

UNIQUENESS OF A PLANAR CONTACT DISCONTINUITY FOR 3D COMPRESSIBLE EULER SYSTEM IN A CLASS OF ZERO DISSIPATION LIMITS FROM NAVIER-STOKES-FOURIER SYSTEM

MOON-JIN KANG, ALEXIS F. VASSEUR, AND YI WANG

ABSTRACT. We prove the stability of a planar contact discontinuity without shear, a family of special discontinuous solutions for the three-dimensional full Euler system, in the class of vanishing dissipation limits of the corresponding Navier-Stokes-Fourier system. We also show that solutions of the Navier-Stokes-Fourier system converge to the planar contact discontinuity when the initial datum converges to the contact discontinuity itself. This implies the uniqueness of the planar contact discontinuity in the class that we are considering. Our results give an answer to the open question, whether the planar contact discontinuity is unique for the multi-D compressible Euler system. Our proof is based on the relative entropy method, together with the theory of α -contraction up to a shift and our new observations on the planar contact discontinuity.

CONTENTS

1. Introduction	2
1.1. Main result	3
1.2. Remarks for the main result	5
1.3. Ideas of the proof	6
2. Preliminaries	8
2.1. Admissible weak solutions for the Navier-Stokes-Fourier system (1.1)	8
2.2. Weighted relative entropy	9
2.3. Nonlinear functionals controlled by the weighted relative entropy	11
3. Proof of Theorem 1.1	13
3.1. Construction of shift functions	13
3.2. Weighted entropy inequality	14
3.3. Weighted relative entropy inequality	15
3.4. Passing to the limit as $\kappa \rightarrow 0$	18
3.5. Passing to the limit as $\delta \rightarrow 0$	23
3.6. Passing to the limit as $\varepsilon \rightarrow 0$	23
3.7. Passing to the limit as $\nu \rightarrow 0$	25
3.8. Uniqueness	25
References	27

Date: April 16, 2021.

Key words and phrases. Compressible Euler system, Contact discontinuity, Uniqueness, Stability, Compressible Navier-Stokes-Fourier system, Vanishing dissipation limit, Relative entropy, Conservation law.

Acknowledgment. M.-J. Kang was partially supported by the NRF-2019R1C1C1009355. A. Vasseur was partially supported by the NSF grant: DMS 1614918. Y. Wang is supported by NSFC grants No. 11671385 and 11688101 and CAS Interdisciplinary Innovation Team.

1. INTRODUCTION

We consider the Navier-Stokes-Fourier system in three dimensions with periodic boundary: for any $x = (x_1, x_2, x_3) \in \mathbb{T}^3$, $t \geq 0$,

$$(1.1) \quad \begin{cases} \partial_t \rho + \operatorname{div}_x(\rho u) = 0, \\ \partial_t(\rho u) + \operatorname{div}_x(\rho u \otimes u) + \nabla_x p = \nu \operatorname{div}_x \mathbb{S}, \\ \partial_t \left(\rho \left(\frac{|u|^2}{2} + e \right) \right) + \operatorname{div}_x \left(\left(\rho \left(\frac{|u|^2}{2} + e \right) + p \right) u \right) = \operatorname{div}_x(\kappa \nabla_x \theta) + \nu \operatorname{div}_x(\mathbb{S} u), \end{cases}$$

where the functions $\rho = \rho(t, x)$, $u(t, x) = (u_1, u_2, u_3)^\top(t, x)$, $e = e(t, x)$, $\theta = \theta(t, x)$ and $p = p(t, x)$ represent respectively the fluid density, velocity, specific internal energy, absolute temperature and the pressure.

The aim of this paper is to investigate the uniqueness, and stability of special discontinuous solutions, known as contact discontinuities without dissipation, of the associated Euler equation (with $\nu = 0$ and $\kappa = 0$). The study is based on a careful study of the zero dissipation limit of the Navier-Stokes-Fourier system, for vanishing viscosities ($\nu \rightarrow 0$) and heat conductivities ($\kappa \rightarrow 0$). We make the following assumptions on the physical system (1.1).

Assume that the viscous stress tensor \mathbb{S} , with the coefficient $\nu > 0$, is given by

$$\mathbb{S} = \mu(\theta)(\nabla u + (\nabla u)^\top) + \lambda(\theta)(\operatorname{div} u)Id_{3 \times 3},$$

where $(\nabla u)^\top$ denotes the transpose of the matrix ∇u , and $Id_{3 \times 3}$ represents the 3×3 identity matrix. We assume that $\mu(\theta)$ and $\lambda(\theta)$ depend linearly on θ , that is:

$$(1.2) \quad \mu(\theta) = \mu_1 \theta, \quad \lambda(\theta) = \lambda_1 \theta,$$

where μ_1 and λ_1 are both constants satisfying the physical constraints $\mu_1 > 0$ and $2\mu_1 + 3\lambda_1 > 0$. By the Fourier laws, the heat flux is given by $-\kappa \nabla_x \theta$ in (1.1)₃ with $\kappa > 0$ denoting the heat-conductivity coefficient. Here we assume that both the parameters ν and κ are the positive vanishing coefficients.

The pressure p is a function of ρ and θ of the form:

$$(1.3) \quad p(\rho, \theta) = R\rho\theta + p_e(\rho), \quad p_e(\rho) = a\rho^\gamma.$$

The first part of the pressure coincides with the ideal gas laws, while the second part p_e is an elastic pressure (sometimes called cold pressure) proportional to the isentropic pressure of the ideal gas, with the adiabatic constant $\gamma > 1$ and both R and a are positive constants.

We assume that the specific internal energy e has the following form:

$$(1.4) \quad e(\rho, \theta) = \frac{a\rho^{\gamma-1}}{\gamma-1} + Q_1(\theta), \quad Q_1(\theta) = \begin{cases} \frac{R}{\gamma-1}\theta & \text{if } \theta \geq \theta_*, \\ c_*\theta^2 & \text{if } 0 < \theta < \theta_*, \end{cases}$$

where θ_* is some small positive constant, and the positive constant c_* is chosen such that Q_1 is Lipschitz in θ . Note that $Q_1'(\theta) > 0$ for all $\theta > 0$. The first term of (1.4) is the energy associated to the elastic pressure of (1.3). For $\theta > \theta_*$, (1.4) is consistent with the ideal gas law, and together with (1.3), ensures that

$$(1.5) \quad p = (\gamma - 1)\rho e, \quad \text{for } \theta \geq \theta_*.$$

The definition of Q_1 for extremely cold temperature $\theta < \theta_*$ imposes the validity of the third law of thermodynamic, which states that the entropy cannot blow up when the temperature approaches the absolute zero. The validity of the third law of thermodynamic is important in our study. Note that it requires to deviate from the ideal gas dynamics at least for very cold temperatures (see below (1.8)).

We can now compute the entropy functional of the system, following the second law of thermodynamics:

$$(1.6) \quad \theta ds = pd\left(\frac{1}{\rho}\right) + de.$$

The entropy takes the form

$$(1.7) \quad s = -R \ln \rho + s_1(\theta),$$

where $s_1(\theta)$ satisfy

$$(1.8) \quad s_1(\theta) = \int_0^\theta \frac{Q'_1(z)}{z} dz = \begin{cases} \frac{R}{\gamma-1} \ln \theta & \text{if } \theta \geq \theta_* \\ \frac{R}{2c_*\theta} & \text{if } 0 < \theta < \theta_*. \end{cases}$$

Note that the above state equation for the entropy s satisfy the third law of thermodynamic, that is, the entropy approaches a constant value as temperature approaches absolute zero.

If $\nu = 0$ and $\kappa = 0$, then the corresponding 3D compressible Euler system reads as

$$(1.9) \quad \begin{cases} \partial_t \rho + \operatorname{div}_x(\rho u) = 0, \\ \partial_t(\rho u) + \operatorname{div}_x(\rho u \otimes u) + \nabla_x p = 0, \\ \partial_t \left(\rho \left(\frac{|u|^2}{2} + e \right) \right) + \operatorname{div}_x \left(\left(\rho \left(\frac{|u|^2}{2} + e \right) + p \right) u \right) = 0. \end{cases}$$

In this paper, we aim to show that a planar contact discontinuity without shear for 3D Euler system (1.9) is stable and unique in the class of vanishing dissipation limit ($\kappa \rightarrow 0+$ and $\nu \rightarrow 0+$) of solutions to 3D compressible Navier-Stokes-Fourier system (1.1).

1.1. Main result. First we describe a planar contact discontinuity solution to the 3D compressible Euler equations (1.9) for moderate temperature, that is, $\theta_\pm > \theta_*$. If we consider the following Riemann initial data

$$(1.10) \quad (\rho, u, \theta)(x, t=0) = \begin{cases} (\rho_-, u_-, \theta_-) & x_1 < 0 \\ (\rho_+, u_+, \theta_+) & x_1 > 0, \end{cases}$$

where $\rho_\pm > 0, \theta_\pm > \theta_*, u_\pm = (u_{1\pm}, 0, 0)^t$ are prescribed constants without shear for the 3D Euler system (1.9) with $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, then the Riemann problem (1.9)-(1.10) admits a planar contact discontinuity solution (as a self-similar solution in x_1)

$$(1.11) \quad (\rho, u, \theta)(x, t) = \begin{cases} (\rho_-, u_-, \theta_-) & x_1 < u_{1*}t, \\ (\rho_+, u_+, \theta_+) & x_1 > u_{1*}t, \end{cases}$$

provided that

$$(1.12) \quad u_{1-} = u_{1+} := u_{1*}, \quad p_- = p_+,$$

where $p_\pm := R\rho_\pm\theta_\pm + p_e(\rho_\pm)$.

By Galilean invariance, we can assume that $u_{1*} = 0$ without loss of generality. Then the planar contact discontinuity solution is a stationary solution.

Therefore, we consider a planar, stationary and shifted contact discontinuity solution $(\bar{\rho}, \bar{u}, \bar{\theta})$ to the 3D compressible Euler equations (1.9) on \mathbb{T}^3 defined as follows:

$$(1.13) \quad (\bar{\rho}, \bar{u}, \bar{\theta})(x) := \begin{cases} (\rho_-, 0, \theta_-), & 0 < x_1 < \frac{1}{2}, \\ (\rho_+, 0, \theta_+), & \frac{1}{2} < x_1 < 1, \end{cases} \quad x = (x_1, x_2, x_3) \in \mathbb{T}^3$$

with

$$(1.14) \quad \bar{p} := p_- = p_+ \quad \text{on } \mathbb{T}^3.$$

Since $\theta_\pm > \theta_*$, it follows from (1.3) and (1.5) that the contact discontinuity solution $(\bar{\rho}, \bar{u}, \bar{\theta})$ satisfies the ideal gas equality:

$$p_\pm = (\gamma - 1)\rho_\pm e_\pm.$$

Thus, the end states \mathcal{E}_\pm for the total energy satisfy

$$\mathcal{E}_- = \rho_- e_- = \frac{p_-}{\gamma - 1} = \frac{p_+}{\gamma - 1} = \rho_+ e_+ =: \mathcal{E}_+.$$

Therefore, we set

$$(1.15) \quad \bar{\mathcal{E}} := \mathcal{E}_- = \mathcal{E}_+ \quad \text{on } \mathbb{T}^3.$$

The main theorem is on the uniqueness and stability of the planar contact discontinuity solution (1.13) to the 3D compressible Euler equations (1.9) in the class of zero dissipation limits (as $\kappa \rightarrow 0+$ and $\nu \rightarrow 0+$) of admissible weak solutions to the 3D compressible Navier-Stokes-Fourier equations (1.1) in \mathbb{T}^3 .

For statement of the main theorem, we first consider a convex function

$$(1.16) \quad \mathcal{F}(y) := \begin{cases} 0 & \text{if } \rho_* := \min\{\rho_-, \rho_+\} \leq y \leq \max\{\rho_-, \rho_+\} =: \rho^*, \\ (y - \rho_*)^2 & \text{if } y \leq \rho_*, \\ (y - \rho^*)^2 & \text{if } y \geq \rho^*, \end{cases}$$

Theorem 1.1. *Consider the Euler system (1.9) with (1.3)-(1.4). Assume $\gamma > 2$. Let $\bar{U} := (\bar{\rho}, \bar{\rho}\bar{u}, \bar{\mathcal{E}})$ be a stationary contact discontinuity (1.13) with (1.14)-(1.15). Let U_0 be an initial datum such that*

$$\int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx < \infty,$$

with the relative entropy $(-\rho s)(U_0|\bar{U})$ defined in (1.20) and

$$(1.17) \quad (-\rho s)(U_0|\bar{U}) \in L^\infty(\Omega), \quad \text{for some neighborhood } \Omega \text{ of the plane } x_1 = \frac{1}{2}.$$

For any given $T > 0$, let $(\rho^{\kappa, \nu}, m^{\kappa, \nu}, \mathcal{E}^{\kappa, \nu})$ be an admissible weak solution of (1.1) on $[0, T]$ in the sense of Definition 2.1 in Section 2, where $m^{\kappa, \nu} := \rho^{\kappa, \nu} u^{\kappa, \nu}$ and $\mathcal{E}^{\kappa, \nu} := \rho^{\kappa, \nu} \left(\frac{|u^{\kappa, \nu}|^2}{2} + e^{\kappa, \nu} \right)$.

Then, there exists a limit (ρ, m, \mathcal{E}) such that, up to a subsequence, as $\kappa \rightarrow 0$ and $\nu \rightarrow 0$,

$$(1.18) \quad \begin{aligned} \rho^{\kappa, \nu} &\rightharpoonup \rho \quad \text{weakly-} * \quad \text{in } L^\infty(0, T; L^2(\mathbb{T}^3)), \\ m^{\kappa, \nu} &\rightharpoonup m \quad \text{weakly} \quad \text{in } L^2(0, T; L^{\frac{4}{3}}(\mathbb{T}^3)), \\ \mathcal{E}^{\kappa, \nu} &\rightharpoonup \mathcal{E} \quad \text{weakly-} * \quad \text{in } L^\infty(0, T; \mathcal{M}(\mathbb{T}^3)), \end{aligned}$$

where \mathcal{M} denotes the space of Radon measures, and

$$(1.19) \quad \begin{aligned} &\sup_{[0, T]} \int_{\mathbb{T}^3} \left(\mathcal{F}(\rho) + \frac{|m|^2}{2\rho} \right) dx + \|\mathcal{E} - \bar{\mathcal{E}}\|_{L^\infty(0, T; \mathcal{M}(\mathbb{T}^3))} \\ &\leq C \sqrt{\int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx} + C \int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx. \end{aligned}$$

Furthermore, let $(U_0^n)_{n \in \mathbb{N}}$ be a sequence of initial data such that

$$\int_{\mathbb{T}^3} (-\rho s)(U_0^n|\bar{U}) dx \rightarrow 0 \quad \text{as } n \rightarrow \infty$$

Then, any inviscid limit $(\rho^n, m^n, \mathcal{E}^n)$ satisfying (1.18)-(1.19) and corresponding to U_0^n satisfies that, up to a subsequence, as $n \rightarrow \infty$,

$$\begin{aligned}\rho^n &\rightharpoonup \bar{\rho} \quad \text{weakly-} * \quad \text{in } L^\infty(0, T; L^2(\mathbb{T}^3)), \\ m^n &\rightarrow 0 (= \bar{\rho}\bar{u}) \quad \text{in } L^\infty(0, T; L^{\frac{4}{3}}(\mathbb{T}^3)), \\ \mathcal{E}^n &\rightarrow \bar{\mathcal{E}} \quad \text{in } L^\infty(0, T; \mathcal{M}(\mathbb{T}^3)).\end{aligned}$$

Therefore, the contact discontinuity is stable and unique in the class of vanishing dissipation limits of solutions to (1.1).

