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ABSTRACT. We prove the stability of a planar contact discontinuity without shear, a
family of special discontinuous solutions for the three-dimensional full Euler system, in
the class of vanishing dissipation limits of the corresponding Navier-Stokes-Fourier system.
We also show that solutions of the Navier-Stokes-Fourier system converge to the planar
contact discontinuity when the initial datum converges to the contact discontinuity itself.
This implies the uniqueness of the planar contact discontinuity in the class that we are
considering. Our results give an answer to the open question, whether the planar contact
discontinuity is unique for the multi-D compressible Euler system. Our proof is based on
the relative entropy method, together with the theory of a-contraction up to a shift and
our new observations on the planar contact discontinuity.
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1. INTRODUCTION

We consider the Navier-Stokes-Fourier system in three dimensions with periodic bound-
ary: for any x = (1,20, 23) € T3, ¢ > 0,

Op + divg(pu) =0,
(1.1) Or(pu) + divy(pu @ u) + Vep = vdiv,S,

O (p (g + e)) + div, ((p (% + e) —i—p) u) = divy(kV,0) + vdiv,(Su),

where the functions p = p(t,z),u(t,z) = (u1,uz,u3)’ (t,z),e = e(t,x),0 = O(t,z) and
p = p(t, x) represent respectively the fluid density, velocity, specific internal energy, absolute
temperature and the pressure.

The aim of this paper is to investigate the uniqueness, and stability of special discon-
tinuous solutions, known as contact discontinuities without dissipation, of the associated
Euler equation (with v = 0 and k = 0). The study is based on a careful study of the zero
dissipation limit of the Navier-Stokes-Fourier system, for vanishing viscosities (v — 0) and
heat conductivities (k — 0) . We make the following assumptions on the physical system
(1.1).

Assume that the viscous stress tensor S, with the coeffient v > 0, is given by
S = u(0)(Vu 4 (Vu) ") 4+ A(0)(divu) Id3xs,

where (V)" denotes the transpose of the matrix Vu, and Idsy3 represents the 3 x 3 identity
matrix. We assume that p(6) and A() depend linearly on 6, that is:

(1.2) () = 10, A(0) = Mib,

where p1 and A\; are both constants satisfying the physical constraints pu; > 0 and 2u; +
3A1 > 0. By the Fourier laws, the heat flux is given by —xV 0 in (1.1); with £ > 0 denoting
the heat-conductivity coefficient. Here we assume that both the parameters v and x are
the positive vanishing coefficients.

The pressure p is a function of p and 8 of the form:

(1.3) p(p,0) = Rpf +pe(p), pelp) =ap.

The first part of the pressure coincides with the ideal gas laws, while the second part p, is

an elastic pressure (sometimes called cold pressure) proportional to the isentropic pressure

of the ideal gas, with the adiabatic constant v > 1 and both R and a are positive constants.
We assume that the specific internal energy e has the following form:

B ap?’ ! Lo ifg>0,

(1.4) 00 = L. ao={ T8 2y,

where 0, is some small positive constant, and the positive constant c, is chosen such that
@1 is Lipschitz in 6. Note that Q) (6) > 0 for all # > 0. The first term of (1.4) is the energy
associated to the elastic pressure of (1.3). For 6 > 0., (1.4) is consistent with the ideal gas
law, and together with (1.3), ensures that

(1.5) p=(y—1)pe, for 6>6,.

The definition of @y for extremely cold temperature 6 < 6, imposes the validity of
the third law of thermodynamic, which states that the entropy cannot blow up when the
temperature approaches the absolute zero. The validity of the third law of thermodynamic
is important in our study. Note that it requires to deviate from the ideal gas dynamics at
least for very cold temperatures (see below (1.8)).
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We can now compute the entropy functional of the system, following the second law of
thermodynamics:

1
(1.6) fds = pd(—) + de.

p
The entropy takes the form
(1.7) s=—Rlnp+s51(0),
where s1(0) satisfy

0 R :
Q) (2) “-1Inf if 0 > 6,
1. = —_— — ’Y*l

(18) 51(0) /0 P %0 ifo<b<o.

Note that the above state equation for the entropy s satisfy the third law of thermodynamic,
that is, the entropy approaches a constant value as temperature approaches absolute zero.
If v =0 and k = 0, then the corresponding 3D compressible Euler system reads as

Op + divg(pu) =0,
(1.9) O¢(pu) + divy(pu @ u) + Vep =0,

o (54 f) < (5 +0) +0)2) =0

In this paper, we aim to show that a planar contact discontinuity without shear for 3D
Euler system (1.9) is stable and unique in the class of vanishing dissipation limit (kx — 0+
and v — 0+) of solutions to 3D compressible Navier-Stokes-Fourier system (1.1).

1.1. Main result. First we describe a planar contact discontinuity solution to the 3D
compressible Euler equations (1.9) for moderate temperature, that is, 6+ > 60,. If we
consider the following Riemann initial data

_ _ (p,,u,,ef) 1 <0
(1.10) (pyu, 0)(x,t = 0) = { (p4,us,01) x1 >0,

where py+ > 0,01 > 0,,ur = (u1+,0,0)" are prescribed constants without shear for the
3D Euler system (1.9) with @ = (21,72, 23) € R?, then the Riemann problem (1.9)-(1.10)
admits a planar contact discontinuity solution (as a self-similar solution in 1)

 (pmsum,02) < ugat,
(111) (p7 u, 0)($,t) - { (p+7u+’9+) 1> ul*t,
provided that
(112) Ul— = U4 = Ulx, P— = P+,

where pi 1= Rp101 + pe(p+).

By Galilean invariance, we can assume that w1, = 0 without loss of generality. Then the
planar contact discontinuity solution is a stationary solution.

Therefore, we consider a planar, stationary and shifted contact discontinuity solution
(p, @, 0) to the 3D compressible Euler equations (1.9) on T? defined as follows:

(1.13) (p,u,0)(x) := {

with

(p—,0,0-), 0<z1 <3, x=(x1,22,23) €T3
(p4+,0,04), 5 <a1 <1,

(1.14) p:=p_=py onT>
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Since 0+ > 0., it follows from (1.3) and (1.5) that the contact discontinuity solution (p, @, 0)
satisfies the ideal gas equality:

pr = (v — 1)prex.
Thus, the end states £1 for the total energy satisfy

p— P+
gizpieiz = :p+€+:(€+
vy—1 ~—-1

Therefore, we set
(1.15) E:=6 =& onT:

The main theorem is on the uniqueness and stability of the planar contact discontinuity
solution (1.13) to the 3D compressible Euler equations (1.9) in the class of zero dissipation
limits (as x — 0+ and v — 0+) of admissible weak solutions to the 3D compressible
Navier-Stokes-Fourier equations (1.1) in T3.

For statement of the main theorem, we first consider a convex function

0 if p :=min{p_, p1} <y <max{p_,pi} =: p",
(116)  Fly):=q w—p)> Hy<p
(y—p)° ity >p"
Theorem 1.1. Consider the Euler system (1.9) with (1.3)-(1.4). Assume v > 2. Let

U := (p, pu, E) be a stationary contact discontinuity (1.13) with (1.14)-(1.15). Let Uy be an
initial datum such that

[ Con@iltar < o

T3

with the relative entropy (—ps)(Up|U) defined in (1.20) and

(1.17) (—ps)(Uo|U) € L®(2),  for some neighborhood Q0 of the plane 1 =

1

3
For any given T > 0, let (p™",m™" E"Y) be an admissible weak solution of (1.1) on
[0,T] in the sense of Definition 2.1 in Section 2, where m™" = p*Yu" and E%Y =

K,V|2

pm,u <|u > + 6”’”) .

