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Abstract—Cooperatively avoiding collision is a critical func-
tionality for robots navigating in dense human crowds, failure
of which could lead to either overaggressive or overcautious
behavior. A necessary condition for cooperative collision avoid-
ance is to couple the prediction of the agents’ trajectories with
the planning of the robot’s trajectory. However, it is unclear
that trajectory based cooperative collision avoidance captures the
correct agent attributes. In this work we migrate from trajectory
based coupling to a formalism that couples agent preference
distributions. In particular, we show that preference distributions
(probability density functions representing agents’ intentions)
can capture higher order statistics of agent behaviors, such as
willingness to cooperate. Thus, coupling in distribution space
exploits more information about inter-agent cooperation than
coupling in trajectory space. We thus introduce a general ob-
jective for coupled prediction and planning in distribution space,
and propose an iterative best response optimization method
based on variational analysis with guaranteed sufficient decrease.
Based on this analysis, we develop a sampling-based motion
planning framework called DistNav1 that runs in real time on a
laptop CPU. We evaluate our approach on challenging scenarios
from both real world datasets and simulation environments, and
benchmark against a wide variety of model based and machine
learning based approaches. The safety and efficiency statistics
of our approach outperform all other models. Finally, we find
that DistNav is competitive with human safety and efficiency
performance.

I. INTRODUCTION

Collision avoidance in dense human crowds is a challenging
problem. Whereas conventional motion planning algorithms
work well with slowly moving obstacles and low obstacle
density, they are designed to work with passive obstacles that
will not react to the robot, and assume the robot has full
knowledge about the obstacles’ future states. Such assump-
tions, however, no longer hold in human crowds and could lead
to either overcautious or overaggressive robot behaviors, which
is known as the freezing robot problem [44]. Previous work
on crowd navigation reveals that one necessary condition to
avoid freezing robot behavior is to couple the prediction of the
agent’s future trajectories with robot planning (e.g., accounting
for the robot’s influence on agent behavior).

However, pure trajectory-based models make strong implicit
assumptions about the distribution governing interactive agent
behaviors (what we call the agent’s “preference distribution”).
For example, the extent to which an agent is willing to move

1For more details please visit https://sites.google.com/view/distnav/
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Fig. 1: Difference between modeling humans as specific trajectories and
distributions: Agent 2 at the bottom (pictured as a human but also can be
a robot) needs to plan a path while predicting how the other two pedestrians,
who are a family and thus considered as a single agent 1, would react to
agent 2’s decision. The dashed circles represent each agent’s probability
distribution (preference) at each time step, here we assume agent 1 has a
lower flexibility and thus agent 1 would expect agent 2 to cooperate more
to make space for each other. (a) By modeling humans as trajectories,
agent 2 implicitly assumes the preferences of both agents are fixed in
the presence of interaction, which is not necessarily true. (b) Modeling
humans as distributions can overcome this issue, where agent 2’s intention
evolves to a bi-modal distribution because of the potential interaction,
and the trajectory with maximum likelihood (go right) would eventually
be chosen as the plan. While both methods can recover a proper path for
agent 2 to avoid splitting up the family, explicitly modeling the evolution
of preferences captures more information about the interaction.

out of the way of the robot is typically left unmodeled. Fur-
ther, trajectory space approaches assume that the (implicitly
modeled) preference distribution is a static quantity: during
interaction, the preference distribution does not change. As
an example, consider unimodal Gaussian agent models, where
the covariance can be interpreted as the extent to which an
agent will make room for another agent. Critically, as two
agents proceed past each other, their covariance will change.
If an agent moves far out of the way of the path of the
robot, its covariance will become more peaked, indicating
that the agent is only willing to make so much room. For
non-Gaussian agent distributions, higher order factors such as
skew (e.g., preference for left versus right passage) and multi-
modality (e.g., ambiguity about which side an agent might pass
on), are themselves coupled to the deformation of the agent
trajectories. In short, assuming that interaction occurs only
at the trajectory level ignores critical information about how

https://sites.google.com/view/distnav/


(a) (b) (c)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Agent's 1D position: x

0.0

0.5

1.0

1.5

2.0

P
re

fe
re

n
ce

 d
is

tr
ib

u
ti

o
n
: 

p
(x

) Original Preference Distributions

p1(x)

p2(x)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Agent's 1D position: x

Trajectory Space Coupling

x *
1

x *
2

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Agent's 1D position: x

Distribution Space Coupling

p1(x)

p2(x)

p *
1 (x)

p *
2 (x)

x *
1

x *
2

Fig. 2: Simplified 1D example showing two agents bypassing each other, in this example each agent only considers its 1D location at next one step. (a)
Original preference distributions of the two agents, modeled as two Gaussians. (b) Coupled prediction and planning in trajectory space, where agent 2 finds
its optimal plan (blue dashed line on the right) and optimal prediction for agent 1’s plan (orange dashed line near the center) simultaneously. Again, agent
2 implicitly assumes two agents’ preferences remain static in presence of interaction. (c) Our method relaxes this assumption, and allows preference
distributions to evolve in a non-parametric manner. Agent 2’s intention can be explicitly modeled as a bi-modal distribution, it can both go right or go
left, but going right is more preferred. Optimal plan (blue dashed line) and prediction (orange dashed line) are then picked by agent 2 from its belief for
updated preferences.

interaction deforms higher order factors of the agent model
(e.g., how interaction deforms the preference distribution).
Figure 1 illustrates the necessity of modeling agent preference
evolution through a high-level example that is common in
crowd navigation—two agents passing each other on the street.

We relax this assumption of a known and fixed prefer-
ence distribution. Specifically, we do not require the agent’s
preference distribution to remain static during interaction, but
instead allow the preference distribution to evolve (Figure 2
demonstrates the preference evolution in a 1D example). We
accomplish this by:

1) Taking the atomic representational unit to be a probabil-
ity density function over agent trajectories, in what we
call distribution space.

2) Including both human-robot and human-human interac-
tion.

