path is
replicated while the bounded case serializes accesses to global
memory to maintain correctness. The total number of cycles
for multiple replicas in the unbounded case scales well as
NUMSIMD increases because the hardware compiler is able to
infer a wider I/O interface to global memory. The bounded
case shows that each replica of the data path requires an
additional serial global memory access, thereby increasing
the cycle count when a work-item is scheduled. Thus, by
performing this visualization, we opted to design the MWI
kernel using the unbounded approach and take care of the
remaining global work-items on the host side.

IV. WIDENING THE DATA TYPE

We now build upon the baseline kernel configuration es-
tablished in Section III-B2. In this section, we detail an

OpenCL design optimization to aid the hardware compiler
in inferring even wider I/O interfaces and further statically
coalescing memory accesses. This is accomplished by in-
creasing the width of the data types in the e2a kernel,
we we do by leveraging the OpenCL specification for vec-
torized data types. Specifically, we can modify the uchar
type to uchar{2,4,8,16}. The modified kernel version
using uchar4 is shown in Listing 4, where the src, dst,
orig_char, and xformd_char variables all reflect the
new data type. While the kernel description is unaffected
by the data type vectorization, this optimization implicitly
modifies the global work item size by a factor of the new data
type width and effectively creates additional “loose ends.” We
must account for this in the host side code.

1 ...
2 __kernel void
3 k_e2a(__global const uchar4* restrict src,
4 __global uchar4* restrict dst)
5 {
6 unsigned char e2a_lut[256] = { ... };
7
8 unsigned int i = get_global_id(0);
9 uchar4 orig_char = src[i];

10 uchar4 xformd_char;
11
12 xformd_char.s0 = e2a_lut[orig_char.s0];
13 xformd_char.s1 = e2a_lut[orig_char.s1];
14 xformd_char.s2 = e2a_lut[orig_char.s2];
15 xformd_char.s3 = e2a_lut[orig_char.s3];
16
17 dst[i] = xformd_char;
18 }

Listing 4: Kernel with vectorized uchar types.

In order to understand the effects of this optimization as
it interacts with the existing knobs of the baseline MWI
kernel, we create versions of the kernel with each available
widened data type and use a reduced design space as guided
by the heuristic developed in Section III-B2. The new design
space becomes WGSIZE ∈ {512, 1024}, NUMCOMPUNITS
∈ {1, 2, 4, 8}, and NUMSIMD ∈ {1, 2, 4, 16}. In this case,
there are 32 unique configurations that we consider in order
to evaluate this optimization.

Once the most performant kernel is found, we measure the
impact of input scaling on this kernel. This is done by using
the original file to create differently-sized versions (roughly
powers of 2 in file size) up to 1 GB.

V. RESULTS

Figure 3 shows the result of the design space search detailed
in Section IV. Each sub-graph represents a different data
vectorization factor: Figures 3(a), 3(b), 3(c), 3(d), and 3(e),
represent data vectorization factors of 1, 2, 4, 8, and 16,
respectively. The x-axes show every kernel configuration for
its respective vectorization factor, where each label represents:
WGSIZE-NUMCOMPUNITS-NUMSIMD. On the y-axes are the
observed data rates for each configuration. The two differently
colored bars in Figure 3(e) represent configurations that could
not be physically realized by the hardware compiler. The dot-
ted black line represents the best data rate for a OpenCL MWI

kernel targeting a Intel Core i7 Kaby Lake processor. The
line is situated at 6.39 GB/s. (The Linux mbw utility reports
that this Intel Core i7 machine achieves an average memory
copy bandwidth of 11.6 GB/s.) Thus, any configuration whose
respective bar is below the dotted line has a lower data rate
than the multi-core CPU version and a higher data rate if a
bar is above the line.

Figure 3(a) shows the results for no data type vectorization.
All configurations in this group perform worse than the best
CPU implementation. As shown in Table 1, we see that the
most performant version without data type vectorization is
0.865× the CPU data rate. However after the first level of type
vectorization in Figure 3(b), we observe four configurations
that perform better than the CPU. This indicates that while
the kernel configuration with just the coarse-grained knobs has
been tuned, there is still further room for improvement. Specif-
ically, as the data types become wider in Figures 3(c), 3(d),
and 3(e), we observe that additional configurations become
more performant than the CPU case. This further validates
our heuristic from Section III-B2 for pruning the design space
for MWI kernels.

The main performance benefit comes from aiding the hard-
ware compiler to statically coalesce memory accesses. Without
this optimization, the widest interface that can be created for
a single compute unit instance of a kernel is by replicating
the data path up to 16 times. With the wider data type, a
single data path can read and write N uchars, where N is
the data vectorization factor. Additionally, this aids the burst-
coalesced load-store unit (LSU) generated by the hardware
compiler. Because of the vectorized types, a single address
points to multiple data items, as opposed to just one data item.
These addresses are queued up and coalesced in the LSU for
a burst access. Thus, a burst access can grab up to N× more
data in the best case when compared to the coarse-grained
configuration without data type vectorization.

