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Abstract

Active learning is a decision-making process. In both abstract and physical settings, active learning demands both
analysis and action. This is a review of active learning in robotics, focusing on methods amenable to the demands of
embodied learning systems. Robots must be able to learn efficiently and flexibly through continuous online deployment.
This poses a distinct set of control-oriented challenges—one must choose suitable measures as objectives, synthesize real-
time control, and produce analyses that guarantee performance and safety with limited knowledge of the environment or
robot itself. In this work, we survey the fundamental components of robotic active learning systems. We discuss classes of
learning tasks that robots typically encounter, measures with which they gauge the information content of observations,
and algorithms for generating action plans. Moreover, we provide a variety of examples—from environmental mapping to
nonparametric shape estimation—that highlight the qualitative differences between learning tasks, information measures,
and control techniques. We conclude with a discussion of control-oriented open challenges, including safety-constrained
learning and distributed learning.
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1. Introduction

“Perceptual activity is exploratory, probing, searching;
percepts do not simply fall onto sensors as rain falls onto
ground. We do not just see, we look.” (R. Bajcsy in
her 1988 paper Active Perception [1]). The difference be-
tween seeing and looking is the presence of action—seeing
is passive and looking is active. Unfortunately, we do not
use distinct words for passive learning and active learn-
ing, often leading to confusing the two and unintentionally
treating “learning” as passive learning with active learn-
ing as an afterthought. Nevertheless, how we acquire data
impacts the quality of learning and what is even possi-
ble to learn, indicating that control—both analysis and
synthesis—in learning will inevitably be important. More
than three decades after Bajcsy’s comments, the key ele-
ments of how control synthesis and analysis should inform
learning remain largely unaddressed, and the vast major-
ity of work in learning still focuses on analysis of passively
collected data; this body of work makes up a statistical
theory of learning. Still absent is an action-oriented the-
ory of learning—a control theory for learning. How should

Email address: annalisa.taylor@u.northwestern.edu,

tberrueta@u.northwestern.edu, t-murphey@northwestern.edu

(Annalisa T. Taylor, Thomas A. Berrueta, and Todd D. Murphey)
URL: murpheylab.github.io (Annalisa T. Taylor, Thomas A.

Berrueta, and Todd D. Murphey)
1This material is based upon work supported by the United States

National Science Foundation under Grant CNS 1837515 and by the
United States Army Research Office MURI award W911NF-19-1-
0233. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not nec-
essarily reflect the views of the aforementioned institutions.

control synthesis affect learning? What sort of feedback
interconnections facilitate learning?

When prior knowledge and existing datasets are widely
available, passive learning has proven to be a successful
tool for constructing parametric representations of statis-
tical relationships in data. Broadly, passive learning is an
optimization process in which the parameters of a model
are fit according to data. The last decade has seen ma-
jor strides in robotics dependent on the advent of mod-
ern learning methodologies, particularly variations of deep
neural networks [2]. However, in settings where previously
existing data sets are unavailable, and where products
of human knowledge (e.g., labeled datasets, knowledge
graphs) do not exist, a robot will have to engage in unsu-
pervised discovery and acquire the data it needs [3]. We
refer to this process as active learning (see Figure 1). In
contrast to passive learning, active learning is a decision-
making process where agents take actions to gather the
data that best realizes a learning objective.

Animals use their bodies to learn. To paraphrase Ba-
jcsy, we do not just passively learn, we actively learn—the
pages of a book do not just turn before our eyes while
we absorb information. For agents with physical bodies,
such as animals or robots, active learning demands un-
derstanding and exploiting the role of embodiment and
physical interaction in learning. Insofar as robotics should
take inspiration from biology, active learning in robotics
will involve the purposeful movement of a robot’s body;
here, control synthesis tools will connect decision-making
to the resulting movement.

There is a rich literature on how animals use their bod-
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ies and movements to improve information acquisition [4–
12]. For example, in [13] we demonstrated that a variety of
animals engage in active information acquisition by explor-
ing their environment in proportion to the local amount
of perceived uncertainty. In addition to a medium for
embodied movement plans, physical bodies are indepen-
dently capable of implicit computation [14, 15], informa-
tion storage [16], novelty detection [17], and learning [18].
By harnessing the power of embodiment and morphologi-
cal computation [19], active learning presents a promising
way forward for robotics problems where the outcomes of
physical interactions may be unknown a priori, such as in
soft robotics [20].

Not only is embodiment and movement paramount to
information acquisition and active learning, but movements
themselves can be informative. Recent work analyzing an-
imal and human movement has begun to interpret physical
bodies as information channels and motions as information-
carrying signals. This has led to the development of meth-
ods that help to understand the pathology of conditions
such as autism spectrum disorder [21], schizophrenia [22],
and stroke [23, 24] through an information-theoretic anal-
ysis of movement. More generally, this suggests that in
order to realize learning objectives, active learning requires
measures that capture the information content of an agent’s
movements.

Counterintuitively, information-rich movement does not
always appear productive, orderly, or carefully planned. A
well-studied example of this is the optimality of diffusion
in animal foraging—here, purely stochastic motion plans
have been shown to be highly informative [25–27]. Another
example of interest to researchers for decades is that of
playful behavior in animals [28, 29]. One may ask why an-
imals would expend significant energy on movement that is
not key to survival; for our purposes, we consider these ac-
tive behaviors as enhancing learning [30]. Hence, to learn
through movement, agents must engage in exploratory be-
haviors that may not always seem useful.

Despite its clear connections to our understanding of
learning in animals and humans, the field of active learn-
ing finds its origins in theoretical computer science [31]. In
this setting, agents are represented by disembodied algo-
rithms whose actions are limited to making queries about
observed data samples. As a result, many modern frame-
works for artificial intelligence have tended to neglect the
role of physics and embodiment on the learning process.
However, adapting to the constraints of the real world is
crucial to learning in the wild. Even the most success-
ful traditional machine learning techniques for robot con-
trol, such as reinforcement learning, rely on “big data”
generated from simulated rollouts. In reality, robot de-
ployment is a time and physically intensive activity, and
robots cannot be instantly reset and redeployed at will.
To make matters worse, informative data samples are typ-
ically sparse. Taken together, these issues highlight the im-
portance of considering sample efficiency and deployment
efficiency in robot learning. On the other hand, control

Figure 1: The active learning process: A learner leverages in-
formation measures to formulate actions for collecting relevant or
descriptive data. Active learning includes the feedback control of a
system for which the internal state is both a learning system and
history.

theory has a long history of dealing with the constraints
imposed by the laws of physics, while simultaneously man-
aging secondary—yet very important—objectives such as
safety, robustness, and efficiency.

There are many areas of robotics that will require the
type of black-box flexibility of machine learning to make
progress. When principled alternatives to modeling the
physics of complex interactions between agents and their
environments do not exist, machine learning can some-
times be the only way to enable robot control. One area
in which flexible learning tools are particularly useful is in
high-dimensional nonlinear sensing, where deep convolu-
tional networks excel at integrating potentially hundreds
of complex and highly-redundant sensory signals into com-
pressed and informative signals [15, 32]. At times, the in-
teractions between a robot and its environment may be
infeasible to model either due to properties of the envi-
ronment (e.g., locomotion in granular media [33]), or the
robot itself (e.g., compliant soft robots [34]). Thus, the
field of robotic active learning has the potential to over-
come the challenges inherent to robot control and ma-
chine learning by inheriting the best qualities of both. In
this review, we highlight important progress made towards
this goal, and motivate future directions for developing an
action-oriented theory of embodied learning.

The organization of this review is as follows. First,
we cover the history and basic considerations required for
an active learning system—what there is to learn, how to
measure information in actions, and how to generate such
informative actions. Then, we survey key areas of appli-
cation for active learning and open challenges in the field.
The authors’ own work plays a role in creating a narra-
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tive, but with consistent reference to the broad literature
in robotics on related areas. Section 2 covers a brief history
of the field of active learning and its origins in the broader
field of computer science. In Section 3 we cover different
learning goals, increasing in complexity from learning state
parameters to abstract features. Then, Section 4 discusses
measures of information, focusing on those appropriate to
be used as control objectives by synthesis methods such as
those in Section 5. In Section 6, we discuss common ap-
plications where facets of active learning naturally arise,
whether explicitly or implicitly, in problem formulations.
Finally, in Section 7 we discuss extensions and open chal-
lenges followed by conclusions in Section 8.

2. History Of Active Learning

Since its inception, robotics has been interested in mak-
ing embodied agents learn and adapt to their surroundings
like biological organisms [35]. However, due to fundamen-
tal limitations on computing hardware, programming ma-
chines [36] and adaptation to external stimuli [37], robot
learning was limited to the most rudimentary demonstra-
tions throughout the mid-20th century. After establishing
his theory of computation [38], Alan Turing shifted his fo-
cus to the question of whether machines could think and
learn [39]. Turing’s efforts prompted both the philosophi-
cal and formal study of artificial intelligence [40].

While hardware posed constraints on applied learning,
the second half of the century saw the founding of the
field of computational learning theory [41–44]. Analogous
to computability theory, computational learning theory fo-
cuses on assessing the “learnability” of concepts under dif-
ferent models of learning, such as inductive inference [45],
online learning [46], statistical query learning [47, 48], among
many others. The diversity of models of learning speaks
to the difficulty of capturing what we mean when we say
that a concept is learnable. To this day, useful models
of learning are being introduced to tackle new problems
on learnability [49]. Of the many mathematical frame-
works for learning, the most successful and widely used
is the Probably Approximately Correct (PAC) learning
model [43, 50, 51]—a particularly important framework
because it was the first to bring insights from the the-
ory of computational complexity to the study of learning.
Across its many models of learning, computational learn-
ing theory forms the primary means through which we
mathematically model and formally understand learning
as a computational problem.