3) Developing a method to jointly optimize over both robot
and agent preference distributions.

In this work distributions represent agents’ preferences
over trajectories—including both what they want and their
potentially multi-modal degree of flexibility. This use of
distributions is distinct from that found in other computational
methods that use distributions are their atomic unit, such as
belief space planning, where the purpose of a distribution is
to represent uncertainty (for example, [30] uses belief space
planning for crowd navigation but decouples prediction and
planning). Here we develop a formalism and algorithm to
“shape” probability density functions for better cooperation,
even for systems with no uncertainty present.

At last, we summarize our contributions as follow:

1) We formulate a general objective for coupled prediction
and planning in distribution space (Section III).

2) We propose an iterative best response optimization al-
gorithm which is guaranteed to decrease the objective in
each iteration, and design a sampling-based navigation
framework called DistNav (Section IV).

3) We conduct a comprehensive evaluation using both
real world datasets and simulation environments, and
benchmark DistNav against a variety of other crowd nav-

igation methods. Results show that DistNav outperforms
other methods in both safety and efficiency metrics,
and is competitive with human safety and efficiency
performance (Section V).

II. RELATED WORK

Roboticists have been investigating navigation in human
environments since the 1990s. Two landmark studies were
the RHINO [2] and MINERVA [41] experiments. In [8] the
authors observed that assuming agent independence leads
to an uncertainty explosion that makes efficient navigation
impossible. In [44], it was shown that bounding uncertainty
(such as in [40, 8, 21, 33]) cannot prevent freezing robot
behavior. Relatedly, Human intention aware planning is a
popular crowd navigation approach [23]; examples include
[17, 28, 38, 34, 45]. Although these approaches model human-
robot interaction, they ignore human-robot cooperation.

Some approaches learn navigation strategies by observing
examples, such as through inverse reinforcement learning [22,
50, 51] or deep reinforcement learning [6, 10, 39]. Typi-
cally, human relationship models are ignored; importantly, [4]
models human-human interaction in a method called “socially
aware reinforcement learning (SARL).” In [5], agent relational
graphs are trained using deep reinforcement learning. In [27],
a relational graph is paired with “negative examples” (e.g.,
collisions) to enforce safety constraints and social norms.
These reinforcement learning methods rely on simulators for
training, but as being pointed out in [12], current simulators
make unrealistic but critical assumptions that will not hold in
real world, which may affect the sim-to-real transfer.

Coupled prediction and planning approaches explicitly cap-
ture the mutual dependencies between human and robot. An
important body of work is game theoretic planning[13, 7],
these planners typically assume agent objectives are known,
but recent works introduce online estimation of human agents’
objectives [36, 25]. Further, [36] uses the social value orien-
tation (SVO) to quantify the degree of agents’ selfishness or
altruism. Similar idea of modeling human willingness to coor-
dinate can be found in other works. For example, [29] models
mutual adaptation between human and robot in manipulation



tasks, and [43] models human flexibility as the covariance
matrix of a Gaussian process. In addition to online estimation,
[35] introduces an active information gathering algorithm that
generates communicative behaviors for autonomous vehicles.
However, in these works the planners still over-confidently
predict human behavior as a single trajectory, and none of
them capture how willingness to coordinate changes during
interaction.

Lastly, while the deep learning approaches in [32, 1, 16, 48,
9] focus on prediction, they are an important contribution to
crowd navigation. In [20], variational auto encoders capture
multimodality. [3] includes human “intent uncertainty” and
“control uncertainty” as part of the prediction, and model
them with Gaussian mixture models. But none of these models
explicitly measure or account for how flexibility changes
during interaction.

III. PROBLEM FORMULATION

A. Terminology

Consider there are n + 1 agents including n pedestrians
and one robot in the environment, we start by defining a
set of unique indices I = {R, 1, 2, . . . , n} for all agents,
where R is the index of the robot and is treated as zero
when compared with other indices. The state of each agent
is in the space X ⊆ Rk, for example if we only consider
all agents’ planar positions, then X ⊆ R2. The trajectory
of each agent f (i) : R+ 7→ X , i ∈ I is a set function
that maps a set of T time points to the agent state at that
moment. In practice, the trajectory f would be evaluated as a
vector or 2D matrix, thus dimension of the trajectory space
is f ∈ F ⊆ Rk×T . Agent states are measured through a
measurement model z(i)t = h(f (i)(t)), and we collect mea-
surements of the agents’ past states at time steps {1, 2, . . . , t}
as z(i)1:t = [z

(i)
1 , z

(i)
2 , . . . , z

(i)
t ], note that the observations could

be noisy (in this paper we assume additive zero-mean Gaussian
noises) and we don’t assume zi1:t to be complete: ziτ could be
missing for some τ ∈ [1, t] and i ∈ I.

Definition 1 (Distribution space). The distribution space P is
a function space, where each element p(f) : F 7→ R+

0 is a
probability density function that maps the trajectory space F
to the non-negative real domain, and each element satisfies:∫

F
p(f)df = 1 (III.1)

Definition 2 (Original preference distribution). The prior
probability for agent i’s trajectory conditioned on its mea-
surements z(i)1:t is defined as the agent’s original preference
distribution pi(f) = p(f (i) = f |z(i)1:t) ∈ P . Since no measure-
ment of other agents is used, original preference distribution
doesn’t include the interaction with other agents.

In this paper we use Gaussian processes regression to
compute the original preferences, so in the rest of the paper
we assume the original preferences are GPs, but our results
and algorithm apply to arbitrary distributions. We refer the
readers to [33] for more details about GP regression.

Preference distribution represents the agent’s intention,
which contains information for agent’s preferred trajectories
(intents) and their willingness to give up the preferred trajecto-
ries in order to cooperate with other agents (flexibility). Below
we define intent and flexibility for Gaussian and arbitrary
preferences.

Definition 3 (Intent and flexibility for Gaussian preferences).
When the agent’s preference is a Gaussian process (GP)
pi(f) = N (f |µi,Σi), the agent’s intent and flexibility are
defined as the GP mean µi and covariance Σi, respectively.

