
Reducing Queuing Impact in Irregular Data
Streaming Applications

Stephen W. Timcheck
Dept. of Computer Science and Engineering

Washington University in St. Louis
St. Louis, Missouri, USA

stimcheck@wustl.edu

Jeremy D. Buhler
Dept. of Computer Science and Engineering

Washington University in St. Louis
St. Louis, Missouri, USA

jbuhler@wustl.edu

Abstract—Throughput-oriented streaming applications
on massive data sets are a prime candidate for paralleliza-
tion on wide-SIMD platforms, especially when inputs are
independent of one another. Many such applications are
represented as a pipeline of compute nodes connected by
directed edges. Here, we study applications with irregular
data flow, i.e., those where the number of outputs produced
per input to a node is data-dependent and unknown a
priori. Moreover, we target these applications to architec-
tures (GPUs) where different nodes of the pipeline execute
cooperatively on a single wide-SIMD processor.

To promote greater SIMD parallelism, irregular appli-
cation pipelines can utilize queues to gather and compact
multiple data items between nodes. However, the decision
to introduce a queue between two nodes must trade
off benefits to occupancy against costs associated with
queue reading, writing, and management. Moreover, once
queues are introduced to an application, their relative sizes
impact the frequency with which the application switches
between nodes, incurring scheduling and context-switching
overhead.

This work examines two optimization problems asso-
ciated with queues. First, we consider which pairs of
successive nodes in a pipeline should have queues between
them to maximize overall application throughput. Second,
given a fixed total budget for queue space, we consider
how to choose the relative sizes of inter-node queues to
minimize the frequency of switching between nodes. We
formulate a dynamic programming approach to the first
problem and give an empirically useful approximation to
the second that allows for an analytical solution. Finally, we
validate our theoretical results using real-world irregular
streaming computations.

Index Terms—queuing, SIMD, irregular, dataflow,
streaming

I. INTRODUCTION

Streaming applications with irregular dataflow exist in

numerous high-impact fields, ranging from biosequence

analysis [1] to astrophysics [10]. These applications are

commonly represented as pipelines of computational

stages connected by dataflow edges. For instance, the

BLAST tool for biological sequence comparison [1] can

be described as a four-stage pipeline that ingests a large

Funded by NSF award CNS-1763503.

database of DNA or protein sequence and filters its input

to retain just the portions that approximately match a

given query sequence. Irregular dataflow arises when

the work performed by a computational stage, and in

particular the amount of output it generates per item in its

input stream, is variable, data-dependent, and therefore

unknown a priori.
When a streaming computation performs largely inde-

pendent computations on successive inputs in the stream,

the computation’s throughput can be increased by ex-

ploiting data parallelism across its inputs. Wide-SIMD

processors such as GPUs are therefore tempting targets

for such applications. However, irregularity interferes

with SIMD parallelism because different inputs to a

pipeline may require different amounts of work or may

even be filtered away at different stages of the pipeline. If

data cannot be remapped from one SIMD lane to another

in mid-computation, the occupancy of the processor (that

is, the fraction of lanes doing useful work) will suffer.

To improve the occupancy of irregular dataflow

pipelines, one may employ intermediate queues between

successive compute stages. A queue functions as a

staging area where data from the previous compute stage,

otherwise known as a compute node, can be accumu-

lated, compacted, and then redistributed across SIMD

lanes to ensure full occupancy of the next stage. How-

ever, reading, writing, and remapping through queues

adds overhead to the application that may negate the per-

formance benefits of higher SIMD occupancy. In cases

where data production rates are low or the application

exhibits locally regular data flow, it may not be worth

improving occupancy by adding a queue between stages.

A second challenge arises when adding queues to

pipelines implemented on modern GPU devices. The

processors of a GPU typically run asynchronously, and

existing APIs offer little support for synchronization

between them. Hence, a natural application mapping to

a GPU runs a separate replica of the pipeline on each

processor. GPUs also offer limited support for preemp-

tion, so the stages of the pipeline must be cooperatively

22

2020 IEEE/ACM 10th Workshop on Irregular Applications: Architectures and Algorithms (IA3)

978-0-7381-1090-5/20/$31.00 ©2020 IEEE
DOI 10.1109/IA351965.2020.00009

scheduled on the single processing resource. Finally, the

number of processors is large enough that tens or even

hundreds of pipeline copies may be running at once.

