2020 IEEE/ACM 10th Workshop on Irregular Applications: Architectures and Algorithms (IA3)

Reducing Queuing Impact in Irregular Data
Streaming Applications

Stephen W. Timcheck
Dept. of Computer Science and Engineering
Washington University in St. Louis
St. Louis, Missouri, USA
stimcheck @wustl.edu

Abstract—Throughput-oriented streaming applications
on massive data sets are a prime candidate for paralleliza-
tion on wide-SIMD platforms, especially when inputs are
independent of one another. Many such applications are
represented as a pipeline of compute nodes connected by
directed edges. Here, we study applications with irregular
data flow, i.e., those where the number of outputs produced
per input to a node is data-dependent and unknown a
priori. Moreover, we target these applications to architec-
tures (GPUs) where different nodes of the pipeline execute
cooperatively on a single wide-SIMD processor.

To promote greater SIMD parallelism, irregular appli-
cation pipelines can utilize queues to gather and compact
multiple data items between nodes. However, the decision
to introduce a queue between two nodes must trade
off benefits to occupancy against costs associated with
queue reading, writing, and management. Moreover, once
queues are introduced to an application, their relative sizes
impact the frequency with which the application switches
between nodes, incurring scheduling and context-switching
overhead.

This work examines two optimization problems asso-
ciated with queues. First, we consider which pairs of
successive nodes in a pipeline should have queues between
them to maximize overall application throughput. Second,
given a fixed total budget for queue space, we consider
how to choose the relative sizes of inter-node queues to
minimize the frequency of switching between nodes. We
formulate a dynamic programming approach to the first
problem and give an empirically useful approximation to
the second that allows for an analytical solution. Finally, we
validate our theoretical results using real-world irregular
streaming computations.

Index Terms—queuing,
streaming

SIMD, irregular, dataflow,

I. INTRODUCTION

Streaming applications with irregular dataflow exist in
numerous high-impact fields, ranging from biosequence
analysis [1] to astrophysics [10]. These applications are
commonly represented as pipelines of computational
stages connected by dataflow edges. For instance, the
BLAST tool for biological sequence comparison [1] can
be described as a four-stage pipeline that ingests a large

Funded by NSF award CNS-1763503.

978-0-7381-1090-5/20/$31.00 ©2020 IEEE
DOI 10.1109/1A351965.2020.00009

22

Jeremy D. Buhler
Dept. of Computer Science and Engineering
Washington University in St. Louis
St. Louis, Missouri, USA
jbuhler@wustl.edu

database of DNA or protein sequence and filters its input
to retain just the portions that approximately match a
given query sequence. Irregular dataflow arises when
the work performed by a computational stage, and in
particular the amount of output it generates per item in its
input stream, is variable, data-dependent, and therefore
unknown a priori.

When a streaming computation performs largely inde-
pendent computations on successive inputs in the stream,
the computation’s throughput can be increased by ex-
ploiting data parallelism across its inputs. Wide-SIMD
processors such as GPUs are therefore tempting targets
for such applications. However, irregularity interferes
with SIMD parallelism because different inputs to a
pipeline may require different amounts of work or may
even be filtered away at different stages of the pipeline. If
data cannot be remapped from one SIMD lane to another
in mid-computation, the occupancy of the processor (that
is, the fraction of lanes doing useful work) will suffer.

To improve the occupancy of irregular dataflow
pipelines, one may employ intermediate queues between
successive compute stages. A queue functions as a
staging area where data from the previous compute stage,
otherwise known as a compute node, can be accumu-
lated, compacted, and then redistributed across SIMD
lanes to ensure full occupancy of the next stage. How-
ever, reading, writing, and remapping through queues
adds overhead to the application that may negate the per-
formance benefits of higher SIMD occupancy. In cases
where data production rates are low or the application
exhibits locally regular data flow, it may not be worth
improving occupancy by adding a queue between stages.

A second challenge arises when adding queues to
pipelines implemented on modern GPU devices. The
processors of a GPU typically run asynchronously, and
existing APIs offer little support for synchronization
between them. Hence, a natural application mapping to
a GPU runs a separate replica of the pipeline on each
processor. GPUs also offer limited support for preemp-
tion, so the stages of the pipeline must be cooperatively

scheduled on the single processing resource. Finally, the
number of processors is large enough that tens or even
hundreds of pipeline copies may be running at once.