Then, there exists a limit (p, m,E) such that, up to a subsequence, as kK — 0 and v — 0,
PP = p weakly —+ in L>®(0,T; L*(T3)),

(1.18) m™ —~m  weakly in L*(0,T; L%(Tg)),
EMY & weakly—x in L™®(0,T; M(T?)),

where M denotes the space of Radon measures, and
m|?

m _
sup F(p)+—)dox +||E — &l pee(o 1
0,77 /w< (p) 2p> 1€ = Ell L= o spar3))

(1.19)
< C\//TS(—ps)(UdU)daz—kC’/TS(—ps)(UoU)dx.

Furthermore, let (UY)nen be a sequence of initial data such that

/ (—ps)(US|U)dz — 0 asn — oo
T3
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Then, any inviscid limit (p", m",E™) satisfying (1.18)-(1.19) and corresponding to Uj sat-
isfies that, up to a subsequence, as n — oo,

Pt —p  weakly —x in L°°(0,T; L*(T3)),
m" = 0(=pu) in L™(0,T;L3(T?)),
E" = € in L™(0,T; M(T?)).

Therefore, the contact discontinuity is stable and unique in the class of vanishing dissipation
limits of solutions to (1.1).

1.2. Remarks for the main result. e The existence of global solutions for (1.1) should be
constructed following the theory developed by Feireisl [18]. However, note that our assump-
tion especially (1.2), is not compatible with the hypotheses as stated in [18]. For this reason,
we leave the construction of these solutions to a future work. Assumption (1.2) is needed
to get the uniform bound of VHVU"’”||%2(O,T;L2(T3)) (see (2.11)) from the entropy dissipation

(2.6), which is crucial for our asymptotic analysis. Also, we mention that the assumption
on vy > 2 is crucial for the uniform bound (2.10) in Remark 2.1, which is useful in Section 3.4.

e It is well known that Lipschitz solutions to the Euler system (1.9) are stable and unique
in the class of admissible weak (or entropic) solutions (see Dafermos [14] and DiPerna [17]).
However, the situation for discontinuous solutions is far more complicated. Especially, for
the case of entropic shocks or shear flows, the uniqueness is usually not true. Recently,
results on the non-uniqueness were obtained by the convex integration method introduced
by De Lellis and Székelyhidi [15, 16]. Using this method, Chiodaroli, De Lellis and Kreml [8]
showed the existence of Riemann initial data generated by an entropy shock for which there
exist infinitely many bounded entropy solutions. We also refer to [2, 7, 8, 9, 10, 19, 35, 34]
for other related studies on the non-uniqueness of entropic shocks.

These results have been extended by Bfezina, Kreml and Mécha [3] to the case of planar
contact discontinuity, for the case of the 2D isentropic Euler system with the Chaplygin gas
pressure law.

In the case of rarefaction waves (that are discontinuous only at ¢ = 0), the uniqueness
was proved in the class of entropic solutions to the multi-D Euler system (see [5, 20, 21]).
The time-asymptotic stability and vanishing viscosity limit of isentropic Navier-Stokes
equatios/Navier-Stokes-Fourier equations to the planar rarefaction wave of 2D/3D com-
pressible Euler equations could be found in [43, 42, 41, 40].

o In Theorem 1.1, we consider the simplest discontinuous solution for (1.9). Note that this
solution corresponds to the second characteristic field in the 1D setting, and is a fundamental
building block in the study of small BV entropy solutions (see for instance [13, 45]). Our
result shows its stability in the 3D setting. Note that it is not known if this solution is
unique among the class of entropy solutions for the multi-D compressible Euler system.

An important feature of Theorem 1.1 is that it proves the stability in the class of zero
dissipation limits of the Navier-Stokes-Fourier system rather than entropy solutions of the
Euler system. In addition, our theorem shows the convergence of solutions of (1.1) to the
contact discontinuity when the initial value converges to the contact discontinuity itself.
Note that we do not need any a prior: regularity on the dissipation limits, which are
automatically obtained by the entropy bound. Especially, the limits do not need to be
solutions to the Euler system. In the 3D setting, it is not known whether global solutions
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of the Euler system can be constructed for a large class of initial data. This open question
makes working in the large class of dissipation limits appealing.

Replacing the notion of weak solutions to Euler by the one of inviscid limit is already
interesting and important in the 1D setting. We first mention results on the uniqueness
of entropy shocks in the class of entropy solutions satisfying the locally BV regularity (see
Chen-Frid-Li [6]) or the strong trace property (see Vasseur et al. [29, 39, 51] and Krupa
[37]). However, the global-in-time propagation of those regularities remains open (except
for the system with v = 3 see [50]). Recently, Kang and Vasseur [32] proved the uniqueness
and stability of entropy shocks for the 1D isentropic Euler system in the class of inviscid
limits of solutions to the corresponding Navier-Stokes system. This gives an answer, for the
case of entropy shock, to the conjecture: The compressible Euler system admits a unique
entropy solution in the class of vanishing viscosity solutions to the associated compressible
Navier-Stokes system (as the physical viscous system for the Euler). As a comprehensive
study related to this conjecture, Bianchini and Bressan [4] obtained a global unique entropy
solution to a 1D strictly hyperbolic n x n system with small BV initial datum, which is
obtained from vanishing “artificial” viscosity limit of the associate parabolic system.

Theorem 1.1 answers the conjecture in the case of contact discontinuity for the full Euler
system (1.9) with (1.3)-(1.4).

e QOur proof is based on the theory of a-contraction up to a shift, first developed in
the one dimensional hyperbolic case in [29, 51]. The main idea is the construction of a
weight function (the a function) which is both bounded and bounded by below, such that
the discontinuous solutions enjoy a contraction property for the corresponding weighted
relative entropy, up to a shift. With the exception of the scalar case, considered by Leger in
[38], the contraction property is usually not verified without weight (see [46]). In the case
of shocks, the method was extended to 1D Navier-Stokes in [32], and to the inviscid limit
in [30] (see also [1, 11, 12, 27, 26, 31, 36, 37, 48, 49] for other developments of the theory).

For the 1D study in the hyperbolic case of the contact discontinuity, the correct weighted
function is explicit and given by #_ on the left and 64 on the right (see [47]). It was used
to study the zero dissipation limit in 1D in this context in [52]. For the other studies on
the vanishing dissipation limit to the 1D Riemann solution which may contain shock and
rarefaction waves and contact discontinuity, one can refer [24, 23, 25, 22] and references
therein. Note that the limit was proved in [22] for the generic 1D Riemann solution.

Our result in Theorem 1.1 can be seen as the extension of the work of [52] in the multi-D
setting. It is the first application of the method for systems in multi-D (see [33] for an
application to the multi-D scalar case).

