

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

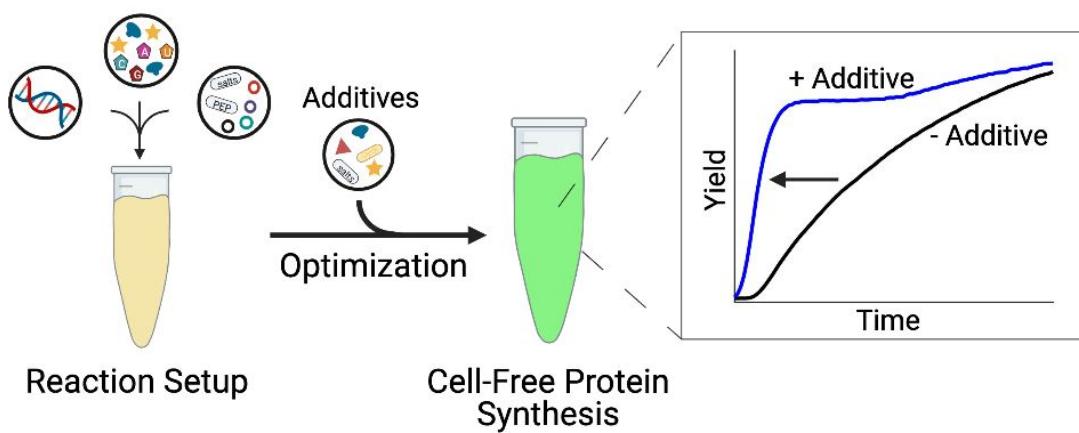
Characterizing and Improving Reaction Times for *E. coli*-based Cell-Free Protein Synthesis

Journal:	<i>ACS Synthetic Biology</i>
Manuscript ID	sb-2021-00195u.R2
Manuscript Type:	Letter
Date Submitted by the Author:	n/a
Complete List of Authors:	Burrington, Logan; California Polytechnic State University College of Science and Mathematics, Biochemistry Watts, Katharine; California Polytechnic State University College of Science and Mathematics, Chemistry and Biochemistry Oza, Javin; California Polytechnic State University, Chemistry & Biochemistry

SCHOLARONE™
Manuscripts

Characterizing and Improving Reaction Times for *E. coli*-based Cell-Free Protein Synthesis

Logan R. Burrington, Katharine R. Watts, and Javin P. Oza*


Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, USA

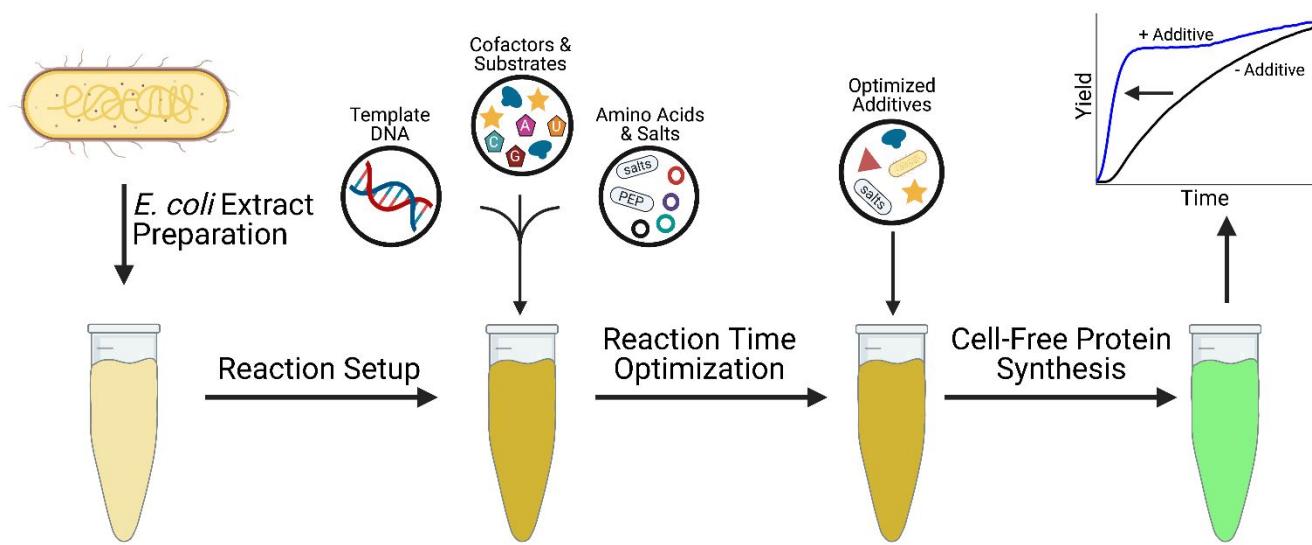
Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, USA

*Corresponding author: Javin P. Oza; joza@calpoly.edu; (805) 756-2265.

Abstract

Cell-free protein synthesis (CFPS) is a platform biotechnology that has enabled the on-demand synthesis of proteins for a variety of applications. Numerous advances have improved the productivity of the CFPS platform to result in high-yielding reactions; however, many applications remain limited due to long reaction times. To overcome this limitation, we first established the benchmarks for reaction times for CFPS across in-house *E. coli* extracts and commercial kits. We then set out to fine-tune our in-house extract systems to improve reaction times. Through the optimization of reaction composition and titration of low-cost additives, we have identified formulations that reduce reaction times by 30-50% to obtain high titers for biomanufacturing applications, and reduce times by >50% to reach the sfGFP detection limit for applications in education and diagnostics. Under optimum conditions, we report the visible observation of sfGFP signal in less than 10 minutes. Altogether, these advances enhance the utility of CFPS as a rapid, user-defined platform.

1
2
3 Keywords: Cell-free protein synthesis, *in vitro* transcription/translation, synthetic biology, rapid,
4 rate, CFAI
5
6


7
8 Cell-free protein synthesis (CFPS) is a biotechnology platform that provides a robust
9 user-defined strategy for the on-demand production of proteins to support a variety of
10 applications.^{1–13} Innovations of the CFPS platform have led to a large array of compatible
11 extract types, energy systems, and DNA templates capable of producing high protein titers.^{14–21}
12 Despite these advancements, slow reaction rates remain a bottleneck for design-build-test-learn
13 cycles, and also limit the effectiveness of CFPS in applications such as diagnostics and
14 education in which rapid readouts are desired.
15
16

17
18 As we sought to implement CFPS reactions with the quickest readouts, we observed
19 that while most publications report end-point measurements for CFPS reactions, time-course
20 data is seldom collected, reported, or optimized. The dearth of time course data in literature
21 poses a challenge in selecting the optimal extract types or reaction conditions for reaction time
22 optimization. In this work we first sought to establish time-course data for a variety of *E. coli*-
23 based CFPS systems, including both in-house reagents and commercial kits. We then sought to
24 identify additives that speed up protein production for our CFPS systems.
25
26

27
28 Towards our first goal we chose to evaluate *E. coli*-based cell extracts due to their low-
29 cost, reproducibility, and general prevalence as a broadly utilized extract type.^{1,22,23} However,
30 even among *E. coli* extracts, the preparation method and energy system can impact
31 transcriptional, translational, protein expression, and folding rates, as well as overall protein
32 yield.¹⁵ Therefore, we quantified CFPS reaction times using three different in-house *E. coli*
33 extracts prepared from cells grown in 2xYTPG media to OD₆₀₀ 2.5 (2xYTPG), CFAI (cell-free
34 autoinduction) media grown to OD₆₀₀ 10 (CFAI 10), and CFAI media grown to OD₆₀₀ 2.5 (CFAI
35 2.5) with CFPS reactions run using the PANOx-SP energy system. We also selected five
36 commercially available *E. coli* extract-based kits that are capable of supporting T7-RNAP based
37 expression.
38
39

40
41 We then focused our efforts on improving protein synthesis rates in 2xYTPG- and CFAI-
42 based CFPS reactions by titrating 12 additives that have been previously reported to support
43 transcription, translation, energy metabolism, or CFPS in general. As a result, we have identified
44 formulations that notably improve the rate of protein synthesis in *E. coli*-based CFPS reactions
45 (Figure 1). Our optimized reaction condition has a limit of detection by eye of 9.9 ± 0.6 min,
46 offering a >80% time improvement over our traditional reaction setup. We believe these findings
47 will be transformative for field applications such as diagnostics and education, in which CFPS is
48
49

used under time constraints. We also reduce the time required to produce high titers of protein product by >30%, supporting faster design-build-test-learn cycles and biomanufacturing applications. Together, the work reported herein provides useful benchmarks for the CFPS community as well as actionable information for improving reaction times.

Figure 1. Generalized workflow for Cell-Free Protein Synthesis (CFPS) limit of detection optimization. *E. coli* extract is prepared and combined with the appropriate cofactors, substrates, amino acids, salts, and template DNA to initiate *in vitro* transcription and translation of sfGFP. The reaction mixture is then supplemented with additive(s) capable of decreasing the time to sfGFP detection by eye under ambient light (200 μ g/mL sfGFP) and blue light (100 μ g/mL sfGFP) conditions.

