CCCG 2020, Saskatoon, Canada, August 5-7, 2020

Convex Hull Complexity of Uncertain Points

Hongyao Huang*

Abstract

An uncertain point set U is a collection of compact re-
gions in the plane, and a realization of U is any point
set determined by selecting one point from each set in
U. Here we consider the problem of determining the
realization whose convex hull has the minimum number
of vertices possible. We prove that when U is a set of
n parallel line segments then the problem can be solved
in O(n?) time, but when the line segments can have ar-
bitrary orientations then the problem is NP-Complete.

1 Introduction

Uncertainty in computational problems has received sig-
nificant attention in recent years, as many real world
inputs are inherently noisy. Such problems have been
particularly well studied within computational geome-
try, as uncertainty naturally arises when for example
collecting locational data from the physical world.

In this paper we consider the complexity of the convex
hull, one of the most fundamental geometric structures,
in the context of uncertainty. Specifically, given an un-
certain point set U = {uq,...,u,}, where each u; is a
compact region in the plane, a realization of U is any
point set P = {p1,...,p,} such that p; € u; for all
1. Here we consider finding the realization of U whose
convex hull has the minimum number of vertices.

To the best of our knowledge, our paper is the first to
consider the minimum complexity of the convex hull in
such uncertain settings when measured by the number
of vertices. Previous papers have considered the prob-
lem when complexity is measured by perimeter or area.
Rappaport [20] computed the minimum perimeter con-
vex hull for line segments with a constant number of
orientations in near linear time. Mukhopadhyay et al.
[19] computed the minimum area convex hull for parallel
lines in near linear time. Subsequently, Loffler and van
Kreveld [18] did an extensive study on finding the real-
ization which either minimized or maximized the area
or perimeter of the convex hull, where different algo-
rithmic or hardness results were given depending on the
shape of the uncertain regions.

Various other geometric structures have also been
considered in uncertain settings, such as bounding boxes

*Department of Computer Science, University of Texas at Dal-
las, {hhuang, benjamin.raichel}@utdallas.edu. Partially sup-
ported by a NSF CAREER Award 1750780.

Benjamin Raichel*

[17], Delaunay triangulations [3, 16], Voronoi diagrams
[5, 7, 12, 15], terrains [6, 9], and more. When the uncer-
tain points have associated probabilities, the expected
complexity of the convex hull was previously studied
(see [11] and references therein). Related questions con-
cerning the convex hull have also been considered, such
as computing the probability a given query point is con-
tained in the convex hull [1], or computing the most
likely convex hull of probabilistic points [21]. More gen-
erally, Jorgensen et al. [13] considered the distributions
of various geometric quantities in probabilistic settings.

Our problem also relates to the traversal problem,
where given a set of convex regions in the plane, one
seeks a polygonal chain with some property which stabs
all the regions. When the regions are disjoint and or-
dered, Guibas et al. [10] gave efficient algorithms to
compute the minimum link polygonal chain stabbing
the objects in order. When the objects are parallel line
segments, Goodrich and Snoeyink [8] gave a near linear
time algorithm to compute a convex stabber if it exists,
that is a selection of a single point from each segment
such that the resulting set is in convex position. For
line segments with general orientations, Arkin et al. [2]
proved that determining the existence of such a convex
stabber is NP-hard. More recently, for the case when
the line segments have a constant number of orienta-
tions, Keikha et al. [14] gave a polynomial time algo-
rithm to determine if there is a convex stabber which
stabs at least k segments.

Our Contribution. Our main result is an O(n?) time
algorithm to compute the realization whose convex hull
has the fewest vertices when the uncertain regions are
parallel line segments. Without loss of generality, for
this case we can assume the segments are all verti-
cal. The behavior of our minimization problem differs
from the previously studied minimization problems for
perimeter or area [19, 20], and instead behaves more
similarly to the problem of maximizing the area, for
which LéfHler and van Kreveld [18] gave an O(n?) time
algorithm. There the authors argued one can assume
each segment is realized either at its top or bottom end-
point. This is no longer true for our problem, however,
we can argue that other than the leftmost and rightmost
segment, one can assume all segments defining vertices
of the convex hull are realized either at their top or bot-
tom endpoint. The differences between these two state-

3274 Canadian Conference on Computational Geometry, 2020

ments, makes achieving the same O(n?) running time
for our problem more challenging, particularly when it
comes to determining the leftmost and rightmost points.
Related challenges arise in the problem of maximizing
the number of stabbed segments in a convex traversal,
considered by Keikha et al. [14], for which the authors
give an O(n®) time algorithm. The O(n?®) running time
of our algorithm thus compares favorably, though such
a comparison is limited as the problems differ.

We complement our algorithmic result for parallel line
segments, by proving that the problem is NP-Complete
when the line segments can have arbitrary orientations.
Our reduction is inspired by the NP-hardness proof
in [18]. However, as our problem is a minimization
problem and theirs a maximization problem, additional
points must be added to keep the gadgets from collaps-
ing inwards to a trivial solution.

1.1 Preliminaries

We follow the uncertain point model of previous pa-
pers such as [18], where an uncertain point is mod-
eled by an uncertain region u, which is any compact
subset of the plane. For a set of uncertain regions
U = {u1,us,...,un }, a realization of U is any point set
P ={p1,...,pn}such that p; € u; for all i. Let Real(U)
denote the set of all possible realizations of U.