1.3. Ideas of the proof. Let us denote U = (p, pu,E) the conservative variables, and
n(U) = —ps the entropy. Since 7 is convex, the relative entropy

(1.20) n(U|U) =n(U) = n(U) — dn(U) - (U = U)

define a pseudo distance of U to U which is locally (for U and U bounded) equivalent to
|U — U|?. Consider now U(t,z) solution to the system (1.1), and U_, U, the left and right
states of the given contact discontinuity. The general idea of the theory of a-contraction
with shift for the hyperbolic case (v=k=0) is to find disjoint shifted domains for all ¢, Q_(¢),
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Q4 (t) such that Q_(¢) UQ(t) = T3, and coefficients a_ > 0,a; > 0 such that

t—a_ / n(U(t,z)|U-)dz + a+/ n(U(t,x)|Uy) dz
Q-(t) Q4 (t)

is decreasing in time. Note that p; = p_ = p, therefore in the Lagrangian variables, the
second law of thermodynamics gives that
(Lizy<1/2)0— + Lz 51/2y04)ds = pd(1/p) + de
is an exact form globally on T3. And so, at least formally, the contraction holds for a_ = 6_,
ar = 04, Q_(t) the set {x < 1/2} transported by the flow {u(s,-),0 < s < ¢}, and Q4 (t)
the set {x > 1/2} transported by the same flow (see [47]). Still formally, considering
2

(p(t,z), p(t,x)u(t, z), p(t,x)[e(t, z) + M]) a solution to the Euler equation (1.9), and 1
the solution to the transport equation:

(1.21) O +u-Vip =0, P(0) = 1gz,51/9),
the following function
(1.22) JO-(1= vl a)nUED[0-) + 6101t (U 1.2 0) d

would be non-increasing in time.

The main obstruction to the study above is that the velocity u solution to Euler system
is not smooth enough to construct solution to (1.21). It also assumes some non-oscillatory
behavior (strong traces) at the boundary of Q4 (t), properties that are not known to exist
for solutions to Euler.

The idea is then to consider the Navier-Stokes-Fourier system instead, which provides
solutions u € L?(0,T; H'(T?)). With this regularity, the flow (1.21) can be constructed.
Following [12, 52|, we consider the extra viscous v and k terms as source terms to be
controlled. We first pass into the limit as k goes to zero. For this limit, extra regularizations
have to be performed, via convolutions, both on u and ). When x = 0, we pass to the limit
in the regularization terms, using controls on Lions commutators (see Lemma 3.6).

When the last limit v goes to zero, the regularity on the velocity w is lost, and so Q_(t)
and Q. (t) can become mixed to each other. Note that £ = £, = &, since the contact
discontinuity has values in the regime where the gas verifies the ideal gas equality (1.5).
Therefore it can be shown in Lemma 2.2 that the weighted relative entropy (1.22) controls
uniformly

. B 2
Flo)+Ge — &)+ 2
T3 2

9

where G is the convex function:

Gly) = WP, forfyl <1,
2ly| —1 for |y| > 1.

Note that the function G is equivalent to min(|y|%, |y|), and since we are in a bounded
domain, this provides a control on the L'-norm of £ — £. However the function F is degen-
erated, and is equal to zero for p, < p < p*. Consequently, (1.22) controls the perturbations
in both velocity and energy. However, due to the possible mixing of the area 2_ and Q,
(1.22) controls only the value of the density outside [p., p*]. This degeneracy is similar
to the situation of the pressureless Euler system in [28]. Thus, we recover the control of
the density in the similar way as [28], using the continuity equation. Indeed, if pu = 0 at
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the limit (which is a quantity controlled by the relative entropy), then it follows from the
continuity equation that d;p = 0, and so p = p.

The rest of the paper is as follows. In Section 2, we first present the notion on admissible
weak solutions to (1.1). Then we provide the explicit form for the weighted relative entropy,
and construct nonlinear functionals uniformly controlled by it. Section 3 is dedicated to the
proof of the main theorem.

2. PRELIMINARIES

In this section, we first present the Definition 2.1 as mentioned in Theorem 1.1 on admis-
sible weak solutions of (1.1), together with useful bounds in Remark 2.1. Then we compute
the explicit form for the weighted relative entropy, and construct nonlinear functionals
controlled by it.

2.1. Admissible weak solutions for the Navier-Stokes-Fourier system (1.1). .

|uf?

Definition 2.1. We say that (p, pu, &, ps) with € = p (T +e> is an admissible weak

solution to the 3D compressible Navier-Stokes-Fourier system (1.1)-(1.4) in [0, T] x T3 with
an initial data (po, ug, 0o) if the following holds:
(i) (Mass conservation equation) For any test function o € D([0,T) x T3),

(2.1) /OOO /T3 (paTcp + pu - Vgp) dzxdr + /1r3 po(z)p(z,0)dx =0,
and
(2.2 p € C0,T]; Lo (T9).

(it) (Momentum conservation equation) For any ¢ € [D([0,T) x T3)]3,

(2.3) / / (pu@ﬁﬁ—{—pu@u :V@+pdivg—rS: V@’)dde—}-/ pouo(x)-G(x,0)dx = 0.
0 T3 T3

(iii) (Energy inequality)

(2.4) E(x,t)de < | E(z,0)dz < oo, vt € [0,T],

T3 T3
where E|i=o satisfies the compatibility condition:

(ol g™
E\t:O—Po( > o1 +Q1(90)>,
and
(2.5) limsup [ &(z,t)dx = E(x,0)dz.
t—0+ JT3 T3

(iii) (Entropy dissipation) For any non-negative test function ¢ € D([0,T) x T3),

> \Y V|2 S:V,
/0 /TB [psgoT—i—psu.ch—ne-Wp—i—f@’eZ’ go—i—y 0 uap dxdr

(2.6)
+/(mﬂ%®¢@ﬂmx§&
']1‘3
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where (ps)|i=o satisfies the compatibility condition:

(2.7) (ps)|t=0 = —RpoIn po + posi(fo),
and
(2.8) imsup / (o) () = / (o), O)n(a)dr, ¥y € DT,

Remark 2.1. Ify > 2, then by (2.4), (2.6) and (1.7), there exists a constant C' independent
of k,v (but depending on the initial data) such that

(2.9) 120l Lo 0,7522(m3)) < C,
(2.10) o8]l Lo (0,1;22(m3)) < C,
and
v |”
(2.11) V|’VUH%Q(O,T;L2(T3)) TEI ) <C
L2(0,T5L2(T3))

Indeed, since ||pl| oo, rr7(13y) < C by (2.4), we have (2.9). The uniform bound (2.11) is
obtained by the entropy dissipation of (2.6) with (1.2). Also, note that (1.7), (1.8) and
(2.4) imply that

[Pz <c( [ plmpPrpde+ [ pdot [ P61, d0)
T3 T3 T3 T3

ﬂ
C(/ p7das+/ p2d:1c+/ p2¢9%119>9*d:z)
T3 T3 T3

C( pldx + pPdr + | (p7 + ,09)19>9*d:c) <C,
T3 T3 T3

IN

IN

which gives (2.10).
Note that, to obtain (2.10), we use the setting (1.4) and (1.8) satisfying the third law of
thermodynamics. This is the only place we use it.

2.2. Weighted relative entropy. We define a function § : R, — R by
(2.12) S(@Q1(0)) :=s1(60), 6>0.

Then the function S(Q1) is strictly concave in Q1. Indeed, since S'(Q1(0))Q}(0) = s1(0),
and s (0) = Q%(0)/6 by (1.8), we have

(2.13) S'(Q1(9)) = 1/0,
and thus S”(Q1(0))Q}(8) = —1/62 < 0, which yields S”(Q1) < 0 by Q) > 0.

Let U := (p,m,&) be a solution of (1.1) where m = pu and & = p(@—i—e), and

U := (p,m,€) be the contact discontinuity (1.13) where m = 0 and £ = pe. As in [47, 52],
we will consider the relative entropy functional weighted by the temperature 6 connecting
two different constants 6_ and 6:

(2.14) /TS 0(—ps)(U|U)dx,
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where (—ps)(U|U) represents the relative entropy associated with the entropy —ps, defined
as follows: for n(U) := —ps,

(2.15) (mUIU) == nU|U) = n(U) = n(U) — dn(U) - (U - U).