The influence of computability theory [52] is particu-
larly visible in the field’s focus on automata theory and
linguistics [53], where problems are often framed as learn-
ing languages or equivalent automata specifying the lan-
guages. In contrast, much of robotics is grounded in the
history of industrial automation, where mechanical inter-
actions are the fundamental object of interest [54]. As
a result, robot learning focuses on the role of physics on

sensing, actuation, and mechanical interactions with the
environment for the purpose of learning.

One of the most important areas within computational
learning theory is that of query learning [47, 55, 56]. This
field is concerned with identifying the classes of functions
that a “learner” (e.g., an algorithm) can learn by observing
samples of data provided by an “oracle” (e.g., a teacher or
an environment) using a given model of learning. At each
stage of the learning process, the learner has a “learning
hypothesis” about the nature of the function class that it
is learning. In the context of query learning, the learner
is additionally allowed to ask the oracle for information
about the samples it is observing or about its current learn-
ing hypothesis [31]. The learner then must make decisions
about what queries to present to the oracle in order to ad-
vance its learning objective [57]. In this way, learning is no
longer framed as a passive process. Instead, it is a decision-
theoretic process through which the learner takes actions
in order to further its objective—or in other words, ac-
tive learning. By leveraging their decision-making, active
learners can almost always achieve the same performance
as an equivalent passive learner with exponentially fewer
data samples [58]. This framing can be restrictive in a
robotics context where actions have the potential to elicit
information and affect the environment or learning objec-
tive. Despite forming a theory grounded in the decision-
making of learning agents, computational learning theory
has not concerned itself with these types of practical con-
siderations that embodied robot learning demands.

Another theory of learning largely independent from
those discussed above is reinforcement learning (RL), which
finds its origins in the study of conditioning in psychol-
ogy [59]. As originally envisioned, RL refers to the use of
external stimuli and incentive structures to elicit desired
behavior out of animals or humans [60]. In this sense,
RL was established as a theory of learned behavior rather
than learning in-itself. However, its mathematical under-
pinnings were not established until the second half of the
20th century in the work of Richard Sutton and Andrew
Barto among others [61–63]. By grounding their work in
the theory of dynamic programming [64] and optimal con-
trol [65], Sutton and Barto created a rich mathematical
theory of learning and control based on the behavioral psy-
chology of reinforcement [66]. Typically, an RL problem
is framed as a Markov Decision Process (MDP) where an
agent must take actions in order to explore their environ-
ment and learn how to maximize their reward signal [67].
When agents are making decisions and taking actions to
actively gather data and learn about their objective, we
consider RL to be a type of active learning. In contrast,
if exploration is being handled passively through naively
randomized simulated experience, we do not.

Despite its early uses for optimal control [63], RL has
only recently become a primary technique for robot learn-
ing due to the many successes of deep RL in continuous
control [68–70]. However, most methods developed for
deep RL are ill-suited to robot learning because of their
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large data requirements, lack of generalizability between
tasks, as well as their inability to learn incrementally and
guarantee safety [71–73]. While techniques such as Max-
imum Entropy RL have taken steps to improve data effi-
ciency and generalizability in robot learning settings [74–
76], deep RL is still far off from seamless deployment in the
real world due to its reliance on simulated experience to
make progress on learning and control objectives [77–79].
Moreover, easily specifying and incorporating safety [80],
stability [81], controllability [82, 83], or reachability [84]
remains an open challenge. Taken together, these points
highlight that—despite being a theory of active learning
based on the behavior of embodied agents—RL is underde-
veloped for many robotic applications in its present form.

In this section we have briefly outlined the historical
development of active learning as a field. Throughout the
literature and across its different subfields, we have found
that although researchers have had great interest in apply-
ing active learning methods to robotics problems, there
is still a need for the development of theories of active
learning specifically for robotics. Such theories of robot
learning should center the properties of the agent as an
embodied control system with requirements for stability,
safety, sample efficiency, and continuous deployment. To
this end, much of the work that we present in this review
focuses on aspects of embodiment, and suggests the possi-
bility of developing a control-oriented theory of embodied
active learning.

3. What Do Robots Need To Learn?

What does a robot need to learn from data? Learning
goals can be grouped into problems of increasing sophis-
tication and level of abstraction. Here we will distinguish
between learning parameters, as a relatively simple start-
ing point, learning models, and learning features. This
division is by no means unique, but provides a useful tax-
onomy for discussing what learning goals we may have for
a robotic system.

3.1. Parameters

Learning parameters is relevant in many settings. For
instance, one may wish to determine the location of an
object, food, or predators. In this case, the parameters of
interest are spatial coordinates that localize the object. If
the parameters evolve in time (e.g., a mobile object) they
may have dynamical properties that can be exploited or
learned. If a model is known, parametric filters [85–88]
may be used. When the posterior probabilities of an infer-
ence model are not expected to be approximately Gaus-
sian, nonparametric filters, such as Bayesian filters [89, 90],
histogram filters [91], or particle filters [92–94] are often
used instead. Active learning can be critical to overcom-
ing sensor limitations and identifying a wide variety of pa-
rameters. A salient setting for active learning is near-field
sensing. Near-field sensing includes tactile sensing which

requires mechanical contact and electrosense, where close
proximity is necessary. Hence, when subject to near-field
sensing constraints, robots must leverage their agency for
successful parameter identification. In far-field sensing,
such as cameras and radar at a distance, actions may play
a more limited role in parameter identification because the
sensor range automatically provides substantial informa-
tion without the need for movement.

3.2. Models

Models generalize parameters, and can be models of
either the robot itself, such as a model of the dynamics, or
the environment, such as a topographical map. The ability
of a robot to learn a model of its dynamics is important
in rapidly shifting environments where first-principle mod-
els struggle to make reliable predictions. The problem of
system identification is often parametric, focusing on de-
scribing the dynamics using models whose structure and
number of parameters are fixed a priori, such as in neu-
ral networks. However, system identification may be non-
parametric as well, as in Gaussian process regression and
other kernel-based methods. Nonparametric models may
be particularly useful when robots operate in unstructured
or unknown environments. While parametric models have
also been successfully used in this context, it is difficult to
know ahead of time that a parametrized model will have
the representational capacity to characterize the environ-
ment. This has led to the use of models with an increasing
number of parameters—sometimes on the order of billions
of parameters—to ensure that the network can capture the
properties of the environment.

3.2.1. Mapping

Mapping is one form of modeling the environment that
emphasizes its geometry. Mapping applications often use
occupancy grids [95, 96], coverage maps [91], and Gaus-
sian process regression to represent spatially-varying phe-
nomena or high-dimensional belief spaces [97–102]. These
techniques presume coverage—that data has been taken
over a sufficiently varied area to reconstruct and represent
the properties of the environment. The active learning
approach instead suggests that an agent reacts to data
it collects locally and then adjusts its mapping strategy.
While environmental mapping in open air is not an ap-
plication that necessarily demands the use of active learn-
ing methods, other types of environments may not be as
straightforward. For example, underwater exploration is
difficult because robots are subject to stringent constraints
on sensing, actuation, and communication. Here, robots
often need to operate in environments where light levels
prevent long-range visual monitoring, which demands the
use of active learning tools in order to construct motion
plans that incrementally adapt to the robot’s uncertain
measurements [103–105]. In [106], the authors use con-
trol and Gaussian process regression to model, map, and
actively sample the distribution of phytoplankton in the
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Figure 2: Shape reconstruction: This example shows the active
identification of an unknown geometry in the environment, using
binary contact measurements as the measurement modality [107].
By developing data-driven models of objects, robots can search for
and recognize obstacles or tools without needing analytic or CAD
models.

ocean off the coast of Norway, thereby greatly acceler-
ating environmental monitoring and mapping of oceanic
resources.

3.2.2. Shape

Similarly to mapping, nonparametric shape estimation
is another area of model learning that focuses on the geo-
metric relationship between collected data samples [108].
The shape estimation literature grew from the field of com-
puter vision, and has traditionally focused on static tasks,
such as estimating the poses of human bodies [109] or the
curvature of roads from image samples [110]. However,
as we increasingly deploy autonomy in the real world, de-
termining the shape and material properties of unknown
objects may be necessary to interact with them and po-
tentially employ them as tools. To this end, the process
of shape estimation may need to be dynamic and prob-
ing in nature, requiring that agents leverage their control
authority to actively learn the properties of the object.

As an informative example of this kind of learning
problem, we share some results from our own work. In [111],
we considered nonparametric shape estimation using contact-
based sensors to actively learn the shapes of obstacles
in the robot’s environment, which we then extended to-
wards data-driven mapping and localization [107]. Fig-
ure 2 shows a three dimensional set of objects whose shapes
are being reconstructed from binary contact measurements
made by a simulated mobile robot. By actively generating
trajectories that make contact with the object surfaces,
we maximize the Fisher information of the support vec-
tor machine (SVM) object model and successfully iden-
tify them. The enabling insight is the use of the Fisher
information, which we discuss at length in Section 4, to
synthesize object-robot interactions that are optimally in-
formative.

