
Toward Evaluating High-Level Synthesis Portability and
Performance between Intel and Xilinx FPGAs

Anthony M. Cabrera1, Aaron R. Young1, Jacob Lambert2, Zhili Xiao3, Amy An3, Seyong Lee1,
Zheming Jin1, Jungwon Kim1, Jeremy Buhler3, Roger D. Chamberlain3, Jeffrey S. Vetter1

1 Oak Ridge National Laboratory, Oak Ridge, TN, USA
2 University of Oregon, Eugene, OR, USA

3 Washington University in St. Louis, St. Louis, MO, USA
{cabreraam,youngar,lambertjb,lees2,jinz,kimj,vetter}@ornl.gov

{xiaozhili,a.an,jbuhler,roger}@wustl.edu

ABSTRACT
Offloading computation from a CPU to a hardware accelerator is
becoming a more common solution for improving performance
because traditional gains enabled by Moore’s law and Dennard
scaling have slowed. GPUs are often used as hardware accelerators,
but field-programmable gate arrays (FPGAs) are gaining traction.
FPGAs are beneficial because they allow hardware specific to a
particular application to be created. However, they are notoriously
difficult to program. To this end, two of the main FPGA manufac-
turers, Intel and Xilinx, have created tools and frameworks that
enable the use of higher level languages to design FPGA hardware.
Although Xilinx kernels can be designed by using C/C++, both
Intel and Xilinx support the use of OpenCL C to architect FPGA
hardware. However, not much is known about the portability and
performance between these two device families other than the fact
that it is theoretically possible to synthesize a kernel meant for
Intel to Xilinx and vice versa.

In this work, we evaluate the portability and performance of
Intel and Xilinx kernels. We use OpenCL C implementations of
a subset of the Rodinia benchmarking suite that were designed
for an Intel FPGA and make the necessary modifications to create
synthesizable OpenCL C kernels for a Xilinx FPGA. We find that
the difficulty of porting certain kernel optimizations varies, depend-
ing on the construct. Once the minimum amount of modifications
is made to create synthesizable hardware for the Xilinx platform,
more nontrivial work is needed to improve performance. However,
we find that constructs that are known to be performant for an
FPGA should improve performance regardless of the platform; the
difficulty comes in deciding how to invoke certain kernel optimiza-
tions while also abiding by the constraints enforced by a given
platform’s hardware compiler.

CCS CONCEPTS
• Computer systems organization → Reconfigurable Com-
puting; • Extreme Heterogeneity;

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
IWOCL’21, April 27–29, 2021, Munich, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9033-0/21/04. . . $15.00
https://doi.org/10.1145/3456669.3456699

KEYWORDS
FPGA, high level synthesis, Rodinia, Xilinx, hardware accelerator,
performance, portability
ACM Reference Format:
Anthony M. Cabrera1, Aaron R. Young1, Jacob Lambert2, Zhili Xiao3, Amy
An3, Seyong Lee1, Zheming Jin1, Jungwon Kim1, Jeremy Buhler3, Roger
D. Chamberlain3, Jeffrey S. Vetter1. 2021. Toward Evaluating High-Level
Synthesis Portability and Performance between Intel and Xilinx FPGAs.
In International Workshop on OpenCL (IWOCL’21), April 27–29, 2021, Mu-
nich, Germany. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3456669.3456699

1 INTRODUCTION
The use of hardware accelerators is increasing in prominence be-
cause Moore’s law falls victim to the end of Dennard scaling [1].
GPUs are now found in numerous computing systems, from the
majority of the 10 fastest supercomputers in the Top500 list [18] to
data centers and edge and embedded computers. At the same time,
a different type of hardware accelerator—the field-programmable
gate array (FPGA)—has expanded from traditional embedded roles
to more general-purpose computations [7].

FPGAs are a powerful tool, partly due to their ability to exploit
fine-grained parallelism specific to a given computation in hard-
ware. Because of their reconfigurable nature, FPGAs can exploit
more types of application-specific parallelism than GPUs or CPUs
with particular strength in pipelining dataflow computations. How-
ever, the benefits of FPGAs have historically been difficult to access
because they are considered challenging to program. Specifically,
the available languages for FPGA hardware synthesis, such as Ver-
ilog and VHDL, offer only a low level of abstraction at the level
of logic gates. Therefore, application designers must consider low-
level artifacts, such as timing specifications, when reasoning about
the correctness and efficiency of their implementations.

High-level synthesis (HLS) frameworks and tools help lower
the barrier to entry for FPGAs. HLS allows programmers to target
FPGAs by using languages at a higher level of abstraction, such as
C or C++. These languages allow programmers to focus less on the
low-level details of using an FPGA and more on their kernel’s func-
tionality. The HLS tools then perform transformations and analyses
that extract the parallelism inherent in a kernel and subsequently
synthesize performant FPGA hardware.

Intel and Xilinx, two primary FPGA vendors, offer suites of
tools for HLS. Both vendors’ tools leverage OpenCL as a way to
facilitate kernel execution and application management. Individual

https://doi.org/10.1145/3456669.3456699
https://doi.org/10.1145/3456669.3456699
https://doi.org/10.1145/3456669.3456699

IWOCL’21, April 27–29, 2021, Munich, Germany Anthony M. Cabrera et al.

kernel designs are expressed in OpenCL C. Because of OpenCL’s
portability, an OpenCL kernel that is authored for an Intel FPGA
should, in theory, be synthesizable for a Xilinx FPGA and vice
versa. However, in practice, although many HLS-based application
kernels exist for Xilinx and Intel hardware, little has been reported
about the actual portability of HLS kernels between these two
device families. Even if one kernel can be compiled to run correctly
on both platforms, performance portability between platforms is
far from guaranteed. Therefore, understanding the commonalities
between Intel and Xilinx HLS tools and the quirks peculiar to each
is a worthwhile topic for investigation. If performance portability
between these FPGA families can be achieved, then it would enable
application designers to confidently author their kernels once in
OpenCL C and achieve high performance with each family by using
its respective HLS tools.

This work presents an initial evaluation of portability and perfor-
mance of OpenCL C kernels that were originally architected for an
Intel FPGA reconfigured for a Xilinx FPGA. We use the Intel FPGA
implementations from Zohouri et al. [20] of the Rodinia benchmark
suite [8] as a baseline and investigate the process and impact of
porting these implementations to a Xilinx FPGA. Our work includes
the following contributions:

(1) detailing our port of a subset of FPGA kernel optimizations
from an Intel OpenCL to a Xilinx OpenCL specification,

(2) contributing to the sparse literature of using OpenCL C for
Xilinx platforms,

(3) presenting our experience of using Xilinx Vitis tools with
OpenCL C kernels, and

(4) evaluating Xilinx OpenCL kernel portability and perfor-
mance from the ported hardware kernels.

Sections 2 and 3 describe preliminaries and related work, Sec-
tion 4 presents methods, Section 5 gives results, and Section 6
concludes and explores opportunities for future work.

2 PRELIMINARIES
2.1 Vendor Tooling and Flows
Although our evaluation will focus on the Xilinx platform, we begin
by briefly comparing the Intel and Xilinx HLS tools. This section is
especially helpful for those who want to develop kernels for one
platform but have experience only with the other platform. The
Intel HLS tools are provided as part of the Intel FPGA software de-
velopment kit (SDK) for OpenCL, and the Xilinx tools are provided
through the Xilinx Vitis platform.