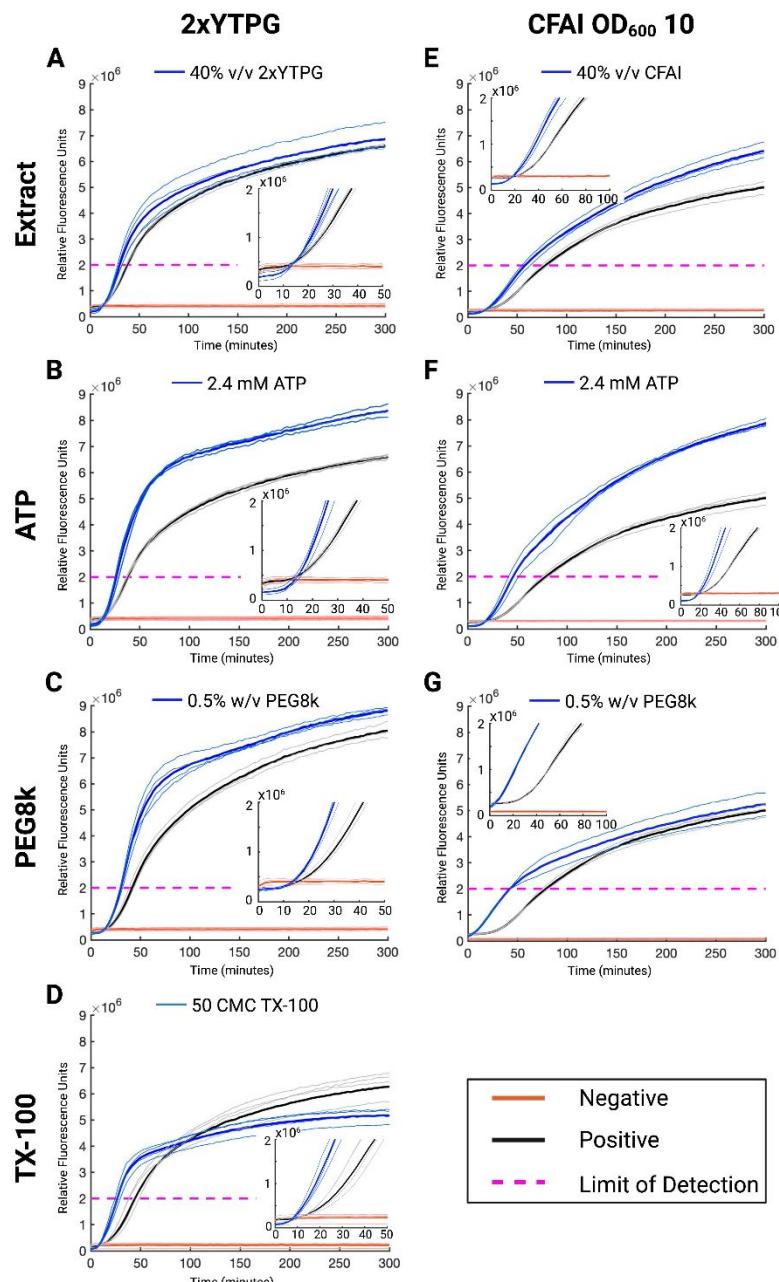
RESULTS AND DISCUSSION

In developing a CFPS system that produces reporter sfGFP as rapidly as possible, we first evaluated a titration range of superfolder green fluorescent protein (sfGFP) to assess the minimum concentration that appears visually distinct to the eye compared to the negative control in ambient light conditions (Figure S1). We chose this condition to establish the limit of detection by eye since obviating the need for technical instrumentation makes this work most broadly applicable. While the limit of detection by eye can vary based on numerous factors, we observed 200 μ g/mL ($\sim 2 \times 10^6$ RFU) of sfGFP to be the lower limit of detection for an average user observing sfGFP by eye under ambient indoor lighting. Given that portable, field-deployable fluorescence illuminators have been recently developed, we also establish a second benchmark concentration using the low-cost Fold-Illuminator device.^{10,24–26} Illuminated using a blue light paired with a yellow acrylic filter, we subjectively established 100 μ g/mL ($\sim 1 \times 10^6$ RFU) sfGFP as the lower limit of detection by eye when using the Fold-Illuminator. This lower limit of

1
2
3 detection is likely also relevant for users utilizing a hand-held blue light combined with a hand-
4 held acrylic filter.²⁴ For these reasons, we use the time required to produce 200 µg/mL and 100
5 µg/mL of sfGFP as our two benchmarks for evaluating CFPS reaction rates. Since laboratory
6 equipment can be significantly more sensitive for detecting sfGFP fluorescence, relative
7 comparisons reported amongst extract types and the optimization advancements presented
8 here will translate to lower limits of detection when instrumentation is available.
9
10

11 *E. coli*-based cell extracts are a well-established, low-cost, high yielding, and broadly
12 adopted extract type that supports numerous CFPS applications.^{22,23} For this reason, we sought
13 to examine CFPS reaction time courses using three separate in-house *E. coli*-based extracts.
14 Among these are extracts from cells grown in 2xYTPG (yeast, tryptone, PEP, glycerol) media to
15 OD₆₀₀ 2.5 (referred to as “2xYTPG”), CFAI (cell-free autoinduction) media grown to OD₆₀₀ 10
16 (referred to as “CFAI 10”), and CFAI media grown to OD₆₀₀ 2.5 (referred to as “CFAI 2.5”), each
17 of which have been previously used to achieve high protein titers >1000 µg/mL sfGFP.¹⁵ We
18 had previously demonstrated that each cell-growth method results in unique metabolism within
19 the cell extracts, here we evaluated whether these differences affect CFPS reaction rates
20 (Figure 2A-G). For consistency, all experiments were performed with supplementation of the
21 PANOx-SP energy system.²¹ We observed that 2xYTPG extract produced sfGFP the fastest
22 with 44.7 ± 2.7 min to 200 µg/mL and 29.4 ± 2.0 min to 100 µg/mL, followed by CFAI 2.5 extract
23 reaching the benchmarks at 60.4 ± 2.4 and 39.4 ± 1.8 mins respectively, with the CFAI 10
24 extract being the slowest to reach our benchmarks at 84.2 ± 3.9 and 52.3 ± 0.7 mins (Figure 2A,
25 2B, Table S1-5). For broader utility to the cell-free community, we also purchased and tested
26 five commercially available kits to establish the reaction rates among different *E. coli*-based
27 extract systems, and their respective energy systems (Table 1). For 2xYTPG, CFAI 10, and
28 CFAI 2.5, we titrated 12 components including: extract, circular DNA template, T7 RNA
29 Polymerase, magnesium, polyethylene glycol 8000 (PEG8K), ATP, GTP, PEP, maltose, Triton
30 X-100, trehalose, and betaine.
31
32

33 We provide our rationale for selecting specific additives based on prior works, however,
34 the mechanisms by which they function are likely to be far more complex. To evaluate whether
35 our reaction composition was limiting transcription we titrated the circular DNA template pJL1-
36 sfGFP, T7 RNA Polymerase (T7-RNAP), and magnesium. Additionally, it has been shown that
37 polyethylene glycol 8000 (PEG8k), a large organic molecule commonly used as a
38 macromolecular crowding agent in CFPS reactions, both increases transcription rates and
39 decreases translation rates in wheat germ CFPS systems.^{20,25,27} If the CFPS reaction time is
40 transcription-limited due to a specific reaction component, then increasing the concentrations of
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


1
2
3 that component should lead to faster mRNA output, and in turn more protein production per
4 time. However, our data are not able to directly evaluate this hypothesis since we are only
5 quantifying reporter protein production in this work. To evaluate whether our reaction
6 composition was limiting translation, we directed our efforts to the PANOx-SP energy system
7 components used in our reactions. The PANOx-SP (PEP, Amino acids, NAD, Oxalic acid,
8 Spermidine, Putrescine) system was developed in 2003 to produce high sfGFP titers through an
9 ATP-regenerating metabolic cycle.²¹ This system uses phosphoenolpyruvate (PEP) to actively
10 regenerate adenosine triphosphate (ATP), the main energy source in protein synthesis
11 alongside guanosine triphosphate (GTP).²⁸ Additionally, maltose is a sugar that has been shown
12 to participate in an ATP-regenerating metabolic cycle, which also actively regenerates inorganic
13 phosphate.²⁹ We hypothesized that if translation is energy-limited, the incorporation of higher
14 ATP, GTP, PEP, and/or maltose concentrations would allow for faster protein synthesis reaction
15 times. Lastly, we considered that there may be a rate-limiting process beyond transcription and
16 translation. To address this, we screened additives that have demonstrated positive influences
17 on CFPS yields and/or rate.^{14,25,30,31} For example, Triton X-100 is a non-ionic detergent that has
18 been found to have a stabilizing effect on protein.³² Previous work has found that using Triton X-
19 100 in an *E. coli*-based cell-free system is able to improve the production rate of Cecropin P1
20 over a two hour reaction time, and results in a 1.8x yield increase.³³ This same work also
21 demonstrated that translation, rather than transcription, led to these marginal benefits. We also
22 examined trehalose and betaine, two additives that have been previously shown to benefit cell
23 extracts.²⁵