In general, the notation (2.15) will be used for a given function 7 throughout the paper.
Note that if U + n(U) is strictly convex, then n(U|U) is positively definite. Thanks to
the following lemma, we see that the functional (2.14) can be written as the sum of four
sub-functionals that are all positively definite.

Lemma 2.1. Let U := (p,m, &) be a solution of (1.1) with m = pu and & = p(% + e).

Let U := (p,m = 0,&) be the planar contact discontinuity (1.13). Then,

o), Iml
-1 2p

(2.16) 0(=ps)(UIU) = OR(pIn p)(plp) + Op(=S)(Q1(0)|Qu1(0)) +

Here, since all of p— plnp, p — pe(p), Q1 — (=8)(Q1) and (p,m) — % are strictly
convex, all the terms on the right-hand side of (2.16) are positively definite.

Proof. First of all, by the definitions (1.7) and (2.12), we have

(2.17) (=ps)(U|U) = Rplnp—pS(Q1(9)) — (Rﬁlnﬁ—ﬁs(Ql(é))) —d(—ps)(U) - (U -0).

To compute the last term above, we first note that
(2.18) - B _ _
d(=ps)(U) = 0p(—ps)(U)dp + Om(—ps)(U)dm + 9 (—ps)(U)dE = —s(U)dp + pd(—s)(U )

To compute d(—s)(U) above, we use the thermodynamic relation (1.6) with e =
that is,

b\(‘ﬁ

fds = pd(i) + d(i — |u2]2) = —%dp — pidp + ;dé’ — udu.

This together with @ = 0 implies

i ps)(0) = (B—s)0) + 2+ E ) ap -
0a(~ps)(U) = (0(~5)(T) + ; )dp — d,

Thus,

(2.19) 0d(—ps)(0) - (U= 0) = (8(~s)(0) + ptf) (p—p) — (€ &).

Therefore, we plug this into (2.17) with (1.7) to obtain
0(—ps)(U|U) = ORpIn p — 0pS(Q1(0)) — ORpIn p + 0pS(Q1(0))

+0(= Rlup+ SQiO)) (0~ p) - )+ (€ - &),

=:J
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For J, we use & = pe and (1.5) with 6 > 6., to find that

p+é€
= = e,
p
which yields
2
m
J = —ve(p — p) + pe — pe + |2/‘>

Since it follows from (1.3) and (1.4) that

Pe(p)
= — 9
pe N — 1 + IOQI( )7
and especially,
__ p(p) ;
= — 9
=TT vQ1(0),

we use (1.4) and (1.3) to have

7= 5 ml?
7= =2~ p) - 1QuB)p - )+ 2 4 pu(0) — P12 5 )+

y—1 1 2p
_ L s M- 7 o) — 5010 + L
= ﬁpe(plp) —7@1(0)(p — p) + pQ1(0) — pQ1(0) + T
Moreover, using the fact that Q1(6) = ilé by (1.4), we have
R 5)— RO(p—p 0 gy) + L
= S qpelelo) = BB(p = p) + p(Qu(8) — Q1(6)) + 5 -

Hence, we have
0(~ps)(U|0) = R (plnp — plnp — (np+1)(p - p))

- 00(S(Qu(8) ~ S@(B) - 5(@(6) - Q@)) + —pelolo) + 5 -

Since S'(Q1()) =1/ by (2.13), and (plnp) =Inp+ 1, we have the desired representation
(2.16). O

2.3. Nonlinear functionals controlled by the weighted relative entropy. We recall
the convex function (1.16) and define a nonnegative function G as follows:

(2:20) G(y) := min{ly|,y*}.
Lemma 2.2. Let U := (p,m = 0,&) be the contact discontinuity (1.13), and Uz :=
(pt,prusr = 0,EL = &). hen, there exists a constant C' > 0 such that for any solu-
tion U = (p,m, &) of (1.1),

[m[?

(2.21) Flp) +9(E = &) + 2= < Cin {0 (=ps) (UIU-), 0.4(~ps) (U[U4) }.

2p

Proof. First, since « > 2, there exists a constant C' > 0 such that |p — p+|?> < Cpe(p|p+) for
all p > 0, which together with (1.16) implies

F(p) < Cmin{pe(plp+),pe(plp-)},  Vp=0.
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Thus, it follows from (2.16) that

jm? .
Flp) + - < Omin{0-(=ps) (UIU-), 04 (~ps) (UIU+) |
Therefore, it remains to prove that
(2.22) G(€ ~ &) < Cmin {0-(~ps)(U|U-), 01 (~ps)(UIU) }.

Indeed, using the following Lemma 2.3 together with the convex open set ! =R, x R x R
and the strict convex function n = —ps, we find that for each £ = €4,

G(E—&) =min{|€ - &|,|€ — €} <min {|U — Us|,|U — UL}
< C(=ps)(U|Ux) < COL(—ps)(U|Ux),
which together with £ = £_ = £, implies (2.22). O

Lemma 2.3. Let ) is a convex open subset of R". Let n : @ — R be a strictly convex
function. The relative function n(-|-) (defined as in (2.15)) satisfies the following:
For any zg € €1, there exists a constant C' > 0 such that

n(z|z0) > Cmin{|z — zo|, |z — 20|*}, Vze€ Q.
Proof. Since 2 is open, for any fixed 2y € {2 there exists a constant » > 0 such that
{z||z=2|=r}CQ.
For any vector v € R™ such that |v| = r, we define a non-negative function f, : R — R by
fo(t) == n(20 + tv | 20).
Then,
fu(t) = (dn(zo +tv) — dn(ZO)) 0.

Since 7 is strictly convex on the convex set 2, f}/(t) = v(d*n)(z0 + tv)v' > 0 on the interval
I ={t| z+ tv € Q}, which implies that f, is strictly convex on I.
Since f/(0) = 0, we have

(dn(zo +v) — dn(zo)) v =fl(1) > 0.

Moreover, since v — (dn(zg +v) — dn(zo)) - v is continuous on the compact set |v| = r,
there exists a constant C'(r) such that
fi(1) > C(r) Yo with [v| = 7.
Thus, for all v with |v| =7,
fot)>C(r) Vit>1,

which implies that for all v with |v| =7,

b i C(r)
vez2, L) =LO)+ [ fiz [ fi2C0)(E-1) = ——t.
1 1
Now, for any z € Q with |z — 29| > 27, by putting v = é:i‘)'r and t = z=20l above, we have
C(r
n(elz0) = £ult) = Sz — 2],

2r
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On the other hand, the strict convexity of  and the definition of the relative function imply
that there exists a constant C;, > 0 such that for any z € Q with |z — 29| < 2r,
1(z]z0) > Crlz — 20|

Those two estimates imply the desired estimate. ([

3. PROOF OF THEOREM 1.1

As explained in Section 1.3, we will construct the 1 function transported by the velocity
field, with regularizations.

3.1. Construction of shift functions. For the velocity u™" being the weak solution to
(1.1), we first consider a family of spatial-mollifications of u as

uy” (x,t) == /R3 u™ (z =y, t)ns(y)dy,

where 75 denotes the mollifier defined by
1
(3.1) ns(z) = 5377(‘?) for any 6 > 0,
for a non-negative smooth function 7 : R — R such that [, 7 = 1.
Note that since u is periodic in z, so is @3"”. Indeed, for each i =1,2,3,

as (v + e, t) = /RB Y (x4 e; —y, t)ns(y)dy = /RS ™ (x —y, ns(y)dy = a5 (z,1).