Each pipeline replica on a GPU needs its own queue

space. Given a large number of copies, it becomes

important to limit the amount of queue space allocated

to each replica, and therefore to divide that space wisely

among the queues between different pipeline stages. As

we will show, the algorithm used to schedule execution

of different pipeline stages can interact with the differing

rates of data production from each stage, creating an op-

portunity to allocate queue space in a way that minimizes

the application’s overhead due to pipeline scheduling.

This work addresses two questions in the setting of

irregular streaming dataflow pipelines on GPUs. First,

we formalize the tradeoff of when to insert queues be-

tween successive pipeline stages. Using easily-obtained

performance metrics from an application’s profile, we

formulate an algorithm for selecting which stages should

be merged together and which should have queues

between them. Second, we consider the problem of

dividing limited space among queues in a pipeline. As-

suming a simple, effective scheduling policy for pipeline

stages [7], we show how to divide space among queues

so as to roughly minimize the frequency with which

the scheduler must be invoked while processing a data

stream. These optimizations can have material impact on

an application’s overall throughput.

The rest of the paper is organized as follows. Section

2 examines related work. Section 3 provides a detailed

explanation of our application model and the metrics

used for later sections. Section 4 describes a method for

determining whether queues should be added between

compute nodes and a method for choosing where to place

queues. Section 5 provides a method for determining

how much space to allocate for individual queues given

a limited space budget. Section 6 evaluates both methods

on irregular streaming applications implemented on an

NVIDIA GPU platform. Finally, section 7 concludes and

explores future work.

II. RELATED WORK

Many application frameworks have been developed

to support regular streaming dataflow applications on

parallel systems. A prominent example, StreamIt [9], was

built around the synchronous data flow (SDF) [5] model

of computation. In StreamIt, the number of outputs per

input data item for each node is fixed at compile time,

which allows effective static scheduling of nodes with

minimal queue space allocation and no remapping. In

contrast, the irregular problems we target do not have

the luxury of knowing how much data will be generated

where and when, thus creating a need for data-driven

decisions about queue placement and sizing.

Subhlok and Vondran [8] examined a similar problem

to the merging of compute stages presented in this paper.

They consider a pipeline of tasks, equivalent to compute

stages in our model. Each task can be mapped to

processors with various forms of data- and task-parallel

mapping. However, their model allows for forking inputs

to different replicas and re-converging to a single replica,

which is not part of our model. They explore combining

tasks into modules, which are collections of two or

more tasks. These modules are then evenly assigned to

processors on the system. Our model similarly considers

merging compute stages, but a single pipeline cannot be

split across processors on our target platform, creating

different design problems. Our work models impacts due

to wide-SIMD execution, while their work focuses on

general-purpose MIMD processing.

Benoit and Robert [2] considered a similar problem,

trying to optimize for both latency and throughput. Their

work explores how to map data-parallel pipelines on

parallel platforms. In their work, as in ours, merging

compute nodes increases the computational load on

a processor but may decrease communication require-

ments, which in our case would be reading, writing,

and managing an intermediate queue. Although their

model does not take into consideration communication

costs between processors, it works with a more general

purpose MIMD processor in mind. Hence, their commu-

nication cost would be equivalent to the scheduler cost

we consider in our model.

III. APPLICATION MODEL

In this section, we define the abstract properties of our

streaming dataflow applications, as well as the character-

istics of our target wide-SIMD architectures. As shown

in Figure 1, an application is a linear pipeline of compute
nodes n1 . . . nm with dataflow edges connecting each ni

to the next ni+1. Each time a node executes, it consumes

a vector of up to v items from its input and produces a

data-dependent number of items, perhaps of a different

size/type, on its output.

The runtime behavior of a node ni is characterized

by two parameters: its service time ti and its gain gi.
The service time ti is the time for a node to process

a vector of input items; the time is the same for any

number of items ≤ v. The gain gi is the average number

of outputs produced per input item consumed, which

may be greater or less than 1. For convenience, we also

define the cumulative gain Gk =
∏k

i=1 gi to be the

average number of outputs from node nk for each input

consumed by n1. We focus on the mean-value behavior

of nodes, leaving consideration of other moments of the

outputs-per-input distribution for future work. We seek to

optimize the throughput of the pipeline, or equivalently

23

the total time to completely process a large number of

inputs to n1.

