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ARTICLE INFO ABSTRACT

Keywords: Flexible mechanical metamaterials have been recently shown to support a rich nonlinear
Flexible mechanical metamaterials dynamic response. In particular, it has been demonstrated that the behavior of rotating-
Nonlinear dynamics square architected systems in the continuum limit can be described by nonlinear Klein-Gordon

Cnoidal waves equations. Here, we report on a general class of solutions of these nonlinear Klein-Gordon

equations, namely cnoidal waves based on the Jacobi elliptic functions sn, cn and dn. By
analyzing theoretically and numerically their validity and stability in the design- and wave-
parameter space, we show that these cnoidal wave solutions extend from linear waves (or
phonons) to solitons, while covering also a wide family of nonlinear periodic waves. The
presented results thus reunite under the same framework different concepts of linear and non-
linear waves and offer a fertile ground for extending the range of possible control strategies for
nonlinear elastic waves and vibrations.

1. Introduction

Mechanical metamaterials — engineered structures with mechanical properties governed by their geometry rather than composi-
tion — are attracting increasing interest as they facilitate behaviors not common in bulk, continuum media (Grima and Evans, 2000;
Bertoldi et al., 2017; Christensen et al., 2015; Clausen et al., 2015; Lakes et al., 2001). Within the realm of dynamics, these systems
are enabling control of mechanical waves in unprecedented ways (Bertoldi and Boyce, 2008; Wang et al., 2014). In the linearized
regime periodic architectures engineered to support spectral gaps in frequency provide opportunities for the design of a wide range
of functional devices, including wave guides and filters (Celli and Gonella, 2015), vibration insulators (Wang et al., 2016), energy
harvesters (Chen et al., 2014a; Sun et al., 2010) and cloaks (Biickmann et al., 2015).

Although linear structures exhibit many interesting dynamic behaviors, the range of attainable wave propagation properties
can be further expanded by considering nonlinear systems. As a first step in this direction, by applying a perturbation analysis,
amplitude-dependent dispersion relationships have been predicted for architectures with weakly non-linear stiffness (Narisetti et al.,
2010). Further, granular chains have been a convenient platform for highlighting amplitude-dependent phononic effects such as
amplitude-dependent bandgaps or wave velocity (Cabaret et al., 2012, 2015), and dispersive second harmonic generation (Sanchez-
Morcillo et al., 2013; Allein et al., 2020), among others (Melo et al., 2006; Theocharis et al., 2013). Finally, it has been recently
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Fig. 1. (a) Schematics of the mechanical metamaterial considered in this study. (b) Discrete model based on rigid units connected at their vertices by springs.

demonstrated that flexible mechanical metamaterials can support the propagation of a variety of localized highly non-linear pulses,
such as vector solitons (Deng et al., 2017, 2018b), topological solitons (Chen et al., 2014b; Deng et al., 2018a; Zhang et al., 2019)
and rarefaction pulses (Yasuda et al., 2019; Deng et al., 2019c). However, while previous studies have almost exclusively focused
either on periodic waves with small amplitude (i.e. linear and weakly non-linear waves) or non-linear pulses, the nonlinear dynamic
behavior of flexible mechanical metamaterials is still largely unexplored and little is known about the propagation of large amplitude
oscillatory traveling waves (Mo et al., 2019a).

Here, we present a framework based on cnoidal waves that provides a more complete and unified picture of the nonlinear
dynamics of flexible mechanical metamaterials and enables us to systematically investigate the propagation and stability of phonons,
solitons as well as large amplitude oscillatory traveling waves. To test our approach, we focus on a flexible metamaterial based on
the rotating squares mechanism (Grima and Evans, 2000; Coulais et al., 2018; Deng et al., 2017), whose dynamic response in the
continuum limit has been recently shown to be described by nonlinear Klein—-Gordon equations (Deng et al., 2017, 2018b,a). While
recent studies have focused on the solitary waves solution supported by this equation (Deng et al., 2017, 2018b,a), here we derive
analytical solutions in terms of cnoidal waves — a general family of nonlinear solutions of Klein—-Gordon equations — which reduce
to phonons and solitons in two different limits. We first derive the continuum governing equations for the considered system, and
focus on the effect of statically applied pre-compression. Then, we identify three forms of cnoidal wave solutions supported by
the metamaterial and investigate the dependency of their characteristics on the applied precompression, both in the prebuckling
and postbuckling regimes. Further, we numerically integrate the discrete and fully non-linear equations of motion to study each
solution’s stability, and ultimately obtain a phase diagram that identifies all stable solutions as a function of relevant wave and
system parameters.

2. Governing equations

In this study we consider a long chain of N pairs of rigid crosses each with length a, mass m and rotational inertia J that are
connected by thin and flexible hinges (see Fig. 1(a)). The chain is first subjected to a homogeneous static strain ¢, in the longitudinal
direction (while preventing deformation in the transverse direction) and then elastic waves are initiated from its left end.