Given a point set P, let CH(P) denote the convex
hull of P, and let |C'H(P)| denote the number of vertices
of the convex hull, where a vertex of CH (P) is any point
q € P such that ¢ ¢ CH(P \ {q}).

Problem 1 Given a set U = {uy,us,...,un} of uncer-
tain regions, compute arg minpe peqi(vy |CH(P)].

Throughout we will use the following basic polygonal
chain definitions.

Definition 2 A polygonal chain is an ordered sequence
of points in the plane P = {p1,...,pn}. P is monotone
(resp. reverse monotone) if for all 1 < i < n, pit1
has larger (resp. smaller) x-coordinate than p;. P is
convex if for all 1 <i < n, p;—1,pi,Pi+1 defines a Tight
turn, that is p;+1 lies to the right of the line segment
Di—1p; when directed from p;—1 to p;. If P is convex
and monotone (resp. reverse monotone) then it is called
a top chain (resp. bottom chain). P is simple if for all
1 < j, DiPit1 and P;pj+1 do not intersect, except at p;11
when j =i+ 1. (Bottom and top chains are simple.)

Let Q be a point set, and let p; and p, respectively
be the leftmost and rightmost points in Q. CH(Q) is
described by a simple closed convex polygonal chain of
its vertices, which is composed of a top chain from p; to
D followed by a bottom chain from p, to p;.

For a point p in the plane, let p.x and p.y denote its
z and y coordinate, respectively. Let P = {p1,...,pn}

be a monotone polygonal chain, and let ¢ be any point
in the plane such that p;.x < g.x < p,.x. Let i be the
index such that the vertical line through ¢ intersects the
segment P;p;51- Then we say ¢ lies below (resp. above)
the monotone chain P if it lies below (resp. above) or
on the segment p;piy1.

2 Vertical Line Segments

In this section, we give a polynomial time algorithm for
Problem 1, when U is a set of vertical line segments S.
More generally, the algorithm works for any set of paral-
lel line segments, as rotation does not change |CH (P)|.
Throughout we let S = {s1,...,s,} denote a set of ver-
tical line segments, where for simplicity we assume no
two segments lie on the same vertical line, and the seg-
ments are ordered such that for ¢ < j segment s; lies to
the left of s;. For a segment s;, we use s; to denote its
top endpoint, and s; to denote its bottom endpoint.

Definition 3 Call a monotone polygonal chain P =
{p1,.-.,Pm} a positive chain with respect to S if, p; €
S1; Pm € Sp, and for all 1 < i < m, p; = S;L for some
7. Similarly, define negative chains.

Lemma 4 When U is a set of vertical line segments S,
there is an optimal solution to Problem 1, such that the
top chain of the convex hull is a positive chain and the
bottom chain is a negative chain.

Proof. Consider any set R € Real(S), and let T =
{t1,...,tm} be the top chain of CH(R). Let t; € T
be any vertex of the top chain other than t; and t,,,
and let t;L be the upper endpoint of the segment which
generated t;. Let Hy,q = CH(R) and Hy,e,, = CH((R\
t;) Ut;L). We now argue that |Hypew| < |Hora|- This will
prove the lemma, as one can then iteratively move each
vertex remaining on the top chain to its upper segment
endpoint until all top chain vertices are at their upper
segment endpoints, without ever increasing the number
of top chain vertices. A symmetric argument applies to
the bottom chain.

Observe that H,q and H,.,, are convex hulls of the
same set of points except where ¢; has been exchanged
for t;L. This implies that if we can argue that H,y C
H e,y then any vertex of H,,.,, (other than ;) must be a
vertex of H,q and thus |Hyew| < |Hogl as desired. Note
that CH(R\ t;) C Hpew, thus to argue Hojg € Hpew,
it suffices to argue t; € Hyew. To this end, note that
ti—1 and t;41 exist as 1 < i < m. So let z be the point
on t;_1t;11 lying directly below ¢;, i.e. with the same x
coordinate, and note that z is well defined as ¢;_1, t;,
and t;4q1 are consecutive on the upper chain T (which
is convex monotone). Moreover, z € Hpey as Hpew
contains both ¢;_1 and t;11. As t;L lies directly above

t; and z, we have that t; € z t;L C Hyew, proving the
lemma. [l

CCCG 2020, Saskatoon, Canada, August 5-7, 2020

The above lemma suggests a natural dynamic pro-
gramming strategy. Process the segments in S from left
to right, where at each segment if we decide it corre-
sponds to a hull vertex then we take its top or bottom
endpoint. If it does not correspond to a hull vertex,
then by mainitaining appropriate information about the
previously selected hull vertices, we will enforce that the
segment intersects the final hull, implying its realization
can be inside the hull.

Intuitively the structure we wish to maintain is the
top and bottom chains of the optimal convex hull. First,
observe that these chains cannot be computed indepen-
dently as selecting a vertex for the top chain affects
whether it can or needs to be selected for the bottom
chain. Thus as we go from left to right we will remem-
ber the last vertex selected from both the top and the
bottom chains. Enforcing convexity, however, would re-
quire remembering the previous edge not the previous
vertex, which would be more expensive. Thus instead
we look for positive and negative chains with the fewest
vertices, which may not be convex but must satisfy cer-
tain properties implied by convexity, and then we use
the lemma below to argue these properties are sufficient.
(Ultimately one can argue minimal such chains are in
fact top and bottom chains, though it is not necessary.)