Both the Intel FPGA SDK for OpenCL and Xilinx Vitis supply a
hardware compiler, a vendor tool1 that facilitates:

• translating the OpenCL C specification of a kernel to a
register-transfer level (RTL) equivalent;

• synthesizing the RTL description into a netlist of logic prim-
itives, such as logic gates and registers;

• placing the resulting netlist into specific resources of the
target FPGA;

• routing the used resources on the FPGA; and
• generating a bitstream to program the FPGA to execute the
kernel.

1Actually, set of tools, but we will refer to the entire set as a tool.

The hardware compiler is responsible for abstracting the low-level
details of targeting an FPGA. This work refers to the Intel and Xilinx
hardware compilers by the names of their principal command-line
tools: aoc and v++, respectively. The extension of a compiled FPGA
bitstream for an Intel design is .aocx and .xclbin for a Xilinx
design.

2.2 Kernel Development Flow
When developing hardware for either platform, the vendor advises
testing a kernel’s functional correctness and estimating its perfor-
mance based on functional emulation or hardware simulation of
the RTL generated from the OpenCL C kernel. Iterative genera-
tion and testing of RTL is preferable to repeatedly generating a
new FPGA bitstream because placing and routing a design just
once can take many hours. In the Intel flow, aoc is invoked with
the options -march=emulator or -march=simulator to generate
a kernel binary file for software emulation or hardware simula-
tion, respectively. For Xilinx, the -t or --target flag is specified
to v++; -t=sw_emu is for software emulation and -t=hw_emu is for
hardware simulation.

Both hardware compilers generate interactive reports that can be
used to provide insight into kernel performance and opportunities
for optimization. Information provided in these reports includes
FPGA resource utilization and the analysis of loops within a kernel.
Intel generates this report by constructing an .html file that can be
opened in a browser, and Xilinx generates summaries that can be
navigated by using the vitis_analyzer graphical user interface
(GUI) application.

2.3 Designing Hardware Using OpenCL
OpenCL for FPGAs supports two kernel execution models: mul-
tiple work item (MWI) and single work item (SWI). OpenCL was
originally intended to support the MWI execution model, which
maps well to wide single instruction, multiple data (SIMD) archi-
tectures, such as GPUs. It divides the work in the kernel among
multiple threads, which are scheduled across one or more compute
units. FPGAs can be configured for MWI kernel execution, but
they also provide high-performance support for the SWI execution
model. This model uses a single thread on a single compute unit to
execute all the computation within a kernel, which is typically en-
capsulated within one or more nested loops. Using a single thread
allows the hardware compiler to construct a deep pipeline that
can support nontrivial data dependencies between loop iterations
while still enabling high throughput up to a level at which each
successive iteration of the loop can be initiated on every clock cy-
cle. This work focuses on kernels designed for the SWI execution
model because the SWI model often allows more advanced opti-
mizations, resulting in better overall performance, as evidenced
in prior work [12–14, 20].There are counterexamples to this in
which the MWI execution model outperforms the SWI execution
model [6, 11, 13], although these examples are few and often rep-
resent applications without complex memory dependencies that
might be more appropriate for GPU offloading.

Another consideration of FPGA design is the parameterization
of certain hardware features, known as hardware design knobs. For
some designs, it could be beneficial to enable the tuning of certain

Toward Evaluating High-Level Synthesis Portability and Performance between Intel and Xilinx FPGAs IWOCL’21, April 27–29, 2021, Munich, Germany

knobs, such as how large a particular buffer should be or how
many times a loop should be unrolled. Using HLS makes design
knob configuration as simple as specifying a macro definition to
the hardware compiler (e.g., -DBLOCK_SIZE = 2048). However,
finding the most performant configuration of these knobs for a
given design is a nontrivial task. Furthermore, related work shows
that porting OpenCL designs between two FPGAs supplied by the
same vendor still requires some tuning to find the locally optimal
knob configuration [5]. We explore retuning the knobs between
platforms to some degree in this work but leave a more rigorous
design space exploration to future work.

3 RELATEDWORK
The kernels that we used for our performance and portability eval-
uation come from the Rodinia benchmark suite created by Che et
al. [8]. The original intent of Che et al. was to provide a suite of
applications to evaluate heterogeneous computing systems across
a wide range of parallel computing communication patterns and ac-
celerator interfaces (e.g., OpenMP and OpenCL). Zohouri et al. later
adapted the OpenCL implementations of a subset of these kernels
and systematically modified them to become performant on Intel
FPGAs [20]. In this work, we extended the work done by Zohouri
et al. by porting these Intel OpenCL kernels to be synthesizable and
performant for Xilinx FPGAs.

Work done by de Fine Licht and Hoefler incorporates software
engineering design principles into HLS development [10]. These
works are somewhat similar to our work in that they try to account
for differences when targeting an Intel or Xilinx FPGA through a
C++ library they developed called hlslib. In contrast, our work
focused on using OpenCL C for Intel and Xilinx FPGA kernels to
evaluate the portability and performance of starting from a kernel
optimized for an Intel platform and then porting that specification
to a Xilinx platform.

Cabrera and Chamberlain also used the work done by Zohouri
et al. to evaluate performance and portability by building kernels
that were originally designed for an Intel FPGA connected via a pe-
ripheral component interconnect express (PCIe) card and targeting
the Intel HARPv2 platform, which combines a CPU and FPGA on
the same chip package [5]. Our approach is similar, but the focus
of this work was on evaluating performance and portability across
different FPGA vendors.

Zhang et al. used an OpenCL C kernel specification when archi-
tecting layers for a convolutional neural network [19]. However,
they did not port an existing OpenCL C specification that originally
targeted an Intel FPGA.

Brown and Dolman investigated optimization strategies for FP-
GAs’ data movement by profiling and optimizing a Xilinx HLS
implementation of a kernel that contained significant direct mem-
ory access transfers. [4]. Their target application was the Met Office
NERC Cloud model, an atmospheric model’s advection scheme that
involves 53 double-precision operations and works with a large
6.44GB dataset. However, this work differs from ours in that the
language used to architect kernels is not OpenCL C but C/C++
annotated with Xilinx specific pragmas. Two other recent works
by Brown evaluated the performance of Xilinx’s Vitis HLS tools
with the Nekbone mini-app and the Himeno benchmark [2, 3]. In

porting the Nekbone AX kernel from Fortran to Xilinx FPGAs via
Vitis, the author studied optimizations, including revising the al-
gorithm from von Neumann to dataflow form, optimizing the use
of memory banks, loop unrolling, and ping-pong buffering. Brown
also emphasized the importance of analyzing the Vitis scheduler
explorer’s logs in profile-guided optimization of Himeno. We also
used Xilinx Vitis in our evaluation and used the GUIs provided by
Vitis to more easily visualize kernel information, but we evaluated
kernels architected in OpenCL C.

On the Intel side, Sanaullah et al. explored strategies for optimiz-
ing OpenCL kernels for the Intel OpenCL FPGA compiler [17]. They
developed an approach that eschewed multiple-work-item kernels
in favor of pipelined computations on a SWI and divided compu-
tations into elementary steps to help Intel’s compiler recognize
opportunities for operation reordering, register usage, and pred-
ication. Their approach resulted in multiple order-of-magnitude
speedups over unoptimized kernels and speedups of up to several
times over prior OpenCL kernels targeting FPGAs. Many of the
optimizations suggested by their work should apply broadly to
FPGA targets. Our work explored how approaches similar to theirs
interact with a different platform, namely the Xilinx HLS compiler
and FPGA fabric.

Harris et al. investigated the utility of commonly used cache-
focused optimizations designed for traditional cores when execut-
ing on the Intel HARPv2 platform [11]. For thematrixmultiplication
application that they explored, the FPGA-deployed design consis-
tently outperformed the optimized CBLAS library by as much as
3.5×. For that application, the MWI paradigm performed better
across the board than the SWI paradigm.