Each edge between two nodes has an associated

queue. Items from an edge’s upstream node accumulate

in contiguous slots of the queue until the downstream

node executes, at which point it pulls contiguous vectors

of up to v items from the queue. Because dynamic

resizing of queues on GPUs is expensive, we assume

that each queue has a fixed size that is determined at

compile time.

n1 n2 n3

g1 g2 g3
t1 t2 t3

Fig. 1. A simple pipeline application topology. Node n1 feeds into
n2, and n2 feeds into n3. Node ni has service time ti and average
gain gi.

As discussed earlier, we assume that our target archi-

tecture runs a replica of the complete pipeline on each

of its processors, with different copies sharing a global

input stream and output buffer but not intermediate data

structures such as queues. This design is compatible

with modern GPUs, which offer limited support for

inter-processor synchronization. Each processor runs a

scheduler that manages execution of its pipeline replica’s

nodes. Each time the scheduler is called, it selects a node

with items in its input queue and space in its output

queue and executes that node, consuming some amount

of input. The application ends when no node has any

inputs remaining.

The particular scheduling protocol we consider in

Section 5 is the AFIE (active-full, inactive-empty) sched-

uler [7]. Briefly, AFIE marks a node “active” when it

has a full input queue and “inactive” when this queue

is emptied. A node is eligible to execute when it is

active and its downstream neighbor, if any, is inactive.

As with any flow control protocol involving execution

of multiple entities with finite queues between them, the

scheduling policy must ensure that a node with input

must eventually be able to make progress. It was shown

in [7] that AFIE is deadlock-free (that is, a node with

input eventually becomes eligible to execute), that it

ensures that nodes almost always execute with a full

vector-width of inputs, and that it incurs no more than

about twice as many switches (calls into the scheduler

to choose a new node to execute) as would a clairvoyant

protocol that knew in advance the number of outputs

produced by each node for each input.

IV. DETERMINING WHEN TO USE QUEUES

Queuing on an edge between nodes is valuable for

irregular streaming applications as a tool to improve

SIMD occupancy. Even if only a subset of SIMD lanes in

the upstream node produce outputs, or if different lanes

produce different numbers of outputs, the queue allows

items to be remapped into contiguous lanes for execution

by the downstream node. However, queues introduce a

certain amount of overhead to applications for reading

and writing items on the edge and for compaction and

remapping. Moreover, applications with more edges,

and hence more queues, impose a greater load on the

scheduler, which must be called more often to ensure

that all nodes have an opportunity to run.

Remapping between nodes is not necessary for correct

execution. Given nodes ni and ni+1, we could remove

the queue between them, so that ni simply calls ni+1

with whatever outputs it produced in each SIMD lane

without remapping. (If ni produces q outputs in a lane,

they are queued in a per-lane array, and ni+1 must then

be called q times to consume them all.) This alternative

design effectively merges ni and ni+1. Figure 2 illus-

trates the merge operation on the last two nodes of the

pipeline from Figure 1.

n1 n2 n3

g1 g2 g3
t1 t2 t3

n1 n2..............3

g1 g2 × g3
t1 t2 + �g2� × t3

Fig. 2. Topological view of merging compute nodes. Combining nodes
n2 and n3 may incur multiple calls to n3 per call to n2, each with
fewer inputs, because inputs to n3 are no longer queued. The average
output gain is now the cumulative gain between the two combined
nodes.

Merging has the advantage of no queuing or remap-

ping overhead between the nodes, and nodes ni and ni+1

may be scheduled as a unit, reducing the total number

of switches. However, we lose the benefits of remapping

for SIMD occupancy, so that it may be necessary to

call ni+1 more often than if we had compacted the

outputs of ni into full vectors. The decision of whether

or not to merge therefore involves a tradeoff of occu-

pancy against overhead. We will now investigate how to

decide quantitatively which pairs of adjacent nodes in a

pipeline should have queues on their intervening edges,

and which should be merged, to maximize application

throughput.

Let n1 . . . nm be a pipeline of nodes of common

vector width v, with ni having output gain gi and service

time ti. For convenience, we expand the definition of

cumulative gain Gk to apply to any contiguous subrange

of nodes in the pipeline. Define the cumulative gain Gj,k

24

between nodes j and k by Gj,k =
∏k

i=j gi. By this

definition, Gk = G1,k, and we define Gj,j−1 = 1.