As recently shown in several studies (Deng et al., 2017, 2018b,a, 2019,b; Coulais et al., 2018), the response of such system can
be accurately captured by modeling it as an array of rigid bodies connected via a combination of linear springs. Specifically, the
ith pair of crosses is considered to be rigid and to have two degrees of freedom: the normalized displacement in the x-direction,
U; (the physical displacement is aU;), and the rotation around the z-axis, 6; (see Fig. 1(b)). As for the hinges, they are modeled by
a combination of three linear springs: their longitudinal response is captured by an axial spring with stiffness k;; their shearing is
captured by an axial spring with stiffness k; their bending is captured by a torsional spring with stiffness k, (see Fig. 1(b)). When
adopting such a discrete model, the dynamic response of the chain can be obtained by numerically integrating the 2N coupled
differential equations obtained by writing the equations of motion for each top unit (see Appendix A — Eq. (49)). Further, the
discrete equations of motion can serve as a basis to derive analytical solutions. To this end, we first take their continuum limit and
assume that §; < 1 to obtain
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where X denotes the normalized position along the chain (the physical distance is X a), T is the normalized time (the physical time
is T\/Wk,) and U(X,T) and 6(X,T) are two continuous functions interpolating the discrete variables such that U(X =i,T) = U«(T)
and 0(X = i,T) = 0,(T). Moreover, K, = 4ky/(k;a®), K, = k,/k; and a = ay/m/(4J) are normalized parameters, which in this study
we choose as K, = 0.02, K, = 1.5x 107 and « = 1.8 (Deng et al., 2018b).

For the case of a quasi-static homogeneous deformation, the inertia terms can be neglected (i.e. 9°/dT? = 0) and both the rotation
of the crosses and the longitudinal strain are spatially constant (i.e. 6 = 6, and 0y U = ¢, where 6, and ¢, are the constant rotation
and longitudinal strain). It follows that Egs. (1) reduces to

03 + (3K, +2ey) 0, =0, (2)

which we can numerically solve to obtain the relation between the applied strain ¢, and the resulting rotation of the crosses 6,
(note that, since Eq. (2) is derived from Eq. (1), such relation is valid only for 6, < 1). We find that Eq. (2) possesses two solutions
with a bifurcation point at £ = -3/2K, = —2.25 X 1074, so that

-_— cr
0, =0, for e, > €7,

3 3)
Oy ==%4/-2 (ex, + EK")’ for e, < €.

Having analytically described the quasi-static response of the chain, we then seek solutions for the nonlinear waves supported
by the predeformed system. Toward this end, we introduce the traveling wave coordinate { = X —¢T (c being the normalized wave
velocity) into Eq. (1) and integrate Eq. (1a) with respect to { to obtain

oU 6%

— =-——+C,

/e 2(1 =c2)
where C is an integration constant, which can be determined by imposing 6§ and oU /d¢ in the far field as { — oo. Substitution of
Eq. (4) into Eq. (1b) yields

(€))

d*o
dc? =Ci6+C50°, 5)
where
40> 3 2a%c?
C = <C+—K ,and 3= ——F——r!, 6)
] -2 2 9) } (1 =)k —¢?)

with ¢y = ay/K; — K4 ~ 0.254. Note that C; and C; are coefficients with explicit expressions depending on the structural parameters
and the applied pre-deformation. Physically, C, represents the effective linear dispersion coefficient and C; the coefficient of cubic
non-linearity. Specifically, two different situations need to be considered.

* Case L: Prebuckling regime (¢, > £¢)
Prior to buckling,

6 — 0and oU /o, — €, as { — . @
It follows from Eq. (4) that

C=¢y, (8)
and Eq. (6) specializes to
2a2c?

3
(ES,+§K9>, and C3=—m. (9)

2
C = b
2 -2
0
Note that in this regime (Fig. 2(a)),

C,>0and C; <0 for ¢ €(0,¢p),
C,<0and C; >0 for ¢ € (¢, 1), (10)
Cy<0and C; <0 for ¢ € (1, ).

+ Case II: Postbuckling regime (¢, < £5/)
After buckling,

0 — 0, and oU /0 — €4 as { — . an
It follows from Eq. (4) that

czeft 3

C= m - EKg, (12)
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Fig. 2. C, and C; as a function of ¢ for (a) the prebuckling regime (Eq. (9)) and (b) the postbuckling regime (Eq. (13)).

and Eq. (6) specializes to
2(129?,02
=——  and
(1 =g —¢)

Note that in this regime (Fig. 2(b)),

2.2
C = _ 207 (13)

1 -G -

C,>0and C; <0 for ¢ € (0,¢y) U (1, 0)

(14)
C, <0and C; >0 for ¢ € (¢, 1).

Eq. (5) has the form of the Klein—-Gordon equation with third order non-linearity. While most recent studies have focused on its
solitary wave solutions (Dauxois and Peyrard, 2006; Deng et al., 2017, 2018b,a), it has also been shown that it supports cnoidal
wave solutions (Mo et al., 2019a). In the following we will investigate in details the cnoidal wave solutions supported by our system
in both the prebuckling and postbuckling regimes.

3. Cnoidal wave solutions

The study of cnoidal waves has a long history dating back to the late 1800s when they were discovered as solutions to the
Korteweg—de Vries equation (Whitham, 2011). Over the last century they have found applications in diverse fields from geophysical
fluid dynamics (Clarke, 1971) to nonlinear optics (Wilson et al., 2011); the literature on this topic is vast and we do not attempt to
review it here, but the interested reader may refer to some books (Samsonov, 2001; Remoissenet, 2013; Samsonov, 1994).