For the smooth velocity field a’g’”, we define 1/}?"/ as the unique solution of the following
transport equation:

o + 1y - Vip =0,
0, ifo<a <31,

(3.2) _. —
P(z,0) =: o(x) = { 1, if % <x <1,

x = (21,29, 23) € T,

For any fixed (z,t) € R? x [0,7], we define a characteristic curve X (7;z,t) generated by
uy”, passing through « at 7 = ¢ as follows:

d — KR,V
(3.3) X (T t) = us" (X(rs2.8),7),
X(T=t;x,t) =z
Note that since ;" is smooth in 2 and [|@§"||ci(sy € L*(0,T), the above ODE has a

unique absolutely continuous solution X (7;z,t) on 7 € [0,T].
Then, since it follows from (3.2) and (3.3) that

(3.4) Y3 (2, 1) = Po(X (052, 1)),
it holds that
(3.5) 0 <9y (z,t) <1, V(x,t) €T x[0,T).

Remark 3.1. Note that the solution 1/1?’”(@ t) is periodic in x. Indeed, since ﬁg’y is periodic
in x € T3, it follows from (3.3) that for eachi=1,2,3,

d d
. (X(7; 246, t)—€;) = .

X(m;a+e;,t) = uy” (X (13 24€5,t), 7) = 03" (X (73 04€, 1) —€;,T),
-
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where e; (1 =1,2,3) is the standard unit vector. Thus, we find that for each i =1,2,3,

%(X(T;l‘ +e;,t) — ei) = ﬂg’V(X(T; T+ e, t) — e, 7'),
(X (152 + e, t) — €)[r=t = 2.
Therefore, by the uniqueness of solutions to (3.3), for each i =1,2,3,
X(r;2,t) = X(1;2 + e, t) —e;, V7 €[0,T].
This together with the periodicity of 1o implies
V5 (x4 e t) = ho(X (052 + €4, 1)) = o (X (052 + e, t) — €;) = Yo (X (032, 1)) = 5" (2, 1).
Hence, V5" (z,t) is periodic in x € T?.

Since the solution 5" to the equation (3.2) is still discontinuous, we consider a family
of mollifications of d)g’” as

(36) Gt = [ )

where 7. denotes the mollifier defined by in (3.1) with the parameter § replaced by another
parameter €.
Note that by (3.5),

(3.7) 0 <¢5?(x,t) <1, Y(z,t), Ve > 0.
3.2. Weighted entropy inequality.

Lemma 3.1. Let U := (p,m, &) be a solution of (1.1) in the sense of Definition 2.1, and
U:=0_ (1 — 1/):;’5”) + 9+1/J§’Ey. Then,

[ o Ui~ [ (-ps) U0 (z,0)ds
T3

T3
, t Vo2 S:Vu
+ m1n{9+,9_}/0 /1r3 (H 2t )(x,T)d:ch
¢

wntoe 00 [ [ S Vidsar

o Jrs 0 .

¢
+ (04 — 0_)/0 /11‘3 (ps)(U(x,T))(ang’: +u" - Vw(';;”) (z,7)dzdr <0

Proof. Let ¢ : R — R be a non-negative smooth function such that ¢(s) = ¢(—s), [ =1
and supp ¢ = [—1,1], and let

Pc(s) = lgb(s — C) for any ¢ > 0.

¢ ¢
Then for a given t € (0,7), and any ¢ < t/2, we define a non-negative smooth function
(39) pre(®)i= [ (6c() = dclz =)

For test functions of the entropy inequality (2.6), we consider a family of non-negative
functions

95(377 T) = l:[l(x7 T)(Pt,ﬁ(’r)7



UNIQUENESS OF 3D PLANAR CONTACT DISCONTINUITY 15

where W :=0_(1 — ¢57) + 0,457
Then, it follows from (2.6) and ¢; ¢(0) = 0 that

/Ooo As(_pS)(U(x’T))q}(x’T)( — (7)) dwdr + JE+ JE+ JE <0,

where

AR

— /OO/ R|V6’|2 + I/S i qu)(x,v')\lf(x,v')gotC(T)dxdT,
T3 0 ’
J? = — . V¥( dadr,
/ /Td/i (@, T)ppc(T)dxdr
00 =02) [ [ o0 (0052 + u- VI ) (o

'

A2

First, since ¥ € C([0, T]; C>(T3)) and ¢1.c (1) = ¢¢(1) — d¢(r — 1), (2.7) and (2.8) implies
that as { — 0,

/OO/ (—ps)(U(az,T))\I/(x,T)(—go;C(T))da:dT — (—ps)(U(m,t))\I/(x,t)dx—/ (—ps)(Up)¥(x,0)dx.
o Jr3 T3 T3

Likewise, as ¢ — 0,

¢ 6] S:
Jg —>/ / m‘v | +v avu)(l‘,T)\I/(.fE,T)dI‘dT =: Jp,
T3

JC — — / / /i— VU (x,7)dxdr =: Ja,
T3

JE (0, —0.) /0 /T () U ) (0rT52 4w V) (o)

In particular, using the assumptions (1.2) together with (3.7), we can show

t 2
le/ /3 (n|vez| +1/\Vu|2>(:1:,7')\1’(33,7')dxd7'
0 JT
t 2
Zmin{0+,0_}// (Ii|vg| +V]Vu|2>(:c,7')dxd7'.
o Jrs 0

Moreover, since
t
Vo —
Jo = k(04 — 0_)/ / — - VY5l dadr,
0 T3 9 ’
we have the desired estimate. O

3.3. Weighted relative entropy inequality.

Lemma 3.2. Let U := (p,m,&) be the planar contact discontinuity (1.13). Then, there
exist constants C > 0, C1,Cy such that for a solution U = (p,m,E) of (1.1) in the sense
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of Definition 2.1, we have

[ 0= G0-om vy + 5520 (o U101

t 2
+min{0+,9_}// (F&|v0§| +V\Vu|2>(a:,7')dxd7'
3
(3.10) 0T .
_ o  _
SC’5+C/ (—ps)(U0|U)dac+f<;C// mlvw?g”ldxdT
T3 0 T3 0 ?

t

+ /0 /T 3 (Clp + C’g(—ps)(U)) (aﬂﬁgj s v&gg’) (, 7)dwdr.
Proof. First, using the definition of the relative functional, we have

£(t) = [ [(1=552)0- (-ps)UIU-) + 5520, (<o) (U102 (o, )
_ /TS U(x, 1) (—ps) (U, ))d
= [ =5 (0 ps) U 4 0l ps) (U - (U~ U
me
— [ 5 (B W) + 0d(p) V) - (U U)o

=:Jg

Then, using (2.19),

= [ =) [o-p (U + (0- (90 + P ) o= po) = (€ =€) da

TRV pP— +E_
- /Tg (1—d5) [(9_(—3)(U_) e )p —p— 5} de.
Likewise,
kv + &
) = /T [0 + B o — ]
Set
om0 (- U )+ TS g ey + B
p— P+

Thus, using p = p_ = p4, we have
(3.11)

L) = [ Wz t)(—ps)(U(z, t))ds —

0= [ ¥ U )da— |
= M(t), Vt>0.