To provide a higher level abstraction for FPGA programming,
Lee et al. proposed an OpenACC-to-FPGA framework that au-
tomatically converts an input OpenACC C code into an output
OpenCL code, which can be further compiled by the back-end
OpenCL hardware compilers [14]. Lambert et al. [12, 13] extended
the OpenACC-to-FPGA framework by implementing more FPGA-
specific optimizations—which were also inspired from the work by
Zohouri et al. [20]—but their framework supports only Intel FPGAs,
not Xilinx FPGAs. The work presented in this paper can serve as
a preliminary reference to extend the OpenACC-to-FPGA frame-
work for Xilinx support so that it can maximize the performance
portability of directive-based, high-level FPGA programming.

4 METHODS
To evaluate portability and performance, we leveraged the Intel
OpenCL FPGA implementations of the host and kernel code of
the Rodinia benchmarking suite [8] from Zohouri et al. [20] as a
starting point to build and run applications on the Xilinx platform.
For our experiments, we used a Xilinx Alveo U250 Data Center
accelerator card, which includes an XCU250 FPGA of the Xilinx
UltraScale+ architecture, a Gen3 x16 PCIe interface, and 64 GB of
DDR4, off-chip memory. We used the 2020.1 version of the Vitis
Core Development Kit.

4.1 Host-Side Code
The host-side code for an OpenCL application is responsible for
setting up the OpenCL context for one or more devices, allocating

IWOCL’21, April 27–29, 2021, Munich, Germany Anthony M. Cabrera et al.

space for device buffers, and enqueueing operations on the OpenCL
device (e.g., host-to-device data movement and enqueueing ker-
nels for execution). The structure of the host-side code for each
application remains largely the same. Because both the Intel and
Xilinx FPGAs are targeted by using OpenCL, the host code must
set up OpenCL constructs, such as the context and its associated
command queue. Selecting a Xilinx FPGA instead of an Intel FPGA
requires only a straightforward alteration on the host code.

One salient modification we made to the host code in Zohouri et
al. is leveraging C++-like objects and RAII (Resource Acquisition Is
Initialization). Because the host code can be compiled by using C++,
we designed an object-oriented approach to manage the application.
The variables associated with a particular application are encap-
sulated into one class, whereas the OpenCL constructs to handle
accelerator management and kernel execution are encapsulated
into another class. For example, in the pathfinder application, we
implemented the class PathfinderVars to hold the parameters for
the grid size and to initialize the grid to an initial state. We designed
the PV_OpenCL class to handle the initialization and management
of the Xilinx platform’s context and command queue. Taking an
object-oriented approach allows for an organizational structure that
makes the source code easier to read and the application testing
more user-friendly.

4.2 Applications
This section presents descriptions of each of the Rodinia applica-
tions used in this work. In all cases, our evaluation uses the input
problem sizes specified in the original OpenCL FPGA evaluation
done by Zohouri et al. [20].

4.2.1 Pathfinder. The goal of the pathfinder application is to
find the value of a minimum-weight path from the top row of
a 2D grid to the bottom row. This computation uses a dynamic
programming approach. Each element in the 2D grid is populated
with a nonnegative integer weight. The path to a given element, elt,
is determined by the taking the minimum value from the northwest,
north, or northeast element relative to elt. The program terminates
when the last row of the 2D grid has been visited.

4.2.2 CFD. The Rodinia computational fluid dynamics (CFD) ap-
plication is an unstructured grid benchmark that solves 3D Euler
equations for inviscid compressible flow [9]. This application com-
prises three kernels: compute step factor, compute flux, and time
steps. The kernels are highly compute-intensive with many single-
precision floating point operations, including addition, multiplica-
tion, division, and square root. The most expensive computation is
in the compute flux kernel, which calculates the artificial viscosity
and accumulates flux contributions across each face.

4.2.3 SRAD. The Rodinia speckle-reducing anisotropic diffusion
(SRAD) benchmark models an algorithm for isotropic diffusion on
ultrasound images. SRAD aims to smooth speckled imagery by us-
ing a speckle-reducing filter. Its implementation includes multiple
nested loops, array reductions, and stencil code patterns. These
more complex memory dependencies make SRAD an ideal candi-
date for FPGA execution.

4.2.4 HotSpot. The Rodinia HotSpot application is an iterative
partial differential equation solver for estimating processor temper-
ature and heat diffusion over time, based on a provided processor
“floor plan” and simulations of power measurements. Given initial
temperature and power data, HotSpot iterates over each cell and
applies a stencil operation.

4.3 Ported Kernels
Table 1 lists the particular kernel versions of each benchmark that
we used and ported in our evaluation. The version numbering
follows that of Zohouri et al. in which odd-numbered kernels use
the SWI execution model.

Table 1: List of ported kernels.

Application Baseline Best

pathfinder v1 v5
cfd v1 v5
srad v1 v5
hotspot v1 v5

For each application examined, we ported the baseline and most
performant kernels (baseline and best, respectively, in Table 1). The
baseline versions are SWI kernels in which there are no FPGA
optimizations supplied as hints to the hardware compiler aside from
use of the SWI model itself, which tells the compiler to construct
a deep pipeline. The most performant kernels are the versions
that were reported to give the best performance among all kernel
versions for each tested application in the original work by Zohouri
et al. (i.e., the best evaluated kernel when targeting Intel-based
Stratix V and Arria 10 FPGAs).

We evaluated the portability and performance of these kernels
by performing the minimum amount of modifications required to
port the annotated hardware optimizations for each kernel from
the Intel specification to Xilinx. We detail the specifics of porting
from Intel FPGA optimizations to Xilinx ones in Section 4.4. For the
pathfinder application, we further extended our initial port by
evaluating the addition of other optimizations as part of a design-
space search.

4.4 Porting Optimizations from Intel to Xilinx
To evaluate the performance of Intel kernels authored in OpenCL
C on a Xilinx platform, we must port the kernels originally written
for an Intel platform to a Xilinx platform. Xilinx supports authoring
kernels by using traditional C/C++, but we instead opted to use Xil-
inx’s OpenCL C support to maximize the reuse of the kernels from
the Intel platform and to test the portability of OpenCL C kernels
between the two platforms. Using C/C++ to architect kernels on
the Xilinx platform affords a more fine-grained control over the
resulting hardware than is possible with OpenCL C, but we leave
exploration of such re-architecting to future work.

Although using OpenCL C gives us a foundation for porting
kernels between the two platforms, the way in which optimiza-
tions are specified for each is different. Intel uses a combination
of specific programming patterns, #pragmas and __attributes__,

Toward Evaluating High-Level Synthesis Portability and Performance between Intel and Xilinx FPGAs IWOCL’21, April 27–29, 2021, Munich, Germany

to provide guidance to the hardware compiler, whereas Xilinx uses
only __attributes__. Additionally, although there is sometimes
a one-to-one mapping of kernel optimizations between platforms,
this is not always the case. The following sections detail the perfor-
mant FPGA optimizations we have encountered thus far, how they
are expressed for an Intel platform, and the changes we made to
express that same construct on a Xilinx platform.

4.4.1 Loop Unrolling. Loop unrolling is a common optimization
in FPGA programming. In both the Intel and Xilinx tools, loop
unrolling hints allow the hardware compiler to use additional re-
sources to replicate the loop body. In an SWI execution context, this
allows for more deeply nested pipelines, higher FPGA resource uti-
lization, and typically better overall performance. Intel and Xilinx
support unrolling loops through compiler hints. For Intel OpenCL
kernels, a loop is preceded with

#pragma unroll N.
For Xilinx, the previous pragma is replaced with

__attribute__((opencl_unroll_hint(N))).
In both cases, N is the loop unrolling factor. Therefore, the mapping
between loop unrolling for Intel and Xilinx OpenCL is straightfor-
ward. The hardware compiler will determine whether it is possible
to unroll the loop given available resources of the target FPGA.
Also, the Intel and Xilinx compilers will both attempt to analyze
and automatically unroll non-annotated loops, but in our experi-
ence, manually applying the directives and attributes results in
more consistent compilations and performance.