We also observe evidence supporting the heuristic in Ta-
ble 1, which shows the Intel HARPv2 FPGA resource utiliza-
tion, data rate, and speedup relative to the CPU for the two
best configurations for each level of data type vectorization.
We observe that the speedup for uchar{8,16} are only 4.7%
and 3.0% slower, respectively, than the optimal configuration.
This is a reasonable heuristic to follow when one is willing to
make the tradeoff of the locally optimal configuration for one
that is relatively close to optimal found in less time.

Finding the optimum requires more experimentation,
as shown in Figure 3. When holding WGSIZE and
NUMCOMPUNITS constant, we observe in Figures 3(a), 3(b),
and 3(c) that increasing NUMSIMD results in a monotonically
increasing data rate. However, this monotonic behavior ends
when the data vectorization factor is set to 8 and 16. In this
case, replicating the data path with wider types creates enough
contention for the global memory resources such that the
performance degrades by having to orchestrate these accesses.

From the table, we observe that the overall best performing
configuration is (4, 512, 1, and 16) for the data vectorization
factor, WGSIZE, NUMCOMPUNITS, and NUMSIMD, respec-

Fig. 3: Design space search for data vectorization factors {1, 2, 4, 8, 16}. The x-axes represent the coarse-grained configuration
WGSIZE-NUMCOMPUNITS-NUMSIMD for the given data vectorization factor. The y-axes show the resulting data rate.

Data
Vectorization

Work-group
Size

Compute
Units

SIMD
Factor

fmax

(MHz) Logic M20K
Bits

M20K
Blocks

Data Rate
(GB/s) Speedup

1
1024 8 16 238.77 28% 8% 23% 5.529 0.865
1024 1 16 280.19 24% 6% 16% 4.176 0.654

2
1024 8 16 237.19 29% 9% 28% 9.694 1.517
1024 8 4 254.71 28% 7% 21% 7.071 1.107

4
512 1 16 268.81 24% 7% 17% 11.933 1.868
1024 1 16 268.81 24% 7% 17% 11.856 1.856

8
1024 4 4 258.26 26% 8% 21% 11.400 1.784
1024 1 16 247.77 24% 8% 20% 11.058 1.731

16
1024 4 1 282.56 26% 7% 19% 11.587 1.814
512 1 4 255.75 24% 7% 17% 11.443 1.791

Table 1: Resource utilization and results for the two best coarse-grained configurations for each level of data type vectorization.

Fig. 4: Input File Size Sweep

tively. Its data rate is 11.933 GB/s–over one-third of the
theoretical read/write bandwidth [4]–and a speedup of 1.868×
over the CPU implementation. We observe that the best result
does not have the widest data vector type or any replicated
compute units. In this case, there is less contention for global
memory among compute unit replicates. Additionally, it is
easier for the OpenCL runtime to schedule work-groups for
execution because there is only one compute unit for which to
issue commands. These system-level observations can be aided
by observing the reported resource utilization numbers and

maximum clock speeds in Table 1. (Related work historically
has been able to account for differences in performance, in
part, by using such results [1], [17].) Future work could
include being able to incorporate this data to model the
performance impact of interactions like these between design
choices in order to more efficiently search the design space.

Figure 4 compares the performance of the best kernel
configuration to the best CPU version when scaling the input
size from approximately 256 KB to 1 GB. The CPU data rate
performance starts to plateau at when the input file size is
16 MB, and the best achievable data rate is 6.55 GB/s. The
Intel HARPv2 platform data rate begins to plateau when the
input size is greater than 16 MB, and the best achievable data
rate is 12.76 GB/s. The speedup factor of the Intel HARPv2
performance over the CPU is 1.95×. Although the kernel is
relatively simple, input sizes of 16 MB and up are sufficient
to stress the system into the asymptotic limit for data rate.

VI. CONCLUSIONS AND FUTURE WORK

Using HLS frameworks like the Intel FPGA SDK for
OpenCL make FPGAs clearly more accessible to accelerate
applications in the dawn of a post-Moore compute landscape.

However, this is not without its own challenges. The expres-
siveness contained in as little as one keyword increases the
difficulty of understanding the underlying hardware that results
from the high level specification. To this end, we explicitly
detail the design of an example kernel, including using CDFGs
to visualize the pre-synthesized hardware in order to make
more informed design decisions. We also develop a design
heuristic for MWI kernels to prune the space design space,
trading the optimal configuration for a near-optimal one using
less development time. By sweeping the the target kernel’s
hardware knobs, we show that the interactions between knobs
are non-trivial. Specifically, we show that there is a benefit to
vectorizing data types for buffers that will be accessed contigu-
ously. However, global memory contention induced when knob
settings were near their maximum values necessitates a finer
tuning of the configuration to achieve optimal performance.
Finally, we show that scaling the input size in our case study
stressed our platform enough to reach the asymptotic data rate.