Each pipeline replica on a GPU needs its own queue
space. Given a large number of copies, it becomes
important to limit the amount of queue space allocated
to each replica, and therefore to divide that space wisely
among the queues between different pipeline stages. As
we will show, the algorithm used to schedule execution
of different pipeline stages can interact with the differing
rates of data production from each stage, creating an op-
portunity to allocate queue space in a way that minimizes
the application’s overhead due to pipeline scheduling.

This work addresses two questions in the setting of
irregular streaming dataflow pipelines on GPUs. First,
we formalize the tradeoff of when to insert queues be-
tween successive pipeline stages. Using easily-obtained
performance metrics from an application’s profile, we
formulate an algorithm for selecting which stages should
be merged together and which should have queues
between them. Second, we consider the problem of
dividing limited space among queues in a pipeline. As-
suming a simple, effective scheduling policy for pipeline
stages [7], we show how to divide space among queues
so as to roughly minimize the frequency with which
the scheduler must be invoked while processing a data
stream. These optimizations can have material impact on
an application’s overall throughput.

The rest of the paper is organized as follows. Section
2 examines related work. Section 3 provides a detailed
explanation of our application model and the metrics
used for later sections. Section 4 describes a method for
determining whether queues should be added between
compute nodes and a method for choosing where to place
queues. Section 5 provides a method for determining
how much space to allocate for individual queues given
a limited space budget. Section 6 evaluates both methods
on irregular streaming applications implemented on an
NVIDIA GPU platform. Finally, section 7 concludes and
explores future work.

II. RELATED WORK

Many application frameworks have been developed
to support regular streaming dataflow applications on
parallel systems. A prominent example, StreamlIt [9], was
built around the synchronous data flow (SDF) [5] model
of computation. In Streamlt, the number of outputs per
input data item for each node is fixed at compile time,
which allows effective static scheduling of nodes with
minimal queue space allocation and no remapping. In
contrast, the irregular problems we target do not have
the luxury of knowing how much data will be generated
where and when, thus creating a need for data-driven
decisions about queue placement and sizing.

23

Subhlok and Vondran [8] examined a similar problem
to the merging of compute stages presented in this paper.
They consider a pipeline of tasks, equivalent to compute
stages in our model. Each task can be mapped to
processors with various forms of data- and task-parallel
mapping. However, their model allows for forking inputs
to different replicas and re-converging to a single replica,
which is not part of our model. They explore combining
tasks into modules, which are collections of two or
more tasks. These modules are then evenly assigned to
processors on the system. Our model similarly considers
merging compute stages, but a single pipeline cannot be
split across processors on our target platform, creating
different design problems. Our work models impacts due
to wide-SIMD execution, while their work focuses on
general-purpose MIMD processing.

Benoit and Robert [2] considered a similar problem,
trying to optimize for both latency and throughput. Their
work explores how to map data-parallel pipelines on
parallel platforms. In their work, as in ours, merging
compute nodes increases the computational load on
a processor but may decrease communication require-
ments, which in our case would be reading, writing,
and managing an intermediate queue. Although their
model does not take into consideration communication
costs between processors, it works with a more general
purpose MIMD processor in mind. Hence, their commu-
nication cost would be equivalent to the scheduler cost
we consider in our model.

III. APPLICATION MODEL

In this section, we define the abstract properties of our
streaming dataflow applications, as well as the character-
istics of our target wide-SIMD architectures. As shown
in Figure 1, an application is a linear pipeline of compute
nodes n; . ..n,, with dataflow edges connecting each n;
to the next ;1. Each time a node executes, it consumes
a vector of up to v items from its input and produces a
data-dependent number of items, perhaps of a different
size/type, on its output.

The runtime behavior of a node n; is characterized
by two parameters: its service time t; and its gain g;.
The service time t; is the time for a node to process
a vector of input items; the time is the same for any
number of items < v. The gain g; is the average number
of outputs produced per input item consumed, which
may be greater or less than 1. For convenience, we also
define the cumulative gain Gj = Hle g; to be the
average number of outputs from node ny for each input
consumed by n;. We focus on the mean-value behavior
of nodes, leaving consideration of other moments of the
outputs-per-input distribution for future work. We seek to
optimize the throughput of the pipeline, or equivalently

the total time to completely process a large number of
inputs to n;.