3.2.3. Dynamics

One of the most crucial learning tasks is that of iden-
tifying the agent’s own dynamics. Whether learning the
dynamics is necessary due to their intrinsic complexity, or
as a result of a sudden malfunction or compliant interac-
tion, there are many scenarios in which it may be impos-

sible or infeasible to have an accurate prior representation
of the system’s dynamics. Self-identifying dynamics is an
active process, where the agent needs to take actions and
collect data that explore its different behavioral regimes.
In some settings, models that are well-specified in certain
behavioral regimes may have to be augmented through
data-driven means to work in extraneous conditions. For
instance, in aerospace applications data-driven techniques
will have excellent data available for nominal conditions
but often no data available for specific off-nominal condi-
tions, suggesting the need for active learning outside of the
nominal regime [112]. Since the literature on learning dy-
namics is very diverse, providing a comprehensive survey
would require its own review [113–117]. Instead, here we
review a few particular representations of dynamics that
are of particular interest to the field of robotics.

Deep neural networks (DNNs) are models comprised
of many individual units (i.e., computational synthetic
neurons) with limited capabilities that together, through
their interconnections, are capable of great representa-
tional power [2]. As we have discussed earlier in this re-
view, deep networks are not always suited to the demands
of robot learning due to their high data and computational
requirements. Nonetheless, certain network architectures
have been shown to be well-suited to predicting dynamics,
such as recurrent neural networks [118], whose capabili-
ties enable them to predict the global structure of tempo-
ral dynamics from local measurements. In settings where
learning does not need to occur rapidly or incrementally,
carefully chosen deep learning architectures have been suc-
cessful in learning robot dynamics for control [119, 120].
While DNNs have been successful in many robotic appli-
cations, the online nature of active learning tasks often
prevent them from being used in these settings.

A nonparametric alternative to learning dynamics is
the use of kernel-based methods [121]. Kernel regression
methods frame learning and estimation problems as one of
learning functions embedded in high-dimensional—or even
infinite-dimensional—spaces defined over the data domain.
The properties of the function space are determined by
the choice of kernel, which acts as a generalized inner-
product that induces a notion of distance between data
samples in the function space. These types of methods
have been successfully deployed in robotic systems for both
dynamics and inverse dynamics learning [122–124]. How-
ever, as typically formulated, kernel methods do not have
an easy way to model measurement uncertainty and noise
in their function spaces. To this end, Bayesian formula-
tions of kernel methods have been developed [125], the
most common of which are Gaussian processes. Gaussian
processes (GPs) are one of the primary objects of inter-
est in the study of stochastic processes [126]. In GPs,
any collection of random variables drawn from the process
must be jointly Gaussian. Alternatively, one can insist
that functions of the random variables be jointly Gaussian
instead, which forms the basis for their application in ma-
chine learning [127]. In this context, kernels naturally arise
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in the specification of the mean and covariance statistics
of the Gaussian process in function spaces. Using GPs,
researchers have been able to parsimoniously incorporate
uncertainty and noise into learning robot dynamics [128].
However, GPs, kernel methods, and nonparametric learn-
ing tools at-large typically have difficulty adapting to on-
line learning settings such as robotic active learning. The
primary underlying reason is the fact that nonparametric
methods tend to grow in complexity as a function of data.
Hence, as a robotic agent acquires more data it becomes
more computationally expensive to make predictions with
the model.

A promising compromise between the representational
capacity of neural networks and the simplicity of kernel
methods can be found in techniques like the Koopman
operator [129]. The Koopman operator was first intro-
duced in the study of Hamiltonian dynamics and operator
theory [130]. Formally, it is an infinite-dimensional, but
linear, operator that describes the evolution of measure-
preserving dynamical systems in a lifted function space.
However, to apply Koopman operators numerically they
must be approximated in finite dimensions using schemes
like Dynamic Mode Decomposition (DMD) [131, 132]. Al-
gorithms like DMD use a finite basis for the function space
that the Koopman operator acts on to describe the under-
lying dynamics [133]. Koopman operator theory and its
resulting algorithms have been to a large degree developed
in the context of dynamics and control, making it an ideal
candidate for active learning of dynamics in robotics [134–
137]. The linearity of the operator lends itself to the use of
canonical control techniques such as linear-quadratic regu-
lators, allowing for computationally-efficient nonlinear op-
timal control [138]. An important feature of this approach
is that it does not scale in complexity with data and allows
for adaptable incremental learning. The primary caveat
with employing these methods is the difficulty of choosing
good basis functions with which to describe the dynamics.

As an illustrative example of learning dynamics in a
context that demands rapid adaptation, we compare pas-
sive and active learning in the stabilization of a malfunc-
tioning quadrotor vehicle [115]. In this simulation, we
equip two quadrotors with a data-driven model of their
nominal dynamics that they can use for model-predictive
control. However, at the start of the simulation we disable
one of the rotors on each robot causing them to free-fall.
To recover, each robot must update their internal dynam-
ics model and stabilize themselves using control. Both
agents have a single second during which they can collect
data to adapt their dynamics models, after which they
switch to a stabilizing controller that tries to regain con-
trol of the free-fall. Crucially, one agent learns passively
and another actively by optimizing the Fisher information
with respect to the unknown Koopman operator, which
we discuss in the next section. Figure 3(a) shows snap-
shots of the different agent trajectories, indicating that
the active learning agent is able to stabilize itself much
more rapidly than its passive counterpart (see Figure 3(b)

Figure 3: Online quadrotor recovery: Rotor vehicle recov-
ery using active learning in a real-time single-shot learning con-
text [115]. The rotor vehicle with the blue trajectory uses an actively
learned Koopman operator representation of its dynamics. The green
trajectory is the result of a passively learned Koopman operator
representation of the dynamics. The rotor vehicle with the pas-
sively learned representation drops further in altitude—potentially
crashing—before recovering after one rotor is disabled.

as well), potentially avoiding a crash. The active trajec-
tory greatly exceeds the information gain of the passive
approach (Figure 3(c)) while also achieving lower stabi-
lization error (Figure 3(d)). Hence, by using control and
movement to optimize information measures, robots can
learn dynamics faster and more reliably.

3.3. Features

The final and most broad category of learning goals we
discuss is that of feature learning. Consider being blind-
folded and handed a baseball and a tennis ball in either
hand at random. Most people would likely be able to tell
them apart with ease. But what is it about either ball that
differentiates one from the other? What kinds of proper-
ties best represent each ball and its characteristics? De-
spite having tens of thousands of nerve endings embedded
in the palm of our hand, we only need to track a few prop-
erties to be able to distinguish between the balls, such
as texture and weight. We refer to the general problem
of finding informative representations of high-dimensional
data that can aid in a task as feature learning.
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In the pattern recognition and machine learning litera-
ture, features are any measurable characteristics of a phe-
nomenon being observed [139]. Traditional feature learn-
ing is the use of machine learning techniques to repre-
sent the “intrinsic” structure of data from raw and pos-
sibly highly-redundant measurements [140]. Recent work
in this domain has focused on the use of deep learning
towards finding succinct representations of human move-
ment [141] and speech [142]. In robotics, tasks are not
always well-specified and disentangling the relationship be-
tween a robot’s internal state and the intended goal may
be difficult. This is primarily a challenge in deep rein-
forcement learning where problems can become intractable
when a naive state representation is used. To this end,
feature learning can be leveraged towards making deep
RL methods computationally tractable, and to develop
schemes that better generalize to the variety of sensory
inputs to which an RL agent may be exposed [143].

A simple example of feature learning can be seen in
the Koopman literature. As we previously mentioned,
finding the correct choice of basis functions for arbitrary
dynamical systems can be very difficult. Nonetheless, re-
cent work has been able to construct basis functions that
best describe dynamics—also known as the Koopman op-
erator eigenfunctions, or the intrinsic coordinates of the
system—using deep learning [114, 135, 144]. In general,
feature learning of this sort will be particularly important
for robots with high-dimensional sensing modalities such
as e-skins [145], or computer vision [146], and active learn-
ing can aid in enhancing rapid identification of intrinsic
coordinates.

Our discussion in this review focuses on measures in
Section 4 and synthesis tools in Section 5 for active learn-
ing using location and other low dimensional learning goals
as examples. But the learning goal can be very high di-
mensional, as in the case learning dynamics of a vehicle,
or in the case of learning representations (e.g., machine vi-
sion applications). Regardless of whether a learning goal
is low dimensional or high dimensional, the robot still has
the same control authority to affect learning—it can move
its body and take other physical actions to evoke response
and facilitate model updates.

4. Measures for Learning

Active learning is rooted in the extraction of informa-
tion from sensors [1, 94, 147–152]. Accordingly, measures
of information should be expected to play a significant
role. The aspects of the objective that can be captured by
different information measures as well as how this informa-
tion can be quantified is key in both control analysis and
optimal control synthesis. The approach we discuss here
follows this perspective, looking for measures appropriate
both for information needs and suitable for numerical syn-
thesis. In this section, we cover three important measures
relevant to active learning—entropy, Fisher information,
and ergodicity.

4.1. Entropy

Entropy-based measures have been employed in a wide
range of action sensing results to calculate the expected in-
formation gain for each potential action before collecting
measurements [86, 93, 101, 149, 153–166, 166, 167, 167–
170]. This modern concept of entropy was developed by
Claude Shannon for use in the communication and trans-
mission of information [171]. Shannon was concerned with
the amount of information necessary to reproduce the con-
tent of an information source. To this end, entropy is
the expected amount of information or “uncertainty” con-
tained in a random variable. In the case of a discrete
random variable X where each xi is a different outcome of
the variable, the amount of information content in a par-
ticular event is defined by I(xi) = − log p(xi), referred to
as bits when in base 2. The entropy of X is the expected
value of the information content of each of the possible
events.

