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Abstract

Harvester-mounted yield monitor systems are increasingly used to document corn (Zea 

mays L.) yield. The three most commonly used spatial estimation methods to convert point 

data gathered with yield monitors to regular, grid-based, raster maps include nearest neigh-

bor (NN), inverse distance weighting (IDW) and kriging. Seven spatial estimation methods 

(NN, IDW using 10, 20, 30 and all data points and kriging with exponential and Matérn 

covariance functions) were evaluated to determine the method that most accurately cap-

tures intra-field spatial variability of corn silage and corn grain yield in New York. Yield 

monitor data from two dairy farms and two grain operations were cleaned using Yield Edi-

tor prior to spatial analyses. The dataset included 7–10 years of data per farm for a com-

bined 7484  ha (245 fields) of silage and 6971  ha (253 fields) of grain. Data were split 

into training (80%) and cross-validation datasets (remaining 20% of the data). Normalized 

root mean squared error (NRMSE) was used to evaluate the accuracy of the spatial estima-

tion methods. Kriging with the Matérn covariance function resulted in the most accurate 

corn silage and grain yield raster maps both at the farm and field level. There were statisti-

cally significant differences in NRMSE between kriging with the Matérn isotropic covari-

ance function and all other models for both corn silage and grain, regardless of field size, 

year when data were obtained or farm that supplied the data. These results are beneficial 

to ensure accurate and precise spatial mapping of yield products toward optimized corn 

growth management.

Keywords Corn silage · Corn grain · Yield monitors · Yield mapping · Spatial estimation 

methods
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Abbreviations

CV  Coefficient of variation

EC  Electrical conductivity

GP  Gaussian process

GNSS  Global navigation satellite systems

IDW  Inverse distance weighting

NDVI  Normalized Difference Vegetation Index

NN  Nearest neighbor

NRMSE  Normalized root mean squared error

US  United States

Introduction

Corn is a major crop in New York, with more than 400 000 ha planted annually. In 2019, 

220 000 ha (55%) were combined for grain, while 180 000 ha (45%) were harvested for 

corn silage (USDA 2019a). Corn silage, typically grown in rotation with hay, is especially 

important to the dairy industry in New York; the state is ranked third in dairy production 

in the United States, following California and Wisconsin, and fourth in corn silage produc-

tion, following Wisconsin, California and Minnesota (USDA 2019b).

Being able to measure corn silage and grain yield at the field and within-field levels is 

important, as understanding yield and variability in yield over time allows for better inven-

tory management, production optimization and improved allocation of limited resources, 

such as seed and fertilizer (Long et al. 2016). With greater accessibility and affordability 

of yield monitor systems, more corn producers are now gathering spatially explicit yield 

monitor data with flow and moisture sensors that record readings every second as the har-

vester travels through a field. The availability of spatial data over multiple years allows 

for analyses of both spatial and temporal variability of yield (Kharel et al. 2019a). Such 

knowledge can help build actionable insights to better manage nutrients and increase yield 

(Maestrini and Basso 2018a).

Raw yield monitor data cannot be used right away, however, because the data not 

only reflect systematic yield variation within a field, but also measurement errors asso-

ciated with yield-mapping (Dobermann and Ping 2004; Vega et al. 2019). Kharel et al. 

(2019b) suggested that three main factors cause systematic measurement errors even 

when proper calibration procedures are implemented: (1) sensor delays, (2) velocity 

calibration and (3) human errors. Delays exist because the main sensors in yield moni-

tor systems (flow rate sensors, moisture sensors and global navigation satellite systems 

[GNSS] units) are embedded at different locations on harvest equipment, which causes 

flow and moisture values to be out of sync with corresponding GNSS readings. Velocity 

calibrations also heavily affect the data, as harvest equipment is calibrated for a certain 

velocity range (Arslan and Colvin 2002). Theoretically, measurement errors from inade-

quate velocity calibrations can be reduced by driving the equipment with constant travel 

speed, but due to irregular field shapes and variation in elevation of many fields in New 

York, such practice is highly impractical. Human errors occur, among others, when the 

operator does not raise the harvester head after completion of a pass, in which case the 

pass number will not be updated in the dataset. This can cause overlapping passes and 

hence artificially low yield around field edges. Thus, post-harvest yield data correction 
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and cleaning algorithms need to be applied to reduce measurement errors (Arslan and 

Colvin 2002; Blackmore 1999; Kharel et al. 2018, 2019b).