Definition 4 (Intent and flexibility for arbitrary distributions).
More generally, for any distribution p(f), the intents are
defined as the local maximums of p(f) (so there could be
multiple intents) and the flexibility is qualitatively measured
through the covariance, skew and kurtosis of the distribution.

Measuring flexibility for arbitrary distribution is tricky, in
this paper we only consider qualitative analysis: Covariance
represents the “spread” of the distribution, a larger covariance
indicates a larger feasible action region. Skew measures the
symmetry of the preference, for example whether the agent
is more willing to go “left” or go “right”. Kurtosis is the
“tailedness” of the distribution, it can be interpreted as the
agent’s tolerance for large deviations from the intents.

At last, we also need to define a function to penalize the
likelihood of collision between two trajectories.

Definition 5 (Collision penalty function). The collision
penalty function ψ(f (i), f (j)) : F 7→ R+ represents the
likelihood of collision between two trajectories, and it needs
to be symmetric such that ψ(f (i), f (j)) = ψ(f (j), f (i)).

As an example, in our implementation we choose the
collision penalty function to be:

ψ(f (i), f (j)) = max
t
w · N (f (i)(t)|f (j)(t),Σψ) (III.2)

where w ∈ R is the penalty weight and Σψ ∈ Rk×k controls
how close two agents can be.

B. Coupled Prediction and Planning in Distribution Space

Coupled prediction and planning (also called generative
navigation) considers motion planning as a prediction problem;
when applied to crowd navigation, the robot couples the
prediction of pedestrian trajectories and planning for its own
trajectory by optimizing the joint trajectories of all agents
simultaneously. The navigation goal and waypoints for the
robot can be included as (artificial) observations, so the
predicted robot trajectory will pass through them. We refer the
readers to [44] for more details about incorporating navigation
task into prediction.

We start formulating coupled prediction and planning in
distribution space by extending the collision penalty function
to distribution space.

Definition 6 (Expected collision penalty). The expected col-
lision penalty c(pi, pj) : P 7→ R+

0 is defined as the joint



expected value of the collision penalty function ψ(f (i), f (j))
with respect to two preference distributions:

c(pi, pj) =

∫
F

∫
F
ψ(f (i), f (j))pi(f

(i))pj(f
(j))df (i)df (j)

(III.3)

Definition 7 (Joint expected collision penalty). For n agents,
the joint expected collision penalty is defined as:

Jc(pR, p1, . . . , pn) =
n∑
i=R

n∑
j=i+1

c(pi, pj) (III.4)

Definition 8 (Coupled Prediction and Planning in Distribu-
tion Space). Given the original preference distributions for
all agents pR(f), p1(f), . . . , pn(f), and the expected colli-
sion penalty function c(pi, pj), the target is to find optimal
preference distributions (pR, p1, . . . , pn)∗ that minimize the
joint expected collision penalty (III.4), and also prevent large
deviations from the original preference distributions. Then
the optimal joint trajectories are selected individually as the
maximum of each agent’s optimal preference distribution.

One point worth emphasizing in the above definition is that
we do not put strict constraints on the difference between
current preference distributions and original preferences, but
instead consider it as a “soft constraint” while giving the
joint expected collision penalty (III.4) a higher priority as the
optimization objective. This is because the original preference
distribution can lead to dangerous conflicts since they don’t
include other agents’ intentions, in which case strictly con-
straining the deviation from such original preferences limits
the agents’ cooperation for safer joint actions. As will be
discussed in the next section, in our proposed algorithm, we
only constrain the preference deviation between two consecu-
tive iterations during the optimization, rather than constraining
them with respect to the original preferences; this relaxation
gives more freedom for conflict resolution.

We consider crowd navigation as a receding horizon plan-
ning problem, therefore solving for optimal preferences distri-
butions and selecting optimal coupled joint trajectories over
one time step. When new observations are obtained, new
preference distributions are generated and the joint trajectories
for coupled planning and prediction are updated.

IV. VARIATIONAL ANALYSIS FOR COUPLED PREDICTION
AND PLANNING IN DISTRIBUTION SPACE

The formulation of coupled prediction and planning in
distribution space raises several challenges:

1) The objective (III.4) is a functional, which is defined
in the infinite-dimensional function space, so traditional
optimization methods in vector space may not apply.

2) The objective is subject to subsidiary constraints (III.1).
3) The objective contains a combinatorial dependencies

between the variables, in other words, all agents update
their preferences in response to how others update. This
structure makes the objective challenging to optimize.
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Fig. 3: Evolution of three 1D preference distributions in 10 iterations using the
sequential variational update. All three distribution are initialized as Gaussian
distributions, the collision penalty function is a Gaussian probability density
function with small variance. We can clearly see the change of intents and
flexibilities (variance, skew and kurtosis) during the iterations.

To address the above challenges, in this paper we combine
the following techniques:

1) For the inter-agent dependencies, a strategy commonly
used in multi-agent game solvers is the iterative best
response (IBR) scheme [49][37]. In one iteration, each
agent’s strategy (in our case the preference distribution)
is locally optimized by solving a subproblem; in the
subproblem other agents’ strategies are fixed.

2) The subproblem for each agent is constructed sequen-
tially. Each agent updated their preference distribution
in response to those who have already updated, and
assuming those who haven’t updated would follow.

3) Each subproblem can be solved analytically using La-
grange multipliers [14] as an isoperimetric problem with
subsidiary conditions.