H(X) = −
∑
i

p(xi) log p(xi) (1)

The information content of a particular event decreases
as the probability of that outcome increases, so low prob-
ability events provide more information than high proba-
bility events. As entropy is the average value of the in-
formation content of a random variable, the maximum
value of H(X) for X, would occur when each outcome
of the random variable is equiprobable, i.e., when there is
maximum uncertainty about a particular outcome. Thus,
any particular outcome for a uniformly distributed ran-
dom variable does not provide much information. In the
context of robotics, this is an explanation for why rare or
sparse events are particularly valuable to a robot’s estima-
tion process.

By calculating the Expected Entropy Reduction (EER)
of each candidate action, measures of entropy can be read-
ily applied in the context of active sensing. However, ex-
haustively searching for an optimally informative solution
over sensor state space and belief state is a computation-
ally prohibitive process, as it is necessary to calculate an
expectation over both the belief and the set of candidate
control actions [85, 86, 101, 158, 161, 172]. Alternatively,
the expected information gain can be locally optimized by
selecting a control action based on a local estimate of the
expected information [88, 90, 92, 94, 95, 156, 162, 166, 173].
Often times, these methods do not or cannot incorporate
general sensor dynamics [88, 90, 156, 166, 173] and even
the global strategies are likely to suffer when uncertainty
is high and information diffuse [91, 100, 174].

4.2. Fisher Information

Active learning relies on collecting informative sensor
measurements to support the learning process. In order
to do so, there must be a way to locally measure the in-
formation contained in sensor readings. Used commonly
in maximum likelihood estimation, Fisher information is
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Figure 4: Fisher information: A measurement model indicates
how a sensor will respond to the unknown parameter α, based on
the current state. In SLAM applications, the measurement model
might be a model of the detection of landmarks in an environ-
ment. The Fisher information distribution over landmarks provides a
mechanism for determining what states the dynamical system should
achieve to provide maximally informative measurements.

a method of quantifying the amount of information that a
random variable X contains about an estimate of an un-
known parameter, or vector of parameters α ∈ RM . Us-
ing p(x|α), the density function of X parametrized by the
value of the vector α, one can determine the likelihood of
an observation x given a value of α. The Fisher informa-
tion is an M×M matrix that captures the local sensitivity
between parameters and observations [170, 175]:

I(α) = EX

[( ∂

∂α
log p(x|α)

)( ∂

∂α
log p(x|α)

)>∣∣∣α], (2)

where the expectation is taken over realizations of X at a
given value of the parameter vector α. If p(x|α) is highly
sensitive to changes in α—e.g., the distribution of observa-
tions exhibits a steep dependence on α—then for a given
measurement there will be a small range of highly probable
values of α. If p(x|α) is not sensitive to changes in α, then
there will be many candidates of comparable likelihood.

In robotics, Fisher information is well suited for mea-
surement models that are naturally parametric (e.g., size,
weight, location). Measurement models, sometimes called
observation models, are predictions of how unknown vari-
ables will impact a sensor reading. This sensor reading
can be very sophisticated, like a camera being used in a
pixels-to-torque application [176], or very simple, such as a
one-bit sensor being used for trajectory tracking [177, 178].
The measurement model provides a way of expressing what
the robot is attempting to learn in terms of its sensing ca-
pability and means to adjust its sensors. A commonly used
measurement model form is z = Υ(α, x)+∆, where z is the
measurement, α is the parameter being estimated, x is the
state of the agent, and ∆ is (possibly multi-dimensional)
zero-mean Gaussian noise. This model is in the form of a
sum of a deterministic term—typically modeled by first-
principle physics—and a noise term which can be rather
challenging to justify, since most robotic applications will
not have such convenient additive normal distributions.

For active learning applications, measurement models
can play an important role in calculating information mea-
sures over a space. To estimate a parameter vector α, the
Fisher information matrix has each element (i, j) given by:

Ii,j(x, α) =
∂Υ(α, x)

∂αi

>
Σ−1

∂Υ(α, x)

∂αj
, (3)

where the multi-dimensional noise is assumed to be zero-
mean Gaussian with covariance Σ. Intuitively, Fisher in-
formation can be expected to be higher where the expected
measurement signal is greater than that of the noise. The
expected information density EID(x) over a search space
can be constructed by computing the expected Fisher in-
formation with respect to a probability distribution rep-
resenting an estimate of a parameter p(α). This EID(x)
would then form the information landscape against which
active learning decisions are made and then executed.

As an example, we consider the use of the Fisher infor-
mation in Simultaneous Localization and Mapping (SLAM)
problems subject to measurement models of the form dis-
cussed above. While the SLAM literature in robotics is
diverse and well-established, the more recent field of ac-
tive SLAM has seen much growth [179]. Active SLAM
makes use of representations of uncertainty and informa-
tion to generate exploration plans. In active SLAM, dif-
ferent information measures can capture different features
of an environment. In Figure 4, measurement models for
landmark detection are used to provide a basis for cal-
culating information measures to inform the agent’s ex-
ploration plan. In this case, the Fisher information over
each landmark attracts the robot to landmarks with lower
uncertainty, thereby enabling efficient loop closure. This
allows an agent to discern an ensemble of locations that
are expected to provide more informative measurements.

4.3. Ergodicity

Ergodicity is a fundamental property of dynamical sys-
tems and stochastic processes. Formally, achieving ergod-
icity implies that the dynamical system uniformly visits all
parts of the space in which it exists [180]. However, more
often what we mean when we say that a system is “er-
godic” is whether or not it satisfies the pointwise ergodic
theorem [181]. In this sense, being ergodic requires that
the system spend time in regions of space in proportion to
the measure of said regions. The specific measure used can
vary with context, but very often probability measures are
used.

In engineering contexts such as active learning, we are
free to choose or construct the spatial measure. Particu-
larly, when a system is ergodic with respect to measures
representing an information distribution over the space,
ergodicity demands perfect asymptotic sampling of infor-
mative states. As a simple example, consider a system tra-
jectory x(t) ∈ X and a probability density function (PDF)
capturing the expected distribution of information over the
space. If the trajectory is ergodic, then the amount of time
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Figure 5: Ergodicity: For an agent to be ergodic with respect to
a target distribution, the spatial statistics of the agent’s trajectory
must match the statistics of the target distribution. This means that
the time spent in a particular area is proportional to the density
of the target distribution in that area. Here an agent traverses a
bimodal distribution. The size of each waypoint is proportional to
the time spent at that location.

the agent spends in each neighborhood N ⊂ X is going to
be proportional to the amount of information in N as mea-
sured by the PDF (see Figure 5). Hence, designing ergodic
dynamics with respect to desired measures is of interest to
active learning [182]. However, in order to do so we need
a metric that captures how “ergodic” our trajectories are.

Because perfect ergodicity is only possible on infinite
time horizons, we require a metric that can be maximized
over finite-horizons through decision-making—such a met-
ric was developed in [183]. Metrics on ergodicity provide
a principle of motion [13, 24] similar to energy minimiza-
tion and error minimization, and can be used to synthesize
automated exploration for learning, as we will see in Sec-
tion 5. The ergodic metric in [183] provides a method for
comparing a trajectory x(t)—a singleton at any given time
t—to a distribution Φ(x) through their spatial Fourier
transforms. This suggests that one can compare the coeffi-
cients ck of x(t) and φk of Φ(x) respectively and measure a
distance between the two. In general, it is not obvious how
one might do this otherwise since information content be-
tween dimensionally different objects is typically not well
defined.

Comparing how “close” two quantities are to each other
is imperative for control when using optimization-based
methods. To compute the Fourier coefficients φk of a dis-
tribution Φ(x), we use the inner product

φk =

∫
X

φ(x)Fk(x)dx, (4)

where Fk’s represent the choice of Fourier basis functions.
For trajectories, we begin by interpreting them as distri-

Figure 6: Fourier transform of a trajectory: The Fourier trans-
form of a constant speed trajectory represents the trajectory in the
form of a spatial distribution. The representation of the trajectory by
its transform changes in granularity for k = 1, 3, 5, 10, 20, 50 Fourier
coefficients.

butions comprised of sequences of impulses:

C(x) =
1

T

∫ T

0

δ [x− x(t))] dt, (5)

where δ is the Dirac delta [183]. Then from the properties
of the Dirac delta function, we can calculate the Fourier
coefficients

ck =
1

T

∫ T

0

Fk(x(t))dt, (6)

where the coefficients take on the value of the basis func-
tions averaged over a time window of duration T . An
example of such a spatial representation is shown in Fig-
ure 6, where a trajectory along with its Fourier decompo-
sition is shown for different numbers of coefficients ck. As
the number of coefficients k increases the spatial resolution
of the trajectory improves, showing how the statistics of a
trajectory may be represented as a spatial distribution.

With this in mind, the ergodic metric represents a
distance from ergodicity that is measured from a time-
averaged trajectory x(t) with respect to a distribution
Φ(x). This distance is calculated by imposing a norm on
the difference between the trajectory’s ck and the distri-
bution’s φk coefficients. Particularly, we take the Sobolev
norm between the coefficients by using the sum of the
weighted squared distance between them:

E(x(t)) =
K∑

k1=0

· · ·
K∑

kn=0

Λk |ck − φk|2 (7)

where K is number of Fourier coefficients used for each of
the n dimensions, and k is a multi-index (k1, ..., kn). The
coefficient Λk = (1 + ||k||2)−s is a weight where s = n+1

2 ,
which places larger weight on lower frequency information,
ensuring convergence [183]. It is worth noting that spec-
tral methods, and the ability to generate a norm on a tra-
jectory x(t) using them, offer opportunities in measuring
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entropy as well. The entropy of a distribution could also
be measured in the Fourier domain—yielding an objective
function that is differentiable and amenable to control syn-
thesis, enabling one to avoid approximating entropy in an
optimization with Fisher information (e.g., as in [184]).