Yield monitor datasets consist of irregularly placed point estimates of grain flow, 

moisture and yield estimates; such irregularities are caused by differences in field shape, 

size and harvest patterns within a field. Researchers often use a rasterized yield map 

based on yield monitor data as a base layer in delineating zones for better field and 

resource management (Basso et  al. 2007; Blackmore 2000; Brock et  al. 2005; But-

tafuoco et al. 2017; Diker et al. 2004; Hornung et al. 2006; Kharel et al. 2019a; Kho-

sla et  al. 2008) or as a means to understand variability in yield with regards to soil 

type, elevation and other topographical information (Anderson-Cook et  al. 2002; Cox 

and Gerrard 2007; Kitchen et al. 1999; Maestrini and Basso 2018a, b; Yang et al. 2001) 

(Table 1). Yield data are typically not collected at the same GNSS locations each year, 

but once point data are translated into raster maps using regular grid cells, temporal 

yield variation can be analyzed with multiple years of data (Kharel et al. 2019a). Inde-

pendent of use, point data need to be translated into regular grids (raster maps) to gener-

ate yield maps for farmers, especially where point maps are irregular and gaps in yield 

data exist.

The three most common approaches to developing raster maps from point data include 

nearest neighbor (NN), inverse distance weighting (IDW) with varying number of near-

est points and kriging (Table  1; Ross et  al. 2008). As the name suggests, NN uses the 

yield value of the nearest observation to estimate yield while IDW uses a weighted aver-

age of nearest neighbors, with weights proportional to the inverse distance. Assuming 

that there are n set of co-ordinates, z1, z2,… , zn and their yield values, denoted as Y
(
zi

)
 

for i ∈ {1,… , n} , at those co-ordinates, to estimate yield at co-ordinates x where the yield 

value is not known, the estimated yield value at location x , denoted as 
−

Y (x) can be calcu-

lated as follows:

where d
(
zi, x

)
 represents distance between co-ordinates z

i
 and x and n is some natural 

number. In this case, n was set to 1. By weighting sample observations by the inverse of 

distance, observations that are closer to the estimated location will have higher weights 

than the observations that are further away. Kriging, also known as Gaussian Process (GP) 

regression, models spatial correlation between sample points. Spatial correlation can be 

modeled using various covariance functions. The Matérn and exponential functions, two 

commonly used covariance functions in spatial analysis, were used. Isotropy, uniformity of 

variance in all directions, was also assumed. The exponential covariance function is param-

eterized as:

The Matérn covariance function is parameterized as:

Covariance parameters are variance, σ2, range, �, smoothness, � and nugget, τ2, for two 

GNSS co-ordinates z
i
 and zj . The nugget value σ2

�
2 is added to the diagonal of the covari-

ance matrix. Γ is a gamma function and K
�
 is the modified Bessel function of the second 

(1)Y(x) =

∑n

i=1

Y(zi)
d(zi ,x)n

∑n

i=1

1

d(zi ,x)n

(2)M
(
zi, zj

)
= �

2 exp
�
−

‖zi − zj‖
�

�

(3)M
(
zi, zj

)
=

�
221−v

Γ(v)

� ‖zi − zj‖
�

�v

K
�

� ‖zi − zj‖
�

�
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Table 1  Studies that used rasterized yield maps, based on yield monitor data, for various row crops toward analysis of spatial variability of crop yield

Citation Methodologies Usage Other data layers Data

Basso et al. (2007) Kriging with exponential iso-
tropic co-variance function

Delineating management zones None 4 site-years of corn grain, soybean 
and wheat (8 ha) from Italy

Blackmore (2000) Simple averaging Delineating management zones None 6 site-years of wheat (6.7 ha) from 
the United Kingdom

Brock et al. (2005) Inverse distance weighting Delineating management zones None 24 site-years of corn and soybean 
from (45 ha) from the United 
States (US)

Buttafuoco et al. (2017) Ordinary kriging Delineating management zones Soil characteristics 3 site-years of durum wheat (12 ha) 
from Italy

Diker et al. (2004) Inverse distance weighting (12 
nearest points)