24 **2xYTPG Results.** Here we report our optimization results using extract from cells grown
25 in 2xYTPG (Yeast, Tryptone, Phosphate, Glucose) to OD₆₀₀ 2.5. 2xYTPG media is a traditional
26 *E. coli* extract preparation method capable of supporting high protein titers in CFPS and has
27 become the standard growth medium for many applications of *E. coli*-based CFPS.¹⁵ For this
28 reason, we wanted to establish a benchmark reaction time course for CFPS with 2xYTPG
29 extract using the PANOx-SP energy system. CFPS reactions commonly consist of 33% v/v cell
30 extract; under these standard conditions, our positive control reactions using 2xYTPG extract
31 reach our 200 µg/mL sfGFP limit of detection in 45.1 ± 2.1 min. Increasing extract % within the
32 CFPS reactions resulted in a notable improvement in the rate of protein production, reducing the
33 time to 200 µg/mL sfGFP to 36.0 ± 1.0 min. Reaction rates did not improve when extract % was
34 increased beyond 40% (Figure 2A, Table S1). We also observed increased overall yield (end-
35 point measurement after 18 hours) of sfGFP as extract % increased, with 40% v/v yielding
36 112% as compared to the positive control and 53% v/v attaining 119%. With our positive
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 controls comprising the standard 33% extract, all subsequent additives optimizations were done
4 with 40% extract. Notably, our extracts contain T7-RNAP which is expressed during cell growth;
5 therefore, increasing extract concentration within a CFPS reaction increases both transcription
6 and translation machinery.
7
8

9 We observed that supplementing circular DNA template pJL1-sfGFP or T7-RNAP did not
10 notably improve the rate of protein production or the overall yield of sfGFP (Table S1). These
11 results suggest that the reaction components necessary for transcription are not limiting. We
12 then titrated various components of the PANOx-SP energy system. Here, we did not observe
13 notable improvements in the rate of protein production upon titrating GTP or PEP, leading to the
14 conclusion that GTP and PEP are all already rate-optimized in our reaction conditions (Table
15 S1). PEP concentrations higher than 41.25 mM had a detrimental effect on reaction rate, but
16 these slower reactions resulted in an increase in overall yield at the endpoint, producing 110%
17 of the control with 57.75 mM PEP. We did observe notable improvements in protein production
18 upon supplementation of ATP. We found a final reaction concentration of 2.4 mM ATP to be
19 optimal, reducing the time to 200 μ g/mL sfGFP to 27.1 ± 2.4 mins along with an increase in
20 overall yield of 110% as compared to the 1.2 mM ATP control (Figure 2B). Maltose also did not
21 improve the rate of protein production. We conclude that the system is energy-limited in the
22 short-term; addressing this limitation allows for a more rapid reaction without negatively
23 affecting the characteristic long-lived reactions supported by the PANOx-SP system while still
24 maintaining the production of high protein titers.
25
26

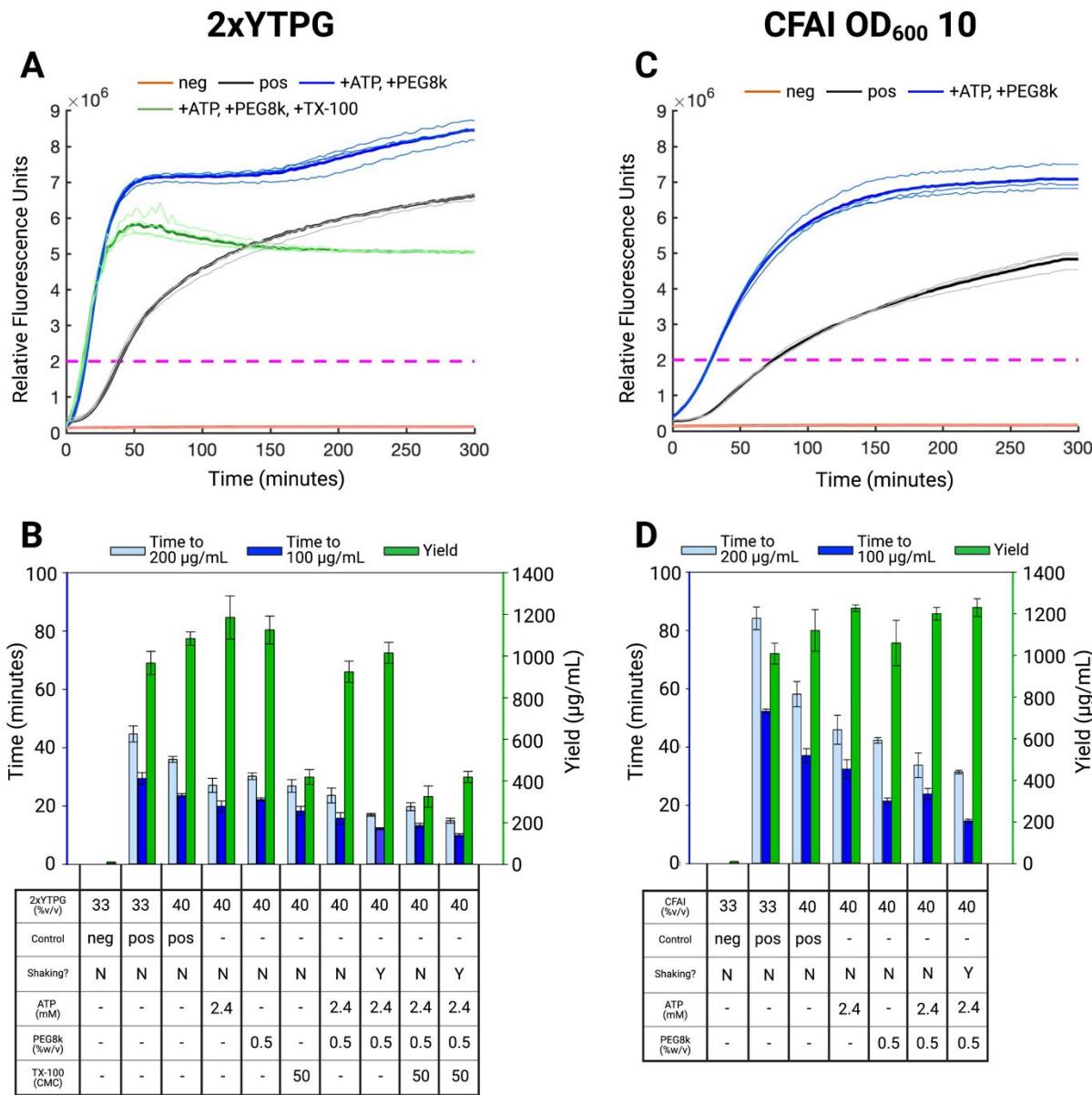

27 Lastly, we observed that supplementing PEG8K to a final concentration of 0.5% w/v
28 reduced the time to 33.2 ± 1.5 mins for producing 200 μ g/mL sfGFP (Figure 2C). Triton X-100
29 also improved the time required to reach 200 μ g/mL sfGFP, reaching the limit of detection in
30 26.9 ± 2.2 mins with 50 CMC (11.50 mM) (Figure 2D). However, the faster reaction upon Triton
31 X-100 supplementation comes at a trade-off with total yield, resulting in a ~60% drop in overall
32 sfGFP observed at the reaction end-point. In terms of utility, Triton X-100 ultimately forces the
33 user to consider whether the improved reaction speed obtained with Triton X-100 is worth the
34 decrease in total yield for their specific application.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 2. Time-course fluorescence readings for 2xYTPG (left) and CFAI OD₆₀₀ 10.0 (right). Traditional CFPS (A, B), and 40% v/v extract with the indicated additive (C-G) (blue), with a negative control (orange). The 200 µg/mL (2x10⁶ RFU) limit of detection is depicted (dash). Insets provide a zoom-in view of the control and treatment conditions until the limit of detection is reached. Each panel lists the corresponding additive and its final concentration in the reaction. Data is plotted as an average of a minimum of N=3, maximum N=4 experimental replicates. The average of each data set is indicated by a darker color. Outliers were identified by a Grubbs' Test on time to 2x10⁶ RFU at a 90% confidence interval. Negative conditions have no pJL1-sfGFP DNA template or additive present. CFAI 2.5 is not included due to no observed rate benefits from any additive (other than higher % v/v extract).

Following single-additive tests, we combined the best single-additive conditions to determine whether CFPS rates would improve in a combinatorial manner. For this analysis, we selected 2.4 mM ATP, 0.5% w/v PEG8k, and 50 CMC Triton X-100 since they individually resulted in the most notable improvements to CFPS rates. Combining 2.4 mM ATP and 0.5% w/v PEG8k reduced the time to the 200 μ g/mL sfGFP limit of detection to 23.6 ± 2.5 mins, or 15.7 ± 1.9 mins to 100 μ g/mL sfGFP (Figure 3A, 3B, Table S2). Combining 2.4 mM ATP and 0.5% w/v PEG8k with 50 CMC Triton X-100 further reduced the time to 200 μ g/mL sfGFP to 19.8 ± 1.4 mins, and 13.3 ± 0.8 mins to 100 μ g/mL sfGFP. We also observed that shaking the reaction helps improve CFPS rates. With plate shaking at 567 cpm, we are able to achieve the 100 μ g/mL sfGFP limit of detection within 12.2 ± 0.4 mins upon ATP and PEG8k supplementation, and within 9.9 ± 0.6 mins upon ATP, PEG8k, and Triton X-100 supplementation. 2xYTPG extracts supplemented with ATP and PEG8k also resulted in 114% of the positive control when quantified at the reaction end-point. When 2xYTPG is supplemented with the combination of ATP, PEG8k, and Triton X-100, improved reaction rates come at the cost of reduced protein yield, producing only 47% sfGFP compared to the positive control at the end-point.