In this study we focus on Eq. (5) and find that it supports cnoidal wave solutions of the form

« dn solution:
_ ¢
0(g)_Adn< )k)

where dn(-|k) is a type of elliptical function whose shape is controlled by the elliptic modulus k (0 < k? < 1, see Fig. 3(a)).
Further, the wavelength of the dn wave solutions is related to k as

(15)

A=2K(k)W, (16)

where K(k) is the complete elliptic integral of the first kind. Note that for k — 0, Eq. (15) reduces to small amplitude
vibrations (green line in Fig. 3(a)) and a single peak emerges in the frequency spectrum (green line in Fig. 3(b)). This linear
monochromatic solution corresponds to the phonon limit. On the other hand, for k — 1, Eq. (15) recovers the single soliton
solution, 6(¢) = Asech({/W) (red line in Fig. 3(a)), and has a broad continuous frequency content (red line in Fig. 3(b)).
Finally, for intermediate values of k, Eq. (15) describes nonlinear periodic oscillations (blue line in Fig. 3(a)), so that the
frequency spectrum shows higher order peaks at frequencies that are multiples of the fundamental one, i.e. harmonics (blue
line in Fig. 3(b)). Furthermore, A and W are constants that can be determined by substituting the proposed solution into
Eq. (5). Such dn wave solutions have physical amplitude defined as
_\1—k2
A= 1 max 06)] - min [00))) = ——1 =4
The translational component of the solution, U(¢), is then found by substituting Eq. (15) into Eq. (4) and integrating it with
respect to ¢,

a7

18)

U@):/(_ o'y +C>d¢,=_A2WE(¢(%"‘))‘1“(%"‘>+C¢+D’
¢

A= 21 - 21/ 1 —k25n<%|k)2

4
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where ¢(-|-) is the Jacobi amplitude, E(-|-) denotes the incomplete elliptic integral of the second kind and D is an integration
constant (which corresponds to a rigid body motion). In practice, to generate cnoidal waves, a displacement given by Eq. (18)
with the desired k can be imposed by a wave generator at one end of a sample, as described in Mo et al. (2019a).

sn solution:

_ ¢
0() = Asn <W|k>, 19

which reduces to harmonic vibrations, 6(¢) = Asin({/W) for k — 0 (green line in Figs. 3(c) and (d)), to a topological soliton
0(¢) = A tanh({ /W) for k — 1 (red line in Figs. 3(c) and (d)), and to nonlinear periodic oscillations for intermediate values of
k (blue line in Figs. 3(c) and (d)).

Note that the sn solution has physical amplitude

A=A, (20)
wavelength
A=4K(k)W, 21)

and that, by integrating Eq. (4), the translational component of the solution, U({), is found as

2
U _A2WE(¢(%|/€>> 1—k2sn(%‘k) A% CceE+D 22
. 2(1—62>kzdn<i|k) Taea-ay P 22
W
« cn solution:
9(()=Acn<%‘k>’ .

which reduces to harmonic vibrations 6(¢) = Acos({/W) for k — 0 (green line in Figs. 3(e) and (f)), to a soliton 6(¢) =
Asech(¢/W) for k — 1 (red line in Figs. 3(e) and (f)) and to nonlinear periodic oscillations for intermediate values of k (blue
line in Figs. 3(e) and (f)).

Note that the cn solution has physical amplitude

A=A, 24)
wavelength
A=4K(k)W, (25)

and that, by integrating Eq. (4), the translational component of the solution, U({), is found as

AWE (¢ L]k [i ikz]
U =- (1) [ en (1) SAUZDE ey, 26)

21— e%)dn (%‘k) 1—k2sn (ﬂk)z 2k2(1 = c2)

Importantly, as recently observed for solitary pulses (Deng et al., 2017, 2018b), Egs. (15)—(18), (19)—(22) and (23)-(26) indicate
that the system considered in this study supports the propagation of cnoidal waves with two components — one translational and one
rotational — that are coupled together and copropagate. In the following, we focus on each solution separately, discuss in detail the
relation between A, W, ¢ and ¢, and investigate the stability of the identified wave solutions both in the prebuckling (i.e. £, > £5/)
and postbuckling (i.e. £, < &) regimes. Finally, we want to point out that, although other types of cnoidal wave solutions exist
(e.g., 1/dn, cn/dn and sn/dn), it can be shown that they all reduce to the cn, sn and dn solutions discussed here except for a phase

shift (see Appendix C for details).

4. dn solution

We start by investigating the dn wave solution defined by Eq. (15). Substituting Eq. (15) into Eq. (5), we find that the latter is
identically satisfied only if

2=-AW?2C; and 2 - k* = W2C,. 27)

Since the solutions given by Eq. (15) only exist if A and W are real, Eq. (27) indicates that our system can support the dn solution
only if C; > 0.
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Fig. 3. (a)-(b) dn wave solution: (a) solution and (b) frequency spectrum for k = 1, 0.9 and 0.01. (c)-(d) sn wave solution: (c) solution and (d) frequency
spectrum for k = 1, 0.9 and 0.01. (e)—(f) sn wave solution: (e) solution and (f) frequency spectrum for k = 1, 0.9 and 0.01. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

4.1. Prebuckling regime

Eq. (10) indicates that prior to buckling C; > 0 for ¢ € (0, ¢;). As such, in this regime the dn solution exists only for ¢ € (0, ¢)
(see yellow and green areas in Fig. 4(a)). By substituting Eq. (9) into Egs. (27) we obtain

(3 =2 -k?)

_c2
A:21c(

3
z m Egt+ = 9) and W =

2 (28)

4a2 (ss, + %Kg)

In Fig. 4(b) we show the evolution of both physical amplitude A (defined by Eq. (17)) and W as a function of the wave speed ¢
and the elliptic modulus k predicted by Egs. (28) for £, = 0. We find that W is mostly affected by ¢ and monotonically decreases
as the wave speed becomes larger. As for 4, it is found to become very large for k — 1 and ¢ — 0. However, it is important to
recognize that not all solutions described by Egs. (15) and (28) are stable. To investigate the stability of the derived dn solutions,
we numerically integrate the discrete equations of motion for the chain when applying the theoretical solution to the first unit (see
Appendix A for details). More specifically, in our numerical analysis we consider a chain comprising N = 2000 units (to minimize
boundary effects) and impose the following boundary conditions at the first unit (while leaving the other end free)