A. Sequential Iterative Variational Update

In k-th iteration, each agent updates its own preference
sequentially by solving a subproblem. For agent i, the cor-
responding subproblem is:

p
(k+1)
i (f) = arg min

p

{
DKL(p‖p(k)i ) + c̄

(k)
i (p)

}
(IV.1)

where

c̄
(k)
i (p) =

i−1∑
j=R

c(p, p
(k+1)
j ) +

n∑
j=i+1

c(p, p
(k)
j ) (IV.2)

=

∫
F
p(f)γ̄

(k)
i (f)df (IV.3)

γ̄
(k)
i (f) =

i−1∑
j=R

∫
F
ψ(f, f (j))p

(k+1)
j (f (j))df (j) (IV.4)

+
n∑

j=i+1

∫
F
ψ(f, f (j))p

(k)
j (f (j))df (j) (IV.5)

The first term in the subproblem objective (IV.1) is the
Kullback-Leibler divergence between the preferences in two
iterations, which controls the change between preferences in
two consecutive iterations, and therefore serves as a “soft con-
straint” on the deviation of current preference p(k)i (f) from the
original preference p(0)i (f). The second term c̄

(k)
i (p) measures

the summation of the expected collision penalties between



Fig. 4: Evolution of three agents’ preferences while they are passing each other in a narrow hallway, each preference distribution is approximated by 1000
samples, each sample’s size represents its log-scaled weight. Each agent’s intent is approximated by the sample trajectory with largest weight, the sample
distribution reflects the flexibility information, such as the covariance (spread of the samples), skew (symmetry of the sample weights) and kurtosis (number
of outlier samples). DistNav captures the change of both intent and flexibility of each agent during the interaction. This can be clearly seen in the
first two frames where the red agent is simultaneously reasoning about going to the left and to the right of the blue and green agents—something
impossible to represent with trajectory space coupling.

agent i and rest of the agents, assuming their preferences
are fixed, under this assumption optimizing the second term
equals optimizing the overall joint expected collision penalty
(III.4). Note that the construction of c̄(k)i (p) needs to follow
a sequential order as shown in (IV.2): all agents with indices
smaller than i would update their preferences for next iteration
ahead of agent i, and their updated preferences are fixed in
agent i’s subproblem. For all agents with indices larger than
i, their preferences are fixed as before being updated for next
iteration.

Theorem IV.1. The global minimum for the subproblem (IV.1)
is:

p
(k+1)
i (f) =

p
(k)
i (f) exp(−γ̄(k)i (f))∫

F p
(k)
i (f) exp(−γ̄(k)i (f))df

(IV.6)

Proof: See appendix.

Theorem IV.2. After all n agents’ preferences have been
updated sequentially in one iteration following (IV.6), the
inequality below holds, if p(k+1)

i (f) 6= p
(k)
i (f) for some i ∈ I:

Jc(p
(k+1)
R , p

(k+1)
1 , . . . , p(k+1)

n ) (IV.7)

≤ Jc(p(k)R , p
(k)
1 , . . . , p(k)n )− ξ , ξ > 0 (IV.8)

Proof: See appendix.
Theorem IV.2 shows that in each iteration, the joint ex-

pected collision penalty (III.4) is guaranteed to be sufficiently
decreased by updating the preference for each agent based
on (IV.6). Since (III.4) is bounded below at zero, with the
decrease of its value, the subproblem (IV.1) comes closer to
optimizing the KL-divergence between the preference at two
iterations; therefore the new preference at the next iteration
comes closer to the one in last iteration. While we leave the
question of whether the iterative update (IV.6) could lead to
guaranteed or efficient convergence to future work, in practice
we don’t actually look for the minimum of (III.4), which could
be infeasible for navigation (e.g., a set of Dirac delta functions
infinitely far from each other), but instead look for sufficiently
small (III.4) that is safe enough. To terminate the iteration, one

can threshold either the objective (III.4) or the KL-divergence
between two iterations. Figure 3 shows an example of updating
three 1D distributions using the update rule.

B. DistNav: Sampling-Based Crowd Navigation Based On
Sequential Iterative Variational Analysis

Unfortunately, computing the preference updates (IV.6) an-
alytically in high dimensional space is intractable due to
the integrals in (IV.6), which is also known as the curse
of dimensionality. Therefore, we propose a sampling-based
motion planner based on (IV.6) to approximate the evolution
of preferences and select the reference trajectory for robot
navigation, the key idea here is to approximate the integrals
through Monte Carlo integration.

We start by generating m samples from the original pref-
erence distribution of each agent, here we denote the samples
for agent i as

[fi]
(k) ∼ p(k)i (f) (IV.9)

[fi]
(k) = {f (k)i,1 , f

(k)
i,2 , . . . , f

(k)
i,m} (IV.10)

where each sample f
(k)
i,j indicates the j-th sample of agent i at

k-th iteration, and it consists of two parts, the trajectory and
the weight, we will not update the sample trajectory but only
the weight:

f
(k)
i,j = (fi,j , w

(k)
i,j ), fi,j ∈ F , w

(k)
i,j ∈ R (IV.11)

Before the iterations begin, the weight of each sample will
be initialized as w(0)

i,j = 1. In the iteration, the weight of each
sample will first be updated based on (IV.6), where the integral
of γ̄(k)i (fi,y) is approximated through Monte Carlo integration
as:

γ̄
(k)
i (fi,y) ≈

i−1∑
j=R

(
1

m

m∑
z=1

ψ(fi,y, fj,z) · w(k+1)
j,z

)

+
n∑

j=i+1

(
1

m

m∑
z=1

ψ(fi,y, fj,z) · w(k)
j,z

)
(IV.12)



And the weight of the sample is then updated as:

w
(k+1)
i,j = w

(k)
i,j exp

(
−γ̄(k)i (fi,y)

)
(IV.13)

After all agent i’s sample weights have been updated, we
normalize the weights such that the average weight remains
1, this step is the approximation to the denominator in (IV.6).
For each sample f

(k)
i,j = (fi,j , w

(k)
i,j ), the updated preference

for the trajectory is approximated as:

p
(k)
i (fi,j) ≈ w(k)

i,j p
(0)
i (fi,j) (IV.14)

After the iteration terminates, the optimal trajectory of each
agent is selected as the sample with largest approximated
preference. Pseudocode of the whole algorithm can be found
in appendix. Figure 4 shows how DistNav uses samples to
approximate the evolution of three agents’ preferences, where
they pass each other in a narrow hallway.