The optimization of 2xYTPG extract %, ATP and PEG8k concentrations reduced the time to reach the limits of detection of sfGFP from 45.1 ± 2.1 to under 20 mins. We considered that CFPS is a multifaceted process with covariates affecting the observed rate of sfGFP fluorescence. As we modified the reaction composition, we sought to evaluate whether other reaction conditions had shifted from their respective optima to becoming rate limiting, restricting further optimization. Starting with 40%v/v 2xYTPG extract containing 2.4 mM ATP and 0.5% w/v PEG8k, we re-optimized magnesium concentrations and T7-RNAP. Here, we did not observe additional improvements to CFPS rates (Table S2).

Figure 3. Single and multi-additive titrations that resulted in faster times to the limit of detection for **A/B**) 2xYTPG extract and **C/D**) CFAI OD₆₀₀ 10 extract. **A/C**) 300 minute time-course fluorescence data from our traditional 33% v/v extract setups (black) as compared to our most optimal rate-boosting setups (blue, green). The 200 µg/mL limit of detection standard is depicted (dash). The average of each data set is indicated by a darker color. **B/D**) Left Y-axis represents time to 100 µg/mL and 200 µg/mL sfGFP from reaction start; right Y-axis represents total reaction yield 18 hours after reaction start. Listed concentrations are representative of the final CFPS reaction. Negative conditions have no pJL1-sfGFP DNA template or additive present. All data is presented with a minimum of N=3, maximum N=4 experimental replicates.

CFAI Results. Here we report our titration results using extracts from cells grown in cell-free autoinduction (CFAI) media. Cells grown in CFAI media to OD₆₀₀ 10 (CFAI 10) is a recently developed *E. coli*-based extract preparation method. CFAI provides an 'Instant Pot' type utility for the growth of cells suitable for extract preparation, where the higher OD₆₀₀ harvest results in

a >400% increase in extract production without sacrificing CFPS productivity.¹⁵ The reduced production costs and improved reproducibility that CFAI provides makes the method well suited for supporting education and diagnostics applications, especially in resource-limited environments, while also being compatible with biomanufacturing applications. In our optimization efforts, we first optimized extract concentration in a titration range of 33-53% v/v CFAI 10 in CFPS reactions. Interestingly, while we observed end-point yields to be similar between 2xYTPG and CFAI 10 reactions, CFAI 10 required notably more time to reach our limits of detection (Figure 2E, 3C, 3D, Table S1, S3). CFAI 10 extract at 33% v/v reached the 200 μ g/mL sfGFP limit of detection in 84.2 ± 3.9 mins, or 52.3 ± 0.7 mins to 100 μ g/mL. As with 2xYTPG, reaction rate increased with increasing extract % to an optimum of 40% v/v extract, reaching 200 μ g/mL sfGFP in 58.2 ± 4.3 mins and 100 μ g/mL in 37.1 ± 2.4 mins. All subsequent optimizations were performed using 40% v/v CFAI 10 extract.

As with 2xYTPG, CFAI 10 reaction rates did not improve upon the titration of circular pJL1-sfGFP DNA template, T7-RNAP, GTP, PEP, maltose, trehalose, or betaine (Table S3). However, we did observe an increase in overall yield of 137% compared to the positive control with 20 mM trehalose and 330 mM betaine in combination. Unlike 2xYTPG, CFAI 10 did not benefit from Triton X-100 supplementation. Consistent with 2xYTPG, reaction rates of CFAI 10 improved upon optimization of ATP and PEG8k (Figure 2F, 2G, 3D). The optimal final reaction concentration of ATP was 2.4 mM, which improved the time to reach 200 μ g/mL sfGFP to 45.97 ± 5.08 mins; 100 μ g/mL was reached in 32.4 ± 3.3 mins. The optimal concentration of PEG8k was 0.5% w/v, improving the time to 42.3 ± 1.0 mins to reach the 200 μ g/mL sfGFP limit of detection, or 21.5 ± 1.0 mins to 100 μ g/mL.

We then combined the best single-additive conditions to determine whether CFPS rates would improve in a combinatorial manner with CFAI 10 as we observed with 2xYTPG. For this analysis, we selected 40% v/v CFAI 10 extract, 2.4 mM ATP, and 0.5% w/v PEG8k, which in combination reduced the time to reach 200 μ g/mL sfGFP to 33.8 ± 4.2 mins, and 23.9 ± 1.9 mins to reach 100 μ g/mL sfGFP (Figure 3C, 3D, Table S4). Reaction shaking also improved reaction rates for CFAI 10 extracts, reducing the time to reach 200 μ g/mL sfGFP to 31.4 ± 0.6 mins, and 14.67 ± 0.5 mins to reach 100 μ g/mL sfGFP. For total sfGFP yield quantified 18 hours after reaction start, the optimized reaction conditions produced 113% sfGFP compared to the CFAI 10 positive control. As with 2xYTPG, we re-optimized magnesium concentrations and T7-RNAP. Again, titrations of each did not lead to any additional improvements to the CFPS reactions.

1
2
3 While the utility of CFAI is maximized for high OD harvests, it can also support workflows
4 developed for 2xYTPG by harvesting cells at OD₆₀₀ 2.5. Since some may find utility in CFAI 2.5,
5 we sought to establish its reaction time course and optimize its reaction rate. CFAI 2.5 at 33%
6 v/v reached the 200 µg/mL sfGFP limit of detection in 60.4 ± 2.4 mins, or 39.4 ± 1.8 mins for
7 100 µg/mL. CFAI 2.5 also benefited from increased extract concentration, with an optimum at
8 40% v/v that reduced the times to 50.7 ± 3.3 and 32.2 ± 2.3 mins, respectively. (Table S5).
9
10 Following the same optimization process as with 2xYTPG and CFAI 10, we were surprised to
11 observe that none of our additives had any notable effect on the reaction time of CFAI 2.5,
12 including ATP and PEG8k. We had previously performed metabolomics analysis to characterize
13 the metabolism of CFAI extract in CFPS.¹⁵ While we identified unique differences amongst
14 2xYTPG, CFAI 2.5, and CFAI 10, our current understanding is not sufficient to propose why the
15 rate limiting conditions would be distinct for CFAI 2.5 compared to CFAI 10 or 2xYTPG.
16
17

18 *Commercial Kit Results.* Since many researchers may opt to purchase their *E. coli*-
19 based CFPS reagents, we evaluated five commercially available extract kits from Arbor
20 Biosciences, Bioneer, Invitrogen, NEB, and Promega in an attempt to establish their reaction
21 rates. The specific kits were selected because they utilize *E. coli*-based extracts, and support
22 T7-RNAP driven transcription for compatibility with our circular DNA template pJL1-sfGFP.
23 These kits are likely to vary in their energy systems, which are proprietary. Therefore, our goal
24 here was simply to establish benchmarks for the broader community and not to improve kit
25 performance. We implemented each kit based on their specifications; when methodological
26 details were absent, we selected parameters to match those of our 2xYTPG reactions (Table
27 S6). As expected, there is a large variation in reaction rates, ranging in time to 200 µg/mL
28 sfGFP from 24.7 ± 0.5 to 106.8 ± 6.8 mins, and time to 100 µg/mL ranging from 12.1 ± 0.6 to
29 51.3 ± 0.5 mins (Figure S2, Table 1). Total sfGFP yield also ranged from 276 ± 16 to 964 ± 69
30 µg/mL. We anticipate that establishing these benchmarks will allow researchers to select a kit
31 that is suitable for their applications when producing 2xYTPG or CFAI extracts in-house is not
32 an option.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 1. Evaluation of Commercial *E. coli*-based Extract Kits*

Company	Arbor	Bioneer	Invitrogen	NEB	Promega
Kit	MyTxTl	AccuRapid Midi Protein Expression	Expressway Mini Expression	Cell-free <i>E.</i> <i>coli</i> Protein Synthesis	<i>E. coli</i> S30 Extract System
Time to 200 μ g/mL (min)	113.3 \pm 14.2	42.8 \pm 4.9	29.7 \pm 2.1	24.7 \pm 0.5	23.3 \pm 0.6
Time to 100 μ g/mL (min)	51.3 \pm 0.5	27.3 \pm 3.0	18.0 \pm 1.3	12.1 \pm 0.6	16.0 \pm 0.2
Yield (μ g/mL)	964 \pm 69	611 \pm 25	276 \pm 16	833 \pm 58	661 \pm 43
Shaking**	No	No	Yes	Yes	Yes

* All reactions were run with circular pJL1-sfGFP plasmid as the DNA template for consistency. This may have deviated from specific manufacturer recommendations for template choice, which are highly variable, or non-existent.