The measures discussed in this section form the basis
for how we measure performance of an active learning sys-
tem. The next section focuses on synthesizing decisions
that optimize, or at least improve, those measures.

5. Control Synthesis for Active Learning

Active learning has a wide range of applications in
robotics including prioritized decision making [159, 185],
inspection [165], mine detection [186], object recognition
or classification [155, 160, 187], next-best-view problems [156,
157, 188], and environmental modeling [97, 98, 189]. As
a result, particular controller architectures may be advan-
tageous for different environments, tasks, and constraints.
Here, we survey several model-based optimal control meth-
ods that provide distinct advantages for active learning.

Model-predictive control (MPC) is an optimal control
framework that optimizes current actions with respect to
an objective while taking into account the future behav-
ior of the system over a finite time horizon. Once the
current action is taken, MPCs reoptimize from the new
starting point and continually plan actions throughout the
receding horizon. MPCs are particularly suited to active
learning because receding horizon planning lends itself to
continuous incremental learning, while simultaneously en-
abling assessments of the safety and stability of trajecto-
ries. In contrast, other optimal control approaches such as
the linear-quadratic regulator (LQR) must solve the entire
control problem without replanning.

One of the primary optimal control algorithms is Dif-
ferential Dynamic Programming (DDP) [190], which is an
extension of the seminal work by Bellman [191]. DDP is
a model-predictive method requiring second derivatives of
the dynamics to realize quadratic convergence to the opti-
mal solution. While DDP has fast convergence guarantees,
calculating the Hessian of the dynamics can be computa-
tionally intractable. If one is willing to forego the fast
convergence rate by disregarding the second order terms
of the control solution, DDP becomes equivalent to the
first order iterative LQR (iLQR) method. DDP and iLQR
have both been shown to be effective in the context of
robot control in a variety of applications [192]. For exam-
ple, in [193] the authors use local trajectory optimization
methods in combination with RL to learn policies for dex-
terous manipulation with a five-fingered robotic hand. In
scenarios where the dynamics are known or easily mod-
elled, and their Jacobians and Hessians are inexpensive
to compute, DDP and iLQR may be well-suited to active
learning applications.

A method that generalizes MPC to both convex and
nonconvex objectives is the sampling-based Model Pre-
dictive Path Integral (MPPI) control algorithm [194]. In

MPPI, Monte Carlo sampled trajectories are used to ap-
proximately extremize a free energy objective [195]. These
types of objectives are designed in analogy to thermody-
namic free energy from the statistical mechanics litera-
ture and can be used to synthesize control [196]. More-
over, the synthesized control actions are formally equiva-
lent to Bellman optimal control without the need for com-
puting derivatives, and their computation can be easily
parallelized [197]. As a result, MPPI is particularly well-
suited for use in learning problems where the dynamics of
the agent are non-differentiable or too complex to differ-
entiate in a computationally-efficient way as with neural
network models. For example, in [194] the authors use
MPPI to learn a neural network model of the dynamics of
an auto-rally autonomous race car. However, depending
on the structure of the task, generating enough simulated
trajectories to sufficiently sample a learning objective may
become prohibitive.

Another model-based control synthesis method is Se-
quential Action Control (SAC), which is inspired by hybrid
systems theory [198]. Unlike other MPC techniques, SAC
explicitly tries to expend the least control effort possible
in generating actions by taking into account the benefits of
taking optimal actions as opposed to alternative policies
or doing nothing. SAC simultaneously finds the actions
that optimize an objective, the best time to apply said
actions, and the application duration. Due to its hybrid
specification, SAC can naturally handle non-smooth dy-
namics, and can also be easily wrapped around other con-
trollers to enable more exotic control architectures [199].
In [200], SAC was used for active parameter estimation
with a robotic system. This work uses SAC to control
a robot to determine the length of a pendulum by max-
imizing the Fisher information with respect to the pen-
dulum parameters. The SAC control actions sequence is
piecewise continuous, with generally short application du-
rations for any control. This allows a robot to reactively
generate motions towards information dense regions. How-
ever, like most MPC techniques, it requires having access
to the derivatives of the objective and dynamics, which
can constrain its usage in learning scenarios as previously
discussed.

An important consideration when choosing a controller
for active learning is the global characteristics of the search
process. Depending on the structure of the learning task,
there may be a single optimum that represents the true
parameter value that is being estimated. Other learning
tasks require that the agent avoid fixating on a single in-
formation source and instead visit many sources. We dis-
tinguish between these approaches by referring to them
as myopic and non-myopic respectively. Myopic learning
uses local algorithms that greedily take actions over short
horizons that optimize the immediate learning objective.
While these methods are prone to getting trapped in lo-
cal minima, they have lower computational overhead than
non-myopic learning methods. Non-myopic approaches
plan control actions over long time horizons so as to pro-
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Figure 7: Infotaxis: Upper panel: A cat searches for the two yellow
mice. The distribution around the mice represents the probability of
detecting the mouse at that location where white is high probability.
The gradient in the cone around the cat represents the cat’s mea-
surement model. The cat has a mental image of the expected local
reduction in entropy for moving up, down, left or right. Lower panel:
This is an example of an infotactic trajectory of an agent searching
for target locations, represented by the yellow stars. The likelihood
of detecting the target is represented by the distribution around the
target locations, becoming more dense closer to the target. The mea-
surement model encodes the ability of a camera to detect an object
at a particular range and angle of attack. The search strategy selects
the direction of movement that maximizes the expected entropy re-
duction at each time step. The infotaxis strategy succeeds at finding
only one of the two targets in the environment and stops searching.

duce coverage over distinct information sources. These
are often used to avoid local minima associated with fixa-
tion [98, 100, 101], and can take advantage of approximate
solutions [86, 87, 91, 98–100, 164, 186, 201, 202].

Choosing a mechanism by which one can avoid my-
opic learning is critical to operating in environments that
have unmodeled effects, such as visual occlusion, where the
expected most informative state may not provide informa-
tion. For example, a camera taking a picture of a person
behind an a piece of furniture does not benefit from mul-
tiple pictures taken from the same state. As a result, dy-
namic coverage of high information density areas can keep
a robot collecting good data while acknowledging unmod-
eled uncertainty effects through decision-making. Taking
these factors into account can be critical to the success of
the active learning process. Next, we will examine two ap-
proaches to active learning and exploration—infotaxis and
ergodic control—that take opposing attitudes towards this
question.

5.1. Infotaxis

Inspired by animals’ search for chemical sources in a
fluid such as air or water, infotaxis is an information-
maximizing search strategy using entropy reduction as an
information criteria [153]. This technique was developed

to show that a search plan does not need to depend on en-
vironmental gradients, such as the concentration of a scent
smoothly increasing in proximity to a flower. Instead, an-
imals may sense traces of a source dispersed by wind or
currents and formulate a movement strategy based on in-
frequent detections.

In this work, an agent attempts to localize a target
or source in a 2D environment based on detections of the
target. To generate an infotactic trajectory, the searching
agent chooses a control action at each time step that lo-
cally maximizes the expected reduction in entropy, thereby
maximizing expected information gain. Concretely, the
agent considers moving to adjacent positions on a lattice,
or staying in the same location to take more measurements.

To determine an action, it is necessary to have a proba-
bility distribution p(r) representing the unknown location
r of the source. The probability of detecting the source
at a given location is dependent on the distance from the
source, meaning that the record of detections along the
trajectory of the searcher, x(t), carries information about
the source location. When a detection event occurs, the
times and coordinates are stored in the random variable
Tt. From this record of detections, the searcher is able to
represent the location of the source as a posterior probabil-
ity distribution that is updated based on the measurement
taken at each time step.

pt(r0) =
Lr0(Tt)∫
Lx(Tt)dx

(8)

Here, Lr0 is the likelihood of detections Tt for a source
located at r0. From the posterior distribution one can
calculate a control action that minimizes the expected en-
tropy at the next time step by selecting a set of potential
actions, computing the EER given the current p(r), and
then selecting the action that provides the minimal EER.
This strategy can be computationally prohibitive for many
systems.

The trajectories produced by infotaxis exhibit similari-
ties to biological organisms such as moths or bacteria that
engage in olfactory search [203]. However, infotaxis-type
approaches can fail when there are distractors—states that
appear similar to the target but are not the target—in the
environment [13]. The searcher may conflate the actual
target with the distractor and then ignore the intended
target. Practically, infotaxis can only be implemented us-
ing short time horizons as the computational requirements
of predicting for longer horizons are significant. For each
control action considered, the expected entropy reduction
must be calculated, including calculating a posterior for
each possible outcome of the measurement random vari-
able. Figure 7 provides an example of an infotactic search
with two target locations. Here, the agent successfully
determines the location of one source and stops search-
ing. This strategy is purposefully ignorant of a signature
that may conflict with the perceived location of the target
in favor of detecting the same target to increase its cer-
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Figure 8: Ergodic control with respect to the expected entropy reduction over the search space: Upper panel: A cat searches
for two targets represented by the yellow mice. Here, the cat has access to its past trajectory and has a mental image of the expected entropy
reduction over the whole search space. Middle panel: An agent is searching for two targets located at the yellow stars. The information
distribution becomes more dense closer to the targets. Here the agent takes a measurement and updates its belief using the same measurement
model and likelihood function as in the infotaxis implementation. Lower panel: The agent chooses its next control action based on the global
expected entropy reduction. This is determined from its belief of the information content in a particular location.

tainty. This example illustrates that the infotactic strat-
egy is myopic when confronted with multiple sources or
environments with convincing distractors.