Definition 5 Call a pair PT, P~ of positive and neg-
atiwve chains, a valid chain pair if the first and last ver-
tices of Pt are the same as those of P~, and for all
l<i<mn (i)ifsf € PT thens; ¢ P~ andifs; € P~
then s ¢ Pt, (ii) s; lies below PT, and (iii) s lies
above P~.

The proof of the following is in Appendix A.2.

Lemma 6 Let PY, P~ be a valid chain pair. Then
CH(PT U P™) intersects all segments in S.

By Lemma 4 we know that there is an optimal solu-
tion to Problem 1 such that the top chain of the convex
hull is a positive chain P+ and the bottom chain is a
negative chain P~. Note that all points in this optimal
realization of S lie below the top chain and above the
bottom chain of the convex hull. This implies that for all
1 <i<n,s; lies below Pt and s lies above P~, and
therefore P+, P~ is a valid chain pair. So let P+, P~ be
a valid chain pair minimizing |P"|+|P~|. By Lemma 6
CH(PT U P7) intersects all segments in S, and thus
there is a realization of S whose convex hull vertices all
lie in PTUP~. As clearly |Pt| + |P~| < |Pt|+ |P|,
we have the following.

Corollary 7 Let P, P~ be a valid chain pair which
minimizes |PT| 4+ |P~| over all valid chain pairs. Then
PTUP™ are the vertices of an optimal solution to Prob-
lem 1 on S.

By the above it thus suffices to compute the min-
imum sized valid chain pair, which can easily be ac-
complished using a standard dynamic programming ap-
proach. Specifically, the recursive Algorithm 1 main-
tains the previous vertex selected on the positive chain,
s;L, and the previous vertex selected on the negative
chain, s;, and then tries all possible choices for the
next vertex to the right (of both s; and s;), which if
on segment sy could be either s; or s, . Specifically, in
order for 5: to be considered as a possible next vertex
on the positive chain, by Definition 5, we must require

that for all 7 < & < k that s, lies below the segment

sisf. Assume we have a function POSITIVE(i) that

computes all such indices. For k to be a valid next in-
dex we also require k > max{i,j}. Thus if P denotes
the set of all possible next positive chain vertex indices,
then P = PoSITIVE(i) N {max{i,j} < k < n}. Simi-
larly define the set of possible next negative chain ver-
tices N = NEGATIVE(j) N {max{i,j} < k < n}, where
NEGATIVE(j) is defined analogously to POSITIVE(7). Fi-
nally, define ENDRIGHT(7, j) as the function which re-
turns true if we can extend the current chains directly
to the rightmost segment s, namely does there exist a
point 7 € s, such that s lies below the segment s;r
for i < z < n and s; lies above the segment s; 1 for

1<z <n.

Algorithm 1 Recursive Algorithm for Problem 1

Output: Min number of remaining valid chain pair
vertices or oo if no solution, given the previous pos-
itive and negative chain vertices were s;” and ;-

1: function MINCH(3, j)

2: P < PoSITIVE(i) N {max{i,j} < k < n}
3 N < NEGATIVE(j) N {max{i,j} < k <n}
4: value < oo
5: for k€ P do
6 value < min{value, 1 + MINCH(k, j)}
7 for k€ N do
8 value < min{value, 1 + MINCH(7, k) }
9: if ENDRIGHT(¢, j) then
10: value =1
11: return value

First we argue that when the leftmost segment s; is
a single point (or equivalently we know the point to
select on segment 1), then Algorithm 1 can be used to
to solve Problem 1 in cubic time. Afterwards, we argue
how to remove this assumption on s; while maintaining
the same running time.

Theorem 8 For a set S = {s1,...,Sn} of vertical seg-
ments, where the leftmost segment s1 is a single point,
Problem 1 can be solved in O(n?) time.

Proof. Assuming that POSITIVE(:), NEGATIVE(j),
and ENDRIGHT(4,j) all work as described

3274 Canadian Conference on Computational Geometry, 2020

above then Algorithm 1 sets MINCH(i,j) =
1 + min{mingep MINCH(k, j), mingey MINCH (¢, k) }
or 1 if we can connect directly to the rightmost
segment, where P and N are respectively the sets of
all possible next positive and negative chain vertices.
Thus MINCH(1, 1) + 1 computes the size of a minimum
cardinality valid chain pair, which by Corollary 7
corresponds to an optimal solution to Problem 1. Note
because s; is a single point, s; = sf = 57, thus all
subroutine calls are well defined, and MINCH(1,1)
will start the valid chain pairs on the same point as
required, where this point is counted by the +1.

As i and j both range over O(n) possible values,
this recursive algorithm can be turned into a dynamic
program with a table of total size O(n?). Assuming
POSITIVE(i), NEGATIVE(j), and ENDRIGHT(4, j) all run
in O(n) time, then each table entry takes O(n) time to
compute as outside those subroutines the code consists
of constant time operations and two disjoint for loops
going over P and N. This then gives an O(n?) run-
ning time overall as claimed. Thus what remains is to
describe how to implement POSITIVE(7), NEGATIVE(j),
and ENDRIGHT(4, j) in linear time.