1.2. Remarks for the main result. • The existence of global solutions for (1.1) should be constructed following the theory developed by Feireisl [18]. However, note that our assumption especially (1.2), is not compatible with the hypotheses as stated in [18]. For this reason, we leave the construction of these solutions to a future work. Assumption (1.2) is needed to get the uniform bound of $\nu \|\nabla u^{\kappa, \nu}\|_{L^2(0, T; L^2(\mathbb{T}^3))}^2$ (see (2.11)) from the entropy dissipation (2.6), which is crucial for our asymptotic analysis. Also, we mention that the assumption on $\gamma > 2$ is crucial for the uniform bound (2.10) in Remark 2.1, which is useful in Section 3.4.

• It is well known that Lipschitz solutions to the Euler system (1.9) are stable and unique in the class of admissible weak (or entropic) solutions (see Dafermos [14] and DiPerna [17]). However, the situation for discontinuous solutions is far more complicated. Especially, for the case of entropic shocks or shear flows, the uniqueness is usually not true. Recently, results on the non-uniqueness were obtained by the convex integration method introduced by De Lellis and Székelyhidi [15, 16]. Using this method, Chiodaroli, De Lellis and Kreml [8] showed the existence of Riemann initial data generated by an entropy shock for which there exist infinitely many bounded entropy solutions. We also refer to [2, 7, 8, 9, 10, 19, 35, 34] for other related studies on the non-uniqueness of entropic shocks.

These results have been extended by Březina, Kreml and Mácha [3] to the case of planar contact discontinuity, for the case of the 2D isentropic Euler system with the Chaplygin gas pressure law.

In the case of rarefaction waves (that are discontinuous only at $t = 0$), the uniqueness was proved in the class of entropic solutions to the multi-D Euler system (see [5, 20, 21]). The time-asymptotic stability and vanishing viscosity limit of isentropic Navier-Stokes equations/Navier-Stokes-Fourier equations to the planar rarefaction wave of 2D/3D compressible Euler equations could be found in [43, 42, 41, 40].

• In Theorem 1.1, we consider the simplest discontinuous solution for (1.9). Note that this solution corresponds to the second characteristic field in the 1D setting, and is a fundamental building block in the study of small BV entropy solutions (see for instance [13, 45]). Our result shows its stability in the 3D setting. Note that it is not known if this solution is unique among the class of entropy solutions for the multi-D compressible Euler system.

An important feature of Theorem 1.1 is that it proves the stability in the class of zero dissipation limits of the Navier-Stokes-Fourier system rather than entropy solutions of the Euler system. In addition, our theorem shows the convergence of solutions of (1.1) to the contact discontinuity when the initial value converges to the contact discontinuity itself. Note that we do not need any *a priori* regularity on the dissipation limits, which are automatically obtained by the entropy bound. Especially, the limits do not need to be solutions to the Euler system. In the 3D setting, it is not known whether global solutions

of the Euler system can be constructed for a large class of initial data. This open question makes working in the large class of dissipation limits appealing.

Replacing the notion of weak solutions to Euler by the one of inviscid limit is already interesting and important in the 1D setting. We first mention results on the uniqueness of entropy shocks in the class of entropy solutions satisfying the locally BV regularity (see Chen-Frid-Li [6]) or the strong trace property (see Vasseur et al. [29, 39, 51] and Krupa [37]). However, the global-in-time propagation of those regularities remains open (except for the system with $\gamma = 3$ see [50]). Recently, Kang and Vasseur [32] proved the uniqueness and stability of entropy shocks for the 1D isentropic Euler system in the class of inviscid limits of solutions to the corresponding Navier-Stokes system. This gives an answer, for the case of entropy shock, to the conjecture: The compressible Euler system admits a unique entropy solution in the class of vanishing viscosity solutions to the associated compressible Navier-Stokes system (as the physical viscous system for the Euler). As a comprehensive study related to this conjecture, Bianchini and Bressan [4] obtained a global unique entropy solution to a 1D strictly hyperbolic $n \times n$ system with small BV initial datum, which is obtained from vanishing “artificial” viscosity limit of the associate parabolic system.

Theorem 1.1 answers the conjecture in the case of contact discontinuity for the full Euler system (1.9) with (1.3)-(1.4).

- Our proof is based on the theory of a -contraction up to a shift, first developed in the one dimensional hyperbolic case in [29, 51]. The main idea is the construction of a weight function (the a function) which is both bounded and bounded by below, such that the discontinuous solutions enjoy a contraction property for the corresponding weighted relative entropy, up to a shift. With the exception of the scalar case, considered by Leger in [38], the contraction property is usually not verified without weight (see [46]). In the case of shocks, the method was extended to 1D Navier-Stokes in [32], and to the inviscid limit in [30] (see also [1, 11, 12, 27, 26, 31, 36, 37, 48, 49] for other developments of the theory).

For the 1D study in the hyperbolic case of the contact discontinuity, the correct weighted function is explicit and given by θ_- on the left and θ_+ on the right (see [47]). It was used to study the zero dissipation limit in 1D in this context in [52]. For the other studies on the vanishing dissipation limit to the 1D Riemann solution which may contain shock and rarefaction waves and contact discontinuity, one can refer [24, 23, 25, 22] and references therein. Note that the limit was proved in [22] for the generic 1D Riemann solution.

Our result in Theorem 1.1 can be seen as the extension of the work of [52] in the multi-D setting. It is the first application of the method for systems in multi-D (see [33] for an application to the multi-D scalar case).

1.3. Ideas of the proof. Let us denote $U = (\rho, \rho u, \mathcal{E})$ the conservative variables, and $\eta(U) = -\rho s$ the entropy. Since η is convex, the relative entropy

$$(1.20) \quad \eta(U|\bar{U}) = \eta(U) - \eta(\bar{U}) - d\eta(\bar{U}) \cdot (U - \bar{U})$$

define a pseudo distance of U to \bar{U} which is locally (for U and \bar{U} bounded) equivalent to $|U - \bar{U}|^2$. Consider now $U(t, x)$ solution to the system (1.1), and \bar{U}_-, \bar{U}_+ the left and right states of the given contact discontinuity. The general idea of the theory of a -contraction with shift for the hyperbolic case ($\nu=\kappa=0$) is to find disjoint shifted domains for all t , $\Omega_-(t)$,

$\Omega_+(t)$ such that $\Omega_-(t) \cup \Omega_+(t) = \mathbb{T}^3$, and coefficients $a_- > 0, a_+ > 0$ such that

$$t \rightarrow a_- \int_{\Omega_-(t)} \eta(U(t, x) | \bar{U}_-) dx + a_+ \int_{\Omega_+(t)} \eta(U(t, x) | \bar{U}_+) dx$$

is decreasing in time. Note that $p_+ = p_- = \bar{p}$, therefore in the Lagrangian variables, the second law of thermodynamics gives that

$$(\mathbf{1}_{\{x_1 < 1/2\}} \theta_- + \mathbf{1}_{\{x_1 > 1/2\}} \theta_+) ds = \bar{p} d(1/\rho) + de$$

is an exact form globally on \mathbb{T}^3 . And so, at least formally, the contraction holds for $a_- = \theta_-$, $a_+ = \theta_+$, $\Omega_-(t)$ the set $\{x < 1/2\}$ transported by the flow $\{u(s, \cdot), 0 < s < t\}$, and $\Omega_+(t)$ the set $\{x \geq 1/2\}$ transported by the same flow (see [47]). Still formally, considering $(\rho(t, x), \rho(t, x)u(t, x), \rho(t, x)[e(t, x) + \frac{|u(t, x)|^2}{2}])$ a solution to the Euler equation (1.9), and ψ the solution to the transport equation:

$$(1.21) \quad \partial_t \psi + u \cdot \nabla \psi = 0, \quad \psi(0) = \mathbf{1}_{\{x_1 > 1/2\}},$$

the following function

$$(1.22) \quad \int (\theta_-(1 - \psi(t, x)) \eta(U(t, x) | \bar{U}_-) + \theta_+ \psi(t, x) \eta(U(t, x) | \bar{U}_+)) dx$$

would be non-increasing in time.

The main obstruction to the study above is that the velocity u solution to Euler system is not smooth enough to construct solution to (1.21). It also assumes some non-oscillatory behavior (strong traces) at the boundary of $\Omega_{\pm}(t)$, properties that are not known to exist for solutions to Euler.

The idea is then to consider the Navier-Stokes-Fourier system instead, which provides solutions $u \in L^2(0, T; H^1(\mathbb{T}^3))$. With this regularity, the flow (1.21) can be constructed. Following [12, 52], we consider the extra viscous ν and κ terms as source terms to be controlled. We first pass into the limit as κ goes to zero. For this limit, extra regularizations have to be performed, via convolutions, both on u and ψ . When $\kappa = 0$, we pass to the limit in the regularization terms, using controls on Lions commutators (see Lemma 3.6).

When the last limit ν goes to zero, the regularity on the velocity u is lost, and so $\Omega_-(t)$ and $\Omega_+(t)$ can become mixed to each other. Note that $\mathcal{E}_- = \mathcal{E}_+ = \bar{\mathcal{E}}$, since the contact discontinuity has values in the regime where the gas verifies the ideal gas equality (1.5). Therefore it can be shown in Lemma 2.2 that the weighted relative entropy (1.22) controls uniformly

$$\int_{\mathbb{T}^3} \mathcal{F}(\rho) + \tilde{\mathcal{G}}(\mathcal{E} - \bar{\mathcal{E}}) + \frac{\rho|u|^2}{2},$$

where $\tilde{\mathcal{G}}$ is the convex function:

$$\begin{aligned} \tilde{\mathcal{G}}(y) &= |y|^2, & \text{for } |y| < 1, \\ &= 2|y| - 1 & \text{for } |y| \geq 1. \end{aligned}$$

Note that the function $\tilde{\mathcal{G}}$ is equivalent to $\min(|y|^2, |y|)$, and since we are in a bounded domain, this provides a control on the L^1 -norm of $\mathcal{E} - \bar{\mathcal{E}}$. However the function \mathcal{F} is degenerated, and is equal to zero for $\rho_* \leq \rho \leq \rho^*$. Consequently, (1.22) controls the perturbations in both velocity and energy. However, due to the possible mixing of the area Ω_- and Ω_+ , (1.22) controls only the value of the density outside $[\rho_*, \rho^*]$. This degeneracy is similar to the situation of the pressureless Euler system in [28]. Thus, we recover the control of the density in the similar way as [28], using the continuity equation. Indeed, if $\rho u = 0$ at

the limit (which is a quantity controlled by the relative entropy), then it follows from the continuity equation that $\partial_t \rho = 0$, and so $\rho = \bar{\rho}$.

The rest of the paper is as follows. In Section 2, we first present the notion on admissible weak solutions to (1.1). Then we provide the explicit form for the weighted relative entropy, and construct nonlinear functionals uniformly controlled by it. Section 3 is dedicated to the proof of the main theorem.

2. PRELIMINARIES

In this section, we first present the Definition 2.1 as mentioned in Theorem 1.1 on admissible weak solutions of (1.1), together with useful bounds in Remark 2.1. Then we compute the explicit form for the weighted relative entropy, and construct nonlinear functionals controlled by it.

2.1. Admissible weak solutions for the Navier-Stokes-Fourier system (1.1). .

Definition 2.1. *We say that $(\rho, \rho u, \mathcal{E}, \rho s)$ with $\mathcal{E} := \rho \left(\frac{|u|^2}{2} + e \right)$ is an admissible weak solution to the 3D compressible Navier-Stokes-Fourier system (1.1)-(1.4) in $[0, T] \times \mathbb{T}^3$ with an initial data (ρ_0, u_0, θ_0) if the following holds:*

(i) (Mass conservation equation) For any test function $\varphi \in \mathcal{D}([0, T) \times \mathbb{T}^3)$,

$$(2.1) \quad \int_0^\infty \int_{\mathbb{T}^3} \left(\rho \partial_\tau \varphi + \rho u \cdot \nabla \varphi \right) dx d\tau + \int_{\mathbb{T}^3} \rho_0(x) \varphi(x, 0) dx = 0,$$

and

$$(2.2) \quad \rho \in C([0, T]; L_{\text{weak}}^\gamma(\mathbb{T}^3)).$$

(ii) (Momentum conservation equation) For any $\vec{\varphi} \in [\mathcal{D}([0, T) \times \mathbb{T}^3)]^3$,

$$(2.3) \quad \int_0^\infty \int_{\mathbb{T}^3} \left(\rho u \cdot \partial_\tau \vec{\varphi} + \rho u \otimes u : \nabla \vec{\varphi} + p \operatorname{div} \vec{\varphi} - \nu \mathbb{S} : \nabla \vec{\varphi} \right) dx d\tau + \int_{\mathbb{T}^3} \rho_0 u_0(x) \cdot \vec{\varphi}(x, 0) dx = 0.$$

(iii) (Energy inequality)

$$(2.4) \quad \int_{\mathbb{T}^3} \mathcal{E}(x, t) dx \leq \int_{\mathbb{T}^3} \mathcal{E}(x, 0) dx < \infty, \quad \forall t \in [0, T],$$

where $\mathcal{E}|_{t=0}$ satisfies the compatibility condition:

$$\mathcal{E}|_{t=0} = \rho_0 \left(\frac{|u_0|^2}{2} + \frac{a \rho_0^{\gamma-1}}{\gamma-1} + Q_1(\theta_0) \right),$$

and

$$(2.5) \quad \limsup_{t \rightarrow 0^+} \int_{\mathbb{T}^3} \mathcal{E}(x, t) dx = \int_{\mathbb{T}^3} \mathcal{E}(x, 0) dx.$$

(iii) (Entropy dissipation) For any non-negative test function $\varphi \in \mathcal{D}([0, T) \times \mathbb{T}^3)$,

$$(2.6) \quad \begin{aligned} & \int_0^\infty \int_{\mathbb{T}^3} \left[\rho s \varphi_\tau + \rho s u \cdot \nabla \varphi - \kappa \frac{\nabla \theta}{\theta} \cdot \nabla \varphi + \kappa \frac{|\nabla \theta|^2}{\theta^2} \varphi + \frac{\nu \mathbb{S} : \nabla_x u}{\theta} \varphi \right] dx d\tau \\ & + \int_{\mathbb{T}^3} (\rho s)(x, 0) \varphi(x, 0) dx \leq 0, \end{aligned}$$

where $(\rho s)|_{t=0}$ satisfies the compatibility condition:

$$(2.7) \quad (\rho s)|_{t=0} = -R\rho_0 \ln \rho_0 + \rho_0 s_1(\theta_0),$$

and

$$(2.8) \quad \limsup_{t \rightarrow 0^+} \int_{\mathbb{T}^3} (\rho s)(x, t) \eta(x) dx = \int_{\mathbb{T}^3} (\rho s)(x, 0) \eta(x) dx, \quad \forall \eta \in \mathcal{D}(\mathbb{T}^3).$$

Remark 2.1. If $\gamma > 2$, then by (2.4), (2.6) and (1.7), there exists a constant C independent of κ, ν (but depending on the initial data) such that

$$(2.9) \quad \|\rho\|_{L^\infty(0, T; L^2(\mathbb{T}^3))} \leq C,$$

$$(2.10) \quad \|\rho s\|_{L^\infty(0, T; L^2(\mathbb{T}^3))} \leq C,$$

and

$$(2.11) \quad \nu \|\nabla u\|_{L^2(0, T; L^2(\mathbb{T}^3))}^2 + \kappa \left\| \frac{\nabla \theta}{\theta} \right\|_{L^2(0, T; L^2(\mathbb{T}^3))}^2 \leq C.$$

Indeed, since $\|\rho\|_{L^\infty(0, T; L^\gamma(\mathbb{T}^3))} \leq C$ by (2.4), we have (2.9). The uniform bound (2.11) is obtained by the entropy dissipation of (2.6) with (1.2). Also, note that (1.7), (1.8) and (2.4) imply that

$$\begin{aligned} \int_{\mathbb{T}^3} |\rho s|^2 dx &\leq C \left(\int_{\mathbb{T}^3} \rho^2 |\ln \rho|^2 \mathbf{1}_{\rho > 1} dx + \int_{\mathbb{T}^3} \rho^2 dx + \int_{\mathbb{T}^3} \rho^2 |\ln \theta|^2 \mathbf{1}_{\theta > \theta_*} dx \right) \\ &\leq C \left(\int_{\mathbb{T}^3} \rho^\gamma dx + \int_{\mathbb{T}^3} \rho^2 dx + \int_{\mathbb{T}^3} \rho^2 \theta^{\frac{\gamma-2}{\gamma-1}} \mathbf{1}_{\theta > \theta_*} dx \right) \\ &\leq C \left(\int_{\mathbb{T}^3} \rho^\gamma dx + \int_{\mathbb{T}^3} \rho^2 dx + \int_{\mathbb{T}^3} (\rho^\gamma + \rho \theta) \mathbf{1}_{\theta > \theta_*} dx \right) \leq C, \end{aligned}$$

which gives (2.10).