4.4.2 Shift Registers. Shift registers are a performant FPGA con-
struct that aid in efficient pipelining of loop iterations by storing
data to satisfy inter-loop dependencies and avoiding redundant
loads from global FPGA memory. How these shift registers are
constructed depends on the vendor. Both vendors support using
registers within the FPGA fabric. Depending on the size, the Intel
hardware compiler might try to synthesize a shift register by using
on-chip memories. Xilinx supplies a header file that allows the shift
register to be synthesized by configuring lookup tables in the FPGA
fabric to act as a RAM-based shift register; however, we are unable
to use this feature from OpenCL C code. Unlike the case for loop
unrolling, there is not a one-to-one mapping for inferring shift
registers between vendors.

We show a minimum example of how to infer a shift register for
Intel and Xilinx in Listings 1 and 2, respectively. In this case, the shift
register is used as a delay line. For Intel, a private buffer is declared
(line 1), and the size of this buffer is a compile-time constant. Shift
register shifting is orchestrated in the inner loop (line 5). For the
hardware compiler to infer a shift operation, the inner loop must
be unrolled by prepending a pragma, as described in Section 4.4.1.
The Xilinx setup is similar. Again, a private buffer must be declared,
but an additional attribute (line 2) must be appended to this buffer.
This attribute is a hint to the hardware compiler that the kernel
designer wants to completely decompose the buffer into a collection
of registers. The complete keyword indicates that the buffer must
be completely decomposed into a collection of registers, and the 0
argument implies that we are performing this decomposition among
all dimensions of the buffer. The inner loop that orchestrates the

shifting (line 6) is then unrolled, as described in Section 4.4.1, by
appending an attribute (line 5).

Toward Evaluating High-Level Synthesis Portability and Performance between Intel and Xilinx FPGAs IWOCL’21, April 27–29, 2021, Munich, Germany

to provide guidance to the hardware compiler, whereas Xilinx uses
only __attributes__. Additionally, although there is sometimes
a one-to-one mapping of kernel optimizations between platforms,
this is not always the case. The following sections detail the perfor-
mant FPGA optimizations we have encountered thus far, how they
are expressed for an Intel platform, and the changes we made to
express that same construct on a Xilinx platform.

4.4.1 Loop Unrolling. Loop unrolling is a common optimization
in FPGA programming. In both the Intel and Xilinx tools, loop
unrolling hints allow the hardware compiler to use additional re-
sources to replicate the loop body. In an SWI execution context, this
allows for more deeply nested pipelines, higher FPGA resource uti-
lization, and typically better overall performance. Intel and Xilinx
support unrolling loops through compiler hints. For Intel OpenCL
kernels, a loop is preceded with

#pragma unroll N.
For Xilinx, the previous pragma is replaced with

__attribute__((opencl_unroll_hint(N))).
In both cases, N is the loop unrolling factor. Therefore, the mapping
between loop unrolling for Intel and Xilinx OpenCL is straightfor-
ward. The hardware compiler will determine whether it is possible
to unroll the loop given available resources of the target FPGA.
Also, the Intel and Xilinx compilers will both attempt to analyze
and automatically unroll non-annotated loops, but in our experi-
ence, manually applying the directives and attributes results in
more consistent compilations and performance.

4.4.2 Shift Registers. Shift registers are a performant FPGA con-
struct that aid in efficient pipelining of loop iterations by storing
data to satisfy inter-loop dependencies and avoiding redundant
loads from global FPGA memory. How these shift registers are
constructed depends on the vendor. Both vendors support using
registers within the FPGA fabric. Depending on the size, the Intel
hardware compiler might try to synthesize a shift register by using
on-chip memories. Xilinx supplies a header file that allows the shift
register to be synthesized by configuring lookup tables in the FPGA
fabric to act as a RAM-based shift register; however, we are unable
to use this feature from OpenCL C code. Unlike the case for loop
unrolling, there is not a one-to-one mapping for inferring shift
registers between vendors.

We show a minimum example of how to infer a shift register for
Intel and Xilinx in Listings 1 and 2, respectively. In this case, the shift
register is used as a delay line. For Intel, a private buffer is declared
(line 1), and the size of this buffer is a compile-time constant. Shift
register shifting is orchestrated in the inner loop (line 5). For the
hardware compiler to infer a shift operation, the inner loop must
be unrolled by prepending a pragma, as described in Section 4.4.1.
The Xilinx setup is similar. Again, a private buffer must be declared,
but an additional attribute (line 2) must be appended to this buffer.
This attribute is a hint to the hardware compiler that the kernel
designer wants to completely decompose the buffer into a collection
of registers. The complete keyword indicates that the buffer must
be completely decomposed into a collection of registers, and the 0
argument implies that we are performing this decomposition among
all dimensions of the buffer. The inner loop that orchestrates the

1 int shift_reg[SR_SIZE]; // where SR_SIZE is a compile time constant

2 for (int n = 0; n < N; n++) {

3 shift_reg[SR_SIZE - 1] = input_arr[n];

4 #pragma unroll SR_SIZE - 1

5 for(int i = 0; i < SR_SIZE - 1; i++)

6 shift_reg[i] = shift_reg[i + 1];

7 }

Listing 1: Inferring a shift register using an Intel platform.

1 int shift_reg[SR_SIZE]

2 __attribute__((xcl_array_partition(complete,0)));

3 for (int n = 0; n < N; n++) {

4 shift_reg[SR_SIZE - 1] = input_arr[n];

5 __attribute__((opencl_unroll_hint(SR_SIZE - 1))

6 for(int i = 0; i < SR_SIZE - 1; i++)

7 shift_reg[i] = shift_reg[i + 1];

8 }

Listing 2: Inferring a shift register using a Xilinx platform.

shifting (line 6) is then unrolled, as described in Section 4.4.1, by
appending an attribute (line 5).

5 RESULTS
This section discusses the results of porting the Rodinia applications
with Intel-specific FPGA optimizations to a Xilinx FPGA platform.

5.1 MinimumModification Porting
Figure 1 shows the results of porting the baseline and most per-
formant kernel versions, as detailed in Section 4. The following
sections detail the process of porting each kernel to the Xilinx
platform.

Pathfinder CFD SRAD HotSpot
Benchmark

10 2

10 1

100

Sp
ee

du
p

R
el

at
iv

e
to

 B
as

el
in

e

1.00 1.00 1.00 1.00

0.02

1.00
1.36

0.25

Baseline
Minimal

Figure 1: Each application’s performance on the Xilinx plat-
form for the port of their respective baseline kernel and the
port with minimum modification of the most performant
kernel when targeting the Intel platform. The performance
is reported as speedup relative to the Xilinx baseline result.

5.1.1 Pathfinder. The pathfinder kernel version v1 was straight-
forward to port because there are no compiler optimizations to port.
For pathfinder kernel version v5, there are two hardware design

Toward Evaluating High-Level Synthesis Portability and Performance between Intel and Xilinx FPGAs IWOCL’21, April 27–29, 2021, Munich, Germany

to provide guidance to the hardware compiler, whereas Xilinx uses
only __attributes__. Additionally, although there is sometimes
a one-to-one mapping of kernel optimizations between platforms,
this is not always the case. The following sections detail the perfor-
mant FPGA optimizations we have encountered thus far, how they
are expressed for an Intel platform, and the changes we made to
express that same construct on a Xilinx platform.