V. EVALUATION

A. Rationale for Both Simulated and Real World Dataset
Evaluation

For evaluation, we considered the crowd datasets ETH [31]
and UCY [26] and crowd simulators based on the the social
forces model (SFM, [18]; e.g., PEDSIM [15]) and optimal
reciprocal collision avoidance agents [47, 46], such as im-
plemented in [4]. Ultimately, both evaluation methodologies
have complementary strengths. For example, simulated agents
can be overly permissive with aggressive robots: our Monte
Carlo IGP produced zero collisions in PEDSIM while quickly
navigating to the goal, whereas in our ETH study it was unsafe
in 34/181 of runs (row 9, Table I) and exhibited freezing robot
behavior. However, simulation provides information about how
the algorithm leverages agent cooperation. Alternatively, the
humans in pre-recorded datasets are non-responsive, and so
the robot cannot leverage cooperation. However, pre-recorded
datasets provide human benchmarks on safety and efficiency
performance, which can be useful in assessing an algorithm’s
real world viability. Thus, we used both validation techniques
to gain insight about a) the algorithm’s ability to leverage
cooperation and b) the algorithm’s safety and efficiency perfor-
mance compared to human safety and efficiency performance.

However, how to evaluate a navigation algorithm against
ETH and UCY is non-trivial. For instance, many trajectories
in these datasets have no interaction; thus, the majority of
the runs in these datasets are not sufficiently challenging for
a navigation study. Further, pre-recorded crowd datasets do
not immediately suggest a navigation testing protocol (ETH
and UCY are typically used to benchmark prediction algo-
rithms, where testing protocol is straightforward). However,
a subsample of the ETH dataset (Figure 5; 100 frames, 150
pedestrians) collected for testing a deep network in [19] has
many interactions and substantial congestion; indeed, every
pedestrian interacts at least once and most pedestrians interact
many times during the 100 frame sequence. To derive a
navigation test protocol, we expand on an idea from the
experimental section of [42]: 1) identify a pedestrian, 2)

Fig. 5: First frame of the ETH data evaluated. Pedestrian current position in
green; next 40 time steps plotted as black curves.

extract the start and end position of that pedestrian, 3) remove
that pedestrian from the observation dataset of the navigation
algorithm, and 4) provide the start and end positions of the
removed pedestrian and the current and previous positions
of the remaining agents to the navigation algorithm. Thus
we assure that at least one path through the crowd exists
(the one taken by the removed pedestrian). Additionally, by
providing the navigation algorithm with start and end points
that are joined by a path through the crowd, the navigation
algorithm naturally confronts high crowd densities (the human
agent confronts an average density of 0.22 people/m2 within
a 3m radius circle). Finally, this testing protocol provides
us with a powerful performance benchmark: actual human
performance on the exact same situation as encountered by
the navigation algorithm (first row, Table I). To determine
our safety threshold, we computed the shortest distance that
any two humans in the ETH dataset ever came to each other;
that distance was 0.21m. Additionally, two humans only came
within 0.3m of each other 3 times. Thus, if the robot is within
0.21m of any human, we consider that a collision, while
distances within 0.3m are considered unsafe or uncomfortable.

Furthermore, we partition this ETH dataset into what we
call a “partial” trajectory dataset. In the partial trajectory
dataset, we consider all (approximately) 10 meter long agent
runs. For example, if agent 1’s full trajectory was 30 meters
long, we would have 3 partial trajectories. Partial trajectory
experiments provide focused examination of an algorithm’s
ability to navigate through congestion in a safe and efficient
manner. We identified 293 partial trajectories and tested 181
of them (the rest are discarded for calibration reason).

B. Rationale for Test Algorithms

We collected safety and path length data on humans, Dist-
Nav, “first order” interacting Gaussian processes (foIGP, [43]),
“second order” IGP (soIGP, the extension of foIGP that consid-
ers both robot-agent and agent-agent interactions), soIGP using
Monte Carlo optimization with 106 samples (so MC 1e6,
implementation details can be found in [43]), the “dynamic
window approach” (DWA, [11]), and ORCA [47]. For our deep
reinforcement learning baselines, we tested against “collision
avoidance with deep reinforcement learning” (CADRL, [6]),
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Fig. 6: Partial trajectory statistics. Total number of runs is 181; x axes of a) and b) in meters. All figures plot distance to nearest pedestrian on x-axis; (a)
plots means ± 1 standard deviation of algorithm and the human; (b) appends plot (a) with the dmin threshold, the closest distance two humans passed in the
dataset. Inspection of the region left of dmin shows numerous instances of DWA, so MC 1e6, and SARL; (c) normalizes algorithm path length with human
path length. E.g., values below dr = dh mean that the robot moved to the goal more directly than the human.

“socially aware reinforcement learning” (SARL, [4]), “rela-
tional graph learning” and “model predictive relational graph
learning” (RGL, MP-RGL, [5]).

Each algorithm was chosen to explore a certain aspect of the
performance space. We collected data on humans to serve as
an upper bound on performance. We tested soIGP and foIGP
as state of the art trajectory space approaches. We tested DWA
and ORCA because both are widely deployed; in particular,
DWA is the default navigation algorithm in ROS (see ROS’s
base local planner ). We tested against the 4 highest performing
deep reinforcement learning variants to understand how model
based and learning based algorithms fare against each other.