We first estimate the service time of a merged node

njk composed of contiguous nodes nj . . . nk. When the

merged node consumes one vector of inputs, nj runs

first, taking time tj . Then, node nj+1 runs enough times

to consume the maximum number of outputs produced

by nj in any SIMD lane. Similarly, node nj+2 then

runs often enough to consume the maximum number

of outputs from nj+1 in any lane, and so on through

node nk. An accurate estimate of average service time

for the merged node would require knowing the full

distributions of the gains of each ni, rather than just

their average gains. For simplicity, we assume that a

node’s gain in each lane remains close to its average

but round this gain up to the next integer to account for

some lanes having more outputs than others. With this

simplification, the service time tjk of njk is given by

tjk =

k∑
i=j

�Gj,i−1�ti.

Now suppose we insert a queue between original

nodes ni and ni+1, j ≤ i < k, in the merged node,

creating sub-nodes nji and ni+1,k. Because the stream is

remapped after node i, the number of times ni+1,k must

execute is no longer tied to the number of executions of

nji. Rather, it depends on the total number of outputs
produced by nji. The average number of output vectors

per input vector to nji is just Gj,i. We additionally

charge a fixed time overhead p each time nji runs

to account for the costs of writing, remapping, and

scheduling at this node. Hence, the total running time

of the node pair per input vector to nj is now

tji + p+Gj,iti+1,k.

More generally, let Tj be the least total running time

per input vector to n1 obtained by inserting queues on

any subset of the edges in the range nj . . . nm. Either no

such queue is inserted, or the first such queue occurs after

node i, j ≤ i < m. We therefore derive the recurrence

Tj = min

{
tjm

minj≤i<m tji + p+Gj,iTi+1.

This recurrence can be solved by dynamic programming

for the entire pipeline in time O(m2), following precom-

putation of the tjk values, to obtain the optimal subset

of edges on which to insert queues.

V. CHOOSING SIZES FOR FINITE INTER-NODE

QUEUES

Assume now that a division of the pipeline into (pos-

sibly merged) nodes has been determined. Post-merging,

we assume that the pipeline has nodes n1 . . . nm, with a

queue between each successive pair of nodes. As noted

in Section 3, we assume that nodes in the pipeline

are scheduled using the AFIE scheduler. Because AFIE

waits until a node’s upstream queue is full to activate it,

the larger the inter-node queues, the more input vectors

a node can typically consume before control returns to

the scheduler. Hence, larger queues are desirable because

they reduce the overhead associated with scheduler in-

vocations, or switches, which may be on the same order

as node service times.

However, as discussed earlier, an efficient GPU imple-

mentation of the application may require a large number

of copies of the pipeline – at least one per processor

to avoid complex inter-processor communication, and

possibly multiple copies per processor to take advantage

of GPUs’ ability to hide memory access latency by

switching among multiple computations. For this rea-

son, the cumulative memory cost of using arbitrarily

large queues for each pipeline is likely unacceptable.

Moreover, the number of scheduler invocations varies

inversely with queue size, so at some point, the reduction

in scheduling overhead from increasing queue sizes

reaches a point of diminishing returns. We therefore

assume that each replica of the pipeline receives only

a small, fixed amount of memory to divide among all its

queues.

We consider the following question: how does the allo-

cation of memory among an application’s queues impact

the rate at which it must switch between nodes? We will

quantify this switching rate for a given allocation, then

show how to select an allocation that roughly minimizes

switches for a given total amount of memory.

A. Bounding Rate of Switches under AFIE Scheduling

Let qi be the queue between ni and ni+1, and suppose

this queue can hold ci items. Define the scaled capacity
di of queue qi by di = ci/Gi. Scaled capacity normal-

izes the size of each queue to units of “inputs to node

n1”. For example, if n1 has gain 2, then each input to n1

results in an average of two items inserted into q1. The

results that follow are more easily expressed in terms of

scaled capacities.

Intuitively, execution must switch away from node ni

(and hence back to the scheduler) whenever its input

queue becomes empty or its output queue becomes

full. In either case, ni cannot continue executing until

some other node runs, either to produce more input or

to consume some output. Because AFIE ensures that

ni becomes eligible to execute only when its input

queue fills and its output queue empties, its input queue

empties once per ci−1 items it consumes, and its output

queue fills on average once per ci/gi items it consumes.