4.4.1 Loop Unrolling. Loop unrolling is a common optimization
in FPGA programming. In both the Intel and Xilinx tools, loop
unrolling hints allow the hardware compiler to use additional re-
sources to replicate the loop body. In an SWI execution context, this
allows for more deeply nested pipelines, higher FPGA resource uti-
lization, and typically better overall performance. Intel and Xilinx
support unrolling loops through compiler hints. For Intel OpenCL
kernels, a loop is preceded with

#pragma unroll N.
For Xilinx, the previous pragma is replaced with

__attribute__((opencl_unroll_hint(N))).
In both cases, N is the loop unrolling factor. Therefore, the mapping
between loop unrolling for Intel and Xilinx OpenCL is straightfor-
ward. The hardware compiler will determine whether it is possible
to unroll the loop given available resources of the target FPGA.
Also, the Intel and Xilinx compilers will both attempt to analyze
and automatically unroll non-annotated loops, but in our experi-
ence, manually applying the directives and attributes results in
more consistent compilations and performance.

4.4.2 Shift Registers. Shift registers are a performant FPGA con-
struct that aid in efficient pipelining of loop iterations by storing
data to satisfy inter-loop dependencies and avoiding redundant
loads from global FPGA memory. How these shift registers are
constructed depends on the vendor. Both vendors support using
registers within the FPGA fabric. Depending on the size, the Intel
hardware compiler might try to synthesize a shift register by using
on-chip memories. Xilinx supplies a header file that allows the shift
register to be synthesized by configuring lookup tables in the FPGA
fabric to act as a RAM-based shift register; however, we are unable
to use this feature from OpenCL C code. Unlike the case for loop
unrolling, there is not a one-to-one mapping for inferring shift
registers between vendors.

We show a minimum example of how to infer a shift register for
Intel and Xilinx in Listings 1 and 2, respectively. In this case, the shift
register is used as a delay line. For Intel, a private buffer is declared
(line 1), and the size of this buffer is a compile-time constant. Shift
register shifting is orchestrated in the inner loop (line 5). For the
hardware compiler to infer a shift operation, the inner loop must
be unrolled by prepending a pragma, as described in Section 4.4.1.
The Xilinx setup is similar. Again, a private buffer must be declared,
but an additional attribute (line 2) must be appended to this buffer.
This attribute is a hint to the hardware compiler that the kernel
designer wants to completely decompose the buffer into a collection
of registers. The complete keyword indicates that the buffer must
be completely decomposed into a collection of registers, and the 0
argument implies that we are performing this decomposition among
all dimensions of the buffer. The inner loop that orchestrates the

1 int shift_reg[SR_SIZE]; // where SR_SIZE is a compile time constant

2 for (int n = 0; n < N; n++) {

3 shift_reg[SR_SIZE - 1] = input_arr[n];

4 #pragma unroll SR_SIZE - 1

5 for(int i = 0; i < SR_SIZE - 1; i++)

6 shift_reg[i] = shift_reg[i + 1];

7 }

Listing 1: Inferring a shift register using an Intel platform.

1 int shift_reg[SR_SIZE]

2 __attribute__((xcl_array_partition(complete,0)));

3 for (int n = 0; n < N; n++) {

4 shift_reg[SR_SIZE - 1] = input_arr[n];

5 __attribute__((opencl_unroll_hint(SR_SIZE - 1))

6 for(int i = 0; i < SR_SIZE - 1; i++)

7 shift_reg[i] = shift_reg[i + 1];

8 }

Listing 2: Inferring a shift register using a Xilinx platform.

shifting (line 6) is then unrolled, as described in Section 4.4.1, by
appending an attribute (line 5).

5 RESULTS
This section discusses the results of porting the Rodinia applications
with Intel-specific FPGA optimizations to a Xilinx FPGA platform.

5.1 MinimumModification Porting
Figure 1 shows the results of porting the baseline and most per-
formant kernel versions, as detailed in Section 4. The following
sections detail the process of porting each kernel to the Xilinx
platform.

Pathfinder CFD SRAD HotSpot
Benchmark

10 2

10 1

100

Sp
ee

du
p

R
el

at
iv

e
to

 B
as

el
in

e

1.00 1.00 1.00 1.00

0.02

1.00
1.36

0.25

Baseline
Minimal

Figure 1: Each application’s performance on the Xilinx plat-
form for the port of their respective baseline kernel and the
port with minimum modification of the most performant
kernel when targeting the Intel platform. The performance
is reported as speedup relative to the Xilinx baseline result.

5.1.1 Pathfinder. The pathfinder kernel version v1 was straight-
forward to port because there are no compiler optimizations to port.
For pathfinder kernel version v5, there are two hardware design

5 RESULTS
This section discusses the results of porting the Rodinia applications
with Intel-specific FPGA optimizations to a Xilinx FPGA platform.

5.1 MinimumModification Porting
Figure 1 shows the results of porting the baseline and most per-
formant kernel versions, as detailed in Section 4. The following
sections detail the process of porting each kernel to the Xilinx
platform.

Pathfinder CFD SRAD HotSpot
Benchmark

10 2

10 1

100

Sp
ee

du
p

R
el

at
iv

e
to

 B
as

el
in

e

1.00 1.00 1.00 1.00

0.02

1.00
1.36

0.25

Baseline
Minimal

Figure 1: Each application’s performance on the Xilinx plat-
form for the port of their respective baseline kernel and the
port with minimum modification of the most performant
kernel when targeting the Intel platform. The performance
is reported as speedup relative to the Xilinx baseline result.

5.1.1 Pathfinder. The pathfinder kernel version v1 was straight-
forward to port because there are no compiler optimizations to port.
For pathfinder kernel version v5, there are two hardware design
knobs that must be set at compile time when building the kernel:
BSIZE and SSIZE.

IWOCL’21, April 27–29, 2021, Munich, Germany Anthony M. Cabrera et al.

Because the pathfinder kernel performs a stencil operation,
an FPGA-specific shift register or sliding window can be used to
reduce redundant memory accesses, as mentioned in Section 4.4.2.
The minimum size of the shift register is constrained by the smallest
number of contiguous array elements required to encapsulate a
single iteration of the stencil operation. In the pathfinder applica-
tion, this equates to one complete row of the input array plus one
additional element. For large input data sizes, even one row of the
input dataset can be too large for implementation in a single shift
register. The BSIZE hardware knob controls this column size and
thus indirectly controls the resulting shift register size.

Although one output array element is assigned each iteration
by default, the second tuning paramenter SSIZE allows multiple
stencil operations per iteration. By allowing multiple operations
per iteration, we can reduce the total number of iterations and
increase the FPGA utilization. Increasing SSIZE can significantly
improve performance if the FPGA has enough resources to support
the hardware needed to perform multiple stencil operations and
the hardware compiler does not have to increase the loop initiation
interval or decrease the compute unit operating frequency.

In our initial port, we used themost performant parameters listed
from Zohouri et al. which sets BSIZE = 32, 768 and SSIZE = 32.
However, we found that the kernel using this parameterization
is not synthesizable immediately when building on Xilinx; the
hardware compiler only allows a buffer to be partitioned 1,024
times. Therefore, it is not possible for us to infer a shift register by
using the parameterization from Zohouri et al. To use the given
parameters, then, we do not partition the array. The other change
we made was to replace the Intel loop unrolling construct with the
Xilinx one, as detailed in Section 4.4.1. At this point, the kernel was
successfully built and executed on the Xilinx FPGA.