** Shaking was dictated by manufacturer's instructions.

CONCLUSION

In this work, we sought to map the reaction time courses of *E. coli* extract-based CFPS reactions. CFPS has proven capable of producing high protein titers *in vitro*; however, real-world applications of this biotechnology including biosensing and education remain limited due to the slow reaction times of the biochemical processes involving transcription, translation, and energy metabolism. In order to achieve a time-optimized CFPS setup, we established the reaction times of 2xYTPG, CFAI 10, and CFAI 2.5 extracts driven by the PANOx-SP energy system, and screened several additives for improving reaction rates while also evaluating their impacts on overall yield. Our initial efforts involved mapping the reaction rates of the 2xYTPG, CFAI 10, and CFAI 2.5 extracts, where we discovered that 40% v/v extract generated the most optimal rates for each case. Through metabolomics analysis, we had previously characterized the metabolic differences between 2xYTPG and CFAI extracts, as well as their resulting CFPS reactions.¹⁵ Based on that work, we were not surprised that CFAI 10 at 33% v/v was notably slower than 2xYTPG. We do find it interesting that their respective optima were achieved using similar additives formulations, possibly due to the overlap in the PANOx-SP system. While studying the impact of various additives on CFPS reaction times, we observed that increased ATP

concentrations of up to 2.4 mM and a PEG8k concentration of 0.5% w/v notably improved the reaction times individually and in combination for both 2xYTPG and CFAI 10. We also report a reaction time improvement when supplementing 50 CMC Triton X-100 into 2xYTPG extract, attaining our fastest time to the sfGFP limit of detection at 9.9 ± 0.6 mins when using 40% v/v 2xYTPG extract, 2.4 mM ATP, 0.5% w/v PEG8k, and 50 CMC Triton X-100. The benefits of Triton X-100 on reaction times correspond to notable decreases in overall yield of the CFPS reactions. In terms of overall cost, these additives are highly cost-efficient, costing less than a penny/30 μ L reaction for 0.5% w/v PEG8k and 50 CMC Triton X-100, and under \$0.05/30 μ L reaction for 2.4 mM ATP. (Table S7).

The discoveries and advancements presented here improve the utility of CFPS as a rapid, low-cost, and accessible platform capable of producing high protein titers on-demand. Our screening of 12 additives provides some insights into rate limiting reagents for the PANOx-SP energy system and rate limiting steps for CFPS. Based on the observations that ATP, PEG8k and Triton X-100 were the most impactful additives, we posit that energy and molecular crowding were the primary limitations in the systems we tested. It is possible that translation rates of the ribosome may have also increased, but our data are not sufficient to validate or nullify this hypothesis. To the extent that translation rates are affected, it is important to note that faster protein synthesis rates could affect protein folding, having undesired effects on the protein of interest which may in turn limit some applications.³⁴⁻³⁷ As such, future work will benefit the platform by taking a more in-depth look at a variety of translation-regulating additives, including protein-based translation factors, to further improve the reaction rates of cell-free protein synthesis.

Methods

Extract Growth

For CFAI extract OD₆₀₀ 10 preparation, an overnight culture of BL21* (DE3), started from a loopful of colonies on an LB agar plate, was inoculated into a 2 L baffled flask containing 1 L CFAI Media (14 g K₂HPO₄, 6 g KH₂PO₄, 20 g Tryptone, 5 g Yeast extract, 5 g NaCl, pH 7.2/960 mL, 6 mL 100% Glycerol, 0.5 g Glucose, 4 g Lactose/40 mL). Growth was then incubated at 30 °C, 250 rpm overnight for ~14 hours to OD₆₀₀ 10. CFAI OD₆₀₀ 2.5 extract was prepared by inoculating a single BL21* (DE3) colony into a 125 mL Erlenmeyer flask containing 50 mL LB broth, followed by incubation at 37 °C, 200 rpm for ~12 hours. This seed culture was

1
2
3 then supplemented into 1 L CFAI Media to OD₆₀₀ 0.1, and incubated at 30 °C, 250 rpm to OD₆₀₀
4
5 2.5. Cells were then harvested.

6 For 2xYTPG extract preparation, an overnight culture of BL21* (DE3), started from a
7 single colony on an LB agar plate, was inoculated into a 2 L baffled flask containing 1 L 2xYPTG
8 media (5 g NaCl, 16 g Tryptone, 10 g Yeast extract, 7 g KH₂PO₄, 3 g KHPO₄, pH 7.2/750 mL,
9 18 g Glucose/250 mL) to OD₆₀₀ 0.1. Growth at 37 °C and 200 rpm was monitored until OD₆₀₀
10 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
11 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
12 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
13 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
14 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
15 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
16 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
17 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
18 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
19 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
20 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
21 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
22 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
23 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
24 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
25 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
26 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
27 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
28 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
29 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
30 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
31 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
32 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
33 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
34 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
35 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
36 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
37 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
38 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
39 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
40 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
41 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
42 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
43 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
44 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
45 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
46 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
47 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
48 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
49 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
50 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
51 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
52 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
53 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
54 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
55 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
56 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
57 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
58 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
59 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration
60 0.6, whereupon T7-RNAP expression was induced by addition of IPTG to a final concentration

Extract Harvest

1 L cell cultures were transferred into cold 1 L centrifuge bottles, and centrifuged at 4 °C, 5,000 xg, for 10 mins. Pellets were transferred into cold, tared, 50 mL falcon tubes, and resuspended in 45 mL S30 buffer (10mM Tris OAc, pH 8.2, 14mM Mg(OAc)₂, 60 mM KOAc, 2 mM dithiothreitol) by intermittent vortexing while on ice. The resuspension was then centrifuged at 4 °C, 5,000 xg, for 10 minutes, followed by supernatant decanting. The remaining pellet was flash frozen with liquid nitrogen and stored at –80 °C until extract preparation.

Extract Preparation

Frozen cell pellets were resuspended in 1 mL S30 buffer per 1 g of cell mass. Resuspended cells were moved into 1.5 mL centrifuge tubes in 1.4 mL aliquots. The resuspension was sonicated using a Qsonica Q125 Sonicator with a 3.175 mm probe, with the cell resuspension resting in an ice water bath. Three pulses of 45s on, 59s off at 50% amplitude were performed, with inversion during the off cycles. Immediately after sonication, 4.5 µL dithiothreitol was spiked into the extract and the tube was inverted several times to mix. 2xYTPG extract was centrifuged at 4 °C and 12,000 xg for 10 min, and CFAI extract was centrifuged at 4 °C and 18,000 xg for 10 min. The supernatant from each 1.5 mL tube was then collected, flash frozen using liquid nitrogen, and stored at –80 °C until ready for use in CFPS reactions.

DNA Purification

pJL1-sfGFP was purified from DH5α cells using an Invitrogen PureLinkTM HiPure Plasmid Maxiprep Kit. The DNA was eluted with ultra-pure water rather than the provided TE buffer to increase compatibility with CFPS reactions.

CFPS Reactions

Each condition was performed in experimental triplicate or quadruplicate. In-house pre-mixes containing the necessary energy system and cofactors were used. Unless noted otherwise, the final CFPS reaction contained the following concentrations of each reagent: 33.33% v/v cell extract, 16 ng/µL pJL1-sfGFP plasmid, 1.20 mM ATP, 0.850 mM GTP, 0.850 mM UTP, 0.850 mM CTP, 22.67 mg/mL Folinic Acid, 113.73 mg/mL tRNA, 0.33 mM Nicotinamide Adenine Dinucleotide (NAD), 0.27 mM Coenzyme A (CoA), 4.00 mM Oxalic Acid, 1 mM Putrescine, 1.50 mM Spermidine, 57 mM HEPES buffer, 12 mM Mg(Glu)₂, 10 mM NH₄(Glu), 130 mM K(Glu), 2 mM of each canonical amino acid, 33 mM Phosphoenolpyruvate, and ultra-pure water to a final volume of 30 µL. Water was replaced by additives for all additive testing. Commercial extract kit testing was performed with the pJL1-sfGFP plasmid according to the manufacturers instructions. Reagents were pipetted directly into a cold, half-volume black, opaque bottomed 96-well plate. pJL1-sfGFP template was added last, to minimize the time between reaction start and real-time tracking. To minimize evaporation, ~200 µL distilled water was added into each open spacing between plate wells, a lid was placed on the 96-well plate, and the wells lining the edges of the plate were not used. Reactions were then quantified at 37°C in real-time for five hours, removed, left at room temperature for 13 hours, and end-point quantified.

Quantification and Data Analysis

Reactions were quantified every three mins for five hours in a CyvationTM 5. Fluorescence intensity was read at an absorption wavelength of 485 nm and an emission wavelength of 510 nm. For reactions that required shaking, linear plate shaking was performed at a frequency of 567 cpm. The resulting absorbance values were graphed as a function of time, where the four replicates per condition were averaged to generate one absorbance versus time trendline per condition. Times to 2x10⁶ relative fluorescence units (RFU) were then determined based on these curves and averaged for each condition replicate; outliers were identified and removed using a Grubbs Test for both minimum and maximum values at a 90% confidence interval. Each condition sustained a minimum of N=3 and a maximum of N=4 samples. The ensuing times and standard deviations were noted. This procedure was repeated for determining the time to 1x10⁶ RFU.