Finally, we trained SARL in 7 different environments using
the toolbox implemented in [4] 2. We trained in a 3m by
10m corridor (which mimics the ETH test conditions) with
15 and 5 people (0.5 and 0.16 people/m2 densities), with
mostly cross human cross traffic. The high density environ-
ment produced freezing robot behavior (freezing behavior
= 71%, max(dr/dh) = 23.8, where dr and dh are the
path lengths of the robot and human, respectively), while
the low density training produced a policy that was unsafe
(Collisions = 34%). We thus attempted training in the high
density corridor, but with random start and goal positions of
the people; this again resulted in freezing robot behavior at
test (freezing behavior = 18%, max(dr/dh) = 14.7). We also
trained in a 4m radius circular environment with 10 people,
so the density was ≈ 0.2 people/m2 (the average density
in the ETH data was ≈ 0.2 people/m2). This policy also
showed freezing robot behavior (freezing behavior = 10%,
max(dr/dh) = 4.32). Additionally, we trained the other DRL
variants (CADRL, RGL, and MP-RGL) in both ORCA and
SFM training environments, with 5, 7, 14, 21, and 28 people
in a 4m radius circular environment. Ultimately, the training
regimen detailed in [4]—a 4m radius circle with 5 agents—
produced the best performing policy for all DRL variants. We
used these top performing policies for testing.

2The toolbox is available at https://github.com/vita-epfl/CrowdNav

C. Safety and Efficiency Evaluation on ETH

Discomfort Collisions Freezing
Behavior max(dr/dh)

Human 1.7% 0 0% 1
DistNav 500‡ 6.0% 3.0% 0% 1.18
DistNav 100‡ 3.0% 1.0% 0% 1.18
soIGP 13.3% 5% 1% 1.6
foIGP 16.7% 10.5% 3% 1.8
so MC 1e6† 30% 18.8% 51% 5.3
ORCA 63% 48.6% 58% 9.2
DWA 35% 23.8% 48% 4.1
CADRL∗ 12% 6.6% 80% 14.7
SARL∗ 50% 31.5% 0.5% 3.3
RGL∗ 67.4% 48% 73% 28.1
MP-RGL∗ 62% 39% 88% 22.5
‡ DistNav 500 and DistNav 100 use 500 and 100 samples for each agent,
respectively. The differences in the metrics between the two are partially
from the sampling nature of the algorithm. A more comprehensive future
evaluation would take multiple trials to eliminate such effects.
∗ SARL, CADRL, RGL, and MP-RGL were trained in 7 different
environments; we report the best performing policy.

TABLE I: ETH partial trajectory metrics. “Discomfort” and “Collisions”
are the percent of runs such that safety minimum distance s < 0.3m, 0.21m;
“Freezing Behavior” is the percent of robot path lengths 1.25 times longer
than the corresponding human path length; max(dr/dh) is the maximal ratio
between the path lengths of the robot and human, it measures how inefficient
the algorithm is compared with human.

The results of 181 partial trajectory runs are reported in
Table I and Figure 6 (a more comprehensive evaluation table
can be found in the appendix). For safety and efficiency, only
DistNav and soIGP are competitive with human performance,
with DistNav outperforming soIGP. We tested DistNav with
100 samples per agent, in which case the algorithm can run
in real time (average replanning time 0.23s). We also tested
with 500 samples per agent, which resulted in longer com-
putation time but no significant improvement in performance.
In practice we think 100 samples per agent is a good balance
between performance and computation efficiency.

Additionally, DWA and ORCA both exhibit freezing robot
behavior (large value in “freezing behavior” column) and high
rates of collision (large values in “collision” column). We
note that all four DRL variants (last four rows of Table I)

http://wiki.ros.org/base_local_planner
https://github.com/vita-epfl/CrowdNav
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Fig. 7: ORCA evaluation statistics. (a) shows one frame of the 7 agents test in ORCA simulation, the dashed lines are the robot’s planned trajectory and
optimal prediction for pedestrian trajectories, the colored dots are parts of the samples used to approximate preference distributions. (b) and (c) plot each
algorithm’s number of collisions vs. mean time to reach the goal over 100 tests with 5 and 7 pedestrians, respectively.

display extremely long paths (CADRL, RGL, MP-RGL), high
rates of collision (SARL, RGL, MP-RGL) or both (RGL,
MP-RGL). Given the wide variety of testing protocols, these
results indicate potential limitations of purely simulation-based
training.

We emphasize that although ETH provides useful infor-
mation, it does not validate that an algorithm will perform
well in the real world (this requires real world experiments).
Nevertheless, we believe that the ETH benchmark can provide
evidence of invalidation; that is, poor performance on ETH
possibly indicates that an algorithm is not suitable for real
world deployment.

D. Safety and Efficiency Evaluation in Simulation

We complement our ETH study with two simulation studies:
one with 5 ORCA agents (the standard testing environment
for DRL studies [4, 6, 5]) and one with 7 agents. Our ORCA
simulators are closely related to those developed in [4], with
a few important differences:
• The robot is visible in both the 5 and 7 agent test because

we wish to understand how our algorithm performs in the
presence of responsive agents.

• Once an ORCA agent reaches a goal, a new goal is
provided to the agent. In this way, the agents circulate in
the work space and the crowd density remains consistent
throughout the run. The simulator in [4] provides a single
goal to each agent; the agent stops once it arrives. Thus,
our simulator has a higher average crowd density than
the simulator in [4].

We point out that the ORCA robot outperforms all the
algorithms in both the 5 and 7 person simulation; this is to be
expected, since a group of ORCA agents have guarantees on
collision performance and locally optimal efficiency. In short,
an ORCA robot is perfectly tuned to an ORCA simulation.
However, as seen in Table I, ORCA is unsuitable for deploy-
ment in scenarios with agents not obeying the ORCA protocol.

For the five person simulation, we see that only ORCA and
RGL outperform DistNav in terms of safety; however, RGL
exhibits substantially longer mean time to goal, indicating
freezing robot like behavior (e.g., RGL often chooses to go

around the crowd). SARL shows nearly identical performance
to DistNav, but its critical to recall that SARL (and the
other DRL variants) were specifically trained in a 5 person
ORCA simulator. Thus, all the DRL variants have a large
advantage over DistNav: they have been precisely tuned to
this simulation, whereas DistNav has not. In combination with
the ETH results in Figure 6 and Table I, DistNav displays
substantially stronger performance, both in terms of safety and
efficiency, and, more importantly, in the ability to generalize
to novel scenarios. The 7 person case shows nearly identical
qualitative results (although the exact number of collisions or
time to goal changes slightly, the ordering of the algorithms
remains the same.)