6, (T =0((=1-c(T-Tpy),

(29
U@ =U(=1-c(T-Ty) +eycT —Ty).

where 0 and U are the analytical solutions presented in Egs. (15)-(26) and T, is a time shift introduced to make sure the boundary
conditions are compatible with the initial ones. To characterize the stability of the dn solutions, we then compare the rotational
components predicted by the analytical and numerical solutions for the first two hundred units as
| 2
T)=— d|e,T),e(X,T)|, 30
err(T) 200;,[,()< )] (30)

where d [x, A] represents the distance between a point with coordinates x and the closest point on the curve A (D’Errico, 2013).
Further,

0,T) = [;W’é"m] and O(X.T) = [zxm,é(x,T)], (31)
where §,(T) and (X, T) are the numerical and analytical solutions normalized to vary between —0.5 and 0.5. We consider a solution
to be stable if err(7") < 0.001 in any time window [T, T + 100] for the entire duration of the simulation. Using this criterion, we find
that in the prebuckling regime the dn solution leads to stable waves only for k — 1 (see the green area in Fig. 4(a) and region
bounded by the green lines in Fig. 4(b)).

To further validate the predictions of our continuum model, in Fig. 4(c) we compare analytically (lines) and numerically
(markers) predicted rotations profiles at £, = 0 for different combinations of ¢ and k. In general, for the solutions that are predicted
to be stable we observe an excellent agreement between the discrete and continuum models. For k = 1 both analytical and numerical



B. Deng et al. Journal of the Mechanics and Physics of Solids 147 (2021) 104233

(a) Est = 0
1 ‘ \ no solution
o
08 | unstable solutions
M stable solutions — theory
-~ 06/ | simulation
o4 () 02, €=020,k=1  c=0.20,k=0.9999
| IS} - —_ .
0.2 ‘T I E
0 : ° <~ 0.1
0 0.5 1 15 o
C 5 0
c
(b) & 7=1019 T=4790

¢=0.06,k=0.9999 ¢=0.20,k=0.90

0 6
.
9 06 7=10611 7=1492
N - |
Il
IS : |
A,
0 il ]
0 100 200 0 100 200
00 Co
C

o
N

1

o
N

angle 4. [rad]

unit number i unit number i

c

Fig. 4. (a) Effect of ¢ and k on the dn wave solutions supported by the metamaterial in the prebuckling regime. (b) Evolution of A and W as a function of
c and k at £, = 0. (c) Numerical (markers) and analytical (lines) results for dn solutions propagating in an undeformed chain (i.e. ¢, = 0). Rotation profiles
for (¢, k) = (0.20, 1), (0.20, 0.9999), (0.06, 0.9999) and (0.2, 0.9). The circular markers in Figs. 4(a) and (b) indicate the points considered in our numerical
analysis, whose results are presented in Fig. 4(c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

results perfectly match and predict the propagation of a soliton (see the plot for ¢ = 0.20 and k = 1 in Fig. 4(c). As k is slightly reduced
to 0.9999, trains of solitons emerge which are captured by both the analytical and numerical solutions (see plots for k = 0.9999
and ¢ = 0.20 and 0.06 in Fig. 4(c)). However, these solitary waves become unstable as ¢ — 0 and ¢ — ¢, since for these limits the
physical amplitude A becomes too large (so that assumption # < 1 is violated) and width W too small compared to the unit cell
size, so that the continuum limit is violated (note that the continuum approximation breaks when W < 2 (Deng et al., 2018a) —
see Fig. 4(b) where the contour line W = 2 is highlighted). Finally, as k is further decreased the peaks become closer to each other
forming oscillatory waves that are not stable (see plots for k = 0.9 and ¢ = 0.20 in Fig. 4(c)). Such behavior may be attributed to a
modulational instability of the nonlinear system, typical of the nonlinear Schrodinger equation (Parkes, 1991; Dauxois and Peyrard,
2006). Although this instability could also be theoretically investigated, such analysis would require a large body of work, which
is beyond the scope of this paper.

4.2. Postbuckling regime

Eq. (14) indicates that in the postbuckling regime C; > 0 for ¢ € (0,¢;) and ¢ € (1, ), so that dn solution exists only for these
ranges of ¢ (see yellow and green areas in Fig. 5(a)). Note that the breakdown of the continuum solution as ¢ — ¢; and ¢ — 1 is due
to imaginary width. By substituting Eq. (13) into Egs. (27) we find that in these two regions

(2=c?)(1-c2) (2-k2
A=1/=2 6, and W = || 2 (1-e)@-k) (32)
2-k? 20262 2

In Figs. 5(b) and (c) we report the evolution of both A (defined by Eq. (17)) and W as a function of ¢ and k at £y =—-15% 1073
for both velocity intervals in which the solution exists. Note that since e, = —1.5x 1073 < £, Eq. (3) predicts all crosses to be
pre-rotated by an angle 6,, = +0.05 before the waves start to propagate. The plots indicate that in both intervals A is not affected
by ¢ and monotonically increases with k. On the other hand, W is mostly affected by the wave speed and monotonically decreases
with it for ¢ € (0, ¢;) and increases for ¢ € (1, o). Further, by using Eq. (30), we find that for ¢, = —1.5x 10~3 almost all dn solutions
with ¢ € (0,¢)) are stable (see the green area in Fig. 5(a) and plots in Fig. 5(d) for (¢, k) = (0.2, 1), (0.2, 0.71) and (0.2, 0.1)).
However, a small region of unstable solutions exists for k - 1 and ¢ — ¢,. These unstable solutions correspond to solitary pulses
with very small width, which violate the continuum assumption (see the plot for (¢, k) = (0.24, 0.98) in Fig. 5(d). Differently, for
¢ € (1, 00) only solutions with k — 0 are stable and these are characterized by small amplitude (see Fig. 5(c)). As a next step, we
then investigate whether such small amplitude cnoidal solutions correspond well to the linear waves limit. Toward this end, the
wave frequency in the limit of K — 0 can be obtained as