Clearly, one of the limitations of this work is the algorithmic
simplicity of the example kernel. It is not clear how well (or
even if) our empirical results will generalize to a wider set
of applications that have data dependencies and/or a greater
amount of control complexity. Expanding the investigation to
additional applications is the next step.

In addition, while this investigation is completely empirical
(i.e., all performance data come from measurements of the
example application executing on the physical machine), it is
common practice for compilers in the software world to utilize
performance modeling to guide compile-time decisions. A
better understanding of the fundamental relationships between
the configuration parameters and resulting performance would
enable HLS synthesis tools to do a similar thing. The vision
is for many of these tuning decisions, that are currently
the responsibility of the application’s author, become the
responsibility of the tool chain.

ACKNOWLEDGMENT

Thanks to Intel for access to the CPU+FPGA system
through the Hardware Accelerator Research Program. This
work supported by NSF grant CNS-1763503.

REFERENCES

[1] A. M. Cabrera and R. D. Chamberlain, “Exploring portability and
performance of OpenCL FPGA kernels on Intel HARPv2,” in Proc.
of Int’l Workshop on OpenCL. ACM, Apr. 2019.

[2] A. M. Cabrera, C. J. Faber, K. Cepeda, R. Derber, C. Epstein, J. Zheng,
R. K. Cytron, and R. D. Chamberlain, “DIBS: A data integration
benchmark suite,” in Proc. of ACM/SPEC Int’l Conf. on Performance
Engineering Companion, Apr. 2018, pp. 25–28.

[3] C. J. Faber et al., “Data integration tasks on heterogeneous systems
using OpenCL,” in Proc. of Int’l Workshop on OpenCL. ACM, 2019.

[4] T. Faict, E. D’Hollander, D. Stroobandt, and B. Goossens, “Exploring
OpenCl on a CPU-FPGA heterogeneous architecture research platform,”
in Proc. of Int’l Conf. on High Performance and Embedded Architectures
and Compilers (HiPEAC), 2019.

[5] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. of 4th IEEE Int’l Workshop on Workload
Characterization, Dec. 2001, pp. 3–14.

[6] Intel R© FPGA SDK for OpenCLTM Pro Edition: Best Practices Guide,
Intel, April 2020.

[7] Intel R© FPGA SDK for OpenCLTM Pro Edition: Programming Guide,
Intel, April 2020.

[8] J. Jiang, Z. Wang, X. Liu, J. Gómez-Luna, N. Guan, Q. Deng, W. Zhang,
and O. Mutlu, “Boyi: A systematic framework for automatically deciding
the right execution model of OpenCL applications on FPGAs,” in Proc.
of ACM/SIGDA Int’l Symp. on Field-Programmable Gate Arrays, 2020,
pp. 299–309.

[9] Z. Jin and H. Finkel, “Performance-oriented optimizations for OpenCL
streaming kernels on the FPGA,” in Proc. of Int’l Workshop on OpenCL,
2018, pp. 1–8.

[10] J. Kurzak, Y. M. Tsai, M. Gates, A. Abdelfattah, and J. Dongarra,
“Massively parallel automated software tuning,” in Proc. of 48th Int’l
Conf. on Parallel Processing, 2019.

[11] M. C. McFarland, A. C. Parker, and R. Camposano, “The high-level
synthesis of digital systems,” Proceedings of the IEEE, vol. 78, no. 2,
pp. 301–318, 1990.

[12] A. Sanaullah, R. Patel, and M. Herbordt, “An empirically guided
optimization framework for FPGA OpenCL,” in Proc. of Int’l Conf.
on Field-Programmable Technology. IEEE, 2018, pp. 46–53.

[13] Y. Su, M. Anderson, J. I. Tamir, M. Lustig, and K. Li, “Compressed
sensing MRI reconstruction on Intel HARPv2,” in Proc. of 27th Int’l
Symp. on Field-Programmable Custom Computing Machines. IEEE,
2019, pp. 254–257.

[14] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimizations of software and the ATLAS project,” Parallel Computing,
vol. 27, no. 1-2, pp. 3–35, 2001.

[15] T. Wolf and M. Franklin, “CommBench – a telecommunications bench-
mark for network processors,” in Proc. of IEEE Int’l Symp. on Perfor-
mance Analysis of Systems and Software, Apr. 2000, pp. 154–162.

[16] J. Zhang, S. Khoram, and J. Li, “Efficient large-scale approximate
nearest neighbor search on OpenCL FPGA,” in Proc. of IEEE Conf.
on Computer Vision and Pattern Recognition, 2018, pp. 4924–4932.

[17] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka,
“Evaluating and optimizing OpenCL kernels for high performance
computing with FPGAs,” in Proc. of Int’l Conf. on High Performance
Computing, Networking, Storage and Analysis, 2016, pp. 409–420.