1
2
3 End-point quantification of sfGFP took place in half-volume black, opaque bottomed 96-
4 well plates. In each well, 2 μ L of reaction solution was added to 48 μ L of 50 mM HEPES buffer,
5 pH 7.2. Each individual reaction was quantified in triplicate, giving 12 readings per condition.
6
7 Fluorescence intensity was read with an excitation wavelength of 485 nm and emission
8 wavelength of 510 nm on a Cytation™ 5. A previously established standard curve was used to
9 determine sfGFP concentration from the fluorescence measurements (Figure S3). sfGFP
10 concentration values were then averaged for each reaction, resulting in four values for each
11 tested condition. Outliers were identified and removed using a Grubbs Test for both minimum
12 and maximum values at a 90% confidence interval. Each condition sustained a minimum of N=3
13 samples and a maximum of N=4 samples. The remaining values were averaged and the
14 standard deviation was determined.
15
16
17
18
19

22 Real-Time Data Plotting

23

24 All real-time raw data was collected using a Cytation™ 5 plate reader, and plotted using
25 MATLAB ver. R2020b. All plots were then transferred to Biorender.com for figure creation.
26
27
28

29 Supporting Information

30

- 31 Titration range of sfGFP; commercial extract kits time-course data; standard curve for
32 sfGFP quantification; 2xYTPG single-additive results; 2xYTPG multi-additive results;
33 CFAI 10 single-additive results; CFAI 10 multi-additive results; CFAI 2.5 single-additive
34 results; commercial extract kit information
 - 35 • Pre-Grubbs' Raw Data
- ### 36 37 38 39

40 Author Information

41

42 Corresponding Author

43 **Javin P. Oza** – Chemistry and Biochemistry Department and Center for Applications in
44 Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407,
45 United States; orcid.org/0000-0002-2902-6939; Phone: 805-765-2265; Email: joza@calpoly.edu

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Authors

Logan R. Burrington – Chemistry and Biochemistry Department and Center for Applications in
Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407,
United States; orcid.org/0000-0001-8335-6800

1
2
3
4
5 **Katharine R. Watts** – Chemistry and Biochemistry Department and Center for Applications in
6 Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407,
7 United States; orcid.org/0000-0002-6421-8370
8
9

10
11 **Author Contributions**
12
13 J.P.O. and L.R.B. conceived the project. L.R.B. designed and performed the experiments,
14 collected and interpreted the data, and generated all figures. L.R.B and J.P.O wrote the paper.
15 K.R.W. edited the manuscript.
16
17

18
19 **Competing Interests**
20
21 The authors declare no competing financial interests.
22
23

24
25 **Acknowledgments**
26
27 The authors would like to acknowledge Andrea Laubscher, Dr. Jennifer VanderKelen, Celine
28 diBernardo, and Kevin Dunham for technical support; as well as Max Z. Levine, Nicole E.
29 Gregorio, Wesley Y. Kao, Layne C. Williams, Philip E. J. Smith, Byungcheol So, Elizabeth J.
30 Vojvoda, and Aiden Greengard for helpful feedback. All figures were created with
31 Biorender.com. Research was supported by the William and Linda Frost Fund in the Cal Poly
32 College of Science and Mathematics, and the National Science Foundation (NSF-1708919)
33 grant awarded to K.R.W. and J.P.O.
34
35

36
37
38 **References**
39
40

- 41 (1) Gregorio, N. E.; Levine, M. Z.; Oza, J. P. A User's Guide to Cell-Free
42 Protein Synthesis. *Methods Protoc.* **2019**, 2 (1), 24.
43 <https://doi.org/10.3390/mps2010024>.
44
45 (2) Khambhati, K.; Bhattacharjee, G.; Gohil, N.; Braddick, D.; Kulkarni, V.;
46 Singh, V. Exploring the Potential of Cell-Free Protein Synthesis for
47 Extending the Abilities of Biological Systems. *Frontiers in*
48 *Bioengineering and Biotechnology*. Frontiers Media S.A. October 11,
49 2019, p 248. <https://doi.org/10.3389/fbioe.2019.00248>.
50
51
52
53
54
55
56
57
58
59
60

- 1
2
3 (3) Dondapati, S. K.; Stech, M.; Zemella, A.; Kubick, S. Cell-Free Protein
4 Synthesis: A Promising Option for Future Drug Development.
5 *BioDrugs*. Adis June 1, 2020, pp 327–348.
6
7 <https://doi.org/10.1007/s40259-020-00417-y>.
8
9 (4) Collias, D.; Marshall, R.; Collins, S. P.; Beisel, C. L.; Noireaux, V. An
10 Educational Module to Explore CRISPR Technologies with a Cell-Free
11 Transcription-Translation System. *Synth. Biol.* **2019**, 4 (1).
12
13 <https://doi.org/10.1093/synbio/ysz005>.
14
15 (5) DeVries, J. K.; Zubay, G. DNA-Directed Peptide Synthesis. II. The
16 Synthesis of the Alpha-Fragment of the Enzyme Beta-Galactosidase.
17 *Proc. Natl. Acad. Sci. U. S. A.* **1967**, 57 (4), 1010–1012.
18
19 <https://doi.org/10.1073/pnas.57.4.1010>.
20
21 (6) Williams, L. C.; Gregorio, N. E.; So, B.; Kao, W. Y.; Kiste, A. L.; Patel,
22 P. A.; Watts, K. R.; Oza, J. P. The Genetic Code Kit: An Open-Source
23 Cell-Free Platform for Biochemical and Biotechnology Education.
24 *Front. Bioeng. Biotechnol.* **2020**, 8, 941.
25
26 <https://doi.org/10.3389/fbioe.2020.00941>.
27
28 (7) NIRENBERG, M. W.; MATTHAEI, J. H. The Dependence of Cell-Free
29 Protein Synthesis in E. Coli upon Naturally Occurring or Synthetic
30 Polyribonucleotides. *Proc. Natl. Acad. Sci. U. S. A.* **1961**, 47 (2),
31 1588–1602. <https://doi.org/10.1073/pnas.47.10.1588>.
32
33 (8) Silverman, A. D.; Karim, A. S.; Jewett, M. C. Cell-Free Gene
34 Expression: An Expanded Repertoire of Applications. *Nature Reviews
35 Genetics*. Nature Research March 1, 2020, pp 151–170.
36
37 <https://doi.org/10.1038/s41576-019-0186-3>.
38
39 (9) Huang, A.; Nguyen, P. Q.; Stark, J. C.; Takahashi, M. K.; Donghia, N.;
40 Ferrante, T.; Dy, A. J.; Hsu, K. J.; Dubner, R. S.; Pardee, K.; Jewett,
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

- 1
2
3 M. C.; Collins, J. J. Biobits™ Explorer: A Modular Synthetic Biology
4 Education Kit. *Sci. Adv.* **2018**, *4* (8), 5105–5106.
5
6 <https://doi.org/10.1126/sciadv.aat5105>.
- 7
8 (10) Stark, J. C.; Huang, A.; Nguyen, P. Q.; Dubner, R. S.; Hsu, K. J.;
9 Ferrante, T. C.; Anderson, M.; Kanapskyte, A.; Mucha, Q.; Packett, J.
10 S.; Patel, P.; Patel, R.; Qaq, D.; Zondor, T.; Burke, J.; Martinez, T.;
11 Miller-Berry, A.; Puppala, A.; Reichert, K.; Schmid, M.; Brand, L.; Hill,
12 L. R.; Chellaswamy, J. F.; Faheem, N.; Fetherling, S.; Gong, E.;
13 Gonzalzles, E. M.; Granito, T.; Koritsaris, J.; Nguyen, B.; Ottman, S.;
14 Palfy, C.; Patel, A.; Skweres, S.; Slaton, A.; Woods, T. R.; Donghia,
15 N.; Pardee, K.; Collins, J. J.; Jewett, M. C. BioBits™ Bright: A
16 Fluorescent Synthetic Biology Education Kit. *Sci. Adv.* **2018**, *4* (8), 33.
17
18 <https://doi.org/10.1126/sciadv.aat5107>.
- 19
20 (11) Stark, J. C.; Huang, A.; Hsu, K. J.; Dubner, R. S.; Forbrook, J.;
21 Marshalla, S.; Rodriguez, F.; Washington, M.; Rybnicky, G. A.;
22 Nguyen, P. Q.; Hasselbacher, B.; Jabri, R.; Kamran, R.; Koralewski,
23 V.; Wightkin, W.; Martinez, T.; Jewett, M. C. BioBits Health:
24 Classroom Activities Exploring Engineering, Biology, and Human
25 Health with Fluorescent Readouts. *ACS Synth. Biol.* **2019**, *8* (5),
26 1001–1009. <https://doi.org/10.1021/acssynbio.8b00381>.
- 27
28 (12) Pardee, K.; Green, A. A.; Takahashi, M. K.; Braff, D.; Lambert, G.;
29 Lee, J. W.; Ferrante, T.; Ma, D.; Donghia, N.; Fan, M.; Daringer, N.
30 M.; Bosch, I.; Dudley, D. M.; O'Connor, D. H.; Gehrke, L.; Collins, J. J.
31 Rapid, Low-Cost Detection of Zika Virus Using Programmable
32 Biomolecular Components. *Cell* **2016**, *165* (5), 1255–1266.
33
34 <https://doi.org/10.1016/j.cell.2016.04.059>.
- 35
36 (13) Soltani, M.; Davis, B. R.; Ford, H.; Nelson, J. A. D.; Bundy, B. C.
- 37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Reengineering Cell-Free Protein Synthesis as a Biosensor:
4 Biosensing with Transcription, Translation, and Protein-Folding.
5
6

7 *Biochem. Eng. J.* **2018**, 138, 165–171.
8
9 <https://doi.org/10.1016/j.bej.2018.06.014>.