Each edge between two nodes has an associated
queue. Items from an edge’s upstream node accumulate
in contiguous slots of the queue until the downstream
node executes, at which point it pulls contiguous vectors
of up to v items from the queue. Because dynamic
resizing of queues on GPUs is expensive, we assume
that each queue has a fixed size that is determined at
compile time.

ty to

g1 g2

Fig. 1. A simple pipeline application topology. Node n; feeds into

na2, and na feeds into n3. Node n; has service time ¢; and average
gain g;.

As discussed earlier, we assume that our target archi-
tecture runs a replica of the complete pipeline on each
of its processors, with different copies sharing a global
input stream and output buffer but not intermediate data
structures such as queues. This design is compatible
with modern GPUs, which offer limited support for
inter-processor synchronization. Each processor runs a
scheduler that manages execution of its pipeline replica’s
nodes. Each time the scheduler is called, it selects a node
with items in its input queue and space in its output
queue and executes that node, consuming some amount
of input. The application ends when no node has any
inputs remaining.

The particular scheduling protocol we consider in
Section 5 is the AFIE (active-full, inactive-empty) sched-
uler [7]. Briefly, AFIE marks a node “active” when it
has a full input queue and “inactive” when this queue
is emptied. A node is eligible to execute when it is
active and its downstream neighbor, if any, is inactive.
As with any flow control protocol involving execution
of multiple entities with finite queues between them, the
scheduling policy must ensure that a node with input
must eventually be able to make progress. It was shown
in [7] that AFIE is deadlock-free (that is, a node with
input eventually becomes eligible to execute), that it
ensures that nodes almost always execute with a full
vector-width of inputs, and that it incurs no more than
about twice as many switches (calls into the scheduler
to choose a new node to execute) as would a clairvoyant
protocol that knew in advance the number of outputs
produced by each node for each input.

IV. DETERMINING WHEN TO USE QUEUES

Queuing on an edge between nodes is valuable for
irregular streaming applications as a tool to improve

24

SIMD occupancy. Even if only a subset of SIMD lanes in
the upstream node produce outputs, or if different lanes
produce different numbers of outputs, the queue allows
items to be remapped into contiguous lanes for execution
by the downstream node. However, queues introduce a
certain amount of overhead to applications for reading
and writing items on the edge and for compaction and
remapping. Moreover, applications with more edges,
and hence more queues, impose a greater load on the
scheduler, which must be called more often to ensure
that all nodes have an opportunity to run.

Remapping between nodes is not necessary for correct
execution. Given nodes n; and n;;;, we could remove
the queue between them, so that n; simply calls n;4;
with whatever outputs it produced in each SIMD lane
without remapping. (If n; produces ¢ outputs in a lane,
they are queued in a per-lane array, and n;4; must then
be called ¢ times to consume them all.) This alternative
design effectively merges n; and n;i ;. Figure 2 illus-
trates the merge operation on the last two nodes of the
pipeline from Figure 1.

t3
gs

@

ta+ [g2] X t3
g2 X g3

ni

ni

ty
g1
3]
g1

Fig. 2. Topological view of merging compute nodes. Combining nodes
no and ng may incur multiple calls to n3 per call to no, each with
fewer inputs, because inputs to n3 are no longer queued. The average
output gain is now the cumulative gain between the two combined
nodes.

Merging has the advantage of no queuing or remap-
ping overhead between the nodes, and nodes n; and n;41
may be scheduled as a unit, reducing the total number
of switches. However, we lose the benefits of remapping
for SIMD occupancy, so that it may be necessary to
call n;4; more often than if we had compacted the
outputs of n; into full vectors. The decision of whether
or not to merge therefore involves a tradeoff of occu-
pancy against overhead. We will now investigate how to
decide quantitatively which pairs of adjacent nodes in a
pipeline should have queues on their intervening edges,
and which should be merged, to maximize application
throughput.

Let ny...n,, be a pipeline of nodes of common
vector width v, with n; having output gain g; and service
time ¢;. For convenience, we expand the definition of
cumulative gain G, to apply to any contiguous subrange
of nodes in the pipeline. Define the cumulative gain G j,

between nodes j and k by G; = Hf:j gi. By this
definition, G, = Gk, and we define G; ;1 = 1.