Note that, to obtain (2.10), we use the setting (1.4) and (1.8) satisfying the third law of thermodynamics. This is the only place we use it.

2.2. Weighted relative entropy. We define a function $\mathcal{S} : \mathbb{R}_+ \rightarrow \mathbb{R}$ by

$$(2.12) \quad \mathcal{S}(Q_1(\theta)) := s_1(\theta), \quad \theta > 0.$$

Then the function $\mathcal{S}(Q_1)$ is strictly concave in Q_1 . Indeed, since $\mathcal{S}'(Q_1(\theta))Q_1'(\theta) = s_1'(\theta)$, and $s_1'(\theta) = Q_1'(\theta)/\theta$ by (1.8), we have

$$(2.13) \quad \mathcal{S}'(Q_1(\theta)) = 1/\theta,$$

and thus $\mathcal{S}''(Q_1(\theta))Q_1'(\theta) = -1/\theta^2 < 0$, which yields $\mathcal{S}''(Q_1) < 0$ by $Q_1' > 0$.

Let $U := (\rho, m, \mathcal{E})$ be a solution of (1.1) where $m = \rho u$ and $\mathcal{E} = \rho \left(\frac{|u|^2}{2} + e \right)$, and $\bar{U} := (\bar{\rho}, \bar{m}, \bar{\mathcal{E}})$ be the contact discontinuity (1.13) where $\bar{m} = 0$ and $\bar{\mathcal{E}} = \bar{\rho} \bar{e}$. As in [47, 52], we will consider the relative entropy functional weighted by the temperature $\bar{\theta}$ connecting two different constants θ_- and θ_+ :

$$(2.14) \quad \int_{\mathbb{T}^3} \bar{\theta}(-\rho s)(U|\bar{U}) dx,$$

where $(-\rho s)(U|\bar{U})$ represents the relative entropy associated with the entropy $-\rho s$, defined as follows: for $\eta(U) := -\rho s$,

$$(2.15) \quad (\eta)(U|\bar{U}) := \eta(U|\bar{U}) = \eta(U) - \eta(\bar{U}) - d\eta(U) \cdot (U - \bar{U}).$$

In general, the notation (2.15) will be used for a given function η throughout the paper. Note that if $U \mapsto \eta(U)$ is strictly convex, then $\eta(U|\bar{U})$ is positively definite. Thanks to the following lemma, we see that the functional (2.14) can be written as the sum of four sub-functionals that are all positively definite.

Lemma 2.1. *Let $U := (\rho, m, \mathcal{E})$ be a solution of (1.1) with $m = \rho u$ and $\mathcal{E} = \rho\left(\frac{|u|^2}{2} + e\right)$. Let $\bar{U} := (\bar{\rho}, \bar{m} = 0, \bar{\mathcal{E}})$ be the planar contact discontinuity (1.13). Then,*

$$(2.16) \quad \bar{\theta}(-\rho s)(U|\bar{U}) = \bar{\theta}R(\rho \ln \rho)(\rho|\bar{\rho}) + \bar{\theta}\rho(-\mathcal{S})(Q_1(\theta)|Q_1(\bar{\theta})) + \frac{p_e(\rho|\bar{\rho})}{\gamma - 1} + \frac{|m|^2}{2\rho}.$$

Here, since all of $\rho \mapsto \rho \ln \rho$, $\rho \mapsto p_e(\rho)$, $Q_1 \mapsto (-\mathcal{S})(Q_1)$ and $(\rho, m) \mapsto \frac{|m|^2}{2\rho}$ are strictly convex, all the terms on the right-hand side of (2.16) are positively definite.

Proof. First of all, by the definitions (1.7) and (2.12), we have

$$(2.17) \quad (-\rho s)(U|\bar{U}) = R\rho \ln \rho - \rho \mathcal{S}(Q_1(\theta)) - \left(R\bar{\rho} \ln \bar{\rho} - \bar{\rho} \mathcal{S}(Q_1(\bar{\theta}))\right) - d(-\rho s)(\bar{U}) \cdot (U - \bar{U}).$$

To compute the last term above, we first note that

$$(2.18) \quad d(-\rho s)(\bar{U}) = \partial_\rho(-\rho s)(\bar{U})d\rho + \partial_m(-\rho s)(\bar{U})dm + \partial_\mathcal{E}(-\rho s)(\bar{U})d\mathcal{E} = -s(\bar{U})d\rho + \bar{\rho}d(-s)(\bar{U}).$$

To compute $d(-s)(\bar{U})$ above, we use the thermodynamic relation (1.6) with $e = \frac{\mathcal{E}}{\rho} - \frac{|u|^2}{2}$, that is,

$$\theta ds = pd\left(\frac{1}{\rho}\right) + d\left(\frac{\mathcal{E}}{\rho} - \frac{|u|^2}{2}\right) = -\frac{p}{\rho^2}d\rho - \frac{\mathcal{E}}{\rho^2}d\rho + \frac{1}{\rho}d\mathcal{E} - udu.$$

This together with $\bar{u} = 0$ implies

$$\bar{\theta}d(-s)(\bar{U}) = \frac{\bar{p} + \bar{\mathcal{E}}}{\bar{\rho}^2}d\rho - \frac{1}{\bar{\rho}}d\mathcal{E},$$

which together with (2.18) yields

$$\bar{\theta}d(-\rho s)(\bar{U}) = \left(\bar{\theta}(-s)(\bar{U}) + \frac{\bar{p} + \bar{\mathcal{E}}}{\bar{\rho}}\right)d\rho - d\mathcal{E},$$

Thus,

$$(2.19) \quad \bar{\theta}d(-\rho s)(\bar{U}) \cdot (U - \bar{U}) = \left(\bar{\theta}(-s)(\bar{U}) + \frac{\bar{p} + \bar{\mathcal{E}}}{\bar{\rho}}\right)(\rho - \bar{\rho}) - (\mathcal{E} - \bar{\mathcal{E}}).$$

Therefore, we plug this into (2.17) with (1.7) to obtain

$$\begin{aligned} \bar{\theta}(-\rho s)(U|\bar{U}) &= \bar{\theta}R\rho \ln \rho - \bar{\theta}\rho \mathcal{S}(Q_1(\theta)) - \bar{\theta}R\bar{\rho} \ln \bar{\rho} + \bar{\theta}\bar{\rho} \mathcal{S}(Q_1(\bar{\theta})) \\ &\quad + \bar{\theta}\left(-R \ln \bar{\rho} + \mathcal{S}(Q_1(\bar{\theta}))\right)(\rho - \bar{\rho}) - \underbrace{\frac{\bar{p} + \bar{\mathcal{E}}}{\bar{\rho}}(\rho - \bar{\rho})}_{=:J} + (\mathcal{E} - \bar{\mathcal{E}}). \end{aligned}$$

For J , we use $\bar{\mathcal{E}} = \bar{\rho}\bar{e}$ and (1.5) with $\bar{\theta} \geq \theta_*$, to find that

$$\frac{\bar{p} + \bar{\mathcal{E}}}{\bar{\rho}} = \gamma\bar{e},$$

which yields

$$J = -\gamma\bar{e}(\rho - \bar{\rho}) + \rho e - \bar{\rho}\bar{e} + \frac{|m|^2}{2\rho}.$$

Since it follows from (1.3) and (1.4) that

$$\rho e = \frac{p_e(\rho)}{\gamma - 1} + \rho Q_1(\theta),$$

and especially,

$$\gamma\bar{e} = \frac{p'_e(\bar{\rho})}{\gamma - 1} + \gamma Q_1(\bar{\theta}),$$

we use (1.4) and (1.3) to have

$$\begin{aligned} J &= -\frac{p'_e(\bar{\rho})}{\gamma - 1}(\rho - \bar{\rho}) - \gamma Q_1(\bar{\theta})(\rho - \bar{\rho}) + \frac{p_e(\rho)}{\gamma - 1} + \rho Q_1(\theta) - \frac{p_e(\bar{\rho})}{\gamma - 1} - \bar{\rho}Q_1(\bar{\theta}) + \frac{|m|^2}{2\rho} \\ &= \frac{1}{\gamma - 1}p_e(\rho|\bar{\rho}) - \gamma Q_1(\bar{\theta})(\rho - \bar{\rho}) + \rho Q_1(\theta) - \bar{\rho}Q_1(\bar{\theta}) + \frac{|m|^2}{2\rho}. \end{aligned}$$

Moreover, using the fact that $Q_1(\bar{\theta}) = \frac{R}{\gamma-1}\bar{\theta}$ by (1.4), we have

$$J = \frac{1}{\gamma - 1}p_e(\rho|\bar{\rho}) - R\bar{\theta}(\rho - \bar{\rho}) + \rho(Q_1(\theta) - Q_1(\bar{\theta})) + \frac{|m|^2}{2\rho}.$$

Hence, we have

$$\begin{aligned} \bar{\theta}(-\rho s)(U|\bar{U}) &= \bar{\theta}R\left(\rho \ln \rho - \bar{\rho} \ln \bar{\rho} - (\ln \bar{\rho} + 1)(\rho - \bar{\rho})\right) \\ &\quad - \bar{\theta}\rho\left(\mathcal{S}(Q_1(\theta)) - \mathcal{S}(Q_1(\bar{\theta})) - \frac{1}{\bar{\theta}}(Q_1(\theta) - Q_1(\bar{\theta}))\right) + \frac{1}{\gamma - 1}p_e(\rho|\bar{\rho}) + \frac{|m|^2}{2\rho}. \end{aligned}$$

Since $\mathcal{S}'(Q_1(\bar{\theta})) = 1/\bar{\theta}$ by (2.13), and $\frac{d(\rho \ln \rho)}{d\rho} = \ln \rho + 1$, we have the desired representation (2.16). \square

2.3. Nonlinear functionals controlled by the weighted relative entropy. We recall the convex function (1.16) and define a nonnegative function \mathcal{G} as follows:

$$(2.20) \quad \mathcal{G}(y) := \min\{|y|, y^2\}.$$

Lemma 2.2. *Let $\bar{U} := (\bar{\rho}, \bar{m} = 0, \bar{\mathcal{E}})$ be the contact discontinuity (1.13), and $U_{\pm} := (\rho_{\pm}, \rho_{\pm}u_{\pm} = 0, \mathcal{E}_{\pm} = \bar{\mathcal{E}})$. Then, there exists a constant $C > 0$ such that for any solution $U := (\rho, m, \mathcal{E})$ of (1.1),*

$$(2.21) \quad \mathcal{F}(\rho) + \mathcal{G}(\mathcal{E} - \bar{\mathcal{E}}) + \frac{|m|^2}{2\rho} \leq C \min \left\{ \theta_{-}(-\rho s)(U|U_{-}), \theta_{+}(-\rho s)(U|U_{+}) \right\}.$$

Proof. First, since $\gamma > 2$, there exists a constant $C > 0$ such that $|\rho - \rho_{\pm}|^2 \leq C p_e(\rho|\rho_{\pm})$ for all $\rho \geq 0$, which together with (1.16) implies

$$\mathcal{F}(\rho) \leq C \min\{p_e(\rho|\rho_{+}), p_e(\rho|\rho_{-})\}, \quad \forall \rho \geq 0.$$

Thus, it follows from (2.16) that

$$\mathcal{F}(\rho) + \frac{|m|^2}{2\rho} \leq C \min \left\{ \theta_-(-\rho s)(U|U_-), \theta_+(-\rho s)(U|U_+) \right\}.$$

Therefore, it remains to prove that

$$(2.22) \quad \mathcal{G}(\mathcal{E} - \bar{\mathcal{E}}) \leq C \min \left\{ \theta_-(-\rho s)(U|U_-), \theta_+(-\rho s)(U|U_+) \right\}.$$

Indeed, using the following Lemma 2.3 together with the convex open set $\Omega = \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}$ and the strict convex function $\eta = -\rho s$, we find that for each $\bar{\mathcal{E}} = \mathcal{E}_\pm$,

$$\begin{aligned} \mathcal{G}(\mathcal{E} - \bar{\mathcal{E}}) &= \min \{ |\mathcal{E} - \bar{\mathcal{E}}|, |\mathcal{E} - \bar{\mathcal{E}}|^2 \} \leq \min \{ |U - U_\pm|, |U - U_\pm|^2 \} \\ &\leq C(-\rho s)(U|U_\pm) \leq C\theta_\pm(-\rho s)(U|U_\pm), \end{aligned}$$

which together with $\bar{\mathcal{E}} = \mathcal{E}_- = \mathcal{E}_+$ implies (2.22). \square

Lemma 2.3. *Let Ω is a convex open subset of \mathbb{R}^n . Let $\eta : \Omega \rightarrow \mathbb{R}$ be a strictly convex function. The relative function $\eta(\cdot| \cdot)$ (defined as in (2.15)) satisfies the following: For any $z_0 \in \Omega$, there exists a constant $C > 0$ such that*

$$\eta(z|z_0) \geq C \min \{ |z - z_0|, |z - z_0|^2 \}, \quad \forall z \in \Omega.$$

Proof. Since Ω is open, for any fixed $z_0 \in \Omega$ there exists a constant $r > 0$ such that

$$\{z \mid |z - z_0| = r\} \subset \Omega.$$

For any vector $v \in \mathbb{R}^n$ such that $|v| = r$, we define a non-negative function $f_v : \mathbb{R} \rightarrow \mathbb{R}_+$ by

$$f_v(t) := \eta(z_0 + tv \mid z_0).$$

Then,

$$f'_v(t) = \left(d\eta(z_0 + tv) - d\eta(z_0) \right) \cdot v.$$

Since η is strictly convex on the convex set Ω , $f''_v(t) = v(d^2\eta)(z_0 + tv)v^t > 0$ on the interval $I = \{t \mid z_0 + tv \in \Omega\}$, which implies that f_v is strictly convex on I .