First, we describe how to compute P’ = POSITIVE(%)
in linear time, from which one can then easily compute
P = PN {max{i,j} < k < n}. Fix an index k > 1,
and let X = {z | ¢ < ¢ < k}. Consider the ray from
si pointing vertically downwards. Each point s, for
x € X determines an angle with this ray, when rotat-
ing the ray counterclockwise. Let s, .. be the point
with the largest such angle from the index set X. If
s; lies above the line supporting the segment sjsﬁmm,

then s, .. and hence all s; for z € X lie below s; s}

as required for k to be in P’. Conversely, if s: lies be-

low the line supporting the segment sj Smax, then s,

would not lie below the line s;s;” and so k ¢ P’. Thus if
our algorithm maintains s, ,, as we increment k then in
constant time we can check if & € P/, an moreover s, .
can be updated in constant time per iteration by com-
paring the new bottom endpoint with the previous s, .-
Thus P’ = POSITIVE(7) can be computed in linear time,
as shown in Algorithm 2, in Appendix A.1. A similar
argument allows us to compute N’ = NEGATIVE(j) in

linear time as is also shown in Algorithm 2.

Now we describe how to compute ENDRIGHT(4, §) in
linear time. Specifically, we seek to determine if there
exists a point r = (r.z,r.y) on s, such that for all

+

1 < x < n, s, lies below s 7, and for all j < & < n,

s} lies above s;r. Note that since s, is a vertical
segment, r.z is fixed, and thus all of these constraints
can be written as linear constraints in the one variable
r.y. In particular, restricting r to lie on s, means that
s,y <ry < sb.y. All other constraints can be written
as satisfying a right or a left turn check, each of which

is expressible by checking the sign of the determinant
of a matrix whose three rows are of the form (1,s;),
(1,7), and (1,s;). (Note the cross terms in the deter-
minant are linear in the only variable r.y.) Thus we
are doing a feasibility check of a linear program with
O(n) constraints and one variable. This is easily solved
in O(n) time by checking whether the tightest lower
bound constraint on r.y lies to the left on the real line
of the tightest upper bound constraint on r.y.]

Now we remove the assumption that s; is a single
point. In Appendix A.3 we remark how the optimal
starting point must lie in a set of O(n?) canonical points
on s1, thus leading to an easy O(n°) time solution by
trying our above O(n?) algorithm on all such points.

Instead of reducing to the single point case, we de-
scribe an alternative approach which still runs in O(n?)
time. First, for now assume that the top and bot-
tom chains both have at least one interior vertex (i.e.
a vertex not on s or s,). While we cannot compute
MINCH(4, j) if either ¢ = 1 or j = 1, we can com-
pute MINCH(i, j) for all 1 < 4,5 < n in O(n?) time
by the approach of Theorem 8. Let STARTLEFT(4,j)
be defined similarly to ENDRIGHT(,7) above, except
that it checks in linear time if there is a point [on s;

such that s, lies below the segment E for 1 < <1

and s; lies above the segment ls;y for 1 <z < j. Let
T = {1 <4,j <n | STARTLEFT(i,j) = True}, then
3+min(; jyer MINCH(é, j) would find the minimum so-
lution over all 1 < 4,57 < n pairs that can connect di-
rectly to the leftmost edge s; (where the 4+3 counts s;L,
555 and the vertex on s1). Unfortunately, this does not
count all possible cases as initially there may be sev-
eral hull vertices on the top chain interior before the
first bottom chain interior vertex, and MINCH(i, j) as-
sumes s; and s; are consecutive in the left to right
order of vertices on the hull (i.e. we miss cases of the
form MINCH(1, j) and MINCH(7,1)). However, there
is a simple way to overcome this issue. Rather than try-
ing to directly connect to the left edge, just compute the
minimal chains to the left and then append them to the
minimal chains we computed on the right. Specifically,
let MINCHLEFT(%, j) be the same as MINCH(4, j) ex-
cept that it computes the minimal valid chain pairs to
the left (instead of the right) when the previous vertex
on the positive chain was sj and the previous on the
negative chain was s;. Note MINCHLEFT(3, j) uses
STARTLEFT(4,j) instead of ENDRIGHT(Z,j), and sim-
ilarly modifies POSITIVE(:) and NEGATIVE(j). There-
fore we return

2+) min {MINCHLEFT(4, j) + MINCH(4,)},
<z,7<n
where the +2 counts the vertices s; and s; . It is im-
portant to note here that MINCHLEFT(3, j) only selects
vertices to the left of min{é, j} and MINCH(4, j) to the

10

CCCG 2020, Saskatoon, Canada, August 5-7, 2020

right of max{4, j}. That is, both assume there are no
hull vertices on segments with indices between min{é, j }
and max{i, j}, and thus the above approach only works
if there exists an index pair ¢,j from the optimal so-
lution such that sj and s; are consecutive in the left
to right order of vertices on the hull, i.e. there are no
hull vertices on segments with indices between min{é, j }
and max{i, j}. However, it is easy to see this holds by
our assumption that there is at least one interior ver-
tex on both the top and bottom chains. As for the
running time, observe we can independently precom-
pute all MINCHLEFT(4, j) values in O(n?®) time and all
MINCH(7,) values in O(n?) time, and this dominates
the time to compute the above minimum over all index
pairs.

So what remains is to handle the case when the opti-
mal solution may not have an interior vertex on either
the top or bottom chain. We have the following lemma
for the case when the top chain has no interior vertex,
the bottom chain case is handled symmetrically. Due
to space the proof is in Appendix A.2.