We first estimate the service time of a merged node
11, composed of contiguous nodes 7; ...ng. When the
merged node consumes one vector of inputs, n; runs
first, taking time ¢;. Then, node n;4; runs enough times
to consume the maximum number of outputs produced
by n; in any SIMD lane. Similarly, node m; o then
runs often enough to consume the maximum number
of outputs from 7,41 in any lane, and so on through
node ng. An accurate estimate of average service time
for the merged node would require knowing the full
distributions of the gains of each n;, rather than just
their average gains. For simplicity, we assume that a
node’s gain in each lane remains close to its average
but round this gain up to the next integer to account for
some lanes having more outputs than others. With this
simplification, the service time ¢;;, of n;i is given by

k
tik =Y [Gjialt.
i=j
Now suppose we insert a queue between original
nodes n; and n;41, j < ¢ < k, in the merged node,
creating sub-nodes n; and n;4 1 ;. Because the stream is
remapped after node 4, the number of times 7n;4; j must
execute is no longer tied to the number of executions of
nj;. Rather, it depends on the total number of outputs
produced by n;. The average number of output vectors
per input vector to nj; is just Gj;. We additionally
charge a fixed time overhead p each time nj; runs
to account for the costs of writing, remapping, and
scheduling at this node. Hence, the total running time
of the node pair per input vector to n; is now

tii +p+ Gjitiv1, k.

More generally, let T; be the least total running time
per input vector to n; obtained by inserting queues on
any subset of the edges in the range n; . .. n,,. Either no
such queue is inserted, or the first such queue occurs after
node ¢, 5 <17 < m. We therefore derive the recurrence

T, = min{

This recurrence can be solved by dynamic programming
for the entire pipeline in time O(m?), following precom-
putation of the ¢ values, to obtain the optimal subset
of edges on which to insert queues.

tim
ming<i<m tji +p + GjiTiva.

V. CHOOSING SIZES FOR FINITE INTER-NODE
QUEUES

Assume now that a division of the pipeline into (pos-
sibly merged) nodes has been determined. Post-merging,
we assume that the pipeline has nodes n; . .. n,,, with a
queue between each successive pair of nodes. As noted

25

in Section 3, we assume that nodes in the pipeline
are scheduled using the AFIE scheduler. Because AFIE
waits until a node’s upstream queue is full to activate it,
the larger the inter-node queues, the more input vectors
a node can typically consume before control returns to
the scheduler. Hence, larger queues are desirable because
they reduce the overhead associated with scheduler in-
vocations, or switches, which may be on the same order
as node service times.

However, as discussed earlier, an efficient GPU imple-
mentation of the application may require a large number
of copies of the pipeline — at least one per processor
to avoid complex inter-processor communication, and
possibly multiple copies per processor to take advantage
of GPUs’ ability to hide memory access latency by
switching among multiple computations. For this rea-
son, the cumulative memory cost of using arbitrarily
large queues for each pipeline is likely unacceptable.
Moreover, the number of scheduler invocations varies
inversely with queue size, so at some point, the reduction
in scheduling overhead from increasing queue sizes
reaches a point of diminishing returns. We therefore
assume that each replica of the pipeline receives only
a small, fixed amount of memory to divide among all its
queues.

We consider the following question: how does the allo-
cation of memory among an application’s queues impact
the rate at which it must switch between nodes? We will
quantify this switching rate for a given allocation, then
show how to select an allocation that roughly minimizes
switches for a given total amount of memory.

A. Bounding Rate of Switches under AFIE Scheduling

Let g; be the queue between n; and n;.1, and suppose
this queue can hold ¢; items. Define the scaled capacity
d; of queue ¢; by d; = ¢;/G;. Scaled capacity normal-
izes the size of each queue to units of “inputs to node
n1”. For example, if nq has gain 2, then each input to nq
results in an average of two items inserted into g;. The
results that follow are more easily expressed in terms of
scaled capacities.