Delineating management zones None 6 site-years of commercial corn 
grain (123.4 ha) from US

Kharel et al. (2019a) Inverse distance weighting Delineating management zones None 847 site-years of corn grain and 
silage (9084 ha) from US

Hornung et al. (2006) Median polish kriging Delineating management zones Soil aerial imagery and field 
topology

3 site-years of corn (183 ha) from 
US

Khosla et al. (2008) Ordinary kriging Delineating management zones Soil topology 15 site-years of corn grain from US

Cox and Gerrard (2007) Nearest neighbor Understanding interaction 
between yield and soil

None 12 site-years of soybean (39.4 ha) 
from US

Anderson-Cook et al. (2002) Nearest neighbor Understanding interaction 
between yield and soil

Electromagnetic conductivity 
(EC) maps

2 site-year of corn grain, barley, 
wheat and soybean (24 ha) from 
US

Kitchen et al. (1999) Ordinary kriging Understanding interactions 
between yield, soil and land-
scape

Electromagnetic conductivity 
(EC) maps

5 site-years of corn grain, 7 site-
years of soybean and 1 site-year 
of grain sorghum (90 ha) from 
US

Maestrini and Basso (2018a) Kriging with spherical isotropic 
co-variance function

Understanding yield variation Red band spectral reflectance, 
NDVI and surface temperature

1625 site-years of corn grain, 
wheat, soybean and cotton

Yang et al. (2001) Inverse distance weighting Understanding yield and plant 
growth variation

Airborne digital imagery 1 site-year of sorghum (17 ha) 
from US

Maestrini and Basso (2018b) Not mentioned Understanding interactions 
between yield and climate, soil, 
topography and management

Publicly available data on topog-
raphy, rain and soil information

1625 site-years of corn grain, soy-
bean, wheat and cotton from US
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kind. Unlike kriging, which incurs expensive computation time, NN and IDW require com-

putation of distances between sample points only, resulting in reduced computational com-

plexity compared to kriging. However, both NN and IDW fail to account for complex spa-

tial correlation within a field. Nearest neighbor becomes especially inadequate when there 

is high noise in the data (Wettschereck 1994). While kriging is able to account for a com-

plex correlation structure in the data, it incurs expensive computation time and is therefore 

less effective when only a weak spatial dependence is present in the data.

Numerous articles have been published comparing the performance of NN, IDW and 

kriging on a variety of data types. For example, Philips et al. (1997) and Grim and Lynch 

(1991) both used atmospheric data to quantify ozone exposure on forests and estimate wet 

deposition in the atmosphere, respectively. Berman et  al. (2015) also evaluated the per-

formances of kriging and inverse distance weighting on interpolating ozone concentra-

tions. Various spatial interpolation methods also were compared using soil information 

data, such as clay content, soil organic carbon or pH (Bhunia et  al. 2018; Bregt 1992; 

Brus et al. 1996; Declercq 1996; Gallichand and Marcotte 1993; Laslett et al. 1987; Las-

lett and McBratney 1990; Van Meirvenne et  al. 1994). Studies by Heine (1986), Laslett 

(1994), Rouhani (1986) and Weber and Englund (1994) used (water) elevation data, while 

Kitanidis and Shen (1996) used chemical data such as, trichloroethylene concentration, to 

extrapolate spatially limited contaminant concentration information at a hazardous waste 

site into maps. Out of aforementioned sixteen studies, nine studies (Berman et  al. 2015; 

Bhunia et al. 2018; Grim and Lynch 1991; Heine 1986; Laslett 1994; Laslett and McBrat-

ney 1990; Laslett et al. 1987; Philips et al. 1997; Rouhani 1986) compared the performance 

of kriging and IDW and concluded that kriging is the better methodology. Declercq (1996) 

showed IDW to be superior to kriging and five studies (Bregt 1992; Brus et al. 1996; Gal-

lichand and Marcotte 1993; Weber and Englund 1994; Van Meirvenne et al. 1994) showed 

little difference in performance between kriging and IDW.