We found that the performance of the ported version of the most
performant kernel is 43 times slower than the baseline version.
Performance was expected to decrease without being able to infer
a shift register. However, we found from the output logs generated
by the hardware compiler that the main loop of computation in
this kernel was not able to be pipelined; thus, each iteration of
the loop must wait for the previous iteration to finish before it
can start. The main benefit of the hardware compiler inferring
a deep pipeline for kernel execution is that it enables the main
computation loop to issue a loop iteration (ideally) at every cycle.
Therefore, the performance portability of this kernel starting from
the Intel specification is poor. Improving the performance of this
kernel is detailed in Section 5.2.

5.1.2 CFD. The version v1 kernel of CFD is a straightforward SWI
port of the original MWI kernel used in the GPU OpenCL kernel.
The v1 version did not have any Intel-specific pragmas in the kernel.
Therefore, no changes where made to the v1 kernel to target the
Xilinx FPGA. The version v5 CFD kernel was the best performing
on the Intel Stratix V FPGA, according to Zohouri et al. This kernel
had various optimizations, including adding the restrict qualifier
to the input arrays and using a shift register-based reduction to
accumulate the flux contribution. The v5 version also had an unroll
pragma, which we changed to a Xilinx unroll hint attribute.

The generated compiler information for version v1 reported that
the Xilinx compiler was unable to flatten the main computation

loop because the outer loop was not a perfectly nested loop. It also
reported that therewas a data dependency in the loop, which greatly
reduced the loop iteration interval. The build reports for version v5
showed a lower loop initiation interval than the v1 kernel. However,
the main iteration loop was still unable to be flattened because the
the outer loop had nontrivial logic in the loop latch. Despite the
reported lower initiation interval, the two kernels took essentially
about the same amount of time to execute; the v5 kernel executed
slightly faster with a 0.23% reduction in kernel execution time.

Overall, the performance of directly porting CFD kernels from
Intel to Xilinx FPGAs was quite poor, with a 70× increase in ker-
nel execution time compared with Zohouri et al.’s work [20]. The
performance hit is not surprising when looking at the large loop
latencies and initiation intervals reported in the Xilinx build reports.
Further Xilinx specific optimizations and compiler hints that are
beyond the scope of this paper are needed to obtain state-of-the-art
performance.

Although we made minimal changes to the CFD kernels, we did
encounter a few challenges when porting CFD. The first challenge
was an undefined symbol when loading the .xclbin file during soft-
ware emulation. This error only appeared for software emulation
and did not appear during hardware emulation or when running
on hardware. After exploration, we determined that the undefined
symbol was from the calls to the built-in OpenCL math function
sqrt. The same error also occurred for other built-in OpenCL math
functions.We resolved this issue by updating the LD_LIBRARY_PATH
environment variable with the path to the missing library located
in the Vitis installation directory.

The second challenge we encountered was that build reports
would not open correctly in the Vitis Analyzer for the CFD applica-
tionwhenmultiple kernels were compiled simultaneously. The Vitis
Analyzer would report an error about an unexpected status found
in the file and would open the build report with an unknown status.
This issue can be avoided by compiling each kernel separately and
then linking them together during the linking step.

5.1.3 SRAD. Because the SRAD application also implements an it-
erative stencil algorithm, it shares many of the same FPGA-specific
optimizations and tuning parameters with the Pathfinder applica-
tion. The SRAD v1 kernel implements a straightforward approach
that extends the source Rodinia OpenCL kernel with restrict key-
words on input array variables and creates SWI kernels. The highest
performing kernel on the Intel platform version v5 combines the
five separate kernels into a single kernel and implements a shift
register-based reduction and shift register-based sliding window.

We make several changes for the minimally modified Xilinx
analog kernel of the Intel-based v5. We replaced an Intel-specific
attribute applied to the entire kernel,

__attribute__((max_global_work_dim(0)))),

with an analogous one recognized by the Xilinx platform,

__attribute__((reqd_work_group_size(1, 1, 1))).

We also replaced instances of #pragma unroll with the previ-
ously mentioned Xilinx-specific attribute and annotated the shift
register with the following Xilinx-specific attribute:

__attribute__((xcl_array_partition(complete, 0)))

Toward Evaluating High-Level Synthesis Portability and Performance between Intel and Xilinx FPGAs IWOCL’21, April 27–29, 2021, Munich, Germany

For this application, we were able to completely partition the
array used for the shift register operation and were not required to
do a block or cyclic partition. The Xilinx platform’s restrictions on
the size of the shift register array are not necessarily a limitation.
Although the Intel platform successfully compiles with larger shift
register sizes, the larger arrays can significantly degrade perfor-
mance, which is why the manual partitioning via the BSIZE variable
and logic is present, even in the Intel-optimized code. Finally, we
left the SSIZE replication factor at it’s default value of 2.

As shown in Figure 1, the SRAD v5 kernel represents the only
example in which directly porting an Intel-optimized kernel to use
analogous Xilinx constructs improves performance over a more
platform-agnostic baseline. This application demonstrates that di-
rectly translating constructs can improve performance over a base-
line in some cases, although we do note that the absolute per-
formance of the baseline and v5 SRAD underperform their Intel
counterparts. That is, there is still a significant amount of room for
Xilinx-specific improvement in these kernels.

5.1.4 HotSpot. Like Pathfinder and SRAD, the HotSpot applica-
tion implements an iterative stencil. Again, the v1 version of the
kernel is directly adapted from the original OpenCL, only adding
restrict keywords and switching to a SWI kernel. In the v5 ver-
sion, we again replaced the Intel-specific loop unrolling, kernel
dimension attributes, and directives with Xilinx-specific attributes.
Like Pathfinder, the default BSIZE value results in a shift register
that is slightly too large for complete partitioning by the Xilinx
compiler with a size of 1,032 elements against the restriction of
1,024. However, instead of defaulting to a blocking or cyclic parti-
tion scheme—which typically leads to poor performance, as shown
in the following section—for the results presented in Figure 1, we
instead reduced the value of BSIZE, which allowed full compilation
with complete partitioning on the shift register array. Like SRAD,
we again maintain the default SSIZE replication factor, which is 16
for the HotSpot application.

Figure 1 shows that, as with the Pathfinder application, directly
translating the Intel-specific optimizations to their Xilinx coun-
terparts in the v5 version degrades performance compared with a
more agnostic, less-optimized baseline. HotSpot represents another
example in which one-to-one kernel optimization ports do not lead
to portable performance.

5.2 Extracting More Performance
Because three of the four translated (v5) kernels failed to outper-
form the relative baseline implementations (v1), we chose one rep-
resentative application, Pathfinder, and performed a deeper ex-
ploration of potential Xilinx-specific optimizations by using the
Xilinx-ported v5 as a baseline.

Although the large default setting of BSIZE prohibited the com-
plete partitioning of an array to infer a shift register, we applied a
cyclic partitioning to the array [16] in an effort to partition the array
as much as possible and increase the local memory bandwidth since
partitioning the array introduces more read and write ports and
allows for more accesses to local memory. To do this, we append
__attribute__ ((xcl_array_partition(cyclic,PARTITION,1)))

to the buffer that is to act as a shift register. The argument cyclic
specifies that wewant the original array to be split into equally sized

blocks, and the original elements of the array are interleaved into
those blocks. The PARTITION variable specifies how many blocks
to use when partitioning the array. In this work, we created the
following design space for this variable:

PARTITION ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024},
where the PARTITION = 1 is the same as the minimal pathfinder
result from Figure 1.