Since $f'_v(0) = 0$, we have

$$\left(d\eta(z_0 + v) - d\eta(z_0) \right) \cdot v = f'_v(1) > 0.$$

Moreover, since $v \mapsto \left(d\eta(z_0 + v) - d\eta(z_0) \right) \cdot v$ is continuous on the compact set $|v| = r$, there exists a constant $C(r)$ such that

$$f'_v(1) \geq C(r) \quad \forall v \text{ with } |v| = r.$$

Thus, for all v with $|v| = r$,

$$f'_v(t) \geq C(r) \quad \forall t \geq 1,$$

which implies that for all v with $|v| = r$,

$$\forall t \geq 2, \quad f_v(t) = f_v(1) + \int_1^t f'_v \geq \int_1^t f'_v \geq C(r)(t-1) \geq \frac{C(r)}{2}t.$$

Now, for any $z \in \Omega$ with $|z - z_0| \geq 2r$, by putting $v = \frac{z - z_0}{|z - z_0|}r$ and $t = \frac{|z - z_0|}{r}$ above, we have

$$\eta(z|z_0) = f_v(t) \geq \frac{C(r)}{2r}|z - z_0|.$$

On the other hand, the strict convexity of η and the definition of the relative function imply that there exists a constant $C_r > 0$ such that for any $z \in \Omega$ with $|z - z_0| \leq 2r$,

$$\eta(z|z_0) \geq C_r|z - z_0|^2.$$

Those two estimates imply the desired estimate. \square

3. PROOF OF THEOREM 1.1

As explained in Section 1.3, we will construct the ψ function transported by the velocity field, with regularizations.

3.1. Construction of shift functions. For the velocity $u^{\kappa,\nu}$ being the weak solution to (1.1), we first consider a family of spatial-mollifications of u as

$$\bar{u}_\delta^{\kappa,\nu}(x, t) := \int_{\mathbb{R}^3} u^{\kappa,\nu}(x - y, t) \eta_\delta(y) dy,$$

where η_δ denotes the mollifier defined by

$$(3.1) \quad \eta_\delta(x) := \frac{1}{\delta^3} \eta\left(\frac{|x|}{\delta}\right) \quad \text{for any } \delta > 0,$$

for a non-negative smooth function $\eta : \mathbb{R} \rightarrow \mathbb{R}$ such that $\int_{\mathbb{R}} \eta = 1$.

Note that since u is periodic in x , so is $\bar{u}_\delta^{\kappa,\nu}$. Indeed, for each $i = 1, 2, 3$,

$$\bar{u}_\delta^{\kappa,\nu}(x + e_i, t) = \int_{\mathbb{R}^3} \bar{u}_\delta^{\kappa,\nu}(x + e_i - y, t) \eta_\delta(y) dy = \int_{\mathbb{R}^3} \bar{u}_\delta^{\kappa,\nu}(x - y, t) \eta_\delta(y) dy = \bar{u}_\delta^{\kappa,\nu}(x, t).$$

For the smooth velocity field $\bar{u}_\delta^{\kappa,\nu}$, we define $\psi_\delta^{\kappa,\nu}$ as the unique solution of the following transport equation:

$$(3.2) \quad \begin{cases} \partial_t \psi + \bar{u}_\delta^{\kappa,\nu} \cdot \nabla \psi = 0, \\ \psi(x, 0) =: \psi_0(x) = \begin{cases} 0, & \text{if } 0 < x_1 < \frac{1}{2}, \\ 1, & \text{if } \frac{1}{2} < x_1 < 1, \end{cases} \quad x = (x_1, x_2, x_3) \in \mathbb{T}^3. \end{cases}$$

For any fixed $(x, t) \in \mathbb{R}^3 \times [0, T]$, we define a characteristic curve $X(\tau; x, t)$ generated by $u_\delta^{\kappa,\nu}$, passing through x at $\tau = t$ as follows:

$$(3.3) \quad \begin{cases} \frac{d}{d\tau} X(\tau; x, t) = \bar{u}_\delta^{\kappa,\nu}(X(\tau; x, t), \tau), \\ X(\tau = t; x, t) = x. \end{cases}$$

Note that since $\bar{u}_\delta^{\kappa,\nu}$ is smooth in x and $\|\bar{u}_\delta^{\kappa,\nu}\|_{C^1(\mathbb{T}^3)} \in L^2(0, T)$, the above ODE has a unique absolutely continuous solution $X(\tau; x, t)$ on $\tau \in [0, T]$.

Then, since it follows from (3.2) and (3.3) that

$$(3.4) \quad \psi_\delta^{\kappa,\nu}(x, t) = \psi_0(X(0; x, t)),$$

it holds that

$$(3.5) \quad 0 \leq \psi_\delta^{\kappa,\nu}(x, t) \leq 1, \quad \forall (x, t) \in \mathbb{T}^3 \times [0, T].$$

Remark 3.1. Note that the solution $\psi_\delta^{\kappa,\nu}(x, t)$ is periodic in x . Indeed, since $\bar{u}_\delta^{\kappa,\nu}$ is periodic in $x \in \mathbb{T}^3$, it follows from (3.3) that for each $i = 1, 2, 3$,

$$\frac{d}{d\tau} (X(\tau; x + e_i, t) - e_i) = \frac{d}{d\tau} X(\tau; x + e_i, t) = \bar{u}_\delta^{\kappa,\nu}(X(\tau; x + e_i, t), \tau) = \bar{u}_\delta^{\kappa,\nu}(X(\tau; x + e_i, t) - e_i, \tau),$$

where e_i ($i = 1, 2, 3$) is the standard unit vector. Thus, we find that for each $i = 1, 2, 3$,

$$\begin{cases} \frac{d}{d\tau}(X(\tau; x + e_i, t) - e_i) = \bar{u}_\delta^{\kappa, \nu}(X(\tau; x + e_i, t) - e_i, \tau), \\ (X(\tau; x + e_i, t) - e_i)|_{\tau=t} = x. \end{cases}$$

Therefore, by the uniqueness of solutions to (3.3), for each $i = 1, 2, 3$,

$$X(\tau; x, t) = X(\tau; x + e_i, t) - e_i, \quad \forall \tau \in [0, T].$$

This together with the periodicity of ψ_0 implies

$$\psi_\delta^{\kappa, \nu}(x + e_i, t) = \psi_0(X(0; x + e_i, t)) = \psi_0(X(0; x + e_i, t) - e_i) = \psi_0(X(0; x, t)) = \psi_\delta^{\kappa, \nu}(x, t).$$

Hence, $\psi_\delta^{\kappa, \nu}(x, t)$ is periodic in $x \in \mathbb{T}^3$.

Since the solution $\psi_\delta^{\kappa, \nu}$ to the equation (3.2) is still discontinuous, we consider a family of mollifications of $\psi_\delta^{\kappa, \nu}$ as

$$(3.6) \quad \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}(x, t) := \int_{\mathbb{R}^3} \psi_\delta^{\kappa, \nu}(x - y, t) \eta_\varepsilon(y) dy,$$

where η_ε denotes the mollifier defined by in (3.1) with the parameter δ replaced by another parameter ε .

Note that by (3.5),

$$(3.7) \quad 0 \leq \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}(x, t) \leq 1, \quad \forall (x, t), \quad \forall \varepsilon > 0.$$

3.2. Weighted entropy inequality.

Lemma 3.1. *Let $U := (\rho, m, \mathcal{E})$ be a solution of (1.1) in the sense of Definition 2.1, and $\Psi := \theta_-(1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}) + \theta_+ \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}$. Then,*

$$(3.8) \quad \begin{aligned} & \int_{\mathbb{T}^3} (-\rho s)(U(x, t)) \Psi(x, t) dx - \int_{\mathbb{T}^3} (-\rho s)(U_0) \Psi(x, 0) dx \\ & + \min\{\theta_+, \theta_-\} \int_0^t \int_{\mathbb{T}^3} \left(\kappa \frac{|\nabla \theta|^2}{\theta^2} + \frac{\mathbb{S} : \nabla u}{\theta} \right) (x, \tau) dx d\tau \\ & + \kappa(\theta_+ - \theta_-) \int_0^t \int_{\mathbb{T}^3} \frac{\nabla \theta}{\theta} \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} dx d\tau \\ & + (\theta_+ - \theta_-) \int_0^t \int_{\mathbb{T}^3} (\rho s)(U(x, \tau)) \left(\partial_\tau \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} + u^{\kappa, \nu} \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \right) (x, \tau) dx d\tau \leq 0 \end{aligned}$$

Proof. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative smooth function such that $\phi(s) = \phi(-s)$, $\int_{\mathbb{R}} \phi = 1$ and $\text{supp } \phi = [-1, 1]$, and let

$$\phi_\zeta(s) := \frac{1}{\zeta} \phi\left(\frac{s - \zeta}{\zeta}\right) \quad \text{for any } \zeta > 0.$$

Then for a given $t \in (0, T)$, and any $\zeta < t/2$, we define a non-negative smooth function

$$(3.9) \quad \varphi_{t, \zeta}(s) := \int_0^s \left(\phi_\zeta(z) - \phi_\zeta(z - t) \right) dz.$$

For test functions of the entropy inequality (2.6), we consider a family of non-negative functions

$$\vec{\varphi}(x, \tau) := \Psi(x, \tau) \varphi_{t, \zeta}(\tau),$$

where $\Psi := \theta_-(1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}) + \theta_+ \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}$.

Then, it follows from (2.6) and $\varphi_{t, \zeta}(0) = 0$ that

$$\int_0^\infty \int_{\mathbb{T}^3} (-\rho s)(U(x, \tau)) \Psi(x, \tau) (-\varphi'_{t, \zeta}(\tau)) dx d\tau + J_\zeta^1 + J_\zeta^2 + J_\zeta^3 \leq 0,$$

where

$$\begin{aligned} J_\zeta^1 &:= \int_0^\infty \int_{\mathbb{T}^3} \left(\kappa \frac{|\nabla \theta|^2}{\theta^2} + \nu \frac{\mathbb{S} : \nabla_x u}{\theta} \right) (x, \tau) \Psi(x, \tau) \varphi_{t, \zeta}(\tau) dx d\tau, \\ J_\zeta^2 &:= - \int_0^\infty \int_{\mathbb{T}^3} \kappa \frac{\nabla \theta}{\theta} \cdot \nabla \Psi(x, \tau) \varphi_{t, \zeta}(\tau) dx d\tau, \\ J_\zeta^3 &:= -(\theta_+ - \theta_-) \int_0^\infty \int_{\mathbb{T}^3} (-\rho s)(U(x, \tau)) \left(\partial_\tau \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} + u \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \right) (x, \tau) \varphi_{t, \zeta}(\tau) dx d\tau. \end{aligned}$$

First, since $\Psi \in C([0, T]; C^\infty(\mathbb{T}^3))$ and $\varphi'_{t, \zeta}(\tau) = \phi_\zeta(\tau) - \phi_\zeta(\tau - t)$, (2.7) and (2.8) implies that as $\zeta \rightarrow 0$,

$$\int_0^\infty \int_{\mathbb{T}^3} (-\rho s)(U(x, \tau)) \Psi(x, \tau) (-\varphi'_{t, \zeta}(\tau)) dx d\tau \rightarrow \int_{\mathbb{T}^3} (-\rho s)(U(x, t)) \Psi(x, t) dx - \int_{\mathbb{T}^3} (-\rho s)(U_0) \Psi(x, 0) dx.$$

Likewise, as $\zeta \rightarrow 0$,

$$\begin{aligned} J_\zeta^1 &\rightarrow \int_0^t \int_{\mathbb{T}^3} \left(\kappa \frac{|\nabla \theta|^2}{\theta^2} + \nu \frac{\mathbb{S} : \nabla u}{\theta} \right) (x, \tau) \Psi(x, \tau) dx d\tau =: J_1, \\ J_\zeta^2 &\rightarrow - \int_0^t \int_{\mathbb{T}^3} \kappa \frac{\nabla \theta}{\theta} \cdot \nabla \Psi(x, \tau) dx d\tau =: J_2, \\ J_\zeta^3 &\rightarrow -(\theta_+ - \theta_-) \int_0^t \int_{\mathbb{T}^3} (-\rho s)(U(x, \tau)) \left(\partial_\tau \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} + u \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \right) (x, \tau) dx d\tau. \end{aligned}$$

In particular, using the assumptions (1.2) together with (3.7), we can show

$$\begin{aligned} J_1 &= \int_0^t \int_{\mathbb{T}^3} \left(\kappa \frac{|\nabla \theta|^2}{\theta^2} + \nu |\nabla u|^2 \right) (x, \tau) \Psi(x, \tau) dx d\tau \\ &\geq \min\{\theta_+, \theta_-\} \int_0^t \int_{\mathbb{T}^3} \left(\kappa \frac{|\nabla \theta|^2}{\theta^2} + \nu |\nabla u|^2 \right) (x, \tau) dx d\tau. \end{aligned}$$

Moreover, since

$$J_2 = \kappa(\theta_+ - \theta_-) \int_0^t \int_{\mathbb{T}^3} \frac{\nabla \theta}{\theta} \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} dx d\tau,$$

we have the desired estimate. \square

3.3. Weighted relative entropy inequality.

Lemma 3.2. *Let $\bar{U} := (\bar{\rho}, \bar{m}, \bar{\mathcal{E}}$) be the planar contact discontinuity (1.13). Then, there exist constants $C > 0$, C_1, C_2 such that for a solution $U := (\rho, m, \mathcal{E})$ of (1.1) in the sense*

of Definition 2.1, we have

$$\begin{aligned}
& \int_{\mathbb{T}^3} \left[(1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}) \theta_-(-\rho s)(U|U_-) + \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \theta_+(-\rho s)(U|U_+) \right] (x, t) dx \\
& \quad + \min\{\theta_+, \theta_-\} \int_0^t \int_{\mathbb{T}^3} \left(\kappa \frac{|\nabla \theta|^2}{\theta^2} + \nu |\nabla u|^2 \right) (x, \tau) dx d\tau \\
(3.10) \quad & \leq C\varepsilon + C \int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx + \kappa C \int_0^t \int_{\mathbb{T}^3} \frac{|\nabla \theta|}{\theta} |\nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}| dx d\tau \\
& \quad + \int_0^t \int_{\mathbb{T}^3} \left(C_1 \rho + C_2 (-\rho s)(U) \right) \left(\partial_\tau \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} + u^{\kappa, \nu} \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \right) (x, \tau) dx d\tau.
\end{aligned}$$

Proof. First, using the definition of the relative functional, we have

$$\begin{aligned}
L(t) &:= \int_{\mathbb{T}^3} \left[(1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}) \theta_-(-\rho s)(U|U_-) + \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \theta_+(-\rho s)(U|U_+) \right] (x, t) dx \\
&= \int_{\mathbb{T}^3} \Psi(x, t)(-\rho s)(U(x, t)) dx \\
&\quad - \underbrace{\int_{\mathbb{T}^3} (1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}) \left(\theta_-(-\rho s)(U_-) + \theta_- d(-\rho s)(U_-) \cdot (U - U_-) \right) dx}_{=: J_1} \\
&\quad - \underbrace{\int_{\mathbb{T}^3} \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \left(\theta_+(-\rho s)(U_+) + \theta_+ d(-\rho s)(U_+) \cdot (U - U_+) \right) dx}_{=: J_2}.
\end{aligned}$$