While there are numerous studies on comparison of spatial estimation methods in other 

research disciplines, there have been only a few studies comparing different spatial estima-

tion methods for creating a regularized crop yield map based on yield monitor data. No 

method is uniformly superior on all data types and it therefore is important to systemati-

cally compare methods on grain and silage data. Dobermann and Ping (2004) used corn 

grain and soybean (Glycine max. (L.) Merr.) yield data, along with vegetation indices, to 

analyze the effectiveness of various kriging methods. Evaluated methods included ordinary 

kriging, co-kriging and kriging with external drift. The study concluded that ordinary krig-

ing led to the lowest error (Dobermann and Ping 2004). Bazzi et al. (2015) derived profit 

maps from yield and economic data, such as sales price and production cost, for corn grain 

and soybean. Their analysis suggested that the impact of spatial estimation method (kriging 

versus IDW and IDW squared) on profit maps was less than US$30  ha−1, considered insig-

nificant in their study (Bazzi et al. 2015). Souza et al. (2016) concluded that corn grain and 

soybean yield data lacked spatial structure and, hence, kriging did not outperform IDW. It 

is important to note, however, that all three studies had limited datasets. All three studies 

focused on corn grain and/or soybean data. Dobermann and Ping (2004) used data from 

just two site-years. Bazzi et  al. (2015) and Souza et al. (2016) used data from four site-

years. None of the studies used kriging with advanced covariance functions, such as expo-

nential and Matérn covariance functions, which is expected to produce an improved raster 

map. In addition, studies on forages such as corn silage are lacking.

The objective was to evaluate seven widely used spatial estimation methods in creating 

a rasterized corn silage or grain yield map to determine the most accurate spatial estima-

tion method that captures intra-field spatial variability of yield for both corn silage and 
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corn grain in the state of New York. Evaluation was done using corn silage yield monitor 

data from 7484 ha (245 fields) and corn grain yield data from 6971 ha (253 fields). The 

seven methods are: NN, IDW using 10, 20, 30 and all data points (IDW 10, 20, 30 and 

All, respectively) and kriging with exponential (Exponential) and Matérn covariance func-

tion (Matérn). The hypothesis is that of the seven methods evaluated, kriging with Matérn 

covariance function results in the smallest percent error regardless of field size, year when 

data are obtained or source of the data (farm) for both silage and grain data.

Materials and methods

Yield monitor datasets

Yield monitor data were collected from 1318 site-years from four farms, two of which were 

dairy farms (hereafter referred to as Silage A and B) and two were cash grain operations 

(hereafter referred to as Grain A and B). Silage A and B supplied ten and nine years of 

data, respectively, for a total area of 7484 ha. Grain A and B supplied seven and eight years 

of data, respectively, for a total of 6971 ha. Data reflected the large variability in both yield 

and field size within farms in New York (Table 2; Fig. 1).

Postharvest yield data cleaning

Yield monitor data need to be cleaned before analysis because of the presence of system-

atic and random errors in the data (Dobermann and Ping 2004; Vega et al. 2019). The raw 

yield monitor data were read in SMS Advanced software (Ag Leader Technology, Ames, 

IA, USA), exported in AgLeader format, and imported into and cleaned with Yield Editor 

(Sudduth et al. 2012; Sudduth and Drummond 2007) using a standardized post-harvest data 

cleaning protocol (Kharel et al. 2018). This data cleaning protocol addresses issues related 

to pass overlap (driving over areas already harvested) and yield extremes and applies sen-

sor delays (flow delay and moisture delay) to match the position of sensors with the har-

vester location based on the flow or moisture pattern within the field and start- and end 

pass delays to eliminate inaccurate readings when the harvester is speeding up or slowing 

down. With the data cleaning protocol, 19, 24, 21 and 21% of data were removed for Silage 

A, B, Grain A and B, respectively. These values are consistent with Blackmore (1999) who 

removed 32%, Vega et al. (2019) who removed 30% and Thylén et al. (2000) who removed 

10–50% of the erroneous yield monitor data.