The result of this design space sweep is shown by the bars start-
ing with “partition_” in Figure 2. We observe that partitioning the
array further degrades performance. The performance degrada-
tion can be broken into three regions starting at PARTITION =
2, 32, and 1, 024. At PARTITION = 32, the iteration latency increases
by 32,769 more cycles than when PARTITION = 16, in addition to
not being pipelined. Thus, each iteration costs an additional 32K
cycles. At PARTITION = 1, 024, the amount of BRAM used in the
design doubles from when PARTITION = 512. Because of this, the
hardware compiler was unable to meet timing for the default re-
quest of 300MHz because one or more timing paths was too long.
Thus, the clock frequency of the design was changed to 200.1MHz.

Another optimization employed was decreasing BSIZE so that a
proper shift register could be inferred. Based on this constraint and
the constraints placed by the problem, we created a design space of

BSIZE ∈ {128, 256, 512}.
In this case, we were able to infer a shift register, as specified in
Section 4.4.2. Additionally, we limit set SSIZE = 1 because trying
to compute more than one element per iteration adversely affected
the initiation interval of the kernel. The results of sweeping this
design space are shown by the bars starting with “sr_” in Figure 2.

We found that we achieved a minimum speedup over the base-
line result from Figure 1 of 2× when BSIZE = 128 and a maximum
speedup of 3× when BSIZE = 512. In addition to the shift regis-
ter that is inferred, there are two salient differences between this
modified version of the kernel and the version in which the par-
tition factor is swept. The first is that the main loop in the kernel
is fully pipelined. Although an iteration of the pipeline must be
launched every other cycle as opposed to every clock cycle, this is
a considerable improvement over previous versions that could not
be pipelined. The second difference is that the iteration latency for
this set of kernels is 72,000 cycles less than the minimum ported
version from Section 5.1. Although the performance benefit is not as
pronounced as the results found in Zohouri et al.’s work, this result
reinforces that FPGA constructs that are known to aid performance
(e.g., shift registers) are theoretically portable. However, porting
that construct across different FPGA vendors requires nontrivial
amount of work, making performance portability more difficult.

The last optimization we used was to employ predication as de-
tailed by Sanaullah et al. [17] when optimizing for Intel FPGAs. In
this optimization, conditional operations are avoided by executing
both paths of a conditional branch and only committing the result
that corresponds to the result of the conditional. Effectively, this
means computing both paths of an if-else statement and storing the
results in temporary registers. Depending on whether the condition
is true or false, the selected result is stored to the target variable or
memory location by using the ternary operator. To evaluate this
optimization, we used the kernel with the inferred shift register, as
outlined in the previous paragraph, and modified all of the if-else

IWOCL’21, April 27–29, 2021, Munich, Germany Anthony M. Cabrera et al.

ba
se

lin
e

pa
rti

tio
n_

1
pa

rti
tio

n_
2

pa
rti

tio
n_

4
pa

rti
tio

n_
8

pa
rti

tio
n_

16
pa

rti
tio

n_
32

pa
rti

tio
n_

64
pa

rti
tio

n_
12

8
pa

rti
tio

n_
25

6
pa

rti
tio

n_
51

2
pa

rti
tio

n_
10

24
sr

_1
28

sr
_2

56
sr

_5
12

sr
_t

er
n_

12
8

sr
_t

er
n_

25
6

sr
_t

er
n_

51
2

Optimization Configurations

10 2

10 1

100

Sp
ee

du
p

Re
la

tiv
e

to
 B

as
el

in
e

Baseline
Partition
SR
SR with Tern

Figure 2: Applying additional optimizations to the mini-
mally modified pathfinder v5 kernel.

statements to use predication. The results of this evaluation are
shown by the bars starting with “sr_tern_” in Figure 2. The results
show no performance benefit to explicitly using predication. This
is because the Xilinx hardware compiler already does this optimiza-
tion as part of an optimization pass when statically analyzing the
kernel source. To confirm this, we examined the compiler logs for
the previous set of kernels, which show that the hardware com-
piler is performing if-conversion on hyperblocks that it finds in
the kernel source. This is an important portability result because
predication that is handled by one vendor’s hardware compiler
might not be handled by the other’s and thus must be explicitly
expressed.

6 CONCLUSION
This paper presents our efforts toward evaluating the portability
and performance of kernels originally designed for an Intel FPGA
platform and porting them to a Xilinx FPGA platform. To per-
form this evaluation, we used a subset of applications from the
Rodinia benchmarking suite and their corresponding Intel OpenCL
FPGA implementations. We ported baseline SWI versions of the
Pathfinder, CFD, SRAD, and HotSpot computational kernels, as
well as the most performant versions of those kernels based on pre-
vious executions on an Intel platform to the Xilinx platform. Porting
the baseline versions is generally straightforward because there
are no compiler hints supplied to the hardware compiler. Porting
the versions of these kernels with more Intel-specific optimizations
proved to be more difficult. The minimum amount of modification
to port these kernels to the Xilinx platform varies. For some opti-
mizations, such as loop unrolling, there is a one-to-one mapping
for how to supply a hint to the hardware compiler to infer a par-
ticular optimization. For other optimizations (e.g., shift registers),
the amount of modification is nontrivial, based on constraints that
are embedded into the Xilinx hardware compiler. Achieving com-
petitive performance from these ported kernels also is nontrivial.
In our additional evaluation of optimizations for the Pathfinder
kernel, we show that some optimizations might significantly de-
grade performance. However, we also show that FPGA constructs

can perform well, regardless of the vendor specification, but might
require additional modification from the kernel designer.

6.1 Future Work
There are many different avenues of future work that we plan to
pursue. In the short term, there is still more work that can be done
to evaluate how portable and performance-portable OpenCL ker-
nels can be on Xilinx FPGAs. We plan to port more kernels from
the Rodinia benchmark suite to expose different optimizations that
we might not have encountered yet. For example, Xilinx enables
the specification of which off-chip RAM banks to use for certain
global buffers during the linking stage of the kernel build process.
There are Rodinia kernels that take advantage of this in their cor-
responding Intel implementations, and we plan to evaluate that
design choice, as well as others. Another short-term goal is to use
C/C++ instead of OpenCL to author kernels because this is a fea-
ture supported by Xilinx. These kernels use compiler pragmas in
a similar fashion to the Intel OpenCL kernels and provide a wider
range of fine-grained control for how hardware gets synthesized for
the FPGAs. Additionally, Xilinx provides header files and libraries
that can be added to kernels designed in C/C++ that are designed
to infer performant hardware constructs by the Xilinx hardware
compiler. Our long-term goal is to use the lessons learned from
our performance portability evaluation to automatically generate
optimized Xilinx HLS kernels. As shown in our work, OpenCL is
not inherently portable because it exposes the hardware details
to the programmers. To achieve peak performance for different
target accelerators, OpenCL code must be rewritten by using target
accelerator-specific optimization techniques. This hurts the pro-
ductivity and maintainability of the program. We plan to address
this issue by extending a higher level compiler framework like
OpenARC [15], which would allow us to generate optimized Xilinx
kernels alongside Intel kernels and kernels for CPUs and GPUs.

ACKNOWLEDGMENTS
The authors would like to acknowledge the ORNL Experimental
Computing Laboratory team for its support with the compute re-
sources and the software stack. We would also like to acknowledge
Elizabeth Kirby of ORNL for her helpful suggestions and edits to this
work. This research was supported in part by the following sources:
National Science Foundation (NSF) under grant CNS-1763503, De-
fense Advanced Research Projects Agency (DARPA) Microsystems
Technology Office (MTO) Domain-Specific System-on-Chip Pro-
gram, and the US Department of Energy (DOE) Advanced Scientific
Computing Research (ASCR) program.