Finally, we attempted tests with the number of ORCA agents
higher than 7, but this led to hard-to-interpret results because
of simulator failures. For example, at higher densities, agents
can be so close together that collisions are often caused by
the ORCA agents themselves (e.g., an ORCA agent runs into
the robot). While testing in simulation at higher densities is
important, fixing the simulator is out of scope of this paper.

VI. CONCLUSION

We studied the crowd navigation problem by modeling both
human and robotic actions as probability density functions
(called preference distributions). This formulation, together
with an optimization algorithm, captures the evolution of
agents’ preferences in the presence of interaction, something
not modeled using trajectory space coupling. Further, we
designed a sampling-based crowd navigation method, called
DistNav, and benchmarked against a variety of methods in
both a real world dataset and in simulation. In both the
dataset and simulation evaluation, Distnav outperformed all
other algorithms and was competitive with human safety and
efficiency performance.
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APPENDIX

A. Evaluation on ETH dataset with Supplementary Metrics

See Table II.

B. Pseudocode of DistNav

See Algorithm 1.

C. Proof

Proof for Theorem IV.1
Proof: The subproblem can be considered as an isoperi-

metric problem with a subsidiary condition (III.1), therefore
we first formulate the Lagrangian as

L(p, λ) = DKL(p‖p(k)i ) + c̄
(k)
i (p)− λ(

∫
F
p(f)df − 1)

(A.1)

c̄
(k)
i (p) =

∫
F
p(f)γ̄

(k)
i (f)df (A.2)
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Discomfort Collisions Freezing
Behavior max(dr/dh) µ(s) µ(dr) µ(t)

Human 1.7% 0 0% 1 1.1± .2m 8.7± 1.0m NA
DistNav 500‡ 6.0% 3.0% 0% 1.18 1.01± .32m 8.65± 1.15m 1.07± 0.83s
DistNav 100‡ 3.0% 1.0% 0% 1.18 1.01± .32m 8.6± 1.14m 0.26± 0.07s
soIGP 13.3% 5% 1% 1.6 .96± .3m 8.9± 1.3m 4.3± .2s
foIGP 16.7% 10.5% 3% 1.8 .9± .3m 9± 1.5m 4.2± .15s
so MC 1e6† 30% 18.8% 51% 5.3 .67± .3m 12.4± 3m 6.1± 0.8s†

ORCA 63% 48.6% 58% 9.2 .43± .3m 11.8± 2.4m 0.03± .001s
DWA 35% 23.8% 48% 4.1 .6± .4m 12.1± 2.5m .1± .03s
CADRL∗ 12% 6.6% 80% 14.7 2.6± .9m 24.35± 5.1m 2.9± .4s
SARL∗ 50% 31.5% 0.5% 3.3 .4± .15m 7.9± 2.2m 4.4± 1.1s
RGL∗ 67.4% 48% 73% 28.1 0.3± .15m 28.95± 12.6m 2.1± .7s
MP-RGL∗ 62% 39% 88% 22.5 0.33± .16m 38.1± 12.5m 0.3± .01s
‡ DistNav 500 and DistNav 100 use 500 and 100 samples for each agent, respectively. They were both run on a 12 core CPU, parallelized and accelerated
by the Numba Python package [24], but no GPU is used.
† so MC 1e6 was run on fully parallelized code on a 64 core CPU to achieve these times.
∗ SARL, CADRL, RGL, and MP-RGL were trained in 7 different environments; we report the best performing policy.

TABLE II: ETH supplementary partial trajectory metrics. Distance to nearest pedestrian is s and µ(s) is the mean; “Discomfort” and “Collisions” are
the percent of runs such that s < 0.3m, 0.21m; “freezing behavior” is the percent of robot path lengths 1.25 times longer than the corresponding human
path length; max(dr/dh) is the largest value of robot path length divided by corresponding human path length; µ(dr) is mean robot path length dr over all
runs; µ(t) is mean time of all replanning steps.

where λ ∈ R is Lagrange multiplier. The necessary condition
for p∗(f) to be an extremum for the subproblem can be written
as (Theorem 1, Page 43 [14]):

∂L
∂p

(p∗, λ) = log p∗(f) + 1− log p
(k)
i (f) + γ̄

(k)
i (f)− λ = 0

(A.3)

p∗(f) = p
(k)
i (f) exp(−γ̄(k)i (f) + λ− 1) (A.4)

By substituting (A.4) into the equality constraint (III.1), we
can solve for λ:∫
F
p∗(f)df =

∫
F
p
(k)
i (f) exp(−γ̄(k)i (f) + λ− 1)df (A.5)

= exp(λ− 1)

∫
F
p
(k)
i (f) exp(−γ̄(k)i (f))df = 1

(A.6)

exp(λ− 1) =
1∫

F p
(k)
i (f) exp(−γ̄(k)i (f))df

(A.7)

Substituting (A.7) into (A.4) gives us:

p∗(f) =
p
(k)
i (f) exp(−γ̄(k)i (f))∫

F p
(k)
i (f) exp(−γ̄(k)i (f))df

(A.8)

Since the subproblem objective is unbounded from above, the
solution p∗(f) is a global minimum, which completes the
proof.