Lemma 9 For a set S of n vertical segments, the op-
timal solution to Problem 1 where the top chain of the
convex hull is not allowed to have interior vertices can
be solved in O(n?) time.

By running all cases for whether the bottom or top
chain interiors are empty and taking the minimum we
thus have the following.

Theorem 10 For a set S of n vertical segments, Prob-
lem 1 can be solved in O(n?) time.

In Appendix A.3 we briefly remark how our approach
can be extended to ordered axis-aligned rectangles.

3 NP-Hardness for General Segments

We now argue that when the segments in S are not re-
quired to be vertical, then Problem 1 is NP-hard. The
proof is by reduction from the standard NP-hard prob-
lem CNF-SAT. Our reduction closely follows the ap-
proach of the NP-hardness proof in [18] for maximizing
the area of the convex hull for uncertain line segments.
However, our construction requires additional points in
the clause and variable gadgets, in large part since our
problem involves minimization and theirs maximization.

Let the given instance of CNF-SAT have n variables
and m clauses. Call an uncertain segment a certain
point if its two endpoints are the same. Consider a cir-
cle in the plane, and evenly place a set of certain points,
B = {b1,...,bp+m}, along this circle. Call these our
base points. Observe that if we conceptually remove
CH(B) then we are left with a set of disjoint circular
caps, €1, ..., Cnt+m, €ach bounded some segment b;b;41

and corresponding circular arc from b; to b;41, see Fig-
ure B.1 in Appendix B. We have one cap for each vari-
able and one for each clause. All remaining uncertain
segments we construct will have both their endpoints in
the same cap, or in two different caps when those caps
correspond to a variable and a clause that contains it.
Note that since all segment endpoints will lie in the cir-
cle, all base points are always vertices of the convex hull
in any realization. This conceptually separates the caps,
in the sense if you added a point in one of the caps, the
area it adds to the convex hull is confined to that cap.
The way we then connect a variable and clause cap is
by adding an uncertain segment between them.

First, consider the cap for a given clause L. We create
one uncertain segment for each literal in L. All these
segments share a common endpoint at the center of the
clause cap, the other endpoints are in the caps of the
respective variables. Let this common endpoint be de-
noted e and let b and b’ be the base points of the clause
cap for L. We add a convex chain of z certain points
from b to b’ such that all these points are contained in
CH({e,b,V'}). Here z an integer value, to be determined
shortly, but intuitively we require z be set large enough
so that one of the segments adjacent to e, must select e
as its realization to cover these z points. See Figure 3.1.

Figure 3.1: Clause cap with common endpoint e. Con-
vex chain of z certain points shown as squares.

Now consider the cap c for some variable z, with cor-
responding base points b and b'. Within ¢ we add a seg-
ment tf above and parallel to the segment bb’, where
ultimately selecting ¢ or f will correspond to setting the
variable to True or False, respectively. Let [be the max-
imum over all variables of the maximum of the number
of times that variable appears as a positive literal or ap-
pears as a negative literal. For the variable x we create
a convex chain of [“positive” vertices, P, and a convex
chain of [“negative” vertices, N. Specifically, we require
(i) every point of P is a vertex of CH(P U {b,V, f})
(ii) every point of N is a vertex of CH(N U {b,V',t})
(iii)) N € CH{{b,V, f}), (iv) P C CH({b,V',t}), and
(v) for any point v € tf if CH({b,¥’, v}) contains a point
of P (resp. N) it does not contain a point of N (resp. P).
See Figure 3.2. Recall that for each literal occurrence of
x we created an uncertain segment with one end fixed
at the corresponding clause. We now make the other
end of the uncertain segment a unique point in P or
N, depending on whether it appeared as a positive or

3274 Canadian Conference on Computational Geometry, 2020

negative literal in the clause. We place a certain point
at any unused points in P or N. Finally, for each point
u in either P or N, we create a small convex chain of z
certain points R, just below it, such that all the points
in R,, are contained in CH({b,b’,u}) and none are con-
tained CH({b,V', u'}) for any other point u’ in either P
or N.

Figure 3.2: Variable cap. Convex chains of z certain
points below points in P and N, as well as uncertain
segments adjacent to P and N, are not shown.

To argue correctness of the reduction, first suppose
there is satisfying assignment to the given CNF-SAT
instance. In this case we argue there is a realization of
our uncertain segments with < 2m+ (I+2)n vertices on
the convex hull. Specifically, for each variable x, if x =
True then in the cap for 2 we select ¢ for the segment ¢ f,
for each segment adjacent to a point u € N we select u,
and for each segment adjacent to a point in P we select
the opposite (i.e. clause) endpoint of the segment. Note
that by construction CH(N U{b,V’,t}) contains both P
and all the convex chains R, that we added for each u in
P or N, and thus in this case only ¢ and the [points in NV
are vertices of the convex hull within this cap. Similarly,
if x = False, we select f for the segment tf, for each
segment adjacent to a point v € P we select u, and
for each segment adjacent to a point in N we select the
opposite (i.e. clause) endpoint of the segment. Again, in
this case only f and the [points in P are vertices of the
convex hull within this cap. On the other hand, for the
clause caps, observe that because this was a satisfying
assignment for the CNF-SAT instance, we must have
selected the common end point in each clause cap for at
least one of its adjacent segments. Since for each clause,
with common endpoint e and base points b and ¥, the
convex chain of certain points in its cap is contained in
CH({e,b,b'}), the number of vertices on the convex hull
from this cap is just 1. Thus the total contribution from
all clause and variable caps is m + (I + 1)n, and since
the n + m base points are always on the hull, we thus
have < 2m + (I + 2)n vertices as claimed.