2ac20,
lim @ = lim 2Z¢ = e st . (33)

k=0 k-0 A \/[az (KS—KQ)_CZ] (1—52)
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Fig. 5. (a) Effect of ¢ and k on the dn wave solutions supported by the metamaterial in the postbuckling regime. (b)-(c) Evolution of A and W as a function
of ¢ and k at €, = —1.5x 107> (with 6, = +0.05).(d) Numerical (markers) and analytical (lines) results for dn solutions propagating in a buckled chain
(i.e. €, = —1.5x 107%). Rotation profiles for (¢, k) = (0.20, 1), (0.20, 0.71), (0.20, 0.10), (1.29, 0.10), (0.24, 0.98) and (1.29, 0.3). The circular markers in
Figs. 5(a)-(c) indicate the points considered in our numerical analysis, whose results are presented in Fig. 5(d). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

where 1 is the wavelength defined in Eq. (16). By expressing the wave speed as ¢ = @w/u (where u is the wave number), Eq. (33)
can be rewritten as

ot - [/42 + (K, — Kp)p® +4a29i]w2 +a? (Ky— Kq) ur=0, (34)

from which we obtain

o) = gm or w?® = %m, (35)
where

Dy = p? +a® (K, — Ky) u* +4a*6%,

D, = \/Dl2 —4a? (K, — Ky) u*.

Egs. (35) are the dispersion relations of the dn wave solution in the limit k — 0. In Fig. 6 we compare these dispersion relations
(dashed lines) to the ones derived directly from the linearized discrete equations of motion (solid lines — see Appendix B for the
derivations). We find very good agreement between the two in the long wavelength regime (for shorter wavelengths the continuum
assumption used to derive our analytical solution is not valid anymore). As such, these results indicate that the small amplitude
waves to which the dn solution reduces to for k — 0 are linear dispersive waves. Note that, since the rotational and translational
components are coupled for linear waves in the postbuckling regime (see Appendix B), the cnoidal wave solutions are able to recover
both branches at different velocity ranges.

(36)

5. sn solution

By substituting the expression of sn solution Eq. (19) into Eq. (5), we have
2k* = A’W2Cy and 1 + k* = —-W2C,. (37)

As such, Eq. (5) can support the sn solution only if C; <0 and C; > 0.
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Fig. 6. Dispersion relation derived from cnoidal wave solutions (dashed lines) and the linearized discrete governing equations (solid lines) for a buckled chain
with e, = —1.5x 107 (i.e. 0,, = £0.05).
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Fig. 7. (a) Effect of ¢ and k on the sn wave solutions supported by the metamaterial in the prebuckling regime. (b) Evolution of A and W as a function of
c and k at £, = 0. (¢) Numerical (markers) and analytical (lines) results for sn solutions propagating in an undeformed chain (i.e. £, = 0). Rotation profiles
for (¢, k) = (0.50, 0.05), (0.80, 0.03), (0.28, 0.31) and (0.50, 0.60). The circular markers in Figs. 7(a) and (b) indicate the points considered in our numerical

analysis, whose results are presented in Fig. 7(c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

5.1. Prebuckling regime

According to Eq. (10), prior to buckling, such a solution exists in the velocity range ¢ € (¢, 1) (see yellow and green areas in
Fig. 7(a)). Note that the breakdown of the continuum solution as ¢ — ¢, and ¢ — 1 is due to imaginary width and imaginary physical
amplitude, respectively. By substituting Egs. (9) into Egs. (37), A, W for this deformation regime are obtained as

2k [1—c2

(€ =1 +k2)
c V1+k?

(ES,+§K0) and W = .
40 (eS, + %Kg)

3 (38)

In Fig. 7(b), we show how W and A (defined by Eq. (20)) vary as a function of k and ¢ at &, = 0. The contour plots indicate that
A is large for k — 1 and ¢ — ¢, while W is mostly affected by the velocity c¢. Furthermore, when investigating the stability of the
sn solutions through Eq. (30), we find that only those with relatively small k (and, therefore, small amplitude) are stable (see green
area in Fig. 7(a)). To better understand the feature of sn solutions, we focus on waves characterized by four combinations of ¢ and
k and plot the evolution of : along the chain as predicted by the discrete simulations and Eq. (19) (see Fig. 7(c)). For the three
combinations of ¢ and k lying within the stable region (i.e. (¢, k) = (0.50,0.05), (0.80,0.03) and (0.28,0.31) — see circular markers in
Fig. 7(a)) we find that the theoretical predictions perfectly match with numerical results. Furthermore, the numerical results clearly
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Fig. 8. Dispersion relation derived from cnoidal wave solutions (dashed lines) and from the linearized discrete governing equations (solid lines) for a chain with
e, = 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

show that waves with k and ¢ outside the stable region are not supported by the system as they largely deviate from the sn solution
(see plot for (c, k) = (0.50,0.60) in Fig. 7(c)).