However, occasionally, these two events (emptying of

input and filling of output queues) occur concurrently

25

— about once per lcm(ci−1, ci/gi) inputs consumed1

— which results in only one rather than two switches.

In short, we can establish the following lemma (proof

provided in the appendix):

Lemma 5.1: For 1 < i < m, the rate Ri of switches

away from ni per item consumed by ni is given by

Ri =
1

Gi−1

[
1

di−1
+

1

di
− 1

lcm(di−1, di)

]
.

Combining the results of Lemma 5.1 over all nodes in

the pipeline and simplifying, we obtain that

Corollary 5.1.1: The total rate R of switches across

all pipeline nodes per input consumed by n1 is given by

R =
m−1∑
i=1

2

di
−

m−1∑
i=2

1

lcm(di−1, di)
.

B. Allocating Queue Space to Minimize Switches

We now consider how to minimize the rate of switches

R, and therefore the scheduling overhead, incurred by an

application through manipulation of its relative queue

sizes. Suppose that the items output by node ni each

have size bi bytes, and that we wish to partition a

fixed total number of bytes T among all queues in the

pipeline. How can we divide these T bytes among the

queues q1 . . . qm−1 so as to minimize the switching rate

R? We could attempt to optimize the switching rate

by directly minimizing the function R subject to the

constraint
∑

i bici =
∑

i biGidi = T . Unfortunately,

the presence of LCM terms in R makes it difficult to

minimize analytically.

We argue informally that the objective R can be

simplified in practice. The LCM terms arise because

the number of switches away from node ni includes a

correction of −1 switch per z = lcm(ci−1, ci/gi) inputs.

This correction reflects the fact that, in the mean-value

model, the input queue empties and the output queue fills

simultaneously once per z items. We call such doubly-

motivated switches resonant. In fact, the actual frequency

of resonant switches is likely to be lower than 1/z, even

under the best achievable set of ci’s, for two reasons.

First, the optimal rational-valued queue sizes for the

mean-value model may not be integer numbers of bytes.

When we round these sizes to the nearest integer, we will

likely increase the LCMs between adjacent sizes and so

reduce the frequency of resonances. Second, any random

variation in the number of outputs per input produced by

the node will with some probability slightly advance or

retard the filling of qi relative to the emptying of qi−1,

turning one resonant switch into two ordinary ones.

1This result holds even for arbitrary rational gi for the least common
multiple of two rational values a/b, c/d; defined to be the smallest
rational number that is a multiple of each; assuming both values are
in lowest form, this LCM is computed as lcm(a, b)/gcd(c, d).

If we assume that the frequency of resonant switches

is negligible compared to non-resonant switches, then

we may eliminate the LCM terms entirely, leaving the

objective as

R′ =
m−1∑
i=1

2

di

subject to the same constraints. R′ is an upper bound

on the true switching rate R, and it can be shown to

be at most twice R. Empirically, we found that over

a large number of different combinations of gains, R′

overestimates R by 10-20%.

Replacing R by R′ yields a much more tractable

optimization problem, which can be solved analytically

over the reals by the method of Lagrange multipliers. It

can thereby be shown that

Lemma 5.2: The real-valued choice of queue sizes that

minimizes R′ subject to
∑

i bici = T and ci ≥ 0 is given

by

ci =

√
Gi

bi
· T∑m−1

j=1

√
bjGj

.

In practice, we round the ci values thus obtained

to integers that permit each queue to hold a whole

number of items. Moreover, safety considerations dictate

a minimum allowable size for each queue: qi must be

large enough to hold all the output produced by one

worst-case execution of ni. If optimization yields an

infeasibly small queue size, we round it up to this

feasible minimum.

VI. EMPIRICAL EVALUATION

We tested our optimization methods for queue place-

ment and queue sizing on irregular streaming applica-

tions implemented in the MERCATOR [4] framework

for NVIDIA GPUs. Applications were benchmarked on

an NVIDIA GTX 1080Ti with 28 processors, using

CUDA 11 under Linux. For all tests, we used a width

of 128 threads per block. With this configuration, full

utilization of the GPU (as recommended by NVIDIA’s

runtime API) usually entailed creating several hundred

blocks, each with one replica of the application pipeline.