Now suppose there is no satisfying assignment for the
given CNF-SAT instance. In this case we argue that
by setting the parameter z to be large enough,the con-
vex hull of any realization has > 2m + (I 4 2)n vertices.
Specifically, if z = 2m + (I 4+ 2)n + 1, then clearly if any
one of the chains with z certain points is entirely on the
hull then the realization has > 2m + (I + 2)n vertices.
Define E as the set of all uncertain segments adjacent

11

to points in P or N from any variable cap, but realized
outside the corresponding variable cap. Consider one
of the chains with z certain points in some clause cap
with common end point e. In order for this chain to not
entirely appear on the hull, at least one of the uncertain
segments adjacent to e must be in F, and in particular
must have its realization somewhere on the e side of the
chain. In a minimal solution it can be assumed to be
at the point e itself, since as discussed above placing
it at e means this clause cap only contributes one ver-
tex, and clearly this cap must contribute at least one
vertex in any realization. Now consider a variable cap
with base points b and o’. By condition (v) from above,
for any point v € tf if CH({b,b’,v}) contains a point
of P (resp. N) it does not contain a point of N (resp.
P). Thus in a minimal solution we can assume tf is
realized at either ¢ or f. Suppose it is realized at t
(the f case is symmetric), and recall that N is not in
CH({t,b,b'}). Thus by the same argument as for the
clause caps, for every uncertain segment adjacent to a
point v € N, a minimal solution can be assumed to
select u as the realization, as the chain of z points R,
must be covered. (Recall if v has no adjacent segment
we already placed a certain point there.) More gener-
ally, in order for a solution to have < z vertices on the
convex hull, for any variable v, all uncertain segments
that it contributes to E are either all adjacent to points
in P (when ¢ is selected) or all adjacent to points in N
(when f is selected). So consider the collection of all ¢
and f endpoints chosen for all variable caps in a min-
imal solution, which thus determines which uncertain
segments can fall in E. This collection can be viewed as
a variable assignment for the given CNF-SAT instance,
and as this instance is not satisfyable, some clause in
this assignment evaluates to false. However, this im-
plies that for some common endpoint e in some clause
cap, there are no segments adjacent to e that are in F,
and hence the number of vertices on the hull is at least
z=2m+(+2n+1.

Thus if we can decide whether there is a realization
with < 2m + (I + 2)n convex hull vertices, then we can
decide the corresponding CNF-SAT instance. Also, it
is easy to see that the above uncertain segments can be
constructed such that all endpoints are rational points
of polynomial complexity (see [18]). Thus we have the
following theorem for the decision version of Problem 1.

Theorem 11 Given a set S of n uncertain segments
and an integer k, the problem of determining whether
there is a realization of S with < k vertices on the convex
hull is NP-Complete.

12

CCCG 2020, Saskatoon, Canada, August 5-7, 2020

References

[1]

[13]

P. K. Agarwal, S. Har-Peled, S. Suri, H. Yildiz,
and W. Zhang. Convex hulls under uncertainty.
Algorithmica, 79(2):340-367, 2017.

E. M. Arkin, C. Dieckmann, C. Knauer, J. S. B.
Mitchell, V. Polishchuk, L. Schlipf, and S. Yang.
Convex transversals. Comput. Geom., 47(2):224—
239, 2014.

K. Buchin, M. Loffler; P. Morin, and W. Mulzer.
Preprocessing imprecise points for delaunay trian-

gulation: Simplified and extended. Algorithmica,
61(3):674-693, 2011.

M. de Berg, O. Cheong, M. J. van Kreveld, and
M. H. Overmars. Computational geometry: al-
gorithms and applications, 3rd Edition. Springer,
2008.

A. Driemel, S. Har-Peled, and B. Raichel. On the
expected complexity of voronoi diagrams on ter-
rains. ACM Trans. Algorithms, 12(3):37:1-37:20,
2016.

A. Driemel, H. Haverkort, M. Loffler, and R. Sil-
veira. Flow computations on imprecise ter-
rains. Journal of Computation Geometry (JoCG),

4(1):38-78, 2013.

R. Dwyer. Higher-dimensional Voronoi diagrams
in linear expected time. pages 326-333, 1989.

M. T. Goodrich and J. Snoeyink. Stabbing parallel
segments with a convex polygon. Computer Vi-
sion, Graphics, and Image Processing, 49(2):152—
170, 1990.

C. Gray, F. Kammer, M. Loffler, and R. Silveira.
Removing local extrema from imprecise terrains.

Comput. Geom., 45(7):334-349, 2012.

L. J. Guibas, J. Hershberger, J. S. B. Mitchell, and
J. Snoeyink. Approximating polygons and subdi-
visions with minimum link paths. Int. J. Comput.
Geometry Appl., 3(4):383-415, 1993.

S. Har-Peled. On the expected complexity of ran-
dom convex hulls. CoRR, abs/1111.5340, 2011.

S. Har-Peled and B. Raichel. On the complexity
of randomly weighted multiplicative voronoi dia-
grams. Discret. Comput. Geom., 53(3):547-568,
2015.