While an infotactic search strategy can experience diffi-
culties when there are multiple targets in the environment
that require persistent monitoring, it is well suited to re-
act to sporadic cues and requires only local information.
Infotaxis represents one of the most straightforward exam-
ples of active learning in which an agent acts greedily to
maximize expected entropy reduction.

5.2. Ergodic Control

Recent work by the authors and colleagues has ana-
lyzed biological motion by introducing energy constrained
proportional betting [13, 204], where the energetic cost
of movement is balanced against the desire to gain sen-
sory information about a source. This approach uses the
ergodic metric, discussed in Section 4.3, to quantify how
well a trajectory covers a distribution of expected entropy
reduction. The resulting algorithm produces trajectories
that balance informative sampling—collecting many sam-
ples in high information areas—with the amount of en-
ergy expended from motion. These types of trajectories
were observed in the behavior of electric fish, moles, and
cockroaches. This suggests that the strategy of energy
constrained proportional betting provides a competitive
hypothesis for the ways in which living creatures collect

information about their surroundings, and may be a ro-
bust approach for robotic systems to acquire information.
Extensions and variations of this idea now arise in many
robotic applications [205–213].

If the goal of infotaxis is to maximize the informa-
tion content of a series of measurements collected along
a trajectory, the goal of ergodic control—first developed
in [183]—is to control the spatial statistics of a trajectory
x(t) to match those of an expected information density
distribution EID(x). This requires the choice of a norm
on the difference between the distributions EID(x) and
the trajectory x(t) interpreted as a distribution C(x), de-
fined in Equation (5). To this end, we use the ergodic
metric from Section 4.3 as an objective to synthesize maxi-
mally ergodic trajectories for general nonlinear systems us-
ing tools from model-predictive control [204]. However, we
note that any trajectory optimization tools or direct opti-
mization tools could be used; we use the results from [204]
primarily because they are amenable to real-time compu-
tation [214].

The first thing to note is that the ergodic metric E in
Equation (7) is not of the form of a running cost—as a
result it is not a Bolza problem (although one can turn it
into a Bolza problem by appending the Fourier coefficients
to the state vector [215], creating an infinite dimensional
state space). Nevertheless, one can calculate the adjoint
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variable ρ of the ergodic metric function:

ρ̇ = − 2

T

∑
k

Λk (ck − φk)
∂Fk

∂x
− ∂f

∂x

>
ρ (9)

where the dynamics are represented by ẋ = f(x, u), and
get a descent direction for locally minimizing the ergodic
metric [216]. Other approaches can be used that lead to
slightly different solutions (e.g., the projection-based tra-
jectory optimization method for ergodic control in [204,
217, 218], where higher-order convergence properties come
at the expense of high computational cost). A key prop-
erty of the metric E is that it is differentiable with respect
to x(t), so most optimal control techniques can be easily
applied.

An example of an ergodic trajectory can be seen in
Figure 8, where the agent is exploring with respect to the
expected entropy reduction distribution over the whole en-
vironment. The agent is able to successfully locate both
target locations in this scenario because the ergodic con-
trol strategy is amenable to persistent monitoring of mul-
tiple targets. As perfect ergodicity can only be realized as
time goes to infinity, the agent will continue to explore the
space. Using infotaxis, the agent would conclude its explo-
ration once a target has been detected. Here, we make use
of global information to plan control actions over longer
time horizons.

With both these local and global information-based
synthesis techniques in mind, we next move on to applica-
tions in robotics that will depend on active learning strate-
gies.

6. Applications in Robotics

While the landscape of applications for active learning
is almost as broad as that of machine learning itself, here
we will focus on settings where datasets are rarely avail-
able ahead of time. Active exploration applications such
as search and rescue or mapping are particularly relevant
in this class of problems, especially when the environments
are dynamic and hard to predict. We also discuss applica-
tions in which system models are either unknown or diffi-
cult to parametrize, as is the case for soft robotics and for
many of the areas of application of imitation learning.

6.1. Soft Robotics

Soft robots are made from compliant materials, en-
abling them to be well suited for delicate tasks and en-
vironmental adaptation [219–221]. Unfortunately, precise
modeling and control of soft robots poses challenges be-
cause soft materials are continuously deformable and thus
nominally have infinite degrees of freedom. There is no
clear method of representing the geometry of such a robot
without making significant simplifications [20]. The most
important functional property of a soft robotic system—
deformation in response to the environment—makes soft

robotic systems practically impossible to meaningfully model
for control based on first-principles (e.g., partial differen-
tial equations based on elastic body mechanics). Data-
driven modeling is a natural alternative when first prin-
ciple arguments are either not tractable or do not involve
the use of a state space.

Learned representations, such as those constructed by
DNNs, have been shown to find input to output mappings
that predict the behavior of soft robots [222]. However,
these models are difficult to apply using known model-
based control techniques. Alternatively, the Koopman op-
erator has also been used for modeling and control of
soft robots [137]. Described earlier in Section 3, Koop-
man operators provide a linear representation for nonlin-
ear dynamical systems that is compatible with linear con-
trol methods such as LQR synthesis. In practice, a data-
driven approximation is adopted. As an example, [137]
develops a model predictive controller with a Koopman
operator representation of a soft robotic arm for tracing
reference trajectories. The data collection strategy for soft
systems plays an important role in determining a model.
For instance, though obvious, data collected while an end-
effector is out of contact with the environment cannot pro-
vide useful modeling data. In prior work we showed that
a Koopman operator representation of a robotic system
can be actively learned using information-theoretic strate-
gies [114].

Despite the complexity that soft elastic structures in-
troduce to the analysis of robotic motion, soft robots can
beneficially exploit these physical properties. For exam-
ple, soft structures can be leveraged as a computational
resource, sometimes called morphological computation or
embodied intelligence [223]. A soft body that deforms
around an object, in principle, will make manipulation eas-
ier, and will imply that the amount of explicit computation
needed will be lower in exchange for the implicit compu-
tation afforded by the soft body. For instance, [224] shows
that stable hopping behavior of a soft underwater robot
can be achieved experimentally by dynamically changing
the size of its body. Moreover, with actuator saturation,
adapting the morphology of the robot’s body was the only
route to achieve stable behavior, implying that control over
the continuous shape properties of the robot was key to
task success.

In addition to articulation, sensory acquisition via mor-
phological computation is connected to biological systems
and present in structures such as the cochlea of the hu-
man ear [225] and the bodies of octopuses [226]. While
data can be passively collected through the physical struc-
ture, active sensing is a biologically motivated extension.
In [120], the authors build a perception system to learn
the kinematics of a soft actuator and estimate interac-
tion forces with embedded sensors and recurrent neural
networks. In their approach, the authors consider the re-
lationship between action and perception in the learning
process by quantifying sensor information as a result of
commanded actuation information. Work in [227] uses a
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soft robotic probe to palpate imitation tissue to determine
the location of a hard tumor-like nodule. The soft robot
was able to adjust its stiffness across iterations of the pal-
pation task based on information metrics calculated from
human test subjects. These findings suggest that active
haptic perception through physical changes to the probe
improves estimation accuracy, motivating active learning
techniques that could automate learning for this and other
soft systems.

6.2. Search and Rescue

Prevention, response, and recovery from disasters can
be dangerous for emergency professionals who may need to
interact with areas affected by events such as hurricanes,
oil spills, and earthquakes. Disaster robotics is an area
that works to augment the capabilities of workers by de-
livering real-time data to experts and intervening in the
environment [228]. The need to efficiently search an envi-
ronment is an issue at the core of disaster robotics. One
of the most visible examples of the need to search an ex-
tremely large, dynamic environment in recent years is the
investigation of the crash site of Malaysia Airlines Flight
370 (MH370) in March of 2014. In the first 52 days af-
ter the crash, the Australian government reported that air
crafts and surface vessels covered an area of over 1.6 mil-
lion square miles. By June of 2018, the final search effort
was suspended without success. Although there may be
many points of failure in this search effort, one dimension
involved robotic technologies that scanned the bottom of
the ocean that were incapable of reasoning about poten-
tial debris signatures, the dynamic environment, and their
own capabilities.

When searching large areas where information is sparse,
active coverage algorithms are important in determining
important areas of a search region and the schedule to
visit these regions. Coverage algorithms are used in many
robotic applications such as underwater exploration [229],
agriculture [230], and inspection [231]. The goal of cover-
age algorithms is to visit all points in an area or volume
while avoiding obstacles [232]. Commonly used approaches
for coverage, a taxonomy of which is included in [233],
include cellular decomposition or grid-based methods to
divide the area into manageable sections [234–237]. How-
ever, as the complexity of the environment increases, the
number of cells necessary to represent the environment in-
creases. These methods typically do not take into account
the physical properties of sensing capabilities of the robots
or the dynamics of the environment. As a result, coverage
is treated as both necessary and sufficient for capturing
needed data. This attitude about coverage can be seen in
the search strategy of the MH370 investigation which fo-
cused on area coverage, neglecting factors such as how the
ocean currents might pull debris away from the site [238].

6.3. Localization and Mapping

SLAM algorithms create a map of an unknown envi-
ronment while simultaneously estimating the state of the

robot within that environment. This is a major success
story in robotics, with the current flood of driverless car
technologies all dependent upon SLAM algorithms. When
navigating an unknown environment, a robot may lose its
ability to localize itself due to accumulated small errors in
sensors and actuators, known as representation drift. To
correct for this drift, SLAM algorithms use loop closure—
the task of identifying whether an agent has returned to a
previously visited location—to maintain an accurate rep-
resentation of the location of the robot relative to envi-
ronmental features. To maintain loop closure, the robot
revisits regions with low estimation uncertainty or infor-
mative features to combat representation drift. Beyond
localization, loop closure allows the robot to represent the
topology of the environment, instead of simply a record of
where it has been.