We allocated between 64 KB and 256 KB of space

to the queues for each application. Smaller amounts

of space led to violations of the safety considerations

mentioned in the previous section, while larger amounts

were observed to have negligible performance impact.

For all experiments, the reported averages had negligible

variation across multiple trials.

A. Node Merging Optimization

We studied the impact of node merging on the core

computation of NCBI BLAST [1], a genomic sequence

database search tool. BLAST comprises a pipeline of

four stages as shown in Table I, plus a source and a sink

26

node. We instrumented the application to measure each

node’s average gains and service time per input vector, as

well as the average overhead of scheduling and execution

management per input vector. Data shown in the table

was profiled from a comparison of a 30 Kbase DNA

query (from the Salmonella genome) against a stream

containing the human genome with repetitive elements

removed, which was around 2 Gbases in size. Service

times were measured from the node’s main firing loop,

which includes getting data from node’s upstream queue,

running the node’s function on its input, and writing its

output to the downstream queue. The scheduler overhead

p per input vector was computed by adding all setup and

teardown costs of calling any compute node plus the total

number of cycles spent in the scheduler, then dividing

by the total number of input vectors processed by all

compute nodes. These measurements were averaged over

five runs of the program.

TABLE I
COMPUTE NODE ANALYSIS OF BLAST

Compute Node Avg Gain Out Avg ti (cycles)a

Seed Match 0.365619 28
Seed Enumeration 1.715568 64
Small Extension 0.023177 30

Ungapped Extension 0.125698 196

Schedulerb - 4
a Service times are from 64KB even distribution, per input

vector consumed.
b Estimated overhead (p) per input vector consumed

We used the dynamic programming algorithm of Sec-

tion 4 together with the BLAST profile to compute a

queue insertion strategy that minimized the application’s

estimated running time per input vector consumed. The

solution merged the first two stages and the last two

stages of the BLAST pipeline, leaving a queue between

Seed Enumeration and Small Extension. We then com-

pared the merged implementation to a baseline with a

queue between each pair of nodes. For this test, we

held the number of GPU blocks constant at 336 between

the merged and unmerged implementations and held the

total queue space used by each pipeline replica constant,

allocating the space of the queues removed by merging

to the remaining queue in the merged pipeline. For the

unmerged implementation, we divided the queue space

equally among all queues. We report total execution

time (time until last block finishes) of the merged and

unmerged implementations.
Figure 3 illustrates the impact of merging on BLAST’s

execution time. The merged implementation ran 10-20%

faster than the unmerged implementation, depending

on total queue space. Increases in performance due to

merging were larger with smaller queues, suggesting

that reduction in scheduler switching overhead was an

important benefit of merging.

64K
128K

256K -

200

400

600

800

1,000

Queue Space Per Pipeline

E
x
ec

u
ti

o
n

T
im

e
(m

s)

Blast-4Node BlastMerged-2Node

Fig. 3. Total execution time for unmerged vs merged BLAST appli-
cation, averaged over 50 trials.

B. Queue Sizing Optimization

We tested the impact of the queue sizing optimization

from Section 5 on two applications: the BLAST pipeline

of the previous section (unmerged version), and a CSV

parsing and rewriting application, tstcsv→csv, from the

DIBS data integration benchmark set [3]. We refer to the

latter application as “Taxi” below. Its pipeline includes

three stages plus a source and sink node. We tested Taxi

on a 1.8 GB input file.

For each application, we compared its performance

with an equal division of memory among all queues

vs. the division recommended by Lemma 5.2. We mea-

sured the number of switches between nodes during a

full execution using CUDA’s recommended number of

blocks (336 for BLAST, 448 for Taxi). We also measured

execution time, this time running only one block (one

replica of the pipeline) on each GPU processor. The

latter measurement, while not fully utilizing the GPU,

allowed us to accurately account cycles spent in the ap-

plication’s nodes vs. the scheduler. (Speedups observed

using the much greater recommended number of blocks

per processor were qualitatively similar.)

Figures 4 and 5 show the impact of queue space

redistribution on the number of switches. The total

number of scheduler calls was substantially reduced, by

50% or more in some cases for BLAST. As expected,

the absolute number of switches declines as the overall

queue space per pipeline replica increases.