Then, using (2.19),

$$\begin{aligned}
J_1 &= \int_{\mathbb{T}^3} (1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}) \left[\theta_- \rho_-(-s)(U_-) + \left(\theta_-(-s)(U_-) + \frac{p_- + \mathcal{E}_-}{\rho_-} \right) (\rho - \rho_-) - (\mathcal{E} - \mathcal{E}_-) \right] dx \\
&= \int_{\mathbb{T}^3} (1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}) \left[\left(\theta_-(-s)(U_-) + \frac{p_- + \mathcal{E}_-}{\rho_-} \right) \rho - p_- - \mathcal{E} \right] dx.
\end{aligned}$$

Likewise,

$$J_2 = \int_{\mathbb{T}^3} \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \left[\left(\theta_+(-s)(U_+) + \frac{p_+ + \mathcal{E}_+}{\rho_+} \right) \rho - p_+ - \mathcal{E} \right] dx.$$

Set

$$\beta_- := \theta_-(-s)(U_-) + \frac{p_- + \mathcal{E}_-}{\rho_-}, \quad \beta_+ := \theta_+(-s)(U_+) + \frac{p_+ + \mathcal{E}_+}{\rho_+}.$$

Thus, using $\bar{p} = p_- = p_+$, we have

$$\begin{aligned}
(3.11) \quad L(t) &= \int_{\mathbb{T}^3} \Psi(x, t)(-\rho s)(U(x, t)) dx - \int_{\mathbb{T}^3} \left[\left((1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}) \beta_- + \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \beta_+ \right) \rho - \bar{p} - \mathcal{E} \right] (x, t) dx \\
&=: M(t), \quad \forall t \geq 0.
\end{aligned}$$

Since $\bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \in C([0, T]; C^\infty(\mathbb{T}^3))$, the initial conditions (2.2), (2.5), (2.7) and (2.8) imply

$$\begin{aligned}
M(0) &= \lim_{t \rightarrow 0^+} M(t) \\
&= \int_{\mathbb{T}^3} \Psi(x, 0)(-\rho s)(U_0) dx - \int_{\mathbb{T}^3} \left[\left((1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}(x, 0)) \beta_- + \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}(x, 0) \beta_+ \right) \rho_0 - \bar{p} - \mathcal{E}_0 \right] dx,
\end{aligned}$$

which together with (3.11) yields

$$\begin{aligned} M(0) &= \int_{\mathbb{T}^3} \Psi(x, 0)(-\rho s)(U_0)dx - \int_{\mathbb{T}^3} \left[\left((1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu})\beta_- + \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}\beta_+ \right) \rho_0 - \bar{p} - \mathcal{E}_0 \right] dx \\ &= \int_{\mathbb{T}^3} \left[(1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}(x, 0))\theta_-(-\rho s)(U_0|U_-) + \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}(x, 0)\theta_+(-\rho s)(U_0|U_+) \right] dx \\ &=: L_0. \end{aligned}$$

Thus, we have

$$\begin{aligned} L(t) - L_0 &= M(t) - M(0) \\ &= \int_{\mathbb{T}^3} \left[\Psi(x, t)(-\rho s)(U(x, t)) - \Psi(0, t)(-\rho s)(U_0) \right] dx \\ &\quad - \int_{\mathbb{T}^3} \left[\rho \left((1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu})\beta_- + \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}\beta_+ \right) (x, t) - \rho_0 \left((1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu})\beta_- + \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}\beta_+ \right) (x, 0) \right] dx \\ &\quad + \int_{\mathbb{T}^3} (\mathcal{E} - \mathcal{E}_0) dx =: R_1(t) + R_2(t) + R_3(t). \end{aligned}$$

First, by (2.4), $R_3(t) \leq 0$.

To handle $R_2(t)$, we consider the following test functions for (2.1):

$$\varphi(x, \tau) := \left((1 - \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu})\beta_- + \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}\beta_+ \right) (x, \tau) \varphi_{t, \zeta}(\tau),$$

where $\varphi_{t, \zeta}$ are as in (3.9). Plugging the above test functions into (2.1), and taking $\zeta \rightarrow 0$ together with the same argument as before, we have

$$R_2(t) = (\beta_+ - \beta_-) \int_0^t \int_{\mathbb{T}^3} \rho(x, \tau) \left(\partial_\tau \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} + u \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \right) (x, \tau) dx d\tau$$

Therefore, using (3.8), we have

$$\begin{aligned} L(t) &\leq L_0 - \min\{\theta_+, \theta_-\} \int_0^t \int_{\mathbb{T}^3} \left(\kappa \frac{|\nabla \theta|^2}{\theta^2} + \nu |\nabla u|^2 \right) (x, \tau) dx d\tau \\ &\quad + \kappa |\theta_+ - \theta_-| \int_0^t \int_{\mathbb{T}^3} \frac{|\nabla \theta|}{\theta} |\nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}| dx d\tau \\ &\quad + \int_0^t \int_{\mathbb{T}^3} \left(C_1 \rho + C_2 (-\rho s)(U) \right) \left(\partial_\tau \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} + u \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \right) (x, \tau) dx d\tau, \end{aligned}$$

where $C_1 := \beta_+ - \beta_-$, $C_2 := \theta_+ - \theta_-$.

Since $\bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}|_{t=0} = \psi_0 * \eta_\varepsilon$ by (3.4), it follows from (1.17) that

$$\begin{aligned} L_0 &= \int_{\mathbb{T}^3} \left[(1 - (\psi_0 * \eta_\varepsilon))\theta_-(-\rho s)(U_0|U_-) + (\psi_0 * \eta_\varepsilon)\theta_+(-\rho s)(U_0|U_+) \right] dx \\ &\leq C \int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx + C \int_{1/2-\varepsilon}^{1/2+\varepsilon} (-\rho s)(U_0|\bar{U}) dx \\ &\leq C \int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx + C\varepsilon. \end{aligned}$$

□

Note first that since the velocity u depends on κ, ν , $\bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}$ depends on $\kappa, \delta, \varepsilon, \nu$ by the definition (3.2). Thus, the left-hand side of the estimate (3.10) depends on $\kappa, \delta, \varepsilon, \nu$. Therefore, before performing the limit process for (3.10), we may first use Lemma 2.2 to ensure that the left-hand side of (3.10) controls a new nonlinear functional independent of those parameters $\kappa, \delta, \varepsilon, \nu$. Indeed, using Lemmas 2.2 and 3.2 together with (3.7), we have the following Proposition.

Proposition 3.1. *Under the same hypotheses as in Lemma 2.2, there exist constants $C > 0$, C_1, C_2 such that for a solution $U^{\kappa, \nu} := (\rho, m, \mathcal{E})$ of (1.1),*

$$(3.12) \quad \begin{aligned} & \int_{\mathbb{T}^3} \left(\mathcal{F}(\rho^{\kappa, \nu}) + \mathcal{G}(\mathcal{E}^{\kappa, \nu} - \bar{\mathcal{E}}) + \frac{|m^{\kappa, \nu}|^2}{2\rho^{\kappa, \nu}} \right) dx + \int_0^t \int_{\mathbb{T}^3} \left(\kappa \frac{|\nabla \theta^{\kappa, \nu}|^2}{(\theta^{\kappa, \nu})^2} + \nu |\nabla u^{\kappa, \nu}|^2 \right) (x, \tau) dx d\tau \\ & \leq C\varepsilon + C \int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx + \kappa C \int_0^t \int_{\mathbb{T}^3} \frac{|\nabla \theta^{\kappa, \nu}|}{\theta^{\kappa, \nu}} |\nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}| dx d\tau \\ & \quad + \int_0^t \int_{\mathbb{T}^3} \left(C_1 \rho^{\kappa, \nu} + C_2 (-\rho s)(U^{\kappa, \nu}) \right) \left(\partial_\tau \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} + u^{\kappa, \nu} \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \right) (x, \tau) dx d\tau. \end{aligned}$$

The remaining part of the proof is dedicated to the asymptotic analysis on passing to the limits for the parameters $\kappa, \delta, \varepsilon$ and ν in order.

3.4. Passing to the limit as $\kappa \rightarrow 0$.

First of all, since Young's inequality yields

$$\kappa C \int_0^t \int_{\mathbb{T}^3} \frac{|\nabla \theta^{\kappa, \nu}|}{\theta^{\kappa, \nu}} |\nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}| dx d\tau \leq \frac{\kappa}{2} \int_0^t \int_{\mathbb{T}^3} \frac{|\nabla \theta^{\kappa, \nu}|^2}{(\theta^{\kappa, \nu})^2} dx d\tau + \kappa C \int_0^t \int_{\mathbb{T}^3} |\nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}|^2 dx d\tau,$$

it follows from (3.12) that

$$(3.13) \quad \begin{aligned} & \int_{\mathbb{T}^3} \left(\mathcal{F}(\rho^{\kappa, \nu}) + \mathcal{G}(\mathcal{E}^{\kappa, \nu} - \bar{\mathcal{E}}) + \frac{|m^{\kappa, \nu}|^2}{2\rho^{\kappa, \nu}} \right) dx \\ & \leq C\varepsilon + C \int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx + J_1 + J_2. \end{aligned}$$

where

$$\begin{aligned} J_1 &:= \kappa C \int_0^t \int_{\mathbb{T}^3} |\nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}|^2 dx d\tau, \\ J_2 &:= \int_0^t \int_{\mathbb{T}^3} \left(C_1 \rho^{\kappa, \nu} + C_2 (-\rho s)(U^{\kappa, \nu}) \right) \left(\partial_\tau \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} + u^{\kappa, \nu} \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} \right) dx d\tau. \end{aligned}$$

For J_1 , using $\nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} = \psi_\delta^{\kappa, \nu} * \nabla \eta_\varepsilon$ by (3.6), and $0 \leq \psi_\delta^{\kappa, \nu} \leq 1$ by (3.5), we have

$$\int_0^t \int_{\mathbb{T}^3} |\nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}|^2 dx d\tau \leq C(\varepsilon) \quad \text{independent of } \kappa,$$

from which,

$$J_1 \rightarrow 0 \quad \text{as } \kappa \rightarrow 0.$$

For J_2 , we will use the following uniform bound :

$$(3.14) \quad \|u^{\kappa, \nu}\|_{L^2(0, T; H^1(\mathbb{T}^3))} \leq C \quad (\text{independent of } \kappa, \delta, \varepsilon).$$

This follows from (2.11) and

$$\|u^{\kappa, \nu}\|_{L^2(\mathbb{T}^3)}^2 \leq C \left[\|\nabla u^{\kappa, \nu}\|_{L^2(\mathbb{T}^3)} + \|\rho^{\kappa, \nu}\|_{L^1(\mathbb{T}^3)} \|\sqrt{\rho^{\kappa, \nu}} u^{\kappa, \nu}\|_{L^2(\mathbb{T}^3)}^2 \right] \leq C,$$

which is obtained by Lemma 3.3 together with (2.11), (2.4), (2.9).

Lemma 3.3. [18, Lemma 3.2] *Let $v \in W^{1,2}(\Omega)$ for a bounded domain $\Omega \subset \mathbb{R}^N$, and ρ be a non-negative function such that*

$$0 < M \leq \int_{\Omega} \rho dx, \quad \int_{\Omega} \rho^{\gamma} dx \leq E_0,$$

where M, E_0 and $\gamma > 1$ are some constants. Then there exists a constant $C = C(M, E_0)$ such that

$$\|v\|_{L^2(\Omega)}^2 \leq C \left(\|\nabla_x v\|_{L^2(\Omega)}^2 + \left(\int_{\Omega} \rho |v| dx \right) \right).$$

By (3.14), there exists $u^{\nu} \in L^2(0, T; H^1(\mathbb{T}^3))$ such that

$$(3.15) \quad u^{\kappa, \nu} \rightharpoonup u^{\nu} \quad \text{weakly in } L^2(0, T; H^1(\mathbb{T}^3)) \quad \text{as } \kappa \rightarrow 0.$$

Note that it follows from the uniform bound (3.5), there exists ψ_{δ}^{ν} such that

$$(3.16) \quad 0 \leq \psi_{\delta}^{\nu} \leq 1$$

and

$$(3.17) \quad \psi_{\delta}^{\kappa, \nu} \rightharpoonup \psi_{\delta}^{\nu} \quad \text{weakly-}^* \text{ in } L^{\infty}((0, T) \times \mathbb{T}^3) \quad \text{as } \kappa \rightarrow 0.$$

To get the desired limit from J_2 , we need to rewrite $\partial_{\tau} \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} + u^{\kappa, \nu} \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu}$ as follows: First, take the mollification on the equation (3.2) with the mollifier η_{ε} , to have

$$(3.18) \quad \partial_t \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} + (\bar{u}_{\delta}^{\kappa, \nu} \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu})_{\varepsilon} = 0,$$

from which, we have

$$\partial_t \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} + u^{\kappa, \nu} \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} = R_{\delta, \varepsilon}^{\kappa, \nu},$$

where

$$R_{\delta, \varepsilon}^{\kappa, \nu} := u^{\kappa, \nu} \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} - (\bar{u}_{\delta}^{\kappa, \nu} \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu})_{\varepsilon}.$$

equivalently,

$$R_{\delta, \varepsilon}^{\kappa, \nu} := u^{\kappa, \nu} \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^{\kappa, \nu} - (\overline{(\operatorname{div}(\bar{u}_{\delta}^{\kappa, \nu} \psi_{\delta}^{\kappa, \nu}))})_{\varepsilon} + (\overline{(\operatorname{div} \bar{u}_{\delta}^{\kappa, \nu})} \psi_{\delta}^{\kappa, \nu})_{\varepsilon}.$$

By using the above representation, we rewrite J_2 as

$$J_2 := \int_0^t \int_{\mathbb{T}^3} \left(C_1 \rho^{\kappa, \nu} + C_2 (-\rho s) (U^{\kappa, \nu}) \right) R_{\delta, \varepsilon}^{\kappa, \nu} dx d\tau,$$

We will first show that there exists $G^{\nu} \in L^{\infty}(0, T; L^2(\mathbb{T}^3))$ such that

$$C_1 \rho^{\kappa, \nu} + C_2 (-\rho s) (U^{\kappa, \nu}) \rightarrow G^{\nu} \quad \text{strongly in } L^2(0, T; H^{-1}(\mathbb{T}^3)) \quad \text{as } \kappa \rightarrow 0.$$

For that, we may use the Aubin-Lions lemma (see [18, Lemma 6.3]):

Lemma 3.4. *Let $\{v_n\}_{n=1}^{\infty}$ be a sequence of functions such that v_n are uniformly bounded in $L^2(0, T; L^q(\Omega)) \cap L^{\infty}(0, T; L^1(\Omega))$ with $q > \frac{2N}{N+1}$. Furthermore, assume that*

$$\partial_t v_n \geq g_n, \quad \text{in } \mathcal{D}'((0, T) \times \Omega)$$

where g_n are uniformly bounded in $L^1(0, T; W^{-m, r}(\Omega))$ with $m \geq 1$ and $r > 1$. Then $\{v_n\}_{n=1}^{\infty}$ contains a subsequence such that

$$v_n \rightarrow v \quad \text{in } L^2(0, T; H^{-1}(\Omega)) \quad \text{strongly.}$$