Lemma A.1. The subproblem solution (IV.6) can sufficiently
decrease the second term c̄

(k)
i (p) in the subproblem objective

(IV.1), if p(k+1)
i (f) 6= p

(k)
i (f):

c̄
(k)
i (p

(k+1)
i ) ≤ c̄(k)i (p

(k)
i )− ξ (A.9)

ξ > 0 (A.10)

Proof: Since pk+1
i is the global minimum of the subprob-

lem (IV.1), we have:

DKL(p
(k+1)
i ‖p(k)i ) + c̄

(k)
i (p

(k+1)
i ) (A.11)

≤ DKL(p
(k)
i ‖p

(k)
i ) + c̄

(k)
i (p

(k)
i ) = c̄

(k)
i (p

(k)
i ) (A.12)

c̄
(k)
i (p

(k+1)
i ) ≤ c̄(k)i (p

(k)
i )−DKL(p

(k+1)
i ‖p(k)i ) (A.13)

If p(k+1)
i (f) 6= p

(k)
i (f), then DKL(p

(k+1)
i ‖p(k)i ) > 0, which

completes the proof.
Proof for Theorem IV.2

Proof: Based on Lemma A.1, we have for each i ∈ I,
the following inequality holds:

c̄
(k)
i (p

(k+1)
i ) ≤ c̄(k)i (p

(k)
i )−DKL(p

(k+1)
i ‖p(k)i ) (A.14)

Summing up left hand side of the inequality for all i ∈ I gives
us:

n∑
i=R

c̄
(k)
i (p

(k+1)
i )

=

n∑
i=R

i−1∑
j=R

c(p
(k+1)
i , p

(k+1)
j ) +

n∑
i=R

n∑
j=i+1

c(p
(k+1)
i , p

(k)
j )

(A.15)

=
n∑
i=R

n∑
j=i+1

c(p
(k+1)
i , p

(k+1)
j ) +

n∑
i=R

i−1∑
j=R

c(p
(k)
i , p

(k+1)
j )

(A.16)

The last equality above is based on the structure of the com-
binatorial summation and the fact that c(pi, pj) = c(pj , pi).
Meanwhile summing up the right hand side of the inequality
for all i ∈ I gives us:

n∑
i=R

c̄
(k)
i (p

(k)
i )−

n∑
i=R

DKL(p
(k+1)
i ‖p(k)i ) (A.17)

=

n∑
i=R

c̄
(k)
i (p

(k)
i )− ξ (A.18)

=
n∑
i=R

i−1∑
j=R

c(p
(k)
i , p

(k+1)
j ) +

n∑
i=R

n∑
j=i+1

c(p
(k)
i , p

(k)
j )− ξ

(A.19)



Now by the combining summation of both sides of the
inequality, we would have:

n∑
i=R

n∑
j=i+1

c(p
(k+1)
i , p

(k+1)
j ) +

n∑
i=R

i−1∑
j=R

c(p
(k)
i , p

(k+1)
j )

(A.20)

≤
n∑
i=R

i−1∑
j=R

c(p
(k)
i , p

(k+1)
j ) +

n∑
i=R

n∑
j=i+1

c(p
(k)
i , p

(k)
j )− ξ

(A.21)

and therefore
n∑
i=R

n∑
j=i+1

c(p
(k+1)
i , p

(k+1)
j ) ≤

n∑
i=R

n∑
j=i+1

c(p
(k)
i , p

(k)
j )− ξ

(A.22)

If p
(k+1)
i (f) 6= p

(k)
i (f) for some i ∈ I, then ξ =∑n

i=RDKL(p
(k+1)
i ‖p(k)i ) > 0, which completes the proof.

D. Implementation Details for DistNav

1) Choice of Collision Penalty Function: The collision
penalty for two trajectories should be evaluated on time-
aligned elements (poses at each time step), in our imple-
mentation we use a Gaussian penalty function and select
the maximal collision penalty among all time steps. Even
though theoretically a Dirac delta function should work as
collision penalty since preference distribution already contains
information about “comfort distance”, for the sampling-based
method an explicit collision penalty is still necessary.

2) Selection of Critical Agents: After generating the initial
samples for all agents, we compute the weights of all other
agents’ GP preferences on the robot’s intent (GP mean) based
on (IV.12) as the “interaction score”. Agents with scores
higher than a user-defined threshold are considered as critical
agents for interaction, and thus are included for coupled
prediction and planning. This process could drastically reduce
the computation time.

Algorithm 1: Sampling-Based Crowd Navigation
Based On Sequential Iterative Variational Analysis
(DistNav)
Input : [[f0], [f1], . . . , [fn]]: Samples representing

initial preferences of n+ 1 agents, each agent
has m samples. The weight of each sample is
initialized as 1. Index 0 indicates the robot.
ψ(x1, x2): collision penalty function.
[p1(f), p2(f), . . . , pn(f)]: Original preference
distributions of n+ 1 agents.
ε: Termination condition.

Output: [f∗0 , f
∗
1 , . . . , f

∗
n]: Optimal trajectories of n

agents selected from samples. Index 0
indicates the robot.

1 i← 0
2 while i ≤ n do
3 [fi]

(0) ← [fi]
4 i← i+ 1
5 end while
6 k ← 0
7 objective←

1
m

∑n
i=0

∑n
j=i+1

∑m
l=0

(
ψ(fi,m, fj,m) · w(k)

i,m · w
(k)
j,m

)
while objective ≥ ε do

8 i← 0
9 while i ≤ n do

10 j ← 1
11 while j ≤ m do
12 v ←∑l=i−1

l=0

∑h=m
h=1

(
ψ(fi,j , fl,h) · w(k+1)

l,h

)
+∑l=n

l=i+1

∑h=m
h=1

(
ψ(fi,j , fl,h) · w(k)

l,h

)
13 w

(k+1)
i,j ← w

(k)
i,j · exp(− v

m )

14 j ← j + 1
15 end while
16 j ← 1
17 while j ≤ m do
18 w

(k+1)
i,j ← w

(k+1)
i,j /

(
1
m

∑m
l=0 w

(k+1)
i,j

)
19 j ← j + 1
20 end while
21 i← i+ 1
22 end while
23 objective←

1
m

∑n
i=0

∑n
j=i+1

∑m
l=0

(
ψ(fi,m, fj,m) · w(k)

i,m · w
(k)
j,m

)
24 k ← k + 1
25 end while
26 i← 0
27 while i ≤ n do
28 f∗i ← arg max

f
(k)
i,j
pi(f

(k)
i,j )w

(k)
i,j

29 i← i+ 1
30 end while
31 return [f∗0 , f

∗
1 , . . . , f

∗
n]
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