Intuitively, execution must switch away from node n;
(and hence back to the scheduler) whenever its input
queue becomes empty or its output queue becomes
full. In either case, m; cannot continue executing until
some other node runs, either to produce more input or
to consume some output. Because AFIE ensures that
n; becomes eligible to execute only when its input
queue fills and its output queue empties, its input queue
empties once per c¢;_1 items it consumes, and its output
queue fills on average once per ¢;/g; items it consumes.
However, occasionally, these two events (emptying of
input and filling of output queues) occur concurrently

— about once per lem(c;_1,c;/g;) inputs consumed'
— which results in only one rather than two switches.
In short, we can establish the following lemma (proof
provided in the appendix):

Lemma 5.1: For 1 < i < m, the rate R; of switches
away from n; per item consumed by n; is given by

R;

1 1 1 1
B Gi1 |:di—1 * dT a lCm(dz’—hdi)
Combining the results of Lemma 5.1 over all nodes in
the pipeline and simplifying, we obtain that

Corollary 5.1.1: The total rate R of switches across
all pipeline nodes per input consumed by n; is given by

i

m—1

2

i=1

— 1

lcm(di_l, d,) '

N

i=2
B. Allocating Queue Space to Minimize Switches

We now consider how to minimize the rate of switches
R, and therefore the scheduling overhead, incurred by an
application through manipulation of its relative queue
sizes. Suppose that the items output by node n; each
have size b; bytes, and that we wish to partition a
fixed total number of bytes 7" among all queues in the
pipeline. How can we divide these 7' bytes among the
queues q; . .. ¢m—1 SO as to minimize the switching rate
R? We could attempt to optimize the switching rate
by directly minimizing the function R subject to the
constraint . b;c; = » .b;G;d; = T. Unfortunately,
the presence of LCM terms in R makes it difficult to
minimize analytically.

We argue informally that the objective R can be
simplified in practice. The LCM terms arise because
the number of switches away from node n; includes a
correction of —1 switch per z = lem(¢;—1, ¢;/g;) inputs.
This correction reflects the fact that, in the mean-value
model, the input queue empties and the output queue fills
simultaneously once per z items. We call such doubly-
motivated switches resonant. In fact, the actual frequency
of resonant switches is likely to be lower than 1/z, even
under the best achievable set of c;’s, for two reasons.
First, the optimal rational-valued queue sizes for the
mean-value model may not be integer numbers of bytes.
When we round these sizes to the nearest integer, we will
likely increase the LCMs between adjacent sizes and so
reduce the frequency of resonances. Second, any random
variation in the number of outputs per input produced by
the node will with some probability slightly advance or
retard the filling of g; relative to the emptying of ¢;_1,
turning one resonant switch into two ordinary ones.

I'This result holds even for arbitrary rational g; for the least common
multiple of two rational values a/b, ¢/d; defined to be the smallest
rational number that is a multiple of each; assuming both values are
in lowest form, this LCM is computed as lecm(a, b)/gcd(c, d).

If we assume that the frequency of resonant switches
is negligible compared to non-resonant switches, then
we may eliminate the LCM terms entirely, leaving the

objective as
m—1
R=3
i=1

subject to the same constraints. R’ is an upper bound
on the true switching rate R, and it can be shown to
be at most twice R. Empirically, we found that over
a large number of different combinations of gains, R’
overestimates R by 10-20%.

Replacing R by R’ yields a much more tractable
optimization problem, which can be solved analytically
over the reals by the method of Lagrange multipliers. It
can thereby be shown that

Lemma 5.2: The real-valued choice of queue sizes that
minimizes R’ subjectto), bic; = T and ¢; > 0 is given
by

Q.‘[\j

i

|G T
C;, = Ry pae—
bi /G

In practice, we round the c¢; values thus obtained
to integers that permit each queue to hold a whole
number of items. Moreover, safety considerations dictate
a minimum allowable size for each queue: ¢; must be
large enough to hold all the output produced by one
worst-case execution of n;. If optimization yields an
infeasibly small queue size, we round it up to this
feasible minimum.

VI. EMPIRICAL EVALUATION

We tested our optimization methods for queue place-
ment and queue sizing on irregular streaming applica-
tions implemented in the MERCATOR [4] framework
for NVIDIA GPUs. Applications were benchmarked on
an NVIDIA GTX 1080Ti with 28 processors, using
CUDA 11 under Linux. For all tests, we used a width
of 128 threads per block. With this configuration, full
utilization of the GPU (as recommended by NVIDIA’s
runtime API) usually entailed creating several hundred
blocks, each with one replica of the application pipeline.
We allocated between 64 KB and 256 KB of space
to the queues for each application. Smaller amounts
of space led to violations of the safety considerations
mentioned in the previous section, while larger amounts
were observed to have negligible performance impact.
For all experiments, the reported averages had negligible
variation across multiple trials.