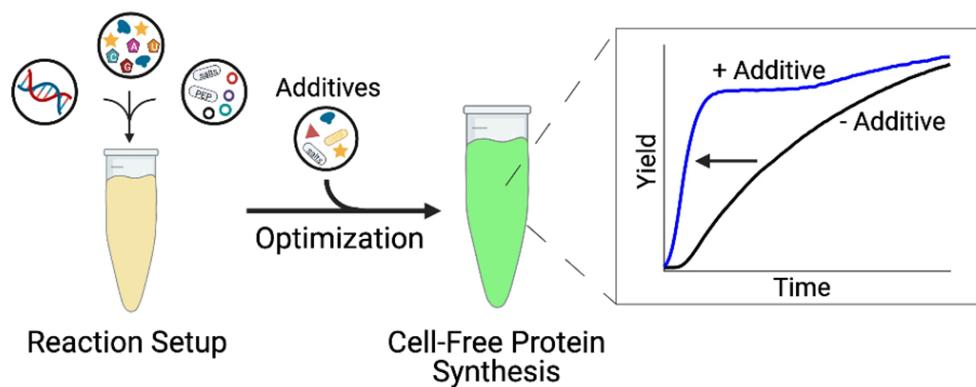
- 10
11 (14) Des Soye, B. J.; Davidson, S. R.; Weinstock, M. T.; Gibson, D. G.;
12 Jewett, M. C. Establishing a High-Yielding Cell-Free Protein Synthesis
13 Platform Derived from *Vibrio Natriegens*. *ACS Synth. Biol.* **2018**, 7 (9),
14 2245–2255. <https://doi.org/10.1021/acssynbio.8b00252>.
- 15
16 (15) Levine, M. Z.; So, B.; Mullin, A. C.; Fanter, R.; Dillard, K.; Watts, K. R.;
17 La Frano, M. R.; Oza, J. P. Activation of Energy Metabolism through
18 Growth Media Reformulation Enables a 24-Hour Workflow for Cell-
19 Free Expression. *ACS Synth. Biol.* **2020**, 9 (10), 2765–2774.
20
21 <https://doi.org/10.1021/acssynbio.0c00283>.
- 22
23 (16) Chiao, A. C.; Murray, R. M.; Sun, Z. Z. Development of Prokaryotic
24 Cell-Free Systems for Synthetic Biology.
25
26 <https://doi.org/10.1101/048710>.
- 27
28 (17) Cole, S. D.; Miklos, A. E.; Chiao, A. C.; Sun, Z. Z.; Lux, M. W.
29 Methodologies for Preparation of Prokaryotic Extracts for Cell-Free
30 Expression Systems. *Synthetic and Systems Biotechnology*. KeAi
31 Communications Co. December 1, 2020, pp 252–267.
32
33 <https://doi.org/10.1016/j.synbio.2020.07.006>.
- 34
35 (18) Kim, D.-M.; Swartz, J. R. Regeneration of Adenosine Triphosphate
36 from Glycolytic Intermediates for Cell-Free Protein Synthesis.
37
38 *Biotechnol. Bioeng.* **2001**, 74 (4), 309–316.
39
40 <https://doi.org/10.1002/bit.1121>.
- 41
42 (19) Kim, H. C.; Kim, D. M. Methods for Energizing Cell-Free Protein
43 Synthesis. *Journal of Bioscience and Bioengineering*. J Biosci Bioeng
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

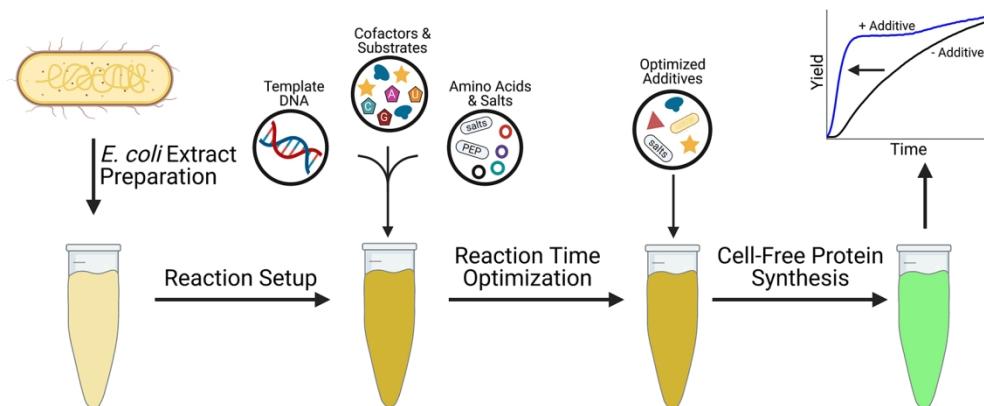
- 1
2
3 July 2009, pp 1–4. <https://doi.org/10.1016/j.jbiosc.2009.02.007>.
- 4
5 (20) Dopp, B. J. L.; Tamiev, D. D.; Reuel, N. F. Cell-Free Supplement
6 Mixtures: Elucidating the History and Biochemical Utility of Additives
7 Used to Support in Vitro Protein Synthesis in *E. Coli* Extract.
8 *Biotechnology Advances*. Elsevier Inc. January 1, 2019, pp 246–258.
9 <https://doi.org/10.1016/j.biotechadv.2018.12.006>.
- 10
11 (21) Jewett, M. C.; Swartz, J. R. Mimicking the *Escherichia Coli*
12 Cytoplasmic Environment Activates Long-Lived and Efficient Cell-Free
13 Protein Synthesis. *Biotechnol. Bioeng.* **2004**, 86 (1), 19–26.
14 <https://doi.org/10.1002/bit.20026>.
- 15
16 (22) Zemella, A.; Thoring, L.; Hoffmeister, C.; Kubick, S. Cell-Free Protein
17 Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems.
18 *ChemBioChem* **2015**, 16 (17), 2420–2431.
19 <https://doi.org/10.1002/cbic.201500340>.
- 20
21 (23) Batista, A. C.; Soudier, P.; Kushwaha, M.; Faulon, J. Optimising
22 Protein Synthesis in Cell-free Systems, a Review. *Eng. Biol.* **2021**, 5
23 (1), 10–19. <https://doi.org/10.1049/enb2.12004>.
- 24
25 (24) Heili, J. M.; Gomez-Garcia, J.; Gaut, N. J.; Cash, B. W.; Aufdembrink,
26 L. M.; Heffron, B. A.; Shirley, J. D.; Carlson, E. E.; Adamala, K. P.;
27 Engelhart, A. E. Real-Time Visualization of in Vitro Transcription of a
28 Fluorescent RNA Aptamer: An Experiment for the Upper-Division
29 Undergraduate or First-Year Graduate Laboratory. *J. Chem. Educ.*
30 **2018**, 95 (10), 1867–1871.
31 <https://doi.org/10.1021/acs.jchemed.7b00735>.
- 32
33 (25) Gregorio, N. E.; Kao, W. Y.; Williams, L. C.; Hight, C. M.; Patel, P.;
34 Watts, K. R.; Oza, J. P. Unlocking Applications of Cell-Free
35 Biotechnology through Enhanced Shelf Life and Productivity of *E. Coli*
36

- Extracts. *ACS Synth. Biol.* **2020**, 9 (4), 766–778.
<https://doi.org/10.1021/acssynbio.9b00433>.

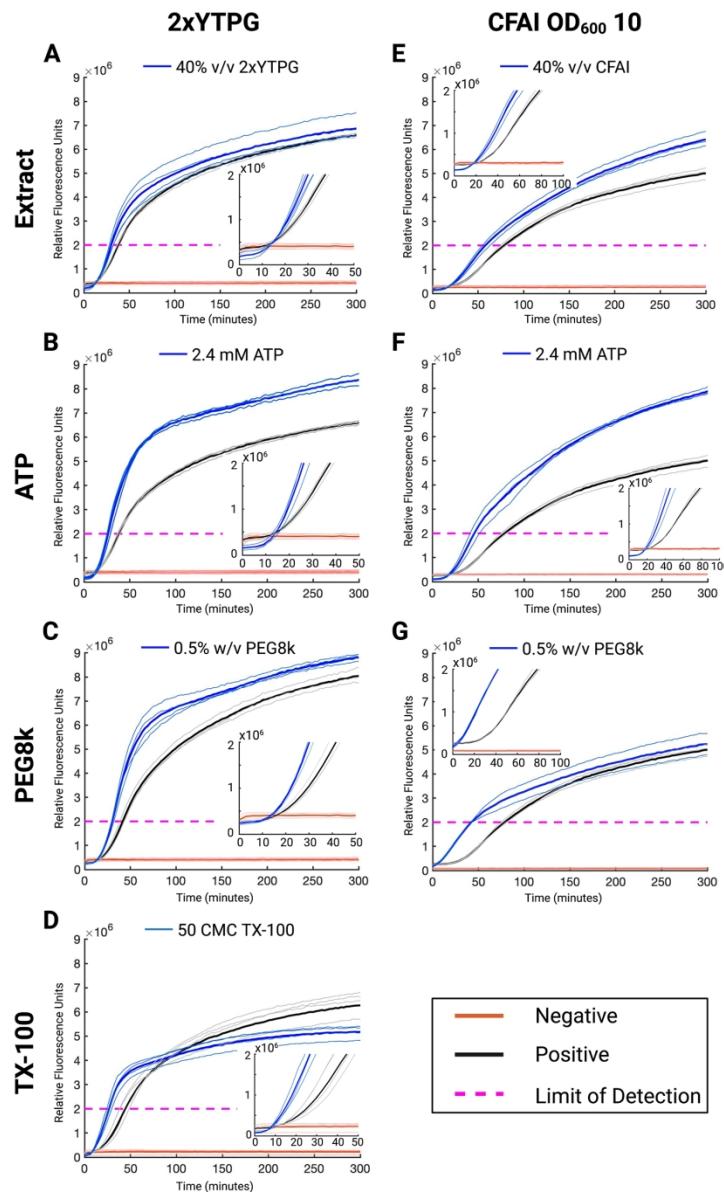
(26) Burrington, L. R.; Barylal, E.; Hui, K.; Lambert, E.; Harding, S. T.; Oza, J. P. The Fold-Illuminator: A Low-Cost, Portable, and Disposable Incubator-Illuminator Device. *Synth. Syst. Biotechnol.* **2021**, 6 (2), 95–101. <https://doi.org/10.1016/j.synbio.2021.04.003>.