Implementation of spatial estimation methods

The seven spatial estimation methods explored in this paper include NN, IDW with 10 

(IDW 10), 20 (IDW 20), 30 (IDW 30) and all data points (IDW All), kriging with an expo-

nential isotropic covariance function (Exponential) and kriging with the Matérn isotropic 

covariance function (Matérn), reflecting common methods used in other studies. The data 

were split into a training (80% of the data) and cross-validation datasets (remaining 20% 

of the data). Data analyses were performed with R (R Core Team 2019). Gstat package 

(Pebesma 2004) was used to implement NN and IDW. The GpGp package (Guinness and 

Katzfuss 2019) was used to implement kriging in order to reduce processing time, given 

the large number of data points. One of the difficulties in implementing kriging is the 

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206



   
   

   
R

E
V

IS
E
D

 P
R
O

O
F

Journal : SmallCondensed 11119 Article No : 9793 Pages : 20 MS Code : 9793 Dispatch : 3-3-2021

Precision Agriculture 

1 3

computation time. As Katzfuss and Guinness (2019) suggest, kriging becomes infeasible 

as the size of the dataset becomes larger. This is because kriging requires computation of 

multivariate normal distributions which incurs quadratic memory and cubic time complex-

ity in the number of observations. In the dataset, fields averaged 6358 data points, with a 

maximum of 59 971 data points per field. Implementation of kriging through the “gstat” 

package, therefore, was not feasible. Parameters for kriging were estimated through maxi-

mum likelihood estimation. Unlike the gstat package, the GpGp package uses a generaliza-

tion of the Vecchia (1988) approach as a framework for Gaussian Process (GP) approxi-

mation, which enables fast evaluation of likelihood function resulting in shorter overall 

computation time.

Spatial estimation methods evaluation

Cross validation was performed to evaluate the performance of each spatial estimation 

method. For each field, 80% of the data were randomly selected for training. The train-

ing dataset was used to generate rasterized yield maps at 2 × 2 m spatial resolution using 

the various spatial estimation methods. Predictions were then compared against the vali-

dation data. Two evaluation schemes were explored: point-based and area-based. In the 

point-based approach, the actual yield value from the validation set was compared to the 

yield from the predicted rasterized yield map at the given GNSS co-ordinate. While point-

based evaluation is a natural approach for validating point estimates, the approach fails 

to acknowledge that yield monitor data represent an average yield density over an area, 

instead of a point estimate at a given co-ordinate. Though the yield monitor system pro-

vides a yield estimate at a certain GNSS co-ordinate, the estimate does not represent a 

yield value at that specific location, but rather represent the average yield density over the 

distance traveled from the previous GNSS co-ordinate times the width of the harvest equip-

ment. To correctly ascribe a yield estimate to an area, polygons were generated based on 

the equipment width, (swath) and distance traveled, as provided by the yield monitor. In 

the area-based evaluation, the actual yield value from the validation set was then compared 

against the average yield estimates of all 2 × 2 m pixels inside a given polygon. By account-

ing for the fact that a point estimate from the yield monitor represents an average yield 

density over a certain area, the goal was to represent yield monitor data more accurately. 

However, this approach was computationally expensive and more time consuming than the 

point-based approach. Both approaches were evaluated to determine if point-based eval-

uation is an appropriate approximation of area-based evaluation. Normalized root mean 

squared error (NRMSE) was used to evaluate the performance of each model per field. 

Assuming that there are m set of co-ordinates, denoted as x1, x2,… , x
m
 , in the validation 

dataset of a particular field:

where Y
(
xj

)
 represents the actual yield level at co-ordinate xj and Y

(
xj

)
 represents the 

predicted yield level at co-ordinate xj based on one of the methods. Because residuals, 

Y
(
xj

)
− Y

(
xj

)
 for i ∈ {1, 2,… , m} , are usually proportional to the yield level of that field, 

RMSE from a high yielding field will generally be larger than that of a lower yielding field, 

thus putting more weight on errors from high yielding fields. By normalizing RMSE with 

(4)NRMSE =

�

1

m

∑m

j=1

�

Y(xj)−Y(xj)
�2

1

m

∑m

j=1
Y(xj)

× 100
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 3 Table 2  Summary of farm information illustrating years of record, number of fields, yield statistics, field size statistics, equipment information, location and soil type

a Area weighted average yield
b Rows were 0.76 m apart

Unit Dairyfarm A(Silage A) Dairyfarm B(Silage B) Grain operation A (Grain A) Grain operation B (Grain B)