Figures 6 and 7 show the impact of queue space

redistribution on average time spent on compute nodes

vs. scheduler overhead. As expected, time spent execut-

ing nodes is nearly unchanged, but time spent in the

27

64K
128K

256K -

0.2

0.4

0.6

0.8

1

·104

Queue Space Per Pipeline

N
u

m
b

er
o

f
S

ch
ed

u
le

r
C

al
ls

Even Redistributed

Fig. 4. Number of calls to scheduler for BLAST, averaged over 50
trials.

64K
128K

256K -

1,000

2,000

3,000

4,000

Queue Space Per Pipeline

N
u

m
b

er
o

f
S

ch
ed

u
le

r
C

al
ls

Even Redistributed

Fig. 5. Number of calls to scheduler for Taxi, averaged over 50 trials.

scheduler decreased after redistribution. The effect was

greater for BLAST than for Taxi and was again more

pronounced with smaller overall amounts of queue space,

which increased the number of switches incurred.

C. Double Optimization

After finding each of our two optimizations to be in-

dividually beneficial, we next investigated the impact of

applying both to the BLAST pipeline. We applied queue

space redistribution to the merged version of BLAST,

then compared the doubly-optimized version against the

unoptimized and both singly-optimized versions. Again,

64KEven

64KRdis

128KEven

128KRdis

256KEven

256KRdis -

1,000

2,000

3,000

Queue Space and Optimization
E

x
ec

u
ti

o
n

T
im

e
(m

s)

Compute Nodes Scheduler

Fig. 6. Time spent by BLAST application in Scheduler (red) and
Compute Nodes (blue), averaged over 140 executions of one pipeline
replica.

64KEven

64KRdis

128KEven

128KRdis

256KEven

256KRdis -

2,000

4,000

6,000

Queue Space and Optimization

E
x
ec

u
ti

o
n

T
im

e
(m

s)

Compute Nodes Scheduler

Fig. 7. Time spent by Taxi application in Scheduler (red) and Compute
Nodes (blue), averaged over 140 executions of one pipeline replica.

28

the number of GPU blocks was held constant at 336 for

all versions.

64K
128K

256K -

200

400

600

800

1,000

Queue Space Per Pipeline

E
x
ec

u
ti

o
n

T
im

e
(m

s)

Even Blast-4Node

Even Blast-2Node

Redistributed Blast-4Node

Redistributed Blast-2Node

Fig. 8. Total execution time for BLAST with one or both optimiza-
tions, averaged over 50 trials.

Figure 8 illustrates that combining both optimizations

yielded better performance than each by itself. Merging

had the greatest overall impact either with or without

redistribution, and redistribution was more effective by

itself than when combined with merging. These obser-

vations support the hypothesis that both optimizations

affect scheduling overhead, rather than targeting orthog-

onal aspects of application performance.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we explored how to optimize irregular

streaming dataflow applications on SIMD processors

by controlling the placement and sizes of inter-node

queues. We first gave a dynamic programming algo-

rithm for inserting queues in an application based on

a simplified model of node service times. We then

devised an optimization strategy for the relative sizes of

queues given an overall storage budget for the pipeline.

Both optimizations were driven by profile data on the

service times and output behavior of each node in the

application, and both directly or indirectly targeted the

cost of scheduling multiple nodes of an application on

a single processor. Each optimization was observed to

be useful by itself, and they gave a small additional

improvement in application running time when applied

together. Broadly, our results illustrate the importance

of considering performance tradeoffs between improved

SIMD occupancy and overhead when implementing ir-

regular streaming dataflow applications on wide-SIMD

processors.

Future work will examine a broader set of irregular

applications and a larger variety of representative data

sets. Characterization of these applications’ structures

will aid in development decisions for queue placement

and allocation. Expansion of the node merging optimiza-

tion to permit varying vector widths between compute

nodes will allow us to apply it to more applications,

including Taxi. We will more accurately model merged

node service times using the full empirical distribution

of gains for each node, rather than just the average,

and will develop better models of queue overhead,

perhaps including cache effects. Extension to dataflow

graphs with DAGs and cycles is possible; however,

the semantics of nodes with multiple input streams are

not entirely clear in irregular applications. [6] offers

one possible set of semantics that lead to nontrivial

safety and efficiency challenges. Finally, we hope to

build auto-tuning capabilities for frameworks such as

MERCATOR by profiling and re-optimizing application

pipelines automatically at run time.