This manuscript has been co-authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to
these results of federally sponsored research in accordance with
the DOE Public Access Plan.

http://energy.gov/downloads/doe-public-access-plan

Toward Evaluating High-Level Synthesis Portability and Performance between Intel and Xilinx FPGAs IWOCL’21, April 27–29, 2021, Munich, Germany

REFERENCES
[1] Mark Bohr. 2007. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper.

IEEE Solid-State Circuits Society Newsletter 12, 1 (Winter 2007), 11–13. https:
//doi.org/10.1109/N-SSC.2007.4785534

[2] Nick Brown. 2020. Exploring the acceleration of Nekbone on reconfigurable
architectures. In Proc. of IEEE/ACM International Workshop on Heterogeneous
High-performance Reconfigurable Computing (H2RC). IEEE, 19–28. https://doi.
org/10.1109/H2RC51942.2020.00008

[3] Nick Brown. 2020. Weighing up the new kid on the block: Impressions of using
Vitis for HPC software development. In Proc. of 30th International Conference on
Field-Programmable Logic and Applications (FPL). IEEE, 335–340. https://doi.org/
10.1109/FPL50879.2020.00062

[4] Nick Brown and David Dolman. 2019. It’s All About Data Movement: Optimising
FPGA Data Access to Boost Performance. In Proc. of IEEE/ACM International
Workshop on Heterogeneous High-performance Reconfigurable Computing (H2RC).
IEEE, 1–10. https://doi.org/10.1109/H2RC49586.2019.00006

[5] Anthony M Cabrera and Roger D Chamberlain. 2019. Exploring Portability and
Performance of OpenCL FPGA Kernels on Intel HARPv2. In Proc. of International
Workshop on OpenCL. ACM, 3:1–3:10. https://doi.org/10.1145/3318170.3318180

[6] AnthonyM. Cabrera and Roger D. Chamberlain. 2020. Designing Domain Specific
Computing Systems. In Proc. of IEEE 28th International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE. https://doi.org/10.
1109/FCCM48280.2020.00052

[7] Roger D. Chamberlain. 2020. Architecturally Truly Diverse Systems: A Review.
Future Generation Computer Systems 110 (Sept. 2020), 33–44. https://doi.org/10.
1016/j.future.2020.03.061

[8] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In Proc. of IEEE International Symposium onWorkload Characterization
(IISWC). IEEE, 44–54. https://doi.org/10.1109/IISWC.2009.5306797

[9] Andrew Corrigan, Fernando F. Camelli, Rainald Löhner, and John Wallin. 2011.
Running unstructured grid-based CFD solvers on modern graphics hardware.
International Journal for Numerical Methods in Fluids 66, 2 (2011), 221–229. https:
//doi.org/10.1002/fld.2254

[10] Johannes de Fine Licht and Torsten Hoefler. 2019. hlslib: Software Engineering
for Hardware Design. (2019). arXiv:1910.04436

[11] Steven Harris, Roger D. Chamberlain, and Christopher Gill. 2020. OpenCL
Performance on the Intel Heterogeneous Architecture Research Platform. In
Proc. of IEEE High-Performance Extreme Computing Conference (HPEC). IEEE.
https://doi.org/10.1109/HPEC43674.2020.9286213

[12] Jacob Lambert, Seyong Lee, Jungwon Kim, Jeffrey S Vetter, and Allen D Malony.
2018. Directive-based, high-level programming and optimizations for high-
performance computing with FPGAs. In Proc. of International Conference on
Supercomputing (ICS). ACM, 160–171. https://doi.org/10.1145/3205289.3205324

[13] Jacob Lambert, Seyong Lee, Jeffrey S Vetter, and Allen Malony. 2020. In-depth Op-
timization with the OpenACC-to-FPGA Framework on an Arria 10 FPGA. In Proc.
of IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 460–470. https://doi.org/10.1109/IPDPSW50202.2020.00084

[14] Seyong Lee, Jungwon Kim, and Jeffrey S Vetter. 2016. OpenACC to FPGA: A
framework for directive-based high-performance reconfigurable computing. In
Proc. of IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 544–554. https://doi.org/10.1109/IPDPS.2016.28

[15] Seyong Lee and Jeffrey S Vetter. 2014. OpenARC: Open Accelerator Research
Compiler for Directive-based, Efficient Heterogeneous Computing. In Proc. of 23rd
International Symposium on High-performance Parallel and Distributed Computing.
ACM, 115–120. https://doi.org/10.1145/2600212.2600704

[16] Xilinx Application Note. 2015. Increasing Local Bandwidth. https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/
calling-coding-guidelines/concept_increasing_local_memory_bandwidth.html.

[17] Ahmed Sanaullah, Rushi Patel, and Martin Herbordt. 2018. An empirically guided
optimization framework for FPGA OpenCL. In Proc. of International Conference
on Field-Programmable Technology (FPT). IEEE, 46–53. https://doi.org/10.1109/
FPT.2018.00018

[18] Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. 2020. Top 500
List. https://www.top500.org/.

[19] Shuo Zhang, Yanxia Wu, Chaoguang Men, Hongtao He, and Kai Liang. 2019.
Research on OpenCL Optimization for FPGA Deep Learning Application. PLOS
ONE 14, 10 (2019), e0222984. https://doi.org/10.1371/journal.pone.0222984

[20] Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, Motohiko Matsuda, and
Satoshi Matsuoka. 2016. Evaluating and Optimizing OpenCL Kernels for High
Performance Computing with FPGAs. In Proc. of International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). IEEE, 409–420.
https://doi.org/10.1109/SC.2016.34

https://doi.org/10.1109/N-SSC.2007.4785534
https://doi.org/10.1109/N-SSC.2007.4785534
https://doi.org/10.1109/H2RC51942.2020.00008
https://doi.org/10.1109/H2RC51942.2020.00008
https://doi.org/10.1109/FPL50879.2020.00062
https://doi.org/10.1109/FPL50879.2020.00062
https://doi.org/10.1109/H2RC49586.2019.00006
https://doi.org/10.1145/3318170.3318180
https://doi.org/10.1109/FCCM48280.2020.00052
https://doi.org/10.1109/FCCM48280.2020.00052
https://doi.org/10.1016/j.future.2020.03.061
https://doi.org/10.1016/j.future.2020.03.061
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1002/fld.2254
https://doi.org/10.1002/fld.2254
https://arxiv.org/abs/1910.04436
https://doi.org/10.1109/HPEC43674.2020.9286213
https://doi.org/10.1145/3205289.3205324
https://doi.org/10.1109/IPDPSW50202.2020.00084
https://doi.org/10.1109/IPDPS.2016.28
https://doi.org/10.1145/2600212.2600704
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_increasing_local_memory_bandwidth.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_increasing_local_memory_bandwidth.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/sdsoc_doc/topics/calling-coding-guidelines/concept_increasing_local_memory_bandwidth.html
https://doi.org/10.1109/FPT.2018.00018
https://doi.org/10.1109/FPT.2018.00018
https://www.top500.org/
https://doi.org/10.1371/journal.pone.0222984
https://doi.org/10.1109/SC.2016.34

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Vendor Tooling and Flows
	2.2 Kernel Development Flow
	2.3 Designing Hardware Using OpenCL

	3 Related Work
	4 Methods
	4.1 Host-Side Code
	4.2 Applications
	4.3 Ported Kernels
	4.4 Porting Optimizations from Intel to Xilinx

	5 Results
	5.1 Minimum Modification Porting
	5.2 Extracting More Performance

	6 Conclusion
	6.1 Future Work

	Acknowledgments
	References