Next, since all stable sn solutions in the prebuckling regime are characterized k — 0 and A — 0, we study in detail the
characteristics of the supported waves in this limit. Again, we start by calculating their frequency in the limit £ — 0

e 2ac/e,; +3Ky/2

lim @ = lim = , (39)
k—0 k=0 2K (k)W 2 (Ks _ Ke)

Considering ¢ = w/u, Eq. (39) can be written as
o — a?u* (K, — Ky) — 4a® (65 + 3K,y /2) =0, (40)

from which we obtain

0= a\ i (K, Ky) +4 (e +3K,/2). (41)

with w/u = ¢ € (¢, 1). Importantly, we find that the dispersion relation defined by Eq. (41) overlaps with a portion of that derived
directly from the linearized discrete equations of motion (see Fig. 8). Therefore, these results indicate that, as for the dn wave
solution, the small amplitude waves to which the sn solution reduces in the prebuckling regime for k — 0 are linear vibrations
around 6 = 0. Note that the rotational and translational components are decoupled for linear waves in the prebuckling regime (see
Appendix B). As such the cnoidal wave solutions only recovers the rotational branch, since here we only focus on its rotational
component.

5.2. Postbuckling regime

It follows from Eq. (14) that in the postbuckling regime the sn solution exists for ¢ € (cy, 1) (see yellow and green areas in
Fig. 9(a)). Note that the breakdown of the continuum solution as ¢ — ¢;, and ¢ — 1 is due to imaginary width. By substituting
Egs. (13) into Eq. (37) we find that the latter is satisfied only if

2 @2 —-c®)(1-c2)(1+k2
A=/ _p, and W = =) (148 42)
1+k2 20’20?752

In Fig. 9(b) we report the evolution of A (defined by Eq. (20)) and Was a function of ¢ and k at ¢ = —1.5 x 103 (which
corresponds to 8, = +0.05). The plots show that A monotonically increases with k and is marginally affected by ¢, whereas W is
mostly controlled by c. By using Eq. (30) we then find that only the solutions with relatively large k for which A — @,, are stable
(see green area for stable solutions and yellow for unstable ones in Fig. 9(a)). As shown in Fig. 9(c), for k = 1 the cnoidal solutions
reduce to topological solitons (kinks) that bring all units from one stable state (characterized by +6,,) to another (characterized
by rotations in opposite direction —6,,) (Dauxois and Peyrard, 2006; Deng et al., 2018a) (see results for (c, k) = (0.5,1) and (0.9,1)
in Fig. 9(c)). Such topological solitons possess amplitude A = 0, while their width varies with velocity ¢ (see Figs. 9(b) and (c)).
As k is lowered, the sn solution first transforms into waves that periodically oscillate between two stable states (see results for
(c, k) = (0.5,0.9) in Fig. 9(c)) and then eventually become unstable (see results for (c, k) = (0.5,0.4) in Fig. 9(c)). Differently, for
¢ — ¢ the solutions with large k are unstable (see results for (c, k) = (0.28,0.91) in Fig. 9(c)) while ones with lower k are stable (see
results for (c, k) = (0.28,0.31) in Fig. 9(c)). Finally, we note that the lack of stability for solutions with k — 1 and either ¢ — ¢, or
¢ — 1 can be attributed to the small width of such waves (see Fig. 9(b)) for which the continuum assumption made to derive our
analytical solution is violated.
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Fig. 9. (a) Effect of ¢ and k on the sn wave solutions supported by the metamaterial in the postbuckling regime. (b) Evolution of A and W as a function of ¢ and
k at e, = —1.5x107% (with 0,, = +0.05). (c) Numerical (markers) and analytical (lines) results for sn solutions propagating in a buckled chain (i.e. £, = —=1.5x1073).
Rotation profiles for (¢, k) = (0.50, 1), (0.90, 0.71), (0.50, 0.90), (0.28, 0.31), (0.50, 0.40) and (0.28, 0.91). The circular markers in Figs. 9(a) and (b) indicate
the points considered in our numerical analysis, whose results are presented in Fig. 9(c). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

6. cn solution
Finally, we consider the cn solution defined by Eq. (23). By substituting it into Eq. (5), we find that the latter is satisfied only if
2k = —A’W?2Cy and 2k% — 1 = W2C,. (43)

As such, our system can support the cn wave solutions only if C; < 0. Further, for C; > 0 only solutions with 1/ \/5 < k<1 are
permitted, while for C; < 0 only solutions with 0 < k < 1/ \/5 are allowed.

6.1. Prebuckling regime

It follows from Egs. (9) and (10) that for this deformation regime the cn wave solutions are supported only if (i) ¢ € (0, ¢y) with
l/\/i <k<1land (ii) c e (1,00) with 0 < k < 1/\/5 (see yellow and green areas in Fig. 10(a)) and that for both cases

(= D2k - 1)

—c2
g2k J1-c (6:;+§K9> and W = (44)

=X - .
¢V 2ks-1 2 42 <£S, + %K9>

In Figs. 10(b) and (c), we show the evolution of A (defined by Eq. (24)) and W at &, = 0 and bound with a green line the
solutions that are stable according to Eq. (30) (see also green areas in Fig. 10(a)). We find that for ¢ € (0, ¢;) the cn solutions are
only stable for k — 1. For k = 1 the cn wave solutions reduces to solitary waves (see results for (c,k) = (0.15,1) in Fig. 10(d)).
As k is lowered, trains of solitons emerge (see results for (c, k) = (0.15,0.9999) in Fig. 10(d)), but they quickly become unstable as
neighboring peaks have opposite sign. Differently, for ¢ € (1, o) the cn solutions are stable only for k — 0 and are characterized
by small A (see Fig. 10(c)). As presented above for the dn and sn solutions, also in this case we verify that these small amplitude
cnoidal waves reduce to linear waves. To this end, we evaluate their frequency in the limit £ — 0,

2acy/e,; + 3Ky /2

limo = lim —25— = (45)
k=0 k—0 2K (k) W 2 _ (Ks _ Ke)

By expressing ¢ as ¢ = w/u, Eq. (39) can be written as
? — o? (Ky — Kg) — 4a? (e +3Ky/2) =0, (46)