A. Node Merging Optimization

We studied the impact of node merging on the core
computation of NCBI BLAST [1], a genomic sequence
database search tool. BLAST comprises a pipeline of
four stages as shown in Table I, plus a source and a sink

26

node. We instrumented the application to measure each
node’s average gains and service time per input vector, as
well as the average overhead of scheduling and execution
management per input vector. Data shown in the table
was profiled from a comparison of a 30 Kbase DNA
query (from the Salmonella genome) against a stream
containing the human genome with repetitive elements
removed, which was around 2 Gbases in size. Service
times were measured from the node’s main firing loop,
which includes getting data from node’s upstream queue,
running the node’s function on its input, and writing its
output to the downstream queue. The scheduler overhead
p per input vector was computed by adding all setup and
teardown costs of calling any compute node plus the total
number of cycles spent in the scheduler, then dividing
by the total number of input vectors processed by all
compute nodes. These measurements were averaged over
five runs of the program.

TABLE 1
COMPUTE NODE ANALYSIS OF BLAST

Compute Node Avg Gain Out | Avg t; (cycles)?
Seed Match 0.365619 28
Seed Enumeration 1.715568 64
Small Extension 0.023177 30
Ungapped Extension 0.125698 196
[Scheduler® [- [4 l

4 Service times are from 64KB even distribution, per input
vector consumed.
b Estimated overhead (p) per input vector consumed

We used the dynamic programming algorithm of Sec-
tion 4 together with the BLAST profile to compute a
queue insertion strategy that minimized the application’s
estimated running time per input vector consumed. The
solution merged the first two stages and the last two
stages of the BLAST pipeline, leaving a queue between
Seed Enumeration and Small Extension. We then com-
pared the merged implementation to a baseline with a
queue between each pair of nodes. For this test, we
held the number of GPU blocks constant at 336 between
the merged and unmerged implementations and held the
total queue space used by each pipeline replica constant,
allocating the space of the queues removed by merging
to the remaining queue in the merged pipeline. For the
unmerged implementation, we divided the queue space
equally among all queues. We report total execution
time (time until last block finishes) of the merged and
unmerged implementations.

Figure 3 illustrates the impact of merging on BLAST’s
execution time. The merged implementation ran 10-20%
faster than the unmerged implementation, depending
on total queue space. Increases in performance due to
merging were larger with smaller queues, suggesting
that reduction in scheduler switching overhead was an
important benefit of merging.

B Blast-4Node B8 BlastMerged-2Node

1,000 |

800 +

600 +

400 +

Execution Time (ms)

200 |

o

Queue Space Per Pipeline

Fig. 3. Total execution time for unmerged vs merged BLAST appli-
cation, averaged over 50 trials.

B. Queue Sizing Optimization

We tested the impact of the queue sizing optimization
from Section 5 on two applications: the BLAST pipeline
of the previous section (unmerged version), and a CSV
parsing and rewriting application, tstcsv—csv, from the
DIBS data integration benchmark set [3]. We refer to the
latter application as “Taxi” below. Its pipeline includes
three stages plus a source and sink node. We tested Taxi
on a 1.8 GB input file.

For each application, we compared its performance
with an equal division of memory among all queues
vs. the division recommended by Lemma 5.2. We mea-
sured the number of switches between nodes during a
full execution using CUDA’s recommended number of
blocks (336 for BLAST, 448 for Taxi). We also measured
execution time, this time running only one block (one
replica of the pipeline) on each GPU processor. The
latter measurement, while not fully utilizing the GPU,
allowed us to accurately account cycles spent in the ap-
plication’s nodes vs. the scheduler. (Speedups observed
using the much greater recommended number of blocks
per processor were qualitatively similar.)

Figures 4 and 5 show the impact of queue space
redistribution on the number of switches. The total
number of scheduler calls was substantially reduced, by
50% or more in some cases for BLAST. As expected,
the absolute number of switches declines as the overall
queue space per pipeline replica increases.