Years of record Years 10 9 7 8

Number of fields 155 90 163 90

Field ha

 Average field size 13.6 9.9 10.3 9.2

 Smallest field 1.5 0.9 0.3 1.1

 Largest field 109.5 60.7 53.5 30.7

 Total area analyzed 5192.2 2291.7 3565.0 3406.2

Yield Mg  ha−1

 Average  yielda 49.5 46.4 10.3 11.7

 Lowest yielding field 26.1 4.7 2.4 6.3

 Highest yielding field 81.9 72.0 15.3 15.4

 Average spatial stdev 8.4 8.0 2.6 2.2

Equipment

 Yield monitor John Deere Greenstar 3 John Deere Greenstar 3 John Deere Greenstar 3 John Deere Greenstar 3

 Recording interval Second 1 1 1 1

 Harvester  widthb Rows 10, 12 10 8, 12 8, 12

Location Central New York Western New York Central New York Central New York

Soil type

 Most common Honeoye (Fine-loamy, mixed, 

semiactive, mesic Glossic 

Hapludalfs)

Erie (Fine-loamy, mixed, 

active, mesic Aeric Fra-

giaquepts)

Schoharie (Fine, illitic, mesic 

Oxyaquic Hapludalfs)

Ontario (Fine-loamy, mixed, 

active, mesic Glossic 

Hapludalfs)

 Second most common Lima (Fine-loamy, mixed, 

semiactive, mesic Oxyaquic 

Hapludalfs)

Langford (Fine-loamy, mixed, 

active, mesic Typic Fragi-

udepts)

Dunkirk (Fine-silty, mixed, active, 

mesic Glossic Hapludalfs)

Hilton (Fine-loamy, mixed, 

active, mesic Oxyaquic 

Hapludalfs)
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the average yield of the field, NRMSE provides a dimensionless measurement of error per 

field.

Empirical average analysis

Area-based evaluation resulted, on average, in a higher NRMSE than point-based evalu-

ation. While the assumption that each observation of yield monitor data represents yield 

over an area rather than at a specific location is a sound data assumption, the seven spatial 

estimation methods explored in this paper all assume the data to be point estimates, rather 

than estimates over an area. This discrepancy contributed to over-estimation of error by the 

area-based evaluation. Thus, the empirical average analysis was performed based on point-

based evaluation results only. The empirical averages of NRMSE of each spatial methods 

by data type (Silage A, Silage B, Grain A and Grain B), field size (up to 140 ha) and year 

(2009–2018) were analyzed and compared.

The analysis suggested that the average NRMSE of Grain A data was much larger than 

that of other three farms. Average coefficient of variation (CV) was calculated for each 

farm to compare variation of yield level per farm. Suppose that there are n set of co-ordi-

nates, z1, z2,… , zn and their yield values in a single field. Coefficient of variation (CV) is 

defined as:

(5)CV =

�

1

n

∑n

i=1 (Y(zi)− Ŷ)
2

Ŷ

Fig. 1  Average yield per field (a–d), spatial standard deviation of yield (e–h) and field size (i–l) density dis-
tributions for corn silage (a, b, e, f, i, j) and corn grain (c, d, g, h, k, l) post data cleaning protocol. Results 
are presented for two dairy farms with silage data (Silage A and B) and two cash grain operations with corn 
grain data (Grain A and B), respectively, from the left to right
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where Ŷ  is the average yield level of the field. Average CV was derived by taking the arith-

metic mean of CV of all fields within the farm. The relative performance of spatial meth-

ods were mostly consistent across data type, field size and year in which data were col-

lected, except for the nearest neighbor method. The nearest neighbor method was further 

analyzed to account for such volatility in its performance. Coefficient of variation of yield, 

log of field size and year were analyzed to test the relationship between yield variability 

within a field and NRMSE using linear regression.

Mixed model analysis

For reasons explained above, the mixed model analysis was based on point-based evalu-

ation results only. After analyzing behaviors of empirical averages of NRMSE, a mixed 

model was fitted using the “lme4” package in R (Bates et al. 2015) to compare differences 

in NRMSE for each spatial estimation methods and to test if they are statistically signifi-

cant. The following R command was used to fit the linear mixed model:

where lmer refers to a R command to fit a linear mixed effect model in R; Method refers 

to the seven spatial estimation methods (Fixed effect); Area is the size of the field (Fixed 

effect); Farm refers to Grain A, Grain B, Silage A, Silage B (Fixed effect); Year reflects 

the year in which the harvest was done (Fixed effect); and Field reflects the unique com-

bination of farm, fieldname and year of harvest (Random effect). In this model, “Area” 

was log transformed to normalize the data, as they were distinctly right skewed (as evi-

dent in Fig. 1). In addition to additive effects from “spatial estimation methods”, “farm”, 