A. Jgrgensen, M. Loffler, and J. M. Phillips. Geo-
metric computations on indecisive points. In Work-
shop on Algorithms and Data Structures (WADS),
pages 536-547, 2011.

[14] V. Keikha, M. van de Kerkhof, M. J. van Kreveld,
I. Kostitsyna, M. Lofler, F. Staals, J. Urhausen,
J. L. Vermeulen, and L. Wiratma. Convex par-
tial transversals of planar regions. In Interna-
tional Symposium on Algorithms and Computation

(ISAAC), pages 52:1-52:12, 2018.

N. Kumar, B. Raichel, S. Suri, and K. Verbeek.
Most likely voronoi diagrams in higher dimensions.
In Foundations of Software Technology and The-
oretical Computer Science (FSTTCS), volume 65
of LIPIcs, pages 31:1-31:14. Schloss Dagstuhl -
Leibniz-Zentrum fir Informatik, 2016.

M. LofHer and J. Snoeyink. Delaunay triangula-
tions of imprecise points in linear time after pre-
processing. In Proc. of 24th ACM Symp. on Comp.
Geom. (SoCG), pages 298-304, 2008.

[17] M. Loffler and M. J. van Kreveld. Largest bounding
box, smallest diameter, and related problems on
imprecise points. In Workshop on Algorithms and
Data Structures (WADS), pages 446-457, 2007.

M. Loffler and M. J. van Kreveld. Largest and
smallest convex hulls for imprecise points. Algo-
rithmica, 56(2):235-269, 2010.

A. Mukhopadhyay, C. Kumar, E. Greene, and
B. K. Bhattacharya. On intersecting a set of paral-
lel line segments with a convex polygon of minimum

area. Inf. Process. Lett., 105(2):58-64, 2008.

[20] D. Rappaport. Minimum polygon transversals of
line segments. Int. J. Comput. Geometry Appl.,

5(3):243-256, 1995.

[21] S. Suri, K. Verbeek, and H. Yildiz. On the most
likely convex hull of uncertain points. In European
Symposium on Algorithms (ESA), pages 791-802,

2013.

3274 Canadian Conference on Computational Geometry, 2020

A Vertical Line Segments

A.1 Missing Algorithm

The following algorithm is used as a subroutine in Al-
gorithm 1, and is described in detail in the proof of
Theorem 8.

Algorithm 2 Computes the set of valid positive or neg-
ative chain vertices
1: function POSITIVE(:)

22 P+«
3: S;umc A S;Jrl
4: for k< i+1 ton—-1do
5: if s above line through s and s,
then P <+ PU{k}
6: if s, above line through s and s,
then s, . + s
7 return P
8: function NECGATIVE(j)
9: N+
+ +
10: Smin Sit1
11: for k< j+1 ton—1do
12: if s, below line through s; and st
then N < N U {k}
13: if s: below line through s; and st
+ +
then s . < s/
14: return N

A.2 Missing Proofs

Lemma 6. Let PT, P~ be a valid chain pair. Then
CH(PT U P™) intersects all segments in S.

Proof. Note that PT and P~ both start on the same
point on s; and end on the same point on s,, and thus
clearly CH (Pt U P~) intersects s1 and s,. So fix some
segment s = s;, for 1 < i < n. From the lemma state-
ment, there exists a point p from the chain P+ which
lies directly above s~ (p may be a vertex or an interior
edge point). Similarly, define ¢ as the point from P~
which lies directly below sT. Thus we have ¢.y < sT.y
and s7.y < py. If sT.y < p.y then q.y < sT.y < py
and hence st € pg = CH({p,q}) C CH(PT UP™).
So assume otherwise, that s*.y > p.y, which combined
with our known inequality we have sT.y > p.y > s™.y.
That is, p lies on the segment s, and hence pNs=p €
CH(PTuP). O

Lemma 9. For a set S of n vertical segments, the
optimal solution to Problem 1 where the top chain of
the convexr hull is not allowed to have interior vertices
can be solved in O(n?) time.

13

Proof. First consider the case when the bottom chain
also has no interior vertices. Then we are looking for a
single segment Ir such that [€ sy, r € s, and which
intersects all segments in S. Thus we are checking the
feasibility of a linear program with O(n) constraints in
two variables, l.y and r.y, which can be solved in O(n?)
time by standard techniques (see [4]).

So now suppose the bottom chain has at least one
interior vertex. First we precompute for every possi-
ble starting and ending index pair the minimal length
negative subchain which could be in a valid chain pair.
Specifically, for any pair of indices 1 < 7 < j < n, let
MINNEG(4, j) be the minimum number of vertices of a
negative chain from s; to s; such that si lies above the
chain for all ¢« < = < j. Observe that we can easily com-
pute MINNEG (i, j) for all pairs 1 < i < j < n in O(n?)
time using a similar but simpler dynamic programming
approach as was done for MINCH(4, j) in Algorithm 1.
Namely, the algorithm follows by the recursive relation
MINNEG(4, j) = 1 + minge y MINNEG(k, j) where N is
the set of indices 7 < k < j, such that for all i« < z < k,
st lies above the segment s; s, . (N can be computed
in linear time, similar to NEGATIVE(j) in Algorithm 2.)