In order to apply Lemma 3.4 to the entropy inequality (2.6):

$$(\rho^{\kappa,\nu} s^{\kappa,\nu})_t + \operatorname{div}(\rho^{\kappa,\nu} u^{\kappa,\nu} s^{\kappa,\nu}) - \kappa \operatorname{div}\left(\frac{\nabla \theta^{\kappa,\nu}}{\theta^{\kappa,\nu}}\right) + \kappa \frac{|\nabla \theta^{\kappa,\nu}|^2}{(\theta^{\kappa,\nu})^2} + \nu \frac{\mathbb{S} : \nabla u^{\kappa,\nu}}{\theta^{\kappa,\nu}} \geq 0 \quad \text{in } \mathcal{D}'((0, T) \times \mathbb{T}^3),$$

we set

$$(\rho^{\kappa,\nu} s^{\kappa,\nu})_t \geq -\operatorname{div}(\rho^{\kappa,\nu} u^{\kappa,\nu} s^{\kappa,\nu}) + \kappa \operatorname{div}\left(\frac{\nabla \theta^{\kappa,\nu}}{\theta^{\kappa,\nu}}\right) - \kappa \frac{|\nabla \theta^{\kappa,\nu}|^2}{(\theta^{\kappa,\nu})^2} - \nu \frac{\mathbb{S} : \nabla u^{\kappa,\nu}}{\theta^{\kappa,\nu}} := \sum_{i=1}^4 g_i^{\kappa}.$$

Since it follows from (2.10) and (3.14) that $\rho^{\kappa,\nu} s^{\kappa,\nu}$ and $u^{\kappa,\nu}$ are respectively uniformly bounded in $L^2(0, T; L^2(\mathbb{T}^3))$ and $L^2(0, T; L^6(\mathbb{T}^3))$, g_1^{κ} is uniformly bounded in $L^2(0, T; W^{-1, \frac{3}{2}}(\mathbb{T}^3))$. Since $\sqrt{\kappa} \frac{\nabla \theta^{\kappa,\nu}}{\theta^{\kappa,\nu}}$ is uniformly bounded in $L^2(0, T; L^2(\mathbb{T}^3))$ by (2.11), g_2^{κ} is uniformly bounded in $L^2(0, T; W^{-1,2}(\mathbb{T}^3))$. Moreover, $g_3^{\kappa} + g_4^{\kappa}$ is uniformly bounded in $L^1(0, T; L^1(\mathbb{T}^3)) \hookrightarrow L^1(0, T; W^{-1, \frac{3}{2}}(\mathbb{T}^3))$. Therefore, by the Aubin-Lions lemma, $\{\rho^{\kappa,\nu} s^{\kappa,\nu}\}_{\kappa>0}$ is pre-compact in $L^2(0, T; W^{-1,2}(\mathbb{T}^3))$. Thus, there exists G_*^{ν} such that

$$(-\rho s)(U^{\kappa,\nu}) \rightarrow G_*^{\nu} \quad \text{strongly in } L^2(0, T; H^{-1}(\mathbb{T}^3)) \quad \text{as } \kappa \rightarrow 0,$$

in addition, by (2.10),

$$G_*^{\nu} \in L^{\infty}(0, T; L^2(\mathbb{T}^3)).$$

Likewise, applying the Aubin-Lions lemma to the continuity equation:

$$\partial_t \rho^{\kappa,\nu} + \operatorname{div}(\rho^{\kappa,\nu} u^{\kappa,\nu}) = 0, \quad \text{in } \mathcal{D}'((0, T) \times \mathbb{T}^3),$$

and using (2.9) and (3.14), we obtain that there exists $\rho^{\nu} \in L^{\infty}(0, T; L^2(\mathbb{T}^3))$ such that

$$(3.19) \quad \rho^{\kappa,\nu} \rightarrow \rho^{\nu} \quad \text{strongly in } L^2(0, T; H^{-1}(\mathbb{T}^3)) \quad \text{as } \kappa \rightarrow 0.$$

Thus, putting $G^{\nu} := C_1 \rho^{\nu} + C_2 G_*^{\nu}$, we have

$$(3.20) \quad \|G^{\nu}\|_{L^{\infty}(0, T; L^2(\mathbb{T}^3))} \leq C, \quad (\text{independent of } \varepsilon, \delta)$$

and

$$(3.21) \quad C_1 \rho^{\kappa,\nu} + C_2 (-\rho s)(U^{\kappa,\nu}) \rightarrow G^{\nu} \quad \text{strongly in } L^2(0, T; H^{-1}(\mathbb{T}^3)) \quad \text{as } \kappa \rightarrow 0.$$

Next, we will show that

$$(3.22) \quad R_{\delta,\varepsilon}^{\kappa,\nu} \rightarrow R_{\delta,\varepsilon}^{\nu} \quad \text{weakly in } L^2(0, T; H^1(\mathbb{T}^3)) \quad \text{as } \kappa \rightarrow 0,$$

where

$$(3.23) \quad R_{\delta,\varepsilon}^{\nu} := u^{\nu} \cdot \nabla \bar{\psi}_{\delta,\varepsilon}^{\nu} - \left(\overline{(\operatorname{div}(\bar{u}_{\delta}^{\nu} \psi_{\delta}^{\nu}))} \right)_{\varepsilon} + \left(\overline{(\operatorname{div} \bar{u}_{\delta}^{\nu}) \psi_{\delta}^{\nu}} \right)_{\varepsilon}.$$

For that, we may derive a strong convergence of $\psi_{\delta}^{\kappa,\nu}$. Since the equation (3.2) can be rewritten as

$$\partial_t \psi_{\delta}^{\kappa,\nu} = -\operatorname{div}(\bar{u}_{\delta}^{\kappa,\nu} \psi_{\delta}^{\kappa,\nu}) + (\operatorname{div} \bar{u}_{\delta}^{\kappa,\nu}) \psi_{\delta}^{\kappa,\nu},$$

the uniform bounds (3.5) and (3.14) imply that $\{\partial_t \psi_{\delta}^{\kappa,\nu}\}_{\kappa>0}$ is bounded in $L^2(0, T; H^{-1}(\mathbb{T}^3))$. Then, this together with the bound (3.5) and the Aubin-Lions Lemma implies

$$(3.24) \quad \psi_{\delta}^{\kappa,\nu} \rightarrow \psi_{\delta}^{\nu} \quad \text{in } L^2(0, T; H^{-1}(\mathbb{T}^3)) \quad \text{as } \kappa \rightarrow 0.$$

Moreover, note that (3.14) with the mollification implies

$$(3.25) \quad \|\bar{u}_{\delta}^{\kappa,\nu}\|_{L^2(0, T; H^2(\mathbb{T}^3))} \leq C \quad (\text{independent of } \kappa).$$

Then, using the following Lemma 3.5 together with (3.14), (3.5), (3.24) and (3.25), we have

$$\begin{aligned} \overline{(\operatorname{div}(\bar{u}_\delta^{\kappa,\nu} \psi_\delta^{\kappa,\nu}))}_\varepsilon &\rightharpoonup \overline{(\operatorname{div}(\bar{u}_\delta^\nu \psi_\delta^\nu))}_\varepsilon \quad \text{weakly in } L^2(0, T; H^1(\mathbb{T}^3)), \\ \overline{((\operatorname{div}\bar{u}_\delta^{\kappa,\nu}) \psi_\delta^{\kappa,\nu})}_\varepsilon &\rightharpoonup \overline{((\operatorname{div}\bar{u}_\delta^\nu) \psi_\delta^\nu)}_\varepsilon \quad \text{weakly in } L^2(0, T; H^1(\mathbb{T}^3)). \end{aligned}$$

On the other hand, since (3.5) and the mollification yield

$$\|\nabla \bar{\psi}_{\delta,\varepsilon}^{\kappa,\nu}\|_{L^\infty(0,T;L^\infty(\mathbb{T}^3))} \leq C \quad (\text{independent of } \kappa),$$

which together with (3.14) implies

$$(3.26) \quad \|u^{\kappa,\nu} \cdot \nabla \bar{\psi}_{\delta,\varepsilon}^{\kappa,\nu}\|_{L^2(0,T;H^1(\mathbb{T}^3))} \leq C \quad (\text{independent of } \kappa).$$

Moreover, since (3.24) with the mollification implies

$$\nabla \bar{\psi}_{\delta,\varepsilon}^{\kappa,\nu} \rightarrow \nabla \bar{\psi}_{\delta,\varepsilon}^\nu \quad \text{in } L^2(0, T; H^1(\mathbb{T}^3)) \quad \text{as } \kappa \rightarrow 0,$$

this together with (3.15) and (3.26) implies

$$u^{\kappa,\nu} \cdot \nabla \bar{\psi}_{\delta,\varepsilon}^{\kappa,\nu} \rightharpoonup u^\nu \cdot \nabla \bar{\psi}_{\delta,\varepsilon}^\nu \quad \text{weakly in } L^2(0, T; H^1(\mathbb{T}^3)) \quad \text{as } \kappa \rightarrow 0.$$

Therefore, we obtain the desired convergence (3.22).

Lemma 3.5. *Assume that $\{u_n\}_{n \in \mathbb{N}}$ and $\{\psi_n\}_{n \in \mathbb{N}}$ are sequences such that one of the following holds:*

- (i) $u_n \rightarrow u$ in $L^2(0, T; H^1(\mathbb{T}^3))$ and $\psi_n \rightharpoonup \psi$ weakly $-*$ in $L^\infty((0, T) \times \mathbb{T}^3)$;
- (ii) $\psi_n \rightarrow \psi$ in $L^2(0, T; H^{-1}(\mathbb{T}^3))$ and $\|\psi_n\|_{L^\infty((0, T) \times \mathbb{T}^3)} + \|u_n\|_{L^2(0, T; H^1(\mathbb{T}^3))} + \|\nabla \operatorname{div} u_n\|_{L^2(0, T; L^2(\mathbb{T}^3))} \leq C$ (independent of n).

Then, for any fixed $\varepsilon > 0$, up to a subsequence,

$$\begin{aligned} \overline{(\operatorname{div}(u_n \psi_n))}_\varepsilon &\rightharpoonup \overline{(\operatorname{div}(u \psi))}_\varepsilon \quad \text{weakly in } L^2(0, T; H^1(\mathbb{T}^3)) \quad \text{as } n \rightarrow 0, \\ \overline{((\operatorname{div}u_n) \psi_n)}_\varepsilon &\rightharpoonup \overline{((\operatorname{div}u) \psi)}_\varepsilon \quad \text{weakly in } L^2(0, T; H^1(\mathbb{T}^3)) \quad \text{as } n \rightarrow 0. \end{aligned}$$

Proof. If the assumption (i) holds, then

$$u_n \psi_n \rightharpoonup u \psi \quad \text{and} \quad (\operatorname{div}u_n) \psi_n \rightharpoonup (\operatorname{div}u) \psi \quad \text{weakly in } L^2(0, T; L^2(\mathbb{T}^3)).$$

Thus, thanks to the spatial mollification, we have the desired convergence.

If the assumption (ii) holds, then up to a subsequence,

$$u_n \psi_n \rightarrow u \psi \quad \text{and} \quad (\operatorname{div}u_n) \psi_n \rightarrow (\operatorname{div}u) \psi \quad \text{in } \mathcal{D}'((0, T) \times \mathbb{T}^3).$$

Moreover, since

$$\|(\overline{\operatorname{div}(u_n \psi_n)})_\varepsilon\|_{L^2(0,T;H^1(\mathbb{T}^3))} + \|(\overline{((\operatorname{div}u_n) \psi_n)})_\varepsilon\|_{L^2(0,T;H^1(\mathbb{T}^3))} \leq C \quad (\text{independent of } n),$$

we have the desired convergence. \square

Therefore, (3.21) and (3.22) implies

$$J_2 \rightarrow \int_0^t \int_{\mathbb{T}^3} G^\nu R_{\varepsilon,\delta}^\nu dx d\tau, \quad \forall t \leq T.$$

Hence we have from (3.13) that

$$(3.27) \quad \begin{aligned} & \liminf_{\kappa \rightarrow 0} \int_{\mathbb{T}^3} \left(\mathcal{F}(\rho^{\kappa,\nu}) + \mathcal{G}(\mathcal{E}^{\kappa,\nu} - \bar{\mathcal{E}}) + \frac{|m^{\kappa,\nu}|^2}{2\rho^{\kappa,\nu}} \right) dx \\ & \leq C\varepsilon + C \int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx + \int_0^t \int_{\mathbb{T}^3} G^\nu R_{\varepsilon,\delta}^\nu dx d\tau, \quad \forall t \leq T. \end{aligned}$$

Since it follows from (3.15) and (3.19) that

$$(3.28) \quad m^{\kappa,\nu} = \rho^{\kappa,\nu} u^{\kappa,\nu} \rightharpoonup \rho^\nu u^\nu := m^\nu \quad \text{weakly in } \mathcal{D}'((0, T) \times \mathbb{T}^3),$$

using the weakly lower semi-continuity of the convex functionals $\rho \mapsto \mathcal{F}(\rho)$ and $(\rho, m) \mapsto \frac{|m|^2}{\rho}$, we have

$$(3.29) \quad \int_{\mathbb{T}^3} \left(\mathcal{F}(\rho^\nu) + \frac{|m^\nu|^2}{2\rho^\nu} \right) dx \leq \liminf_{\kappa \rightarrow 0} \int_{\mathbb{T}^3} \left(\mathcal{F}(\rho^{\kappa,\nu}) + \frac{|m^{\kappa,\nu}|^2}{2\rho^{\kappa,\nu}} \right) dx.$$

On the other hand, since the definition of the functional \mathcal{G} yields that the quantity $f := \mathcal{E}^{\kappa,\nu} - \bar{\mathcal{E}}$ satisfies

$$(3.30) \quad \begin{aligned} \int_{\mathbb{T}^3} |f| dx &= \int_{|f| \leq 1} |f| dx + \int_{|f| > 1} |f| dx \leq \sqrt{\int_{\mathbb{T}^3} dx} \sqrt{\int_{|f| \leq 1} |f|^2 dx} + \int_{|f| > 1} |f| dx \\ &\leq \sqrt{\int_{\mathbb{T}^3} \mathcal{G}(f) dx} + \int_{\mathbb{T}^3} \mathcal{G}(f) dx, \end{aligned}$$

and it follows from (3.27) that $\int_{\mathbb{T}^3} \mathcal{G}(f) dx$ is uniformly bounded in κ , we find that there exists $\mathcal{E}^\nu \in L^\infty(0, T; \mathcal{M}(\mathbb{T}^3))$ such that

$$\mathcal{E}^{\kappa,\nu} \rightharpoonup \mathcal{E}^\nu \quad \text{weakly-} * \quad \text{in } L^\infty(0, T; \mathcal{M}(\mathbb{T}^3)).$$

Therefore, this and (3.30) imply

$$\|\mathcal{E}^\nu - \bar{\mathcal{E}}\|_{L^\infty(0, T; \mathcal{M}(\mathbb{T}^3))} \leq \liminf_{\kappa \rightarrow 0} \sup_{t \in [0, T]} \left(\sqrt{\int_{\mathbb{T}^3} \mathcal{G}(\mathcal{E}^{\kappa,\nu} - \bar{\mathcal{E}}) dx} + \int_{\mathbb{T}^3} \mathcal{G}(\mathcal{E}^{\kappa,\nu} - \bar{\mathcal{E}}) dx \right).$$

Hence, we obtain from (3.27) and (3.29) that

$$(3.31) \quad \sup_{t \in [0, T]} \int_{\mathbb{T}^3} \left(\mathcal{F}(\rho^\nu) + \frac{|m^\nu|^2}{2\rho^\nu} \right) dx + \|\mathcal{E}^\nu - \bar{\mathcal{E}}\|_{L^\infty(0, T; \mathcal{M}(\mathbb{T}^3))} \leq C \sup_{t \in [0, T]} \left(\sqrt{\mathcal{A}_{\varepsilon,\delta}^\nu} + \mathcal{A}_{\varepsilon,\delta}^\nu \right),$$

where

$$\mathcal{A}_{\varepsilon,\delta}^\nu := C\varepsilon + \int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx + \left| \int_0^t \int_{\mathbb{T}^3} G^\nu R_{\varepsilon,\delta}^\nu dx d\tau \right|.$$

Also, note that the convergences (3.28) and (3.19) imply

$$(3.32) \quad \partial_t \rho^\nu + \operatorname{div}(m^\nu) = 0 \quad \text{in } \mathcal{D}'((0, T) \times \mathbb{T}^3).$$

3.5. Passing to the limit as $\delta \rightarrow 0$. Since only the term $R_{\varepsilon, \delta}^\nu$ in (3.31) depends on δ , we will pass to the limit on $R_{\varepsilon, \delta}^\nu$ as $\delta \rightarrow 0$ as $\delta \rightarrow 0$.