In passive approaches, a robot performs SLAM with
sensor information provided to it. For instance a lidar sen-
sor collects data while driving down a road. In contrast,
active SLAM leverages the actions of the robot to seek out
informative measurements that efficiently decrease local-
ization and mapping uncertainty. Figure 9 illustrates the
flow of information in passive versus active SLAM. Ac-
tive SLAM generates controls based on the current state
of both the map estimate and robot states. The review
paper [179] summarizes methods that have been employed
in the development of active SLAM including the theory
of optimal experimental design [239], information theoretic
approaches [240–242] and control theoretic approaches [243,
244]. Active SLAM can also be formulated as a Par-
tially Observable MDP (POMDP) and approximated us-
ing Bayesian optimization or Gaussian belief propagation
to attain computational tractability. Belief space planning
entails planning in the space of probabilistic estimates of a
robot’s state and additional variables of interest [245, 246].
This method has also been used in combination with nav-
igation error [247–249].

Using planning algorithms in SLAM is challenging be-
cause SLAM is generally executed on a pre-planned tra-
jectory. This trajectory can greatly affect the quality of
performance. Conversely, path planning algorithms typ-
ically assume a given map. Hence, planning and SLAM
are nontrivially interdependent. Work in [250] attempts
to integrate SLAM with a coverage path planning problem
by developing a movement strategy they call perception-
driven navigation. The authors use a cost function that
weights navigation uncertainty, evaluated using the Fisher
information matrix described in Section 4, with the ra-
tio of unexplored to total coverage area. This method
plans paths between waypoints that are selected based on
a measure of visual saliency, prioritizing areas in which
notable environmental features have been detected. The
integration of perception based navigation in the SLAM
framework is key to balancing effective mapping alongside
exploration as the distribution of features in an environ-
ment is often highly uneven. It also allows for operating
in limited field of view environments, such as underwater
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Figure 9: SLAM versus Active SLAM: Active SLAM uses control commands generated to decrease localization and mapping uncertainty.
In traditional SLAM, the control signal is given in the problem statement.

inspection tasks.
Developing a method to determine informative features

from images is an important aspect of visual SLAM, in
which SLAM is performed using only camera inputs [251].
Image pre-processing with feature selection reduces the
computational burden of scanning all the pixels in images,
leading to many active feature selection algorithms [252].
One can also selectively process informative regions of im-
ages or videos using a recurrent neural network [253]. Lastly,
visual-inertial navigation—where a robot must estimate its
state using only a camera and inertial sensors—can sup-
plement the visual SLAM process. In [254] visual-inertial
navigation selects features based on the state of the ob-
server and the context of the scene, using information the-
oretic constructions as a basis for prioritizing features to
be used in state estimation.

6.4. Imitation Learning

Imitation learning is a widely used and effective method
of imparting human skills to robots by learning desired be-
haviors from demonstrations. To transfer knowledge about
a task through imitation, it is important to capture salient
features of a demonstration in efficient and generalizable
representations of a skill. Here, active learning can play
an important role in capturing knowledge from a demon-
stration.

The field of imitation learning is expansive [255–257]
and has been used in numerous settings including autonomous
driving [258], virtual games [259], and replicating human
motion in robots [260]. Capturing knowledge about a task
from human experts is especially applicable to robotics,
where autonomous systems are charged with operating in
complex and unstructured environments. In these situa-
tions it can be difficult to manually program specific be-
haviors and engineer reward functions to suit a task. Imi-
tation learning is commonly tied to deep neural networks
to take state/action pairs from demonstrations and learn
a policy for a skill. This can often require large amounts of
data, leading to questions about what aspects of demon-

strations are particularly useful to impart a skill to an
autonomous system.

When transferring skills from a human operator to a
robot, active learning occurs when a human operator is
queried for information. For instance, work in [261] con-
siders two approaches to active learning from demonstra-
tion in the context of autonomous navigation. A learner,
such as a robot, selects expert demonstrations that they
believe to be informative based on either novelty or uncer-
tainty reduction criteria. In novelty management, demon-
strations are selected based on a density model from which
a test feature vector can be compared to demonstrations
previously seen in training to provide exposure to un-
observed or anomalous data. For uncertainty reduction
based active learning, the authors used the Query Bag-
ging Method [262], in which training data is partitioned
into multiple subsets. A demonstration would be deemed
to have high uncertainty if the variance over these subsets
for the demonstration was high.

Inverse reinforcement learning (IRL), also called in-
verse optimal control, is a method of determining the goals
of desired behavior from trajectories executing a policy [263].
The aim of IRL is to find a reward function that describes
the desired task from expert demonstrations. When a task
is well suited to be described by a single reward function,
IRL is most applicable. However, a policy may be optimal
for multiple reward functions, making it difficult to discern
intent. In response, it may be necessary to include other
objectives. Work in [264, 265] focuses on active learning in
the context of IRL, which seeks to reduce the demonstra-
tions from full trajectories to particularly useful states. In
this case, active learning means selecting particularly in-
formative samples to be labeled by an oracle. In [264], a
robot learns a reward function and movement policy for
a grasping task. The reward function is in the form of
a Gaussian process model and is based on human evalu-
ations of the quality of the grasp. In this method, the
learning agent is able to impact the demonstrations it sees
by choosing to query human expert ratings based on acqui-
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sition functions from the Bayesian optimization literature.
Generative adversarial imitation learning (GAIL) is a

model-free imitation learning approach that scales well to
high dimensional environments [266]. Inspired by genera-
tive adversarial networks, GAIL produces behaviors sim-
ilar to demonstrated behaviors while training a discrimi-
nator to differentiate expert attempts with generated at-
tempts. An extension of GAIL, called InfoGAIL, attempts
to find latent structure across human demonstrations—
that can be highly variable—to describe interpretable con-
cepts [267]. Related to techniques that train a discrim-
inator to differentiate between expert and learned poli-
cies(such as InfoGAN [268]), InfoGAIL approximately max-
imizes mutual information between latent space and tra-
jectories to deduce meaningful latent variables. In this
way, it is possible to produce semantically meaningful or
informative data that pertains to a particular task.

Imitation learning, and the other applications men-
tioned above, stand to benefit from robots that physically
manipulate when and how they learn, rather than relying
on visual and aural requests for more or better data, which
is one of the principal goals of active learning in robotics.

7. Open Challenges

Closed-loop active learning presents a key opportunity
for improving the quality and rate of learning. In this sec-
tion, we focus on specific challenges in both the near and
far term, such as safety and distributability. These chal-
lenges are specific to the expertise of the controls community—
e.g., analyzing properties like complexity, convergence, and
motion feasibility. We end with a broader discussion of
questions such as how can one assess the sufficiency of a
learning model for a given task? These challenges, among
others that we may not yet understand, are at the core
of what it means to construct a robotic theory of active
learning.

7.1. Distributability

Distributability has become a widely studied and often
implemented goal for control systems, enabling a swarm
of robots to accomplish what an individual robot cannot.
In the context of control-driven tasks such as exploration
or search, the benefits of distributability are immediately
apparent—multiple robots will be able to cover an area
more efficiently than a single robot could. Distributed data
collection of this kind has been widely and successfully ap-
plied in a variety of contexts, such as environmental moni-
toring [236, 269]. The key feature underlying the success of
these distributed control applications is that the dynamics
of the robot collective are factorable into a block-diagonal
representation—the dynamics of each robot agent are in-
dependent from one another [214, 270]. However, can we
expect this to be the case across active learning applica-
tions?

While independent robots can easily coordinate to col-
lect measurements and effectively augment their percep-
tion [271], learning collectively may prove to be much more
challenging for a variety of reasons. For one, when robots
are not just collecting data but also using it to learn as a
group, they must be in constant communication and shar-
ing data samples with one another. Another important
challenge is that the data samples that each agent is lo-
cally exposed to may be statistically distinct. Moreover,
the noise and disturbances that robots are exposed to may
be heterogenous across agents as well. Taken together,
these observations suggest that during distributed learning
the samples that a swarm collects may not be independent
and identically distributed, which is a key assumption un-
derlying most learning methods and can create issues with
fundamental properties of the learning process (e.g., con-
vergence). Most of the difficulties outlined so far have
been described by the fields of distributed [272] and fed-
erated [273] machine learning. Hence, the success of dis-
tributed active learning is in part tied to the challenges of
distributed learning generally.

Nonetheless, some challenges in distributability will be
unique to active learning. As we have discussed, when
the dynamics of robotic agents are left uncoupled making
control decisions may be simple. However, active learning
in robotics precisely requires a coupling between learning
and taking actions. Then, when agents share a common
distributed learning objective, their dynamics may become
effectively coupled through the contingent relationship be-
tween acting and learning. As a best-case scenario, this
can lead to redundant data collection and learning, but
in the worst-case this can create stability issues in the
learning process. Highly-coupled dynamics, along with
extended network dropouts, will generate high degrees of
disagreement between agents, making both analysis and
prediction more difficult. Thus, eliciting useful collective
behavior from decentralized systems based on local deci-
sions is still an open challenge.

7.2. Safe Active Learning

Safety is a problem of both specification and prediction—
one needs to specify what is meant by safety and be able
to predict that the specification will be satisfied. Imposing
safety enables learning in high-consequence environments
with continuous deployment, making reliance on models
and prior experience less risky.