Since 11_1(';’; € C([0,T); C>=(T3)), the initial conditions (2.2), (2.5), (2.7) and (2.8) imply

MO = i, M)

[((1 — 57 )B- + igg”m)p —p— 8} (z,t)dz

= /T L Y(z,0)(—ps)(Up)dz — /Tr [((1 — 5L (,0)) B + b5 Y (=, 0)B+)po —p— 60} du,
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which together with (3.11) yields

@ 0)(=ps)(Uo)dz - /W [((1 —U5r)B- + z/?[{;”ﬂ+>po —p— 50} dz
N /T [ — U5 (2,0))0-(~ps) (TolU-) + U5 (2,0)04 (—ps) (Up|U) | de
=: Ly.

Thus, we have

L(t) — Lo = M(t) — M(0)
= /TS [\If(w,t)(fps)(U(x,t)) - W(O,t)(fps)(Uo)}dm
- /TS [ (( — 57 ) B + b5 ﬁ+)( )—po((l — 5 ) B- +1E§”,Z’ﬁ+)(:c,0)}dx
+ /TB(E — &)dz =: Ry(t) + Ro(t) + Rs(t).

First, by (2.4), Rs(t) <0
To handle Rs(t), we consider the following test functions for (2.1):

o(@,7)i= (1= 050) B + 05 B: ) (@, T)prc(r),

where ¢; - are as in (3.9). Plugging the above test functions into (2.1), and taking ¢ — 0
together with the same argument as before, we have

t
Ra(t) = (B — B-) /0 /11‘3 p(z,T) (BTz/J:;’eV +u- Vw(';’;) (x,7)dzdr
Therefore, using (3.8), we have

\V9!2

L(t) < Lo—min{0+,9}/t/
R0y — 0 |/ / ‘WHW \dwdr

+ / C’lp + 02(—p5)(U)> (87@[7;:;/ +u- Vq[);g/) (z,7)dzdT,
o Jr3

where C1 := 4 — 8-, Co:=04 —0_.
Since ¢§’;|t=0 =g * ne by (3.4), it follows from (1.17) that

+ V|Vu|2) (x,7)dxdr

L= [ (1= 00 1)0- (=ps)(UOIU-) + (0 0. )04 (=) Ul | da
1/2+6 3
<C’/ —ps)(Up|U) dx—I—C//2 ) —ps)(Up|U)dx

< C’/TB(—ps)(Uo]U)dx +Ce.
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Note first that since the velocity u depends on k, v, 1/15 depends on k,d,e,v by the

definition (3.2). Thus, the left-hand side of the estimate (3. 10) depends on k, d,e,v. There-
fore, before performing the limit process for (3.10), we may first use Lemma 2.2 to ensure
that the left-hand side of (3.10) controls a new nonlinear functional independent of those
parameters &, d, e, v. Indeed, using Lemmas 2.2 and 3.2 together with (3.7), we have the
following Proposition.

Proposition 3.1. Under the same hypotheses as in Lemma 2.2, there exist constants C > 0,
C1, Cy such that for a solution U™ := (p,m, &) of (1.1),

(3.12)
_ /41/2 9/41/2
/ (]-"( FVY 4 GERY — €) + | d +/ / W | + |V )(x 7)dzdr
2 K,V T3 9;{1/

<C’5+C’/ —ps)(Uo|0) d$+mC/ / T |V1/;;’5V|d:vd7'

+ / Clpw + C’g(—pS)(U”’”)) (aﬂzgj e wgg) (z,7)dwdr.
0 JT3

The remaining part of the proof is dedicated to the asymptotic analysis on passing to the
limits for the parameters k, d, ¢ and v in order.

3.4. Passing to the limit as k — 0. First of all, since Young’s inequality yields

t K,V K,V|2 t _
HC/ / [Vo ||V¢ Uldzdr < = / / Vo] d:EdT+I€C/ / V5|2
o Jrs 0% s (0%7) 0 J13 <

it follows from (3.12) that

’ n7y|2

/T (Fey g =8+ T e

< Ce+ C'/ (—ps)(Uo|U)dx + Jy + Ja.
T3

t
Ji = kC / / (Vs Pdzdr,
0 JT3 ’

P /Ot [ (Clp”’y n 02(_p8)(Un,u)> (aﬂzggl Lo qu(’;;l/> dxdr.

For Ji, using V45" = ¢§" « Vn. by (3.6), and 0 < 95" <1 by (3.5), we have

(3.13)

where

/ / |V¢ Y|?dzdr < C(e) independent of ,

from which,
Ji—0 ask—0.

For Js, we will use the following uniform bound :
(3.14) W™ || L2(0,r;m1 (r3y) < € (independent of k, 4, ¢).
This follows from (2.11) and

HUHWH%%T?’) < C[HVU ’ Y pr o) VPR |2 sy | < C
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which is obtained by Lemma 3.3 together with (2.11), (2.4), (2.9).

Lemma 3.3. [18, Lemma 3.2] Let v € W2(Q) for a bounded domain Q C RN, and p be a
non-negative function such that

O<J\4§/pda:7 /p”d:cSEg,
Q Q

where M, Ey and v > 1 are some constants. Then there exists a constant C = C(M, Ey)

such that
HUH%Q(Q) < C<||va||%z(g) + (/Qp|v|d:c)>

By (3.14), there exists u” € L?(0,T; H*(T?)) such that

(3.15) u™ — ¥ weakly in L2(0,T; H'(T®)) as k — 0.
Note that it follows from the uniform bound (3.5), there exists 1§ such that
(3.16) 0<75 <1

and

(3.17) P9 — % weakly-* in L®((0,T) x T%) as k — 0.

To get the desired limit from Jo, we need to rewrite 0,457 + u™" - V)5 as follows: First,
take the mollification on the equation (3.2) with the mollifier 7., to have
(3.18) atzzgj;: + (ug” - Vy5")e = 0,
from which, we have
b5t + " - VYl = Ry,
where
R5Y =™ VYl — (g - Vg

equivalently,

Ryl = - V! — (div(ay"5)) o+ ((divag")oF”)

By using the above representation, we rewrite Jo as

t
Ja ::/ / <C1p“"/+CQ(—ps)(U'*’”))R§”EdedT,
0 Jrs

We will first show that there exists G¥ € L>(0,T; L*(T?)) such that
C1p™" 4 Cy(—ps)(U™Y) — G”  strongly in L*(0,T; HY(T?)) as x — 0.
For that, we may use the Aubin-Lions lemma (see [18, Lemma 6.3]):

Lemma 3.4. Let {v,}22, be a sequence of functions such that v, are uniformly bounded
in L?(0,T; L9(2)) N L>(0,T; LY(Q)) with q > % Furthermore, assume that

Ovn > gn,  in D'((0,T) x Q)

where g, are uniformly bounded in L(0,T; W~—""(Q)) with m > 1 and r > 1. Then
{vn}22, contains a subsequence such that

Up =V in L*0,T; H'(Q)) strongly.
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In order to apply Lemma 3.4 to the entropy inequality (2.6):

VOV S Vs

(P ™Y )ptdiv(p™u s ) — kdiv ( O )+ )2 Ve

>0 in D'((0,T)xT?),

we set

elﬂl,u gn,y 2 S K,V 4
(pKV KV) > dlv(p/-euuliu KV)"‘Hle(V ’v ‘ Vu Z )

Qr.v ) -k (6/@,1/)2 oK.V

Since it follows from (2.10) and (3.14) that p™”s™" and u™" are respectively uniformly
bounded in L?(0, T; L*(T?)) and L?(0,T; L°(T?)), g¥ is uniformly bounded in L?(0, T} Wwb2 (T3)).
Since \/E% is uniformly bounded in L?(0, T; L?(T3)) by (2.11), g4 is uniformly bounded
in L2(0,T; W~12(T3)). Moreover, g5 + g7 is uniformly bounded in L(0,T;L'(T3)) <
LY(0,T; W_l’%(’]T3)). Therefore, by the Aubin-Lions lemma, {p™"s""}.<¢ is pre-compact
in L2(0,T; W—152(T3)). Thus, there exists G¥ such that
(—ps)(U™) — G% strongly in L*(0,T; H'(T?)) as s — 0,
in addition, by (2.10),
GY € L>=(0,T; L*(T?)).
Likewise, applying the Aubin-Lions lemma to the continuity equation:
™ + div(p™u™) =0, in D'((0,T) x T?),
and using (2.9) and (3.14), we obtain that there exists p* € L>(0, T; L?(T?)) such that

(3.19) P — p¥  strongly in L*(0,T; H1(T?)) as x — 0.
Thus, putting G¥ := C1p” + CoGY, we have

(3.20) IG” | Lo 0,;2(13)) < €, (independent of ¢, §)
and

(3.21) C1p™" 4 Cy(—ps)(U™Y) — G¥  strongly in L*(0,T; H~Y(T3)) as x — 0.