11
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Fig. 10. (a) Effect of ¢ and k on the cn wave solutions supported by the metamaterial in the prebuckling regime. (b)-(c) Evolution of A and W as a function of
c and k at e, = 0. (d) Numerical (markers) and analytical (lines) results for cn solutions propagating in an undeformed chain (i.e. £, = 0). Rotation profiles for
(¢, k) = (0.15, 1), (0.15, 0.9999), (1.25, 0.02), (1.25, 0.03), (0.15, 0.99) and (1.25, 0.30). The circular markers in Figs. 10(a)-(c) indicate the points considered
in our numerical analysis, whose results are presented in Fig. 10(d). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 11. (a) Effect of ¢ and k on the cn wave solutions supported by the metamaterial in the postbuckling regime. (b) Numerical (markers) and analytical (lines)
results for cn solutions propagating in a buckled chain (i.e. €, = —1.5 x 1073). Rotation profiles for (¢, k) = (0.22, 1), (0.22, 0.9999), (0.22, 0.99) and (1.25,
0.90). The circular markers in Fig. 11(a) indicate the points considered in our numerical analysis, whose results are presented in Fig. 11(b). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

from which we obtain

a)=a\/;42 (K, — Kg) +4 (4 +3K,/2), (47)

with o/ = ¢ € (1,). Note that Eq. (47) is identical to Eq. (41) but since it is valid for a different velocity range it recovers
a different portion of the dispersion relations derived directly form the linearized discrete equations (see the red dashed line in
Fig. 8)).

12



B. Deng et al. Journal of the Mechanics and Physics of Solids 147 (2021) 104233

(a) solitons (b)
(w :l 0) prebuckling (es: = 0) postbuckling (es = —1.5 x 107%)
0.2 - .
=T M dn solution < e
2 015 M sn solution < 0.067
g [ cn solution ::
£ o1 £ 004
< <
E 8
2 0.05 linear waves 7 0.02
g (d=09 =
0 0
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
frequency w frequency w
Fig. 12. Stable cnoidal wave solutions in the w-A space in (a) the prebuckling regime (e, = 0) and (b) the postbuckling regime (e,, = —1.5 x 1073).

6.2. Postbuckling regime

It follows from Egs. (13) and (14) that for this deformation regime cn wave solutions are supported only if 1/ \/5 < k <1 and
¢ €(0,cy) U (1, ) (see yellow and green areas in Fig. 11(a)) and that

22, W (2—cn(1-c2) (2k2-1)
221" 20262 c2

. (48)

However, only solutions with k — 1 and ¢ € (0, ¢y) are found to be stable (see green area in Fig. 11(a)) and these correspond to
solitary waves and trains of solitons (see Fig. 11(b)).

7. Conclusions

To summarize, we have systematically studied the nonlinear dynamic behavior of flexible mechanical metamaterials. While
previous studies have mostly focused either on linear/weakly nonlinear small amplitude vibrations or large amplitude solitary pulses,
the proposed framework based on cnoidal waves (which over the last century have found applications in different fields of science
and engineering, Whitham, 2011; Clarke, 1971; Wilson et al., 2011; Samsonov, 2001; Remoissenet, 2013; Samsonov, 1994) not only
enables us to describe general nonlinear oscillations with both non-vanishing amplitude and nonzero fundamental frequency, but
also reduce to phonons and solitons under suitable limits. To further emphasize this point, in Fig. 12 we report all identified stable
dn, cn and sn wave solutions in the w-A space for both the prebuckling (i.e. ¢,, = 0) and postbuckling (i.e. £, = —1.5x 1073) regimes.
On the horizontal axis of these plots (i.e. A = 0) we identify the linear waves and recover their frequency band gaps. Differently, on
the vertical axis (for which w = 0) we identify the solitary waves and recover their recently observed amplitude gaps (Deng et al.,
2018b). Finally, moving away from both axes, we identify the supported periodic nonlinear waves that are found to be stable as
well as “amplitude—frequency gap” (i.e. regions in the w-A space in which nonlinear oscillations fail to stably propagate without
distortion — see white regions). Importantly, since the proposed approach is readily applicable to any mechanical system whose
response can be described by a nonlinear Klein—-Gordon equation, we envision it to be a powerful tool to explore the rich nonlinear
dynamic behavior of flexible metamaterials.
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Appendix A. Discrete equations of motion

The discrete equations of motion for the chain considered in this study are given by Deng et al. (2018b),

U, 1
7 =U; —-2U0;+U;_| — 5 (COSHHI —cosé‘,_]),
0%,
% Fz' =—Kp(0;y1 +40,+6,_)) + K cosb; [sin 0,41 +sin6;_| —2sin 6',-] (49)

sin 6; [2 (U,-H - U,.,l) +4—cosf; | —2cosf; —cosb,_;|,

where, to facilitate the analysis, we have defined the positive direction of rotation alternatively for neighboring crosses (i.e., if for
the ith top unit a clockwise rotation is positive, then for the (i — 1)th and (i + 1)th ones counterclockwise rotation is positive). For
a structure comprising N pairs of crosses Egs. (49) results in a system of 2N coupled differential equations, which we numerically
solve using the 2nd order Runge-Kutta method (via the Matlab function ode23).