“year” and “log(area)”, multiplicative effects between “spatial estimation methods” and 

“log(area)” were introduced, because the effect of “log(area)” on NRMSE varied signifi-

cantly depending on “spatial estimation methods”. Marginal means were estimated for each 

spatial estimation method using the “lsmeans” package in R (Lenth 2016). Marginal means 

were estimated by adding average fixed effects over 10 years, 4 farms and average field 

size of 11 ha to the intercept for each spatial estimation method. Tukey comparisons were 

then performed between spatial estimation methods to elucidate the statistical difference in 

model performance.

Results and discussion

Area- versus point-based evaluation

Across IDW- and kriging-based spatial estimation methods and all fields and farms, area-

based evaluation consistently led to a slightly higher average NRMSE, averaging 8.6 across 

these methods versus 7.9 for the point-based evaluation (Table 3). The most likely reason 

for larger NRMSE in area-based evaluation in these estimation models is that none of these 

spatial estimation methods account for the fact that each observation from a yield monitor 

system is an estimate for a certain area (product of harvester width and distance traveled 

per second) and not an actual point estimate with specific GNSS units.

Under both evaluation methods, Matérn consistently showed the lowest average NRMSE 

among all seven spatial methods, with 7.1 error under area-based evaluation and 6.6 error 

under point-based evaluation. Exponential resulted in the second lowest average NRMSE, 

(6)lmer(NRMSE ∼ Method ∗ log(Area) + Farm + Year + (1|Field))
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followed by IDW 10, IDW 20, IDW 30 and IDW All. The estimation accuracy of IDW 

deteriorated with an increasing number of data points, which is plausibly due to increased 

smoothing as data points farther from the estimation location are captured. Performance 

of NN, on the other hand, varied by evaluation method. Under area-based evaluation, NN 

was the third best performing method behind Matérn and Exponential. Under point-based 

evaluation, however, NN was the fifth best method for Silage A and Grain A data, fourth 

best for Grain B data and sixth best on Silage B data. Given that both area- and point-based 

evaluations yielded the same results, with a slightly lower NRMSE for point-based evalu-

ation for most comparisons, additional analyses on the impact of field size, year and farm 

specificity on model performance were performed using the point-based evaluation method 

for both corn silage and corn grain data.

Performance of spatial estimation methods by farm, field, year and field size

The empirical average NRMSE per farm ranged from 5 to 9 for Silage A, B and Grain 

B, and from 9 to 14 for Grain A (Table 3). This could be explained by the higher vari-

ation of yield on average for Grain A data. Coefficient of variation of yield, a measure 

of variation in yield per field, was calculated for each farm. Grain A had higher average 

CV of 27% whereas Silage A, Silage B and Grain B had 17, 19 and 20% respectively, 

suggesting higher level of yield variation for Grain A data, which could result in higher 

NRMSE across all seven methods. However, despite an overall higher NRMSE for Grain 

A, the evaluation of the seven spatial estimation methods on this farm still resulted in the 

same ranking of methods: Matérn was the best performing method with the lowest aver-

age NRMSE, followed by Exponential, IDW 10, IDW 20, IDW 30 and IDW All. The NN 

results were inconsistent; it was the 2nd lowest method behind IDW All for Grain B, the 

3rd lowest method behind IDW All and IDW 30 for Silage A and Grain A, and 4th lowest 

behind IDW All, IDW 30 and IDW 20 for Silage B.

At the individual field level, the NRMSE from Matérn was also consistently lower than 

that of other spatial estimation methods (Fig.  2) as most observations, which represent 

NRMSE from Matérn on the y-axis and NRMSE from other models on the x-axis, on the 

plot are on the right hand side of the one-to-one line. Thus, not only across farms but also 

across individual fields, Matérn was the best performing method.