Figures 6 and 7 show the impact of queue space
redistribution on average time spent on compute nodes
vs. scheduler overhead. As expected, time spent execut-
ing nodes is nearly unchanged, but time spent in the

27

104 B Even B Redistributed

0.8 1

0.6

Number of Scheduler Calls

AN % b
Queue Space Per Pipeline

Fig. 4. Number of calls to scheduler for BLAST, averaged over 50
trials.

Bl Even Bl Redistributed

=4,000 |

3,000 |

2,000 |

Number of Scheduler Ca

1,000 +

o 6™

Queue Space Per Pipeline

\

Fig. 5. Number of calls to scheduler for Taxi, averaged over 50 trials.

scheduler decreased after redistribution. The effect was
greater for BLAST than for Taxi and was again more
pronounced with smaller overall amounts of queue space,
which increased the number of switches incurred.

C. Double Optimization

After finding each of our two optimizations to be in-
dividually beneficial, we next investigated the impact of
applying both to the BLAST pipeline. We applied queue
space redistribution to the merged version of BLAST,
then compared the doubly-optimized version against the
unoptimized and both singly-optimized versions. Again,

B Compute Nodes B Scheduler

3,000 +

E92.000 |

Execution Time (ms)

1,000 |

a\%

o < 6\ «® 6‘

Queue Space and Opt1m1zat10n

Fig. 6. Time spent by BLAST application in Scheduler (red) and
Compute Nodes (blue), averaged over 140 executions of one pipeline
replica.

B Compute Nodes B Scheduler

6,000 4
E4000 |
Q
E
=
=)
g
=
$2,000 |
=
[8a)

6\5 <« 6\% <« 6\% -
S 6&1& Nas \q/%\@“ o 6‘3“

Queue Space and Optlmlzatlon

Fig. 7. Time spent by Taxi application in Scheduler (red) and Compute
Nodes (blue), averaged over 140 executions of one pipeline replica.

28

the number of GPU blocks was held constant at 336 for
all versions.

Even Blast-4Node
Even Blast-2Node

[\ Redistributed Blast-4Node
E= Redistributed Blast-2Node

1,000 |

800

600

400

Execution Time (ms)

200 |

Queue Space Per Pipeline

Fig. 8. Total execution time for BLAST with one or both optimiza-
tions, averaged over 50 trials.

Figure 8 illustrates that combining both optimizations
yielded better performance than each by itself. Merging
had the greatest overall impact either with or without
redistribution, and redistribution was more effective by
itself than when combined with merging. These obser-
vations support the hypothesis that both optimizations
affect scheduling overhead, rather than targeting orthog-
onal aspects of application performance.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we explored how to optimize irregular
streaming dataflow applications on SIMD processors
by controlling the placement and sizes of inter-node
queues. We first gave a dynamic programming algo-
rithm for inserting queues in an application based on
a simplified model of node service times. We then
devised an optimization strategy for the relative sizes of
queues given an overall storage budget for the pipeline.
Both optimizations were driven by profile data on the
service times and output behavior of each node in the
application, and both directly or indirectly targeted the
cost of scheduling multiple nodes of an application on
a single processor. Each optimization was observed to
be useful by itself, and they gave a small additional
improvement in application running time when applied
together. Broadly, our results illustrate the importance
of considering performance tradeoffs between improved

SIMD occupancy and overhead when implementing ir-
regular streaming dataflow applications on wide-SIMD
processors.

Future work will examine a broader set of irregular
applications and a larger variety of representative data
sets. Characterization of these applications’ structures
will aid in development decisions for queue placement
and allocation. Expansion of the node merging optimiza-
tion to permit varying vector widths between compute
nodes will allow us to apply it to more applications,
including Taxi. We will more accurately model merged
node service times using the full empirical distribution
of gains for each node, rather than just the average,
and will develop better models of queue overhead,
perhaps including cache effects. Extension to dataflow
graphs with DAGs and cycles is possible; however,
the semantics of nodes with multiple input streams are
not entirely clear in irregular applications. [6] offers
one possible set of semantics that lead to nontrivial
safety and efficiency challenges. Finally, we hope to
build auto-tuning capabilities for frameworks such as
MERCATOR by profiling and re-optimizing application
pipelines automatically at run time.