We first recall (3.23) as

$$R_{\delta, \varepsilon}^\nu := u^\nu \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^\nu - \overline{(\operatorname{div}(\bar{u}_\delta^\nu \psi_\delta^\nu))}_\varepsilon + \overline{((\operatorname{div} \bar{u}_\delta^\nu) \psi_\delta^\nu)}_\varepsilon.$$

By (3.16), up to a subsequence, there exists ψ^ν such that $0 \leq \psi^\nu \leq 1$ and

$$(3.33) \quad \psi_\delta^\nu \rightharpoonup \psi^\nu \quad \text{weakly-* in } L^\infty((0, T) \times \mathbb{T}^3) \quad \text{as } \delta \rightarrow 0,$$

which yields that (by the mollification)

$$\nabla \bar{\psi}_{\delta, \varepsilon}^\nu \rightharpoonup \nabla \bar{\psi}_\varepsilon^\nu \quad \text{weakly-* in } L^\infty(0, T; H^1(\mathbb{T}^3)) \quad \text{as } \delta \rightarrow 0.$$

This together with $u^\nu \in L^2(0, T; H^1(\mathbb{T}^3))$ implies

$$u^\nu \cdot \nabla \bar{\psi}_{\delta, \varepsilon}^\nu \rightharpoonup u^\nu \cdot \nabla \bar{\psi}_\varepsilon^\nu \quad \text{weakly in } L^2(0, T; H^1(\mathbb{T}^3)) \quad \text{as } \delta \rightarrow 0.$$

Since $u^\nu \in L^2(0, T; H^1(\mathbb{T}^3))$ implies

$$\bar{u}_\delta^\nu \rightarrow u^\nu \quad \text{in } L^2(0, T; H^1(\mathbb{T}^3)) \quad \text{strongly as } \delta \rightarrow 0,$$

which together with Lemma 3.5 and (3.33) yields

$$\begin{aligned} \overline{(\operatorname{div}(\bar{u}_\delta^\nu \psi_\delta^\nu))}_\varepsilon &\rightharpoonup \overline{(\operatorname{div}(u^\nu \psi^\nu))}_\varepsilon \quad \text{weakly in } L^2(0, T; H^1(\mathbb{T}^3)), \\ \overline{((\operatorname{div} \bar{u}_\delta^\nu) \psi_\delta^\nu)}_\varepsilon &\rightharpoonup \overline{((\operatorname{div} u^\nu) \psi^\nu)}_\varepsilon \quad \text{weakly in } L^2(0, T; H^1(\mathbb{T}^3)). \end{aligned}$$

Hence, we have

$$(3.34) \quad R_{\varepsilon, \delta}^\nu \rightharpoonup R_\varepsilon^\nu \quad \text{weakly in } L^2(0, T; H^1(\mathbb{T}^3)),$$

where

$$R_\varepsilon^\nu := u^\nu \cdot \nabla \bar{\psi}_\varepsilon^\nu - \overline{(\operatorname{div}(u^\nu \psi^\nu))}_\varepsilon + \overline{((\operatorname{div} u^\nu) \psi^\nu)}_\varepsilon.$$

This and (3.20) with (3.31) yield

$$(3.35) \quad \sup_{t \in [0, T]} \int_{\mathbb{T}^3} \left(\mathcal{F}(\rho^\nu) + \frac{|m^\nu|^2}{2\rho^\nu} \right) dx + \|\mathcal{E}^\nu - \bar{\mathcal{E}}\|_{L^\infty(0, T; \mathcal{M}(\mathbb{T}^3))} \leq C \sup_{t \in [0, T]} \left(\sqrt{\mathcal{A}_\varepsilon^\nu} + \mathcal{A}_\varepsilon^\nu \right),$$

where

$$\mathcal{A}_\varepsilon^\nu := C\varepsilon + \int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx + \left| \int_0^t \int_{\mathbb{T}^3} G^\nu R_\varepsilon^\nu dx d\tau \right|.$$

3.6. Passing to the limit as $\varepsilon \rightarrow 0$. We first rewrite R_ε^ν as

$$\begin{aligned} R_\varepsilon^\nu &= \operatorname{div}(u^\nu \bar{\psi}_\varepsilon^\nu) - (\operatorname{div} u^\nu) \bar{\psi}_\varepsilon^\nu - \overline{(\operatorname{div}(u^\nu \psi^\nu))}_\varepsilon + \overline{((\operatorname{div} u^\nu) \psi^\nu)}_\varepsilon \\ &= \underbrace{\left(\overline{((\operatorname{div} u^\nu) \psi^\nu)}_\varepsilon - (\operatorname{div} u^\nu) \bar{\psi}_\varepsilon^\nu \right)}_{=: K_1} + \underbrace{\left(\overline{\operatorname{div}(u^\nu \bar{\psi}_\varepsilon^\nu)} - \overline{(\operatorname{div}(u^\nu \psi^\nu))}_\varepsilon \right)}_{=: K_2}. \end{aligned}$$

First of all, note that

$$(3.36) \quad \|K_1\|_{L^2((0, T) \times \mathbb{T}^3)} \leq C \quad (\text{independent of } \varepsilon).$$

Since $\psi^\nu \in L^\infty((0, T) \times \mathbb{T}^3) \subset L^q((0, T) \times \mathbb{T}^3)$ for $q < \infty$,

$$\bar{\psi}_\varepsilon^\nu \rightarrow \psi^\nu \quad \text{strongly in } L^q((0, T) \times \mathbb{T}^3) \quad \text{as } \varepsilon \rightarrow 0,$$

which together with $u^\nu \in L^2(0, T; H^1(\mathbb{T}^3))$ implies

$$(\operatorname{div} u^\nu) \bar{\psi}_\varepsilon^\nu \rightarrow (\operatorname{div} u^\nu) \psi^\nu \quad \text{in } L^{r_0}((0, T) \times \mathbb{T}^3) \quad \text{for some } r_0 \in (1, 2).$$

Moreover, using $(\operatorname{div} u^\nu) \psi^\nu \in L^2((0, T) \times \mathbb{T}^3)$, we have

$$\overline{((\operatorname{div} u^\nu) \psi^\nu)}_\varepsilon \rightarrow (\operatorname{div} u^\nu) \psi^\nu \quad \text{in } L^2((0, T) \times \mathbb{T}^3).$$

Thus,

$$K_1 \rightarrow 0 \quad \text{in } L^{r_0}((0, T) \times \mathbb{T}^3),$$

which together with (3.36) yields

$$K_1 \rightharpoonup 0 \quad \text{in } L^2((0, T) \times \mathbb{T}^3).$$

For K_2 , we use the following lemma on the Lions commutator estimate:

Lemma 3.6. [44, Lemma 2.3] *There exists a constant C such that for any $\varepsilon > 0$, any functions $f \in W^{1,\alpha}(\mathbb{T}^3)$ and $g \in L^\beta(\mathbb{T}^3)$ with $0 \leq \frac{1}{\alpha} + \frac{1}{\beta} = \frac{1}{r} \leq 1$ satisfy*

$$\|\overline{(\operatorname{div}(fg))}_\varepsilon - \operatorname{div}(f\bar{g}_\varepsilon)\|_{L^r(\mathbb{T}^3)} \leq C\|f\|_{W^{1,\alpha}(\mathbb{T}^3)}\|g\|_{L^\beta(\mathbb{T}^3)}.$$

In addition, if $r < \infty$, then

$$\|\overline{(\operatorname{div}(fg))}_\varepsilon - \operatorname{div}(f\bar{g}_\varepsilon)\|_{L^r(\mathbb{T}^3)} \rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0.$$

We may apply Lemma 3.6 to our case: $f = u^\nu, g = \psi^\nu, \alpha = 2, \beta = \infty$ and $r = 2$. Since $\|u^\nu\|_{L^2(0,T;H^1(\mathbb{T}^3))}$ and $\|\psi^\nu\|_{L^\infty((0,T)\times\mathbb{T}^3)}$ are uniformly bounded in ν , Lemma 3.6 implies that (3.37)

$$\|K_2\|_{L^2(0,T;L^2(\mathbb{T}^3))} \leq C\|u^\nu\|_{L^2(0,T;H^1(\mathbb{T}^3))}\|\psi^\nu\|_{L^\infty((0,T)\times\mathbb{T}^3)} \leq C \quad (\text{independent of } \nu),$$

and

$$(3.38) \quad \|K_2(\cdot, t)\|_{L^2(\mathbb{T}^3)} \rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0, \quad \text{for a.e. } t \in (0, T),$$

where we used the fact that $u^\nu(\cdot, t) \in H^1(\mathbb{T}^3)$ and $\psi^\nu(\cdot, t) \in L^2(\mathbb{T}^3)$ for a.e. $t \in (0, T)$, and uniformly in ν .

Thus, it follows from (3.37) and (3.38) that for $q < 2$,

$$\|K_2(\cdot, t)\|_{L^2(\mathbb{T}^3)} \rightarrow 0 \quad \text{in } L^q((0, T)) \quad \text{as } \varepsilon \rightarrow 0,$$

which together with (3.37) yields

$$K_2 \rightharpoonup 0 \quad \text{in } L^2((0, T) \times \mathbb{T}^3) \quad \text{as } \varepsilon \rightarrow 0.$$

Therefore,

$$(3.39) \quad R_\varepsilon^\nu \rightharpoonup 0 \quad \text{in } L^2((0, T) \times \mathbb{T}^3) \quad \text{as } \varepsilon \rightarrow 0.$$

which together with (3.20) yields

$$\int_0^t \int_{\mathbb{T}^3} G^\nu R_\varepsilon^\nu dx d\tau \rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0, \quad \forall t \in [0, T].$$

Hence, taking $\varepsilon \rightarrow 0$ in (3.35), we have

$$(3.40) \quad \begin{aligned} & \sup_{[0,T]} \int_{\mathbb{T}^3} \left(\mathcal{F}(\rho^\nu) + \frac{|m^\nu|^2}{2\rho^\nu} \right) dx + \|\mathcal{E}^\nu - \bar{\mathcal{E}}\|_{L^\infty(0,T;\mathcal{M}(\mathbb{T}^3))} \\ & \leq C \sqrt{\int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx} + C \int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx. \end{aligned}$$

3.7. Passing to the limit as $\nu \rightarrow 0$. First of all, by (2.9), there exists $\rho \in L^\infty(0, T; L^2(\mathbb{T}^3))$ such that

$$(3.41) \quad \rho^\nu \rightharpoonup \rho \quad \text{weakly-}^* \text{ in } L^\infty(0, T; L^2(\mathbb{T}^3)).$$

Since the Hölder inequality with $|m^\nu| = \sqrt{\rho^\nu} \frac{|m^\nu|}{\sqrt{\rho^\nu}}$ yields

$$\|m^\nu\|_{L^\infty(0, T; L^{\frac{4}{3}}(\mathbb{T}^3))} \leq \|\sqrt{\rho^\nu}\|_{L^\infty(0, T; L^4(\mathbb{T}^3))} \left\| \frac{m^\nu}{\sqrt{\rho^\nu}} \right\|_{L^\infty(0, T; L^2(\mathbb{T}^3))},$$

the uniform bounds (2.9) and (2.4) imply the uniform bound of m^ν in $L^\infty(0, T; L^{\frac{4}{3}}(\mathbb{T}^3))$. Thus, there exists $m \in L^\infty(0, T; L^{\frac{4}{3}}(\mathbb{T}^3))$ such that

$$(3.42) \quad m^\nu \rightharpoonup m \quad \text{weakly-}^* \text{ in } L^\infty(0, T; L^{\frac{4}{3}}(\mathbb{T}^3)).$$

Note that it follows from (3.40) that there exists $\mathcal{E} \in L^\infty(0, T; \mathcal{M}(\mathbb{T}^3))$ such that

$$(3.43) \quad \mathcal{E}^\nu \rightharpoonup \mathcal{E} \quad \text{weakly-}^* \text{ in } L^\infty(0, T; \mathcal{M}(\mathbb{T}^3)).$$

Therefore, (3.43) and the weakly lower semi-continuity of the convex functionals in (3.40) together with (3.41) and (3.42), we have

$$(3.44) \quad \begin{aligned} & \sup_{[0, T]} \int_{\mathbb{T}^3} \left(\mathcal{F}(\rho) + \frac{|m|^2}{2\rho} \right) dx + \|\mathcal{E} - \bar{\mathcal{E}}\|_{L^\infty(0, T; \mathcal{M}(\mathbb{T}^3))} \\ & \leq C \sqrt{\int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx} + C \int_{\mathbb{T}^3} (-\rho s)(U_0|\bar{U}) dx, \end{aligned}$$

which gives (1.19).

We also obtain from (3.32) that

$$(3.45) \quad \partial_t \rho + \operatorname{div}(m) = 0 \quad \text{in } \mathcal{D}'((0, T) \times \mathbb{T}^3).$$

3.8. Uniqueness. We here prove the last part of Theorem 1.1, for the uniqueness. Let $(U_0^n)_{n \in \mathbb{N}}$ be a sequence of initial data such that

$$(3.46) \quad \int_{\mathbb{T}^3} (-\rho s)(U_0^n|\bar{U}) dx \rightarrow 0 \quad \text{as } n \rightarrow \infty.$$

Then, by (3.44),

$$\liminf_{n \rightarrow \infty} \left[\sup_{[0, T]} \int_{\mathbb{T}^3} \left(\mathcal{F}(\rho^n) + \frac{|m^n|^2}{2\rho^n} \right) dx + \|\mathcal{E}^n - \bar{\mathcal{E}}\|_{L^\infty(0, T; \mathcal{M}(\mathbb{T}^3))} \right] = 0.$$

Thus, as $n \rightarrow \infty$,

$$\mathcal{E}^n \rightarrow \bar{\mathcal{E}} \quad \text{in } L^\infty(0, T; \mathcal{M}(\mathbb{T}^3)),$$

and

$$\frac{|m^n|}{\sqrt{\rho^n}} \rightarrow 0 \quad \text{in } L^\infty(0, T; L^2(\mathbb{T}^3)).$$

Since

$$\begin{aligned} \rho^n &= \rho^n \mathbf{1}_{\rho^n \in [\rho_*, \rho^*]} + \rho^n \mathbf{1}_{\rho^n \in (0, \rho_*)} + \rho^n \mathbf{1}_{\rho^n \in (\rho^*, \infty)} \\ &\leq \rho^* + |\rho^n \mathbf{1}_{\rho^n \in (0, \rho_*)} - \rho_*| + \rho_* + |\rho^n \mathbf{1}_{\rho^n \in (\rho^*, \infty)} - \rho^*| + \rho^*, \end{aligned}$$

where ρ_* and ρ^* are defined in (1.16), it follows from (1.16) and $\liminf_{n \rightarrow \infty} \sup_{[0,T]} \int_{\mathbb{T}^3} \mathcal{F}(\rho^n) dx = 0$ that

$$\|\rho^n\|_{L^\infty(0,T;L^2(\mathbb{T}^3))}^2 \leq C + C \sup_{[0,T]} \int_{\mathbb{T}^3} \mathcal{F}(\rho^n) dx \leq C,$$

which implies that there exists ρ such that

$$(3.47) \quad \rho^n \rightharpoonup \rho \quad \text{weakly-}^* \quad \text{in } L^\infty(0,T;L^2(\mathbb{T}^3)).$$

Therefore,

$$\|m^n\|_{L^\infty(0,T;L^{\frac{4}{3}}(\mathbb{T}^3))} \leq \|\sqrt{\rho^n}\|_{L^\infty(0,T;L^4(\mathbb{T}^3))} \left\| \frac{m^n}{\sqrt{\rho^n}} \right\|_{L^\infty(0,T;L^2(\mathbb{T}^3))} \leq C \left\| \frac{m^n}{\sqrt{\rho^n}} \right\|_{L^\infty(0,T;L^2(\mathbb{T}^3))} \rightarrow 0.$$

Thus, it remains to prove that $\rho = \bar{\rho}$.