Appendix B. Dispersion relation from the discrete equations of motion

The dispersion relation for our discrete system can be obtained by linearizing Eqgs. (49) around the predeformed configurations
defined by ¢,, and 6, (which are related via Eq. (3)). Let us consider a perturbation §; and U, of the rotation and displacement of
the ith unit,

0;=0,—0,, and U, =U, — e, i (50)

st
which takes the chain to a new equilibrium configuration where Egs. (49) are still satisfied. For such small perturbations

sin(§i+p +0,,) ~sinf +cos b §i+p, 1)
cos(B,, +0,,) ~ cos O, —sinby, G, .

where p € {—1,0,1}. Substitution of Eq. (50) and (51) into Egs. (49) yields

02[7,- _ _ - 1 . ~ ~
o2 = Vi 2Ui+ Uiy + 5 sindy, (01 =6i2).
1 9% ) . - - ) _ _
S = (Kycos” 0y, —sin* 0, — Ky) (0,4, +0,_y) — 2sin0,, (U —U,_;) (52)
K, cos? 0, sin’ 0 ~
-4 T+T+Kg+es,+l—c0505, 0;

which are the linearized equations of motion for around the predeformed configurations defined by ¢, and 6,,. Eqs. (52) can be
written in matrix form as

M, + Y KV, =0, (53)
p=—10,1
where
~ R
M=|' % . =|Us| kO[> O anakev=| '  Fysinby| (54)
0 a2 A [/ 0 R +2sin6,, -0
with
K cos20,, sin?6,,
R=4| =2 4 L 4 Ky +e,+1—cosby, |,
2 2 : ’ (55)
0 = K, cos? 0, —sin® 0, — K.
Next, we seek a solution of Egs. (53) in the form of a harmonic wave
®,(T) = D, () exp i(ui — &T), (56)

where o is the normalized cyclic frequency of harmonic motion (the dimensional cyclic frequency is w+/k;/m), u is the wavenumber,
1=1+v-1 and ﬁ)i is a vector that defines the amplitude of wave motion. Substitution of Eq. (56) into Eq. (53) yields

™M@, + Y KPP, o1 =0, (57)
p=—1,0,1

Eq. (57) defines an eigenvalue problem that yields two dispersion branches, (1) and ®®(u), each corresponding to a linear wave
mode.
For the prebuckling regime (for which 6, = 0) Eq. (57) admits analytical solution

K
o =/2-2cosu or 0? = a\/4 <7Y +Ky+ es,> —2(K; — Ky) cos . (58)

Differently, for the postbuckling (for which 6, # 0) Eq. (57) can only be solved numerically to obtain " and w®.
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Appendix C. Other types of cnoidal wave solutions

To demonstrate that cn, sn and dn are the only three independent cnoidal wave solutions of Eq. (5), here we show that other
cnoidal wave solutions such as 1/dn, cn/dn and sn/dn, reduce to those except for a phase shift.
1/dn solution: To begin with, with we consider a solution with form

A
00) = ——"—. (59)
dn ( W1/dn ! k)
By substituting of Eq. (59) into Eq. (5), we find that the latter is identically satisfied only if
A1 yan W dn>
1—k2=—wc3, and 2 - K2 = Wy,,2C). (60)
By comparing Egs. (60) to the corresponding constraints derived for the dn solution (Eq. (27)), we obtain
A =VI1-k2A
1/dn (61)
I/Vl/dn =W
Furthermore, since (Abramowitz et al., 1988)
. 1 _ dn(x—ZK(k)lk)’ Vx 62)
n(x|k) V1-k2
it follows that the solution given in Eq. (59) can be rewritten as
A1/dn ¢
— = Agydn (| —— |k ). 63
dn dn de—ZK(k)I (63)

dn ( I’Vlg/dn |k )
Eq. (63) clearly show that the 1/dn solution given in Eq. (59) is identical to the dn solution presented in Eq. (15) except for a phase
shift.
cn/dn solution: Next, we consider a solution with form

g

¢
cn (
Wen/dn

0(8) = Acnyan . 64
(7arle)
Wen/dn
By substituting of Eq. (64) into Eq. (5), we find that the latter is identically satisfied only if
2% = Acn/dnzu/cn/dnzc35 and 1+ K =- cn/dnzcl- (65)
By comparing Egs. (65) to the corresponding constraints derived for the sn solution (Eq. (37)), we obtain
Acn/dn =A and I/Vcn/dn =Ww. (66)
Furthermore, since (Abramowitz et al., 1988)
cn(x|k)
_— = K(k)|k), Vx, 67
k) sn(x+ K(k) k), Vx (67)
it follows that the solution given in Eq. (64) can be rewritten as
¢
cn |k
W n/dn
Acn/an =Asn<i+1<(k)|k>. (68)
dn ( < |k) w
I’Vcn/dn

Eq. (68) clearly show that the cn/dn solution given in Eq. (64) is identical to the sn solution presented in Eq. (19) except for a phase
shift.
sn/dn solution: Finally, we consider a solution with form

)

¢
sn (
Wsn/dn

0(%) = Agn/an ; (69)
dn ( ”/sf/dn k)
By substituting of Eq. (69) into Eq. (5), we find that the latter is identically satisfied only if
2% (k* = 1) = Agnsan” Winyan” C3» and 2k° — 1 = Wep /40" Cy. (70)
By comparing Egs. (70) to the corresponding constraints derived for the cn solution (Eq. (43)), we obtain
Asn/dn = VI-#2A and Wansan =W (71)
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Furthermore, since (Abramowitz et al., 1988)

sn(x|k) _ cn(x—K(k)|k)’ Vx (72)

dn (x|k> Vi

it follows that the solution given in Eq. (69) can be rewritten as

"(7ml)

Wsn/dn
Asn/dn I;,/d =Acn (% |k> (73)
dn ( Wsn/dn k)

Eq. (73) clearly show that the cn/dn solution given in Eq. (64) is identical to the cn solution presented in Eq. (23) except for a
phase shift.

Appendix D. Supplementary data
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2020.1042.33.
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