REFERENCES

[1] Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic
local alignment search tool. J. Molecular Biology 215(3), 403-10
(1990)

Benoit, A., Robert, Y. Complexity Results for Throughput
and Latency Optimization of Replicated and Data-
parallel Workflows. Algorithmica 57, 689-724 (2010).
https://doi.org/10.1007/s00453-008-9229-4

Cabrera, A.M., Faber, C.J., Cepeda, K., Derber, R., Epstein,
C., Zheng, J., Cytron, R.K., Chamberlain, R.D.: DIBS: A data
integration benchmark suite. In: 2018 ACM/SPEC Int’l Conf.
Performance Engineering. pp. 25-28 (2018)

Cole, S., Buhler, J..: MERCATOR: A GPGPU framework for
irregular streaming applications. In: 2017 Int’l Conf. High Per-
formance Computing and Simulation. pp. 727-36 (2017)

Lee, E., Messerschmitt, D.: Synchronous data flow. Proc. IEEE
75(9), 1235-245 (1987)

Li, Peng & Beard, Jonathan & Buhler, Jeremy. (2015).
Deadlock-free Buffer Configuration for Stream Computing.
10.1145/2712386.2712403.

Plano, T., Buhler, J.: Scheduling irregular dataflow pipelines on
SIMD architectures. In: 6th Wkshp. on Programming Models for
SIMD/Vector Processing, San Diego, CA, Feb 2020.

Subhlok, Jaspal and Vondran, Gary. (1997). Optimal Latency—
Throughput Tradeoffs for Data Parallel Pipelines. Annual
ACM Symposium on Parallel Algorithms and Architectures.
10.1145/237502.237508.

Thies, W., Karczmarek, M., Amaransinghe, S.: Streamlt: A
language for streaming applications. In: 11th Int’1 Conf. Compiler
Construction. pp. 179-96 (2002)

Tyson, E., Buckley, J., Franklin, M., Chamberlain, R.D.: Accel-
eration of atmospheric Cherenkov telescope signal processing to
real-time speed with the AutoPipe design system. Nuclear In-
struments and Methods in Physics Research Sec. A: Accelerators,
Spectrometers, Detectors and Associated Equipment 595(2), 474-
9 (2008)

[2]

[3]

[4]

[3]
(6]

[7]

(8]

[9]

(10]

29

APPENDIX
PROOF OF LEMMA 5.1

Lemma: For 1 < i < m, the rate R; of switches away
from n; per item consumed by n; is given by

L O S S S
Gi—1 [di—1 d; lcm(difladi)

Proof: We first observe that, because each input to n;
produces g; outputs, node n; needs ¢;/g; inputs to fill its
output queue. n; begins firing for the first time with a full
input queue and an empty output queue. The number of
items processed before returning to this initial state (full
input queue, empty output queue) must be a multiple
of both c;_1, the number of inputs needed to fill ¢;_1,
and ¢;/g;, the number of inputs needed to fill ¢;, so
that ¢; fills exactly when ¢;_; empties (after which the
former empties and the latter fills). This event first occurs
after processing z = lem(c;—1,¢;/g;) items. Since g; =
G;/G;-1, we can rewrite z as follows:

R =

z = lem(ci—1,¢i/9:)
= lem(ci—1,Gi—1¢i/Gy)
= Gi—1lem(ei—1/Giz1,¢/Gy)
= Gi-1lem(d;—1,d;).

To compute the number of switches away from n;
during one cycle of processing these z items, we
make three observations. First, the output queue fills
z/(cif9:) = z/(G;_1d;) times, each of which incurs
a switch. Second, the input queue empties z/c;—; =
2/(G;_1d;—1) times, each of which also incurs a switch.
Third, only once (after processing all z items) do these
two conditions coincide. Hence, the total number of
switches S; away from n; in one cycle is given by

z z
5 Gi—1di—1 - Gi-1d;
Conclude that over one cycle from the initial state of
n;’s queues back to this state, the rate of switches away
from n; per item consumed by it is given by

1.

B 1 1 1
B Gi*ldifl * Gifldi - 5
1 1 1 1

Gi—1 [di—1 * di lem(di_y,d;)

Hence, R; is also the asymptotic switching rate ob-
served for n; over an unbounded number of inputs to it.
QED

30