REFERENCES

[1] Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic
local alignment search tool. J. Molecular Biology 215(3), 403-10
(1990)

[2] Benoit, A., Robert, Y. Complexity Results for Throughput
and Latency Optimization of Replicated and Data-
parallel Workflows. Algorithmica 57, 689–724 (2010).
https://doi.org/10.1007/s00453-008-9229-4

[3] Cabrera, A.M., Faber, C.J., Cepeda, K., Derber, R., Epstein,
C., Zheng, J., Cytron, R.K., Chamberlain, R.D.: DIBS: A data
integration benchmark suite. In: 2018 ACM/SPEC Int’l Conf.
Performance Engineering. pp. 25-28 (2018)

[4] Cole, S., Buhler, J.: MERCATOR: A GPGPU framework for
irregular streaming applications. In: 2017 Int’l Conf. High Per-
formance Computing and Simulation. pp. 727-36 (2017)

[5] Lee, E., Messerschmitt, D.: Synchronous data flow. Proc. IEEE
75(9), 1235-245 (1987)

[6] Li, Peng & Beard, Jonathan & Buhler, Jeremy. (2015).
Deadlock-free Buffer Configuration for Stream Computing.
10.1145/2712386.2712403.

[7] Plano, T., Buhler, J.: Scheduling irregular dataflow pipelines on
SIMD architectures. In: 6th Wkshp. on Programming Models for
SIMD/Vector Processing, San Diego, CA, Feb 2020.

[8] Subhlok, Jaspal and Vondran, Gary. (1997). Optimal Latency–
Throughput Tradeoffs for Data Parallel Pipelines. Annual
ACM Symposium on Parallel Algorithms and Architectures.
10.1145/237502.237508.

[9] Thies, W., Karczmarek, M., Amaransinghe, S.: StreamIt: A
language for streaming applications. In: 11th Int’l Conf. Compiler
Construction. pp. 179-96 (2002)

[10] Tyson, E., Buckley, J., Franklin, M., Chamberlain, R.D.: Accel-
eration of atmospheric Cherenkov telescope signal processing to
real-time speed with the AutoPipe design system. Nuclear In-
struments and Methods in Physics Research Sec. A: Accelerators,
Spectrometers, Detectors and Associated Equipment 595(2), 474-
9 (2008)

29

APPENDIX

PROOF OF LEMMA 5.1

Lemma: For 1 < i < m, the rate Ri of switches away

from ni per item consumed by ni is given by

Ri =
1

Gi−1

[
1

di−1
+

1

di
− 1

lcm(di−1, di)

]
.

Proof: We first observe that, because each input to ni

produces gi outputs, node ni needs ci/gi inputs to fill its

output queue. ni begins firing for the first time with a full

input queue and an empty output queue. The number of

items processed before returning to this initial state (full

input queue, empty output queue) must be a multiple

of both ci−1, the number of inputs needed to fill qi−1,

and ci/gi, the number of inputs needed to fill qi, so

that qi fills exactly when qi−1 empties (after which the

former empties and the latter fills). This event first occurs

after processing z = lcm(ci−1, ci/gi) items. Since gi =
Gi/Gi−1, we can rewrite z as follows:

z = lcm(ci−1, ci/gi)

= lcm(ci−1, Gi−1ci/Gi)

= Gi−1 lcm(ci−1/Gi−1, ci/Gi)

= Gi−1 lcm(di−1, di).

To compute the number of switches away from ni

during one cycle of processing these z items, we

make three observations. First, the output queue fills

z/(ci/gi) = z/(Gi−1di) times, each of which incurs

a switch. Second, the input queue empties z/ci−1 =
z/(Gi−1di−1) times, each of which also incurs a switch.

Third, only once (after processing all z items) do these

two conditions coincide. Hence, the total number of

switches Si away from ni in one cycle is given by

Si =
z

Gi−1di−1
+

z

Gi−1di
− 1.

Conclude that over one cycle from the initial state of

ni’s queues back to this state, the rate of switches away

from ni per item consumed by it is given by

Ri = Si/z

=
1

Gi−1di−1
+

1

Gi−1di
− 1

b

=
1

Gi−1

[
1

di−1
+

1

di
− 1

lcm(di−1, di)

]
.

Hence, Ri is also the asymptotic switching rate ob-

served for ni over an unbounded number of inputs to it.

QED

30