To this end, we will use the equation (3.45):

$$(3.48) \quad \partial_t \rho^n + \operatorname{div}_x(m^n) = 0 \quad \text{in } \mathcal{D}'((0,T) \times \mathbb{T}^3).$$

For test functions for the above equation, we recall the same functions as in (3.9): for any $t \in (0, T)$, and any $\zeta < t/2$, we consider

$$\varphi_{t,\zeta}(s) := \int_0^s \left(\phi_\zeta(z) - \phi_\zeta(z-t) \right) dz,$$

where

$$\phi_\zeta(s) := \frac{1}{\zeta} \phi\left(\frac{s-\zeta}{\zeta}\right) \quad \text{for any } \zeta > 0,$$

and $\phi : \mathbb{R} \rightarrow \mathbb{R}$ is a non-negative smooth function such that $\phi(s) = \phi(-s)$, $\int_{\mathbb{R}} \phi = 1$ and $\operatorname{supp} \phi = [-1, 1]$.

Then we consider the following test functions for the continuity equation:

$$\Phi(x) \varphi_{t,\zeta}(s),$$

where $\Phi \in C^\infty(\mathbb{T}^3)$. That is,

$$\int_0^\infty \int_{\mathbb{T}^3} \left(\Phi(x) (-\varphi'_{t,\zeta}(s)) \rho^n \right) dx ds = \int_0^\infty \int_{\mathbb{T}^3} \left(\varphi_{t,\zeta}(s) \nabla \Phi \cdot m^n \right) dx ds.$$

Thus,

$$\int_0^\infty \int_{\mathbb{T}^3} \left(\Phi(x) \phi_\zeta(s-t) \rho^n \right) dx ds = \int_0^\infty \int_{\mathbb{T}^3} \left(\Phi(x) \phi_\zeta(s) \rho^n \right) dx ds + \int_0^\infty \int_{\mathbb{T}^3} \left(\varphi_{t,\zeta}(s) \nabla \Phi \cdot m^n \right) dx ds.$$

Note that since $\rho^n \in L^\infty(0,T;L^2(\mathbb{T}^3))$ and $m^n \in L^2(0,T;L^{\frac{4}{3}}(\mathbb{T}^3))$ by (1.18), it follows from (3.48) and Aubin-Lions Lemma that $\rho^n \in C([0,T];L^1(\mathbb{T}^3))$.

Therefore, taking $\zeta \rightarrow 0$ above, we find that

$$\int_{\mathbb{T}^3} \Phi(x) \rho^n(x, t) dx = \int_{\mathbb{T}^3} \Phi(x) \rho_0^n(x) dx + \int_0^t \int_{\mathbb{T}^3} \nabla \Phi \cdot m^n dx ds.$$

Note that (3.46) yields

$$(3.49) \quad \int_{\mathbb{T}^3} |\rho_0^n - \bar{\rho}|^2 dx \leq \int_{\mathbb{T}^3} p_e(\rho_0^n | \bar{\rho}) dx \rightarrow 0 \quad \text{as } n \rightarrow \infty.$$

Since

$$\left| \int_0^t \int_{\mathbb{T}^3} \nabla \Phi \cdot m^n dx ds \right| \leq \|\nabla \Phi\|_{L^4(\mathbb{T}^3)} \|m^n\|_{L^\infty(0,T;L^{\frac{4}{3}}(\mathbb{T}^3))} \rightarrow 0,$$

taking $n \rightarrow \infty$ and using (3.47) and (3.49), we have

$$\int_{\mathbb{T}^3} \Phi(x) \rho(x, t) dx = \int_{\mathbb{T}^3} \Phi(x) \bar{\rho}(x) dx, \quad \forall t \in [0, T].$$

Hence, $\rho = \bar{\rho}$ a.e. on $\mathbb{T}^3 \times [0, T]$.

Conflict of Interest: The authors declared that they have no conflicts of interest to this work.

REFERENCES

- [1] S. Akopian, M.-J. Kang, and A. Vasseur. Inviscid limit to the shock waves for the fractal Burgers equation. *Commun. Math. Sci.*, 18:1477–1491, 2020.
- [2] H. Al Baba, C. Klingenberg, O. Kreml, V. Mácha, and S. Markfelder. Non-uniqueness of admissible weak solution to the Riemann problem for the full Euler system in two dimensions. *SIAM J. Math. Anal.*, 52(2):1729–1760, 2020.
- [3] J. Březina, O. Kreml, and V. Mácha. Non-uniqueness of delta shocks and contact discontinuities in the multi-dimensional model of Chaplygin gas. *Nonlinear Differ. Equ. Appl.*, 28:Article number: 13, 2021.
- [4] S. Bianchini and A. Bressan. Vanishing viscosity solutions to nonlinear hyperbolic systems. *Ann. of Math.*, 166:223–342, 2005.
- [5] G.-Q. Chen and J. Chen. Stability of rarefaction waves and vacuum states for the multidimensional euler equations,. *J. Hyperbolic Differ. Equ.*, 4:105–122, 2007.
- [6] G.-Q. Chen, H. Frid, and Y. Li. Uniqueness and stability of Riemann solutions with large oscillation in gas dynamics. *Comm. Math. Phys.*, 228(2):201–217, 2002.
- [7] E. Chiodaroli. A counterexample to well-posedness of entropy solutions to the compressible Euler system. *J. Hyperbolic Differ. Equ.*, 11(3):493–519, 2014.
- [8] E. Chiodaroli, C. De Lellis, and O. Kreml. Global ill-posedness of the isentropic system of gas dynamics. *Comm. Pure Appl. Math.*, 68(7):1157–1190, 2015.
- [9] E. Chiodaroli, E. Feireisl, and O. Kreml. On the weak solutions to the equations of a compressible heat conducting gas. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 32(1):225–243, 2015.
- [10] E. Chiodaroli and O. Kreml. On the energy dissipation rate of solutions to the compressible isentropic Euler system. *Arch. Ration. Mech. Anal.*, 214(3):1019–1049, 2014.
- [11] K. Choi, M.-J. Kang, Y. Kwon, and A. Vasseur. Contraction for large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model. *Math. Models Methods Appl. Sci.*, 30:387–437, 2020.
- [12] K. Choi and A. Vasseur. Short-time stability of scalar viscous shocks in the inviscid limit by the relative entropy method. *SIAM J. Math. Anal.*, 47:1405–1418, 2015.
- [13] C. Dafermos. *Hyperbolic conservation laws in continuum physics*, volume 325 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, Berlin, 2000.
- [14] C. M. Dafermos. The second law of thermodynamics and stability. *Arch. Rational Mech. Anal.*, 70(2):167–179, 1979.
- [15] C. De Lellis and L. Székelyhidi. The Euler equations as a differential inclusion. *Ann. of Math.*, 170(3):1417–1436, 2009.
- [16] C. De Lellis and L. Székelyhidi. On admissibility criteria for weak solutions of the Euler equations. *Arch. Ration. Mech. Anal.*, 195(1):225–260, 2010.
- [17] R. J. DiPerna. Uniqueness of solutions to hyperbolic conservation laws. *Indiana Univ. Math. J.*, 28(1):137–188, 1979.
- [18] E. Feireisl. *Dynamics of Viscous Compressible Fluids*, Oxford Science Publication, Oxford. 2004.
- [19] E. Feireisl, C. Klingenberg, O. Kreml, and S. Markfelder. On oscillatory solutions to the complete Euler system. *J. Differential Equations*, 269(2):1521–1543, 2020.
- [20] E. Feireisl and O. Kreml. Uniqueness of rarefaction waves in multidimensional compressible Euler system. *J. Hyperbolic Differ. Equ.*, 12:489–499, 2015.
- [21] E. Feireisl, O. Kreml, and A. Vasseur. Stability of the isentropic Riemann solutions of the full multidimensional Euler system. *SIAM J. Math. Anal.*, 47:2416–2425, 2015.

- [22] F. M. Huang, Y. Wang, Y. Wang, and T. Yang. The limit of the Boltzmann equation to the Euler equations. *SIAM J. Math. Anal.*, 45:1741–1811, 2013.
- [23] F. M. Huang, Y. Wang, and T. Yang. Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. *Kinetic and Related Models*, 3:685–728, 2010.
- [24] F. M. Huang, Y. Wang, and T. Yang. Hydrodynamic limit of the Boltzmann equation with contact discontinuities. *Comm. Math. Phys.*, 295:293–326, 2010.
- [25] F. M. Huang, Y. Wang, and T. Yang. Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to Riemann problem. *Arch. Ration. Mech. Anal.*, 203:379–413, 2012.
- [26] M.-J. Kang. Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic magnetohydrodynamics. *Kinet. Relat. Models*, 11(1):107–118, 2018.
- [27] M.-J. Kang. L^2 -type contraction for shocks of scalar viscous conservation laws with strictly convex flux. *J. Math. Pures Appl.*, 145:1–43, 2021.
- [28] M.-J. Kang and A. Vasseur. Asymptotic analysis of Vlasov-type equations under strong local alignment regime. *Math. Mod. Meth. Appl. Sci.*, 25(11):2153–2173, 2015.
- [29] M.-J. Kang and A. Vasseur. Criteria on contractions for entropic discontinuities of systems of conservation laws. *Arch. Ration. Mech. Anal.*, 222(1):343–391, 2016.
- [30] M.-J. Kang and A. Vasseur. L^2 -contraction for shock waves of scalar viscous conservation laws. *Annales de l'Institut Henri Poincaré (C) : Analyse non linéaire*, 34(1):139156, 2017.
- [31] M.-J. Kang and A. Vasseur. Contraction property for large perturbations of shocks of the barotropic Navier-Stokes system. *J. Eur. Math. Soc. (JEMS)*, 23:585–638, 2021.
- [32] M.-J. Kang and A. Vasseur. Uniqueness and stability of entropy shocks to the isentropic Euler system in a class of inviscid limits from a large family of Navier-Stokes systems. *Invent. Math.*, 224(1):55–146, 2021.
- [33] M.-J. Kang, A. Vasseur, and Y. Wang. L^2 -contraction for planar shock waves of multi-dimensional scalar viscous conservation laws. *J. Differential Equations*, 267(5):2737–2791, 2019.
- [34] C. Klingenberg, O. Kreml, V. Mácha, and S. Markfelder. Shocks make the Riemann problem for the full Euler system in multiple space dimensions ill-posed. *Nonlinearity*, 33(12):6517–6540, 2020.
- [35] C. Klingenberg and S. Markfelder. The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock. *Arch. Rational Mech. Anal.*, 227:967–994, 2018.
- [36] S. Krupa. Criteria for the a-contraction and stability for the piecewise-smooth solutions to hyperbolic balance laws. *Commun. Math. Sci.*, 18(6):1493–1537, 2020.
- [37] S. Krupa. Finite time stability for the Riemann problem with extremal shocks for a large class of hyperbolic systems. *J. Differential Equations*, 273:122–171, 2021.
- [38] N. Leger. L^2 stability estimates for shock solutions of scalar conservation laws using the relative entropy method. *Arch. Ration. Mech. Anal.*, 199(3):761–778, 2011.
- [39] N. Leger and A. Vasseur. Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations. *Arch. Ration. Mech. Anal.*, 201(1):271–302, 2011.
- [40] L. A. Li, D. H. Wang, and Y. Wang. Vanishing dissipation limit to the planar rarefaction wave for the three-dimensional compressible Navier-Stokes-Fourier equations. *Preprint*.
- [41] L. A. Li, D. H. Wang, and Y. Wang. Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional compressible Navier-Stokes equations. *Comm. Math. Phys.*, 376(1):353–384, 2020.
- [42] L. A. Li, T. Wang, and Y. Wang. Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations. *Arch. Rational Mech. Anal.*, 230:911–937, 2018.
- [43] L. A. Li and Y. Wang. Stability of the planar rarefaction wave to the two-dimensional compressible Navier-Stokes equations. *SIAM J. Math. Anal.*, 50:4937–4963, 2018.
- [44] P.-L. Lions. Mathematical topics in fluid mechanics. Vol. 1. Incompressible models. Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York. 1998.
- [45] D. Serre. *Systems of conservation laws I, II*. Cambridge University Press, Cambridge, 1999.
- [46] D. Serre and A. Vasseur. L^2 -type contraction for systems of conservation laws. *J. Éc. polytech. Math.*, 1:1–28, 2014.
- [47] D. Serre and A. Vasseur. About the relative entropy method for hyperbolic systems of conservation laws. *Contemp. Math. AMS*, 658:237–248, 2016.

- [48] D. Serre and A. Vasseur. The relative entropy method for the stability of intermediate shock waves; the rich case. *Discrete Contin. Dyn. Syst.*, 36(8):4569–4577, 2016.
- [49] L. Stokols. L^2 -type contraction of viscous shocks for large family of scalar conservation laws . *J. Hyperbolic Differ. Equ.*, *To appear*.
- [50] A. Vasseur. Time regularity for the system of isentropic gas dynamics with $\gamma = 3$. *Comm. Partial Differential Equations*, 24(11-12):1987–1997, 1999.
- [51] A. Vasseur. Relative entropy and contraction for extremal shocks of conservation laws up to a shift. In *Recent advances in partial differential equations and applications*, volume 666 of *Contemp. Math.*, pages 385–404. Amer. Math. Soc., Providence, RI, 2016.
- [52] A. Vasseur and Y. Wang. The inviscid limit to a contact discontinuity for the compressible navier-stokes-fourier system using the relative entropy method. *SIAM J. Math. Anal.*, 47(6):4350–4359, 2015.

(Moon-Jin Kang) DEPARTMENT OF MATHEMATICAL SCIENCES,
 KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, DAEJEON 34141, KOREA
E-mail address: moonjinkang@kaist.ac.kr

(Alexis F. Vasseur)
 DEPARTMENT OF MATHEMATICS,
 THE UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TX 78712, USA
E-mail address: vasseur@math.utexas.edu

(Yi Wang)
 INSTITUTE OF APPLIED MATHEMATICS, AMSS, CAS, BEIJING 100190, P. R. CHINA
 AND SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF CHINESE ACADEMY OF SCIENCES,
 BEIJING 100049, P. R. CHINA
E-mail address: wangyi@amss.ac.cn