By Corollary 7, we know the optimal solution is
2 + ming; jyey MINNEG(4,7), where V' is the set of all
index pairs such that the minimal subchain computed
by MINNEG(%, j) can be extended into a valid chain pair
(such that the positive chain has no interior vertices).
Specifically, V' is the set of index pairs 1 <7< j < n
where there exists points [€ s; and r € s, such that
1) s lies above ls; for all 1 < z < 4, 2) s} lies

above s;r for all j < x < n, and 3) s, lies below Ir
for all 1 < # < n. Consider the first condition. Let
top = minj<,<; Int(s},s;).y, where Int(s},s;) de-

notes the point of intersection of the line supporting

s}Ls; with the vertical line supporting s;. Then con-
dition 1) is equivalent to requiring that l.y < top, and
so this condition can be encoded by simply replacing
the upper endpoint of s; with the point (s} .z, top) (if
top < sy .y then (4,5) ¢ V). Similarly, we can update
the lower endpoint of s, to handle condition 2) from
above. Updating the endpoints in this manner takes
O(n) time for any given pair (i, j).

Thus all that remains is to handle condition 3). Here
we require Ir lies above s, for all 1 < z < n, where
l € sy and r € s,. Let E denote the set of all relevant
endpoints, i.e. 57, s7, s, s and all s for 1 <z < n.
If such a segment [r exists, then we can translate it ver-
tically downwards until it hits a point in F, and then
rotate about that point until it hits a second endpoint in
E, and it will still be a valid solution. Thus it suffices
to limit our search to the set of all segments passing
through two points in E. Now there are a few cases.
First, suppose one of these two points is s; . Consider
the ray with base point s; and pointing vertically up-

14

CCCG 2020, Saskatoon, Canada, August 5-7, 2020

ward. Let s, be the first point hit in the set of all s for
1 < x < n, when rotating this ray clockwise. Clearly Ir
must pass above s, and if it does then it passes above
all s; for 1 < x < n. Thus in this case a valid Ir ex-

ists if and only if the line supporting s7 s, passes below
s, Thus we can check all cases when one of the two
points is s; in O(n) time, as this is how long it takes
to compute s, . A similar argument works for the cases
when one of the two points is si, s}, or s;,;. So now
suppose [passes through two points s, and s, , such
that 1 < g < h < n. Observe that for Ir to lie above
s, for all 1 < = < n, this is equivalent to requiring
Ir to lie above the top chain of the convex hull of all

such s . In other words, s; s, must define an edge of
the top chain of the convex hull. There are only O(n)
such edges, all of which can be computed globally once
in O(nlogn) time (i.e. they do not need to be recom-
puted for each MINNEG(4,5)). For each such edge in
constant time we can check whether the line supporting
it intersects 1 and s,,. Thus in O(n) time (ignoring the
global O(nlogn) top chain computation) we can check
all cases where I passes through two points s, and s, ,
such that 1 < g < h < n. So overall, for any pair (i,)
we can check in O(n) time whether it lies in V, and
thus by checking all pairs we can compute V in O(n?)
time.]

A.3 Missing Remarks

Remark 12 The case when s; is a vertical segment can
be directly reduced to the single point case in Theorem 8,
but the run time degrades. Imagine sliding a point p
down the segment s1. As we slide this point the behavior
of MINCH(1, 1) from Algorithm 1 only changes when
either the set P or N change, and specifically as we slide
p downwards the set P gets smaller and N larger. So
fix an index k which initially is in P, and consider the
moment when k leaves the set P. At this moment, for
some 1 < x < k, p must be the intersection of s1 with

the line supporting s;sg, namely if p went any lower

on s1 then sy would lie above psi. A similar statement
holds for changes in the set N. Thus consider the set of
all O(n?) intersection points of the segment sy with lines
supporting segments of the form sjs; for all pairs i,j.
As all possible values for P, N are realizable by starting
from some point in this canonical set of points, we can
obtain the optimal solution to Problem 1 by calling the
algorithm of Theorem 8 for each one of these points. As
the running time of each call is O(n3), this would give

an O(n®) time solution.

Remark 13 It is not hard to see that the approach in
Section 2 also gives a polynomial time algorithm for
Problem 1 when U is a set of axis-aligned rectangles that
can be appropriately ordered. Specifically, suppose you

are given the points l,r,t,b representing the leftmost,
rightmost, topmost, and bottommost vertices of the op-
timal convex hull. Similar to Lemma 4, one can argue
that there is an optimal solution where all the vertices
on the top chain between [and t are realized at the up-
per left corner of their rectangle, and similar statements
hold for the other corners.
ming, however, we need to be given an ordering, such
as the left to right order of the realizations of the rect-
angles. This would occur if, for example, the rectangles
are separated by vertical lines, i.e. rectangles Ry, ... Ry,
such that for any i < j, R; lies entirely to the left of
R;. Note there are only a polynomial number of pos-
sibilities for l,r,;t,b as their rectangles can be guessed,
and there are only a polynomial number of canonical po-
sitions that to need be considered for their realization in
each rectangle (similar to Remark 12). Thus this gives a
polynomial time algorithm when we have such an order-
ing, though the constant would be high without similar
optimizations as in the vertical segment case.

To use dynamic program-

B NP-Hardness for General Segments

Figure B.1: Certain points by, . ..bs, and caps ¢y, .. ., C5.