Next, we will show that

(3.22) R§Y — Ry, weakly in L*(0,T; H'(T%)) as x — 0,
where
(3.23) R§, = u" - V5, — (div(agey)) + ((divag)yy)..

For that, we may derive a strong convergence of 1/1(';’”. Since the equation (3.2) can be
rewritten as

Opps™ = —div(ug™ ") + (divag™)es”,
the uniform bounds (3.5) and (3.14) imply that {9;9;" } x>0 is bounded in L(0,T; H~(T?)).
Then, this together with the bound (3.5) and the Aubin-Lions Lemma implies

(3.24) Y9 =y in L*(0,T; HY(T%) ask — 0.
Moreover, note that (3.14) with the mollification implies
(3.25) a5 | 20,7 m2(r3y) < € (independent of &) .
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Then, using the following Lemma 3.5 together with (3.14), (3.5),(3.24) and (3.25), we have

(div(ag"ys")), — (div(ufe¥)), weakly in L*(0,T; H'(T?)),
((divﬂ?’”)wg’y)s—\ ((divﬂg)@bg)s weakly in L2(0,T; H'(T3)).

On the other hand, since (3.5) and the mollification yield
V5 | L (orizee(rsy) < € (independent of )
which together with (3.14) implies
(3.26) ™" - V52 || 2o, (rsy) < € (independent of ) .
Moreover, since (3.24) with the mollification implies
Vs = Vg§. in L*0,T; H(T?)) as k — 0,
this together with (3.15) and (3.26) implies
u™" - V@;’Ey —u” - Vy5. weakly in L*(0,T; HY(T?)) as k — 0.

Therefore, we obtain the desired convergence (3.22).

Lemma 3.5. Assume that {uy}nen and {¥n}nen are sequences such that one of the fol-
lowing holds:

(i) wp —u in L*0,T; HY(T®) and o, =t weakly—+ in L®((0,T) x T?);
(i) n —¢ in L*(0,T; H(T?)) and
[%nll Lo 0,0y xT3y + Nunllp2 0,180 (13y) + [IVdivua| L2 0,7;2(13)) < C (independent of n).
Then, for any fixed € > 0, up to a subsequence,
(m)6 — (W)E weakly in L*(0,T; H'(T3)) asn — 0,
(m)6 - (m)g weakly in L*(0,T; HY(T3)) asn — 0.
Proof. If the assumption (i) holds, then
Untp — uwtp  and  (divu, ), — (divu)yy weakly in L2(0,T; L*(T3)).

Thus, thanks to the spatial mollification, we have the desired convergence.
If the assumption (ii) holds, then up to a subsequence,

Unthp — utp and  (divug ), — (divu)y  in D'((0,T) x T3).
Moreover, since
I (diV(Un%z))E||L2(0,T;H1(1r3)) + H((diVUn)T/)n)a”L2(0,T;H1(1r3)) < C (independent of n),
we have the desired convergence. ([l

Therefore, (3.21) and (3.22) implies

t
Jo — / G"RY sdxdr, Vt<T.
0 JT3 ’
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Hence we have from (3.13) that

‘mn,V’2

hmlnf/ (.7:( PV 4 GEMY - &) + 2 )da:

Kk—0

(3.27)
<C’€+C/ —ps)(Uo|U) d:L‘+/ / G"R{ sdxdr, Vt<T.

Since it follows from (3.15) and (3.19) that
(3.28) mY = pPrutY —~ pPu¥ = mY  weakly in D'((0,T) x T?),

using the weakly lower semi-continuity of the convex functionals p — F(p) and (p, m) —

|";| , we have

l/’2

(3.29) /W (F()+ ’Z

)dm < hmmf/ (f( Kvl’) + ’ml‘i,l/|2>d$
k—0 T3 P 2[)5,1/ '

On the other hand, since the definition of the functional G yields that the quanity f :=
EMY — & satisfies

dr = d d d 24 d
/mx /If \f|x+ " |f|as<,/ x,/ i x+/|> flde
U f)dx + G(f
T3 T3

and it follows from (3.27) that [13 G(f)dx is uniformly bounded in x, we find that there
exists &Y € L*>(0,T; M(’]I‘3)) such that

EMY = g weakly —* in L>(0,T; M(T?)).

Therefore, this and (3.30) imply

Hgl’ _ gHLoo(QT;M(TB)) < liminf sup <\/ - g(glﬁ,l/ _ g)dx 4 N g(gn,u - g)dx) ]

£=0 ¢e0,7)

Hence, we obtain from (3.27) and (3.29) that

V|2

(3.31) sup}/TS (F(p”)+ Im

v oo < v v
te0,T 20" )d5”+ 1€ = Ell Lo 0,r,m(13)) < C sup}( ,,45764_.,4875)’

tel0,T
where

t
g5t Ca—i—/ (—ps)(Uo|U)dx + / G" R sdxdr| .
T3 0 Jr3

Also, note that the convergences (3.28) and (3.19) imply

(3.32) dp¥ +div(m”) =0 in D'((0,T) x T3).
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3.5. Passing to the limit as § — 0. Since only the term R ;5 in (3.31) depends on §, we

will pass to the limit on R ; as d =+ 0 as d — 0.

We first recall (3.23) as

R§, =" V5, — (div(ayey)) + ((divag)yy)..
By (3.16), up to a subsequence, there exists 1” such that 0 < ¢” <1 and
(3.33) Y¥ =¥ weakly-* in L®((0,7) x T?) asd — 0,
which yields that (by the mollification)

V5. — V¥ weakly-* in L*(0,T; H'(T?)) asé — 0.
This together with u” € L2(0,T; H'(T?)) implies
u” - V@{E — ¥ - ViY! weakly in L?(0,T; H'(T%)) asd — 0.

Since u” € L2(0,T; H'(T?)) implies

a¥ — v in L*0,T; H'(T?)) strongly as § — 0,
which together with Lemma 3.5 and (3.33) yields

(div(ugey)), — (div(ue”)), weakly in L*(0,T;H'(T?)),
((divay)e¥) . — ((divu)y?)_ weakly in L*(0,T;H'(T?)).
Hence, we have
(3.34) Ys — RY weakly in L*(0,T;H'(T%)),

where

Rl :==u"- VYIJIEJ - (div(u”¢”))€ + ((divu”)@b”)s.
This and (3.20) with (3.31) yield
v |m1/‘2 v c v v
(335  swp | (F()+ T )dw+ (1€ = Ellmommay < C sup (VAL +AL).
te[0,7] J T3 P te[0,T]

where

AY == Ce + /3(—ps)(Uo|U)dx +
T

t
/ G" R.dxdr
0 Jr3
3.6. Passing to the limit as ¢ — 0. We first rewrite R, as
R, = div(u”@Z_Jé’) — (divu”)y? — (div(u’/w”))s + ((divu’/)w”)8
— ((@vw)e?), - (divu)dt ) + (div(wey) - (div(we?)),) .