(27) Kai, L.; Dötsch, V.; Kaldenhoff, R.; Bernhard, F. Artificial Environments for the Co-Translational Stabilization of Cell-Free Expressed Proteins. *PLoS One* **2013**, 8 (2), e56637.
<https://doi.org/10.1371/journal.pone.0056637>.

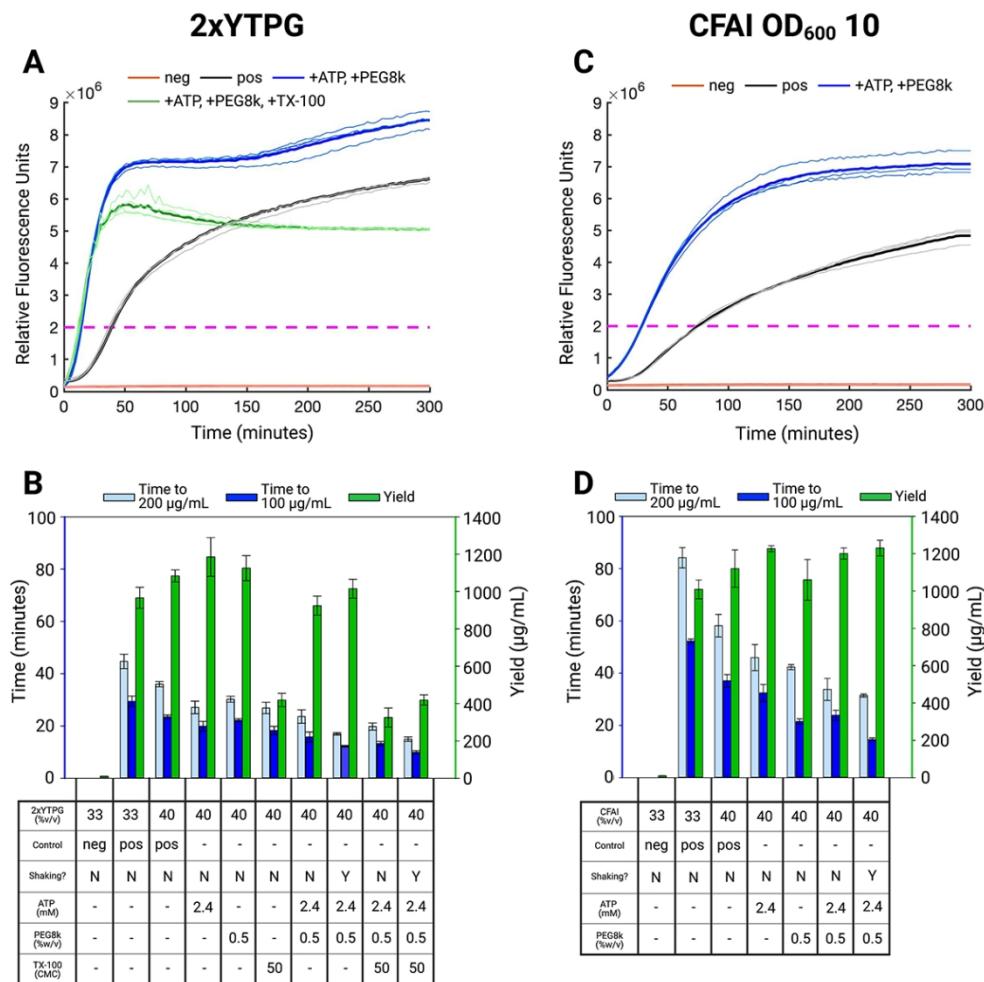

(28) Jewett, M. C.; Miller, M. L.; Chen, Y.; Swartz, J. R. Continued Protein Synthesis at Low [ATP] and [GTP] Enables Cell Adaptation during Energy Limitation. *J. Bacteriol.* **2009**, 191 (3), 1083–1091.
<https://doi.org/10.1128/JB.00852-08>.


(29) Caschera, F.; Noireaux, V. Synthesis of 2.3 Mg/ML of Protein with an All Escherichia Coli Cell-Free Transcription-Translation System. *Biochimie* **2014**, 99 (1), 162–168.
<https://doi.org/10.1016/j.biochi.2013.11.025>.

(30) Simperler, A.; Kornherr, A.; Chopra, R.; Bonnet, P. A.; Jones, W.; Motherwell, W. D. S.; Zifferer, G. Glass Transition Temperature of Glucose, Sucrose, and Trehalose: An Experimental and in Silico Study. *J. Phys. Chem. B* **2006**, 110 (39), 19678–19684.
<https://doi.org/10.1021/jp063134t>.


(31) Moriizumi, Y.; Tabata, K. V.; Miyoshi, D.; Noji, H. Osmolyte-Enhanced Protein Synthesis Activity of a Reconstituted Translation System. *ACS Synth. Biol.* **2019**, 8 (3), 557–567.
<https://doi.org/10.1021/acssynbio.8b00513>.

- 1
2
3 (32) Koley, D.; Bard, A. J. Triton X-100 Concentration Effects on
4 Membrane Permeability of a Single HeLa Cell by Scanning
5 Electrochemical Microscopy (SECM). *Proc. Natl. Acad. Sci. U. S. A.*
6 **2010**, *107* (39), 16783–16787.
7
8 <https://doi.org/10.1073/pnas.1011614107>.
- 9 (33) Go, S. Y.; Lee, K. H.; Kim, D. M. Detergent-Assisted Enhancement of
10 the Translation Rate during Cell-Free Synthesis of Peptides in an
11 Escherichia Coli Extract. *Biotechnol. Bioprocess Eng.* **2018**, *23* (6),
12 679–685. <https://doi.org/10.1007/s12257-018-0418-y>.
- 13 (34) Pechmann, S.; Willmund, F.; Frydman, J. The Ribosome as a Hub for
14 Protein Quality Control. *Molecular Cell*. NIH Public Access February 7,
15 2013, pp 411–421. <https://doi.org/10.1016/j.molcel.2013.01.020>.
- 16 (35) O'Brien, E. P.; Vendruscolo, M.; Dobson, C. M. Prediction of Variable
17 Translation Rate Effects on Cotranslational Protein Folding. *Nat. Commun.* **2012**, *3* (1), 1–9. <https://doi.org/10.1038/ncomms1850>.
- 18 (36) Spencer, P. S.; Siller, E.; Anderson, J. F.; Barral, J. M. Silent
19 Substitutions Predictably Alter Translation Elongation Rates and
20 Protein Folding Efficiencies. *J. Mol. Biol.* **2012**, *422* (3), 328–335.
21
22 <https://doi.org/10.1016/j.jmb.2012.06.010>.
- 23 (37) Kaiser, C. M.; Liu, K. Folding up and Moving on—Nascent Protein
24 Folding on the Ribosome. *Journal of Molecular Biology*. Academic
25 Press October 26, 2018, pp 4580–4591.
26
27 <https://doi.org/10.1016/j.jmb.2018.06.050>.
- 28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Generalized workflow for Cell-Free Protein Synthesis (CFPS) limit of detection optimization. *E. coli* extract is prepared and combined with the appropriate cofactors, substrates, amino acids, salts, and template DNA to initiate in vitro transcription and translation of sfGFP. The reaction mixture is then supplemented with additive(s) capable of decreasing the time to sfGFP detection by eye under ambient light (200 μ g/mL sfGFP) and blue light (100 μ g/mL sfGFP) conditions.

Time-course fluorescence readings for 2xYTPG (left) and CFAI OD₆₀₀ 10.0 (right). Traditional CFPS (A, B), and 40% v/v extract with the indicated additive (C-G) (blue), with a negative control (orange). The 200 μ g/mL (2 \times 10⁶ RFU) limit of detection is depicted (dash). Insets provide a zoom-in view of the control and treatment conditions until the limit of detection is reached. Each panel lists the corresponding additive and its final concentration in the reaction. Data is plotted as an average of a minimum of N=3, maximum N=4 experimental replicates. The average of each data set is indicated by a darker color. Outliers were identified by a Grubbs' Test on time to 2 \times 10⁶ RFU at a 90% confidence interval. Negative conditions have no pJL1-sfGFP DNA template or additive present. CFAI 2.5 is not included due to no observed rate benefits from any additive (other than higher % v/v extract).

125x203mm (300 x 300 DPI)

Single and multi-additive titrations that resulted in faster times to the limit of detection for A/B) 2xYTPG extract and C/D) CFAI OD600 10 extract. A/C) 300 minute time-course fluorescence data from our traditional 33% v/v extract setups (black) as compared to our most optimal rate-boosting setups (blue, green). The 200 µg/mL limit of detection standard is depicted (dash). The average of each data set is indicated by a darker color. B/D) Left Y-axis represents time to 100µg/mL and 200 µg/mL sfGFP from reaction start; right Y-axis represents total reaction yield 18 hours after reaction start. Listed concentrations are representative of the final CFPS reaction. Negative conditions have no pJL1-sfGFP DNA template or additive present. All data is presented with a minimum of N=3, maximum N=4 experimental replicates.

101x100mm (300 x 300 DPI)