Common tools available for imposing safety constraints
often depend on Control Lyapunov Functions (CLFs) [274,
275]. These control approaches enforce stability properties
of a robotic system through a feedback stabilizing control
law that drives a positive-definite differentiable function
to zero over time. In the context of active learning, one
may desire to have a CLF for ergodic control, using the
ergodic metric as the candidate Lyapunov function [216].
One can use Control Barrier Functions (CBFs) [276–278]
that encode safety constraints, such as in Figure 10 where
we impose the constraint that one set of vehicles can only
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Figure 10: Safe decentralized ergodic control: Upper panel:
Fire trucks attempt to reach the site of a fire guided by helicopters
above. The firetrucks are able to explore in the areas that have
already been explore by the helicopters. At the same time, the he-
licopters must maintain the ability to return to a refueling station.
Lower panel: Here are three time snapshots of an ensemble of six
robots—three purple and three blue—explore an environment sub-
ject to the condition that blue robots can only go some place purple
robots have already visited. The purple robots are tasked with ex-
ploring the purple building while the blue robots are tasked with
exploring the blue building.

enter a region after another set of vehicles has explored
it. Both CLFs and CBFs can be combined with other ob-
jective functions that are task-oriented rather than safety
oriented; these often then involve solving quadratic pro-
grams to satisfy safety constraints [275, 277, 279, 280].
The CLF/CBF approach is the most amenable to compu-
tation in high dimensional spaces, but in lower dimensional
spaces one can directly solve for safety sets using reachabil-
ity analysis, which depends on solving a Hamilton-Jacobi-
Isaacs partial differential equation [281, 282]. Though not
necessarily practical for high dimensional systems, this
guarantees an optimal trade-off between safety and per-
formance.

An important challenge in these safe learning tech-
niques is that they are model-based. They require a model
to evaluate the monotonic decrease of the CLFs/CBFs or
to evaluate reachability conditions. Since a robot will typ-
ically be learning something about the environment rel-
evant to its evolution, its own dynamics, or its interac-
tions with the environment, all these techniques will rely
on model updates of some form along with real-time up-
dates to statistical analysis. A key question is how should
a robot stay safe during this process, and what should
safety mean when representations critical to safety are not
known?

In recent work—following the CLF/CBF viewpoint of
safety—we showed that one can use hybrid control meth-
ods to schedule switching between a safe controller and

a learning controller, while maintaining the asymptotic
properties of the safe controller [283]. The critical assump-
tion in that work is that there is an operating point where
stability of the robot-environment combination is already
established and using the safety of that state as a start-
ing point for safe learning. This is often a reasonable as-
sumption; for instance, one might have an empirically safe
PID controller for a humanoid robot near upright posture
without having model-based safety analysis. Additionally,
CBFs have been used to guide the learning process in re-
inforcement learning [284]. In this work, the CBFs restrict
exploration to safe policies and become less conservative
as an online learning process learns a model of the dynam-
ical system. This makes the learning process more efficient
while guaranteeing safety. This method incorporates on-
line measurements to improve the CBF-RL controller, pro-
viding an opportunity for active learning approaches such
as those discussed here to facilitate information gathering.
Other approaches to simultaneously satisfying safety guar-
antees with a priori unknown dynamics and/or unknown
environments need control formalisms that enforce safety
criteria in the absence of any certainty.

7.3. Stability, Invariance, and Specification

Another concern critical to learning is how to impose
prior knowledge on learned models. Particularly in the
context of physical learning, where a model does not need
to be an ordinary differential equation or a statistical pat-
tern, but can instead be a principle (such as a motion
symmetry [285] or energetic dissipation). Among these
principled statements of modeling assumptions, stability,
the property that the unforced system asymptotically con-
verges to an equilibrium, may be the most common prop-
erty in a physical system that we may wish to insist upon [286].
In [287]—following [81, 288–292]—we used recent results
in linear algebra to project linear operators (such as the
Koopman representations discussed earlier) onto the clos-
est stable linear operators. Moreover, in [293] we applied
these techniques to robotic manipulation examples, where
notably the experiments were implausible without con-
straining the learning to stable models.

There is a wide range of potential specifications one
may wish to impose on a learning system. How would one
specify that a learned model must satisfy a linear tempo-
ral logic (LTL) constraint such as those described in [294]?
What about symmetries in time and space, implying con-
servation of energy and momentum? Developing formally
correct methods for combining learning tools with these
specifications is a key step forward towards robot learn-
ing under user-generated constraints on what should be
learned.

7.4. Actionable Learning

A key property of linear control systems is the sep-
aration principle. This principle asserts that an optimal
estimator can be designed independently from the optimal
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control. A consequence of the separation principle is that
as soon as a measurement has been taken, one knows that
the automation system can start to productively take ac-
tions. That is, every measurement is actionable for the
control system. A generalization of the separation princi-
ple is to ask whether designing a learning algorithm can be
done independently from designing its control system. In
general, this review assumes that this is not possible—the
learning and control goals are mutually dependent. How-
ever, in some learning cases the relationship between what
is being learned and when or how soon one can take ac-
tion may be important. For instance, in the case of shape
recognition in Figure 2, exploring an object to determine
its shape properties must happen prior to exploring an
unknown environment in search of that shape. This tran-
sition is an example of the representation (in this case the
abstraction’s “shape”) becoming actionable to the control
system. As far as the authors are aware, this topic is little
studied in control, but has a long history in psychological
study of decision making (e.g., see the many books on this
topic by Alain Berthoz [295]).

When a control system becomes actionable is particu-
larly important when distinguishing between active learn-
ing and passive learning. During the active learning phase,
learning may be the primary goal of the control system.
During the passive learning phase the robotic system (or
animal) may transition to attempting its ultimate task
while continuing to run online passive learning updates.
In single-shot learning, where the learner only has one tra-
jectory to exploit for the purpose of learning, being able
to robustly detect when learning has become sufficient to
take action is a critical part of the path to task success.

Analysis methods are needed for describing conditions
under which learned models are sufficient for making a de-
cision to combine the estimation aspects of learning with
the control aspects of learning. This transition is often
characterized in terms of exploration/exploitation trade-
offs [296] in the context of sampling-based learning. In the
context of a physical system, exploration and exploitation
depend on the physics of the learner and environment,
and the transition between them will be regulated by the
control system. In the case of the example in Figure 3,
this would be a safety-critical decision—devoting inade-
quate time for active learning yields an insufficient model
for recovery prior to the vehicle hitting the ground, while
engaging in active learning too long will lead to a catas-
trophic failure. This particular example would likely yield
a convex function that represents safety as a function of
transition time. However, how to analyze and compute
this transition in general is unknown.

Efficiently forming representations relevant to task com-
pletion is part of the challenge in forming actionable rep-
resentations. When a representation becomes actionable,
we capture particular elements of the underlying object or
task relevant for decision making while ignoring irrelevant
sensory data. The question of determining functionally
applicable representations has been explored in [297]. The

authors claim that the structure of the environment can
be modeled with a known goal-conditioned policy—a pol-
icy that can achieve a goal state from a given state. The
authors refine this policy by differentiating states using
the actions necessary to reach them. Thus, states that are
functionally similar are closer to each other in the represen-
tation than they would be when representing their location
with an Euclidean distance. This method could benefit
from active learning. For instance, one may use the en-
tropy of the representation rather than the entropy of the
input or entropy of the physical states, as the information
quantity to force active learning capabilities. However one
constructs representations from data-driven experience, an
important question will be how to synthesize active learn-
ing to close the loop on representation generation.

8. Conclusion

Active learning and data-driven control will play a ma-
jor role in future robotic systems operating without ac-
cess to reliable analytic models or prior data sets in un-
certain environments. Robots will need to become fluent
learners—routinely investing time and energy in single-
shot learning through purposeful data collection and inter-
pretation. This high level goal transcends the capabilities
currently available for robotics in machine learning, both
in terms of specifying behavior and representing learning
goals. Machine intelligence in general has almost entirely
been viewed as an extension of estimation theory, focus-
ing on the processing of data. Even reinforcement learning
assumes that the data needed for updating a policy is avail-
able or that it can be created in simulation. Here we view
learning, in part, as an extension of control theory, focus-
ing on how decisions impact learning outcomes. Before
these two views can be synthesized into a single coherent
theory, many challenges need to be addressed including
those mentioned earlier and many not yet understood.

Expanding our notion of a model becomes a key ef-
fort moving forward. Models should no longer be solely
defined by an ordinary differential equation, though or-
dinary differential equations may still play critical roles
during analysis and computation. Instead, a theme in this
review is that model-based reasoning needs to admit any
set of meta-principles one asserts, such as symmetries in
the system, its stability properties, what equilibria are ex-
pected, or its logical structure. These assertions will con-
strain numerical inference, thereby improving learning by
reducing the classes of admissible models.

We have outlined and argued for the development of
a theory of robot learning—one that deals with the dif-
ficulties and constraints that an embodied learning agent
would face in the physical world. While much of machine
learning has neglected the challenges that physical embod-
iment brings, this presents a great opportunity for control
theorists at-large. The historical arc of robot control has
retained a clear focus on the physical properties that en-
sure safe, robust, and reliable performance. By merging
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our understanding of controllability, stability, and compli-
ance, with the flexibility of black-box learning, an action-
oriented theory of learning will be key to enable future
robot technologies.
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[78] A. A. Rusu, M. Večeŕık, T. Rothörl, N. Heess, R. Pascanu,
R. Hadsell, Sim-to-real robot learning from pixels with pro-
gressive nets, in: Proceedings of the 1st Annual Conference on
Robot Learning, Vol. 78 of Proceedings of Machine Learning
Research, PMLR, 2017, pp. 262–270.

[79] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov,
A. Irpan, J. Ibarz, S. Levine, R. Hadsell, K. Bousmalis,
Sim-to-real via sim-to-sim: Data-efficient robotic grasping via
randomized-to-canonical adaptation networks, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.
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