=K =:Ks

First of all, note that
(3.36) K1l z2(0,r)xT3y < € (independent of ¢).
Since * € L>®((0,T) x T3) C L4((0,T) x T3) for ¢ < oo,
YY — ¥ strongly in LI((0,T) x T?) as e — 0,
which together with u” € L?(0,T; H*(T?)) implies
(divu” )Y — (diva”)y” in L™((0,T) x T?) for some ro € (1,2).
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Moreover, using (divu”)y” € L2((0,T) x T?), we have
((divur)e¥) = (dive’)yp” in L*((0,T) x T?).
Thus,
Ky —0 in L™((0,T) x T?),
which together with (3.36) yields
Ky —0 in L*((0,T) x T?).
For Ko, we use the following lemma on the Lions commutator estimate:

Lemma 3.6. [44, Lemma 2.3] There ezists a constant C such that for any € > 0, any
functions f € Wh(T3) and g € L5 (T?) with 0 < é + % = % < 1 satisfy

1(div(fg)), — div(fge) llL-crsy < CNFlwreers) gl pe re)-
In addition, if r < oo, then

H(div(fg))g —div(fge)llprrsy = 0 ase— 0.

We may apply Lemma 3.6 to our case: f =u",g =¢y",a =2,8 =00 and r = 2. Since
1w | 20,7 r3y) and. [|¥”[| oo ((0,7) xT3) are uniformly bounded in v, Lemma 3.6 implies that
(3.37)

K2l 20,02 (13)) < Cllw? L2000 (o) 197 [ Lo 0,7y x13) < € (independent of v),

and
(3.38) [ K2(, )| 2(msy) =+ 0 ase—0, forae. te(0,7),

where we used the fact that u”(-,t) € HY(T?) and ¢”(-,t) € L?(T?) for a.e. t € (0,T), and
uniformly in v.
Thus, it follows from (3.37) and (3.38) that for ¢ < 2,

[ K20, ) z2(rsy = 0 in LY((0,T)) ase — 0,
which together with (3.37) yields
Ko —0 in L2((0,T) x T3) ase — 0.
Therefore,
(3.39) RY =0 in L*(0,7) xT%) ase— 0.
which together with (3.20) yields

t
/ G"Rldxdr -0 ase—0, Vte|0,T].
0 J13

Hence, taking ¢ — 0 in (3.35), we have

|mu 2 B
su F(p”) + dr 4+ ||EY — &l oo (0.1
sup [ (Fior)+ 5o 187 Bl ey

(3.40)

< c\/ /T (p)Uol0)dz + € /T () (Un[0)
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3.7. Passing to the limit as v — 0. First of all, by (2.9), there exists p € L>(0, T; L?(T?))
such that

(3.41) p’ — p weakly-* in L°°(0,T; L*(T?)).

Since the Holder inequality with |m”| =/ pu% yields

12 o oy S VPN 78800 | 5] gy

the uniform bounds (2.9) and (2.4) imply the uniform bound of m"” in L*°(0, T} L%(T3)).
Thus, there exists m € L*>(0, T} L%(']I‘3)) such that

(3.42) m’ —m  weakly-* in L°°(0,T; L3 (T%)).
Note that it follows from (3.40) that there exists £ € L>(0,T; M(T?)) such that
(3.43) ¥ — & weakly-* in L°°(0,T; M(T?)).

Therefore, (3.43) and the weakly lower semi-continuity of the convex functionals in (3.40)
together with (3.41) and (3.42), we have

Im|? 5
su F(p)+—)de +||€ — &l peo(o.1
[0’71?} /11‘3( (p) 2 ) | | oo (0,7, M(T3Y)
(3.44)

< C\//TS(—ps)(UoW)daz—kC’/Ts(—ps)(UoU)dx,

which gives (1.19).
We also obtain from (3.32) that

(3.45) dp +div(m) =0 in D'((0,T) x T?).

3.8. Uniqueness. We here prove the last part of Theorem 1.1, for the uniqueness.
Let (UJ)nen be a sequence of initial data such that

(3.46) /TS(—ps)(UmU)dJ: —0 asn— oo.

Then, by (3.44),
. |m™|? _
lim inf sup/ F(p™) + dr + ||E" — &l reeo T M3y | = 0.
n—00 [[O,T] ’]1‘3( (p ) 2p" ) H ||L (0,T;M(T3))

Thus, as n — oo,
E" € in L™®(0,T; M(T?)),

and
[m"|

NG — 0 in L*(0,T; L*(T?)).

Since
P" =" Lpnelp, o] + P " Lpne(0,0.) + P Lpne(p,00)
<P+ 0" pne(0,p,) = Pxl o 10" Lpne(pr00) — P + 05,
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where p, and p* are defined in (1.16), it follows from (1.16) and lim inf,, ;oo sup(g 7y [1s F(p%)dz =
0 that

HPnH%oo(o,T;m(qu)) <C+Csup | F(p")dx < C,
0,7] JT3

which implies that there exists p such that

(3.47) p" — p weakly-* in L>(0,T; L*(T?)).
Therefore,
mn
" Vol oo <c|
10 e 7504 sy < VPPl 20000y Leo(0,1522(T3)) — Il /7 Il Lee (0,1;22(13))

Thus, it remains to prove that p = p.
To this end, we will use the equation (3.45):

(3.48) dp" 4 divy(m™) =0 in D'((0,T) x T3).

For test functions for the above equation, we recall the same functions as in (3.9): for any
€ (0,7), and any ¢ < t/2, we consider

orc) = [ (0c(2) — éxlz — 1))

where ) ¢
g —
Pc(s) == Zgzﬁ( c ) for any ¢ >0,
and ¢ : R — R is a non-negative smooth function such that ¢(s) fR =1 and

supp ¢ = [—1,1].
Then we consider the following test functions for the continuity equation:

@(ﬂf)(ptc(S)’
where ® € C*°(T3). That is,

/ooo /1r3 (<I>(a:)(—<p;7<(3))pn) drds = /OOO /TS (sﬂt,g(S)V<I> : m”) dxds.
Thus,

//Tg ) (s—t)p" dxds_/ /TS p")dxds—l—// o1.c(5)VBm™ ) duds.

Note that since p" € L>(0,T; L*(T?)) and m™ € L*(0,T Lg(’]l’?’)) by (1.18), it follows from
(3.48) and Aubin-Lions Lemma that p™ € C([0,7T]; L' (T3)).
Therefore, taking ¢ — 0 above, we find that

t
/ O(x)p"(x,t)dx :/ @(x)pg(x)da:—i—/ V& - m"dxds.
T3 T3 o JTs
Note that (3.46) yields
(3.49) / |pp — pl2dx < / pe(pilp)dr — 0 as n — oo.
T3 T3

Since

¢
/ V& .- m"dxds — 0,
0 JT3

< 19wy 1 vy
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taking n — oo and using (3.47) and (3.49), we have
/ B(2)p(z, t)dz — / B(2)p(x)dz, Vit € [0,T].
T3

T3
Hence, p = p a.e. on T3 x [0, 7.
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