The average NRMSE ranged between 6.1 and 8.9, year-to-year. Despite the difference 

in NRMSE year-to-year, the relative performance of the spatial estimation methods, except 

NN, were consistent across years; Matérn always resulted in the lowest NRMSE, followed 

by Exponential, IDW 10, IDW 20, IDW 30 and IDW All (Fig. 3). The results of the NN 

method showed inconsistency in ranking from year-to-year; while in most years (2011, 

2014, 2016, 2017 and 2018), the NN method was one of the lowest performing methods, 

next to IDW All. In 2009, it was the third best method behind Matérn and Exponential. 

However, for every year of data and for both crop types, Matérn outperformed all other 

methods.

In general, all seven spatial estimation methods performed better as the size of the field 

increased (Fig. 4). The degree to which NRMSE decreases as the size of the field increases 

differed among methods; IDW had the least steep slope of − 0.64, while NN had the steep-

est slope of − 0.99. Despite this difference in slope among spatial estimation methods, 

Matérn resulted in the lowest average NRMSE across fields, followed by Exponential, IDW 

10, IDW 20, IDW 30 and IDW All.
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The analysis suggests that the performance of the NN varies by field. Wettschereck 

(1994) analyzed behavior of the k-nearest neighbor algorithm (1, 2… k) on various data 

containing noisy instances and discovered that the performance of the NN algorithm 

depended on number, noisiness and sparseness of the instances. He showed that NN per-

formed poorly especially on larger dataset (> 100 data points), while performing better on 

smaller (< 100 data points) or sparsely distributed dataset. This is in line with the observa-

tion for the NN algorithm in the analysis. Sparseness, number and noisiness of instances 

varied greatly by field, causing the performance of the NN method to also vary. While the 

performance of NN varied by field, for point-based evaluation, Matérn resulted in the low-

est NRMSE for all but one of the 1318 fields (Fig. 2).

The strong effects of field size and year on the NRMSE were attributed to the yield vari-

ation within a field. The regression of CV in yield of each field and log of field size sug-

gested that as the field size increased the CV decreased (Table 4). The regression of CV of 

yield and year indicated that the data from 2018 had the lowest variation in yield (Table 4). 

The correlation between CV and NRMSE showed a linear relationship between NRMSE 

and CV across fields (Fig. 5), supporting the hypothesis that variation in yield affects the 

accuracy of all methods.

Mixed model results

Consistent with the observations of empirical averages, T-statistics and p-values from 

the mixed model indicated statistical significance of all the beta estimates in the model 

(Table 5). Kriging with the Matérn isotropic covariance function (Matérn) resulted in the 

lowest estimated marginal means of 6.6 error, followed by Exponential with 6.7 error, IDW 

10 with 7.3 error, IDW 20 with 7.7 error, NN with 7.9 error, IDW 30 with 8.0 error and 

IDW All with 10.4 error (Table 6). In all pairwise comparisons between Matérn and six 

other spatial methods, the difference in NRMSE was statistically significant (p < 0.0001) 

(Table 7).

Table 3  Comparison of average Normalized Root Mean Squared Errors (NRMSE) by farm (Silage A, 
Silage B, Grain A and Grain B) and evaluation methods (area-based and point-based) for seven spatial esti-
mation methods

Estimated marginal means were generated (with point-based evaluation only) for comparisons between spa-
tial estimation methods

Spatial estimation methods Silage A Silage B Grain A Grain B

Area Point Area Point Area Point Area Point

Nearest neighbor (NN) 6.94 6.89 7.55 7.76 9.73 10.74 5.84 6.72

Inverse distance weighting (IDW)

 10 nearest points (IDW 10) 7.34 6.37 7.59 6.97 10.40 9.94 6.65 6.41

 20 nearest points (IDW 20) 7.94 6.78 8.19 7.22 11.18 10.46 7.25 6.86

 30 nearest points (IDW 30) 8.26 7.02 8.52 7.39 11.61 10.78 7.57 7.12

 All data points (IDW All) 10.60 9.13 11.20 9.26 15.20 14.05 10.06 9.47

Kriging

 Exponential isotropic (Exponential) 6.49 5.63 7.22 6.59 9.70 9.29 5.82 5.49

 Matérn isotropic (Matérn) 6.10 5.42 7.14 6.54 9.53 9.19 5.31 5.14
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On average, NRMSE from Matérn was 17% lower than NRMSEs of the other six spa-

tial estimation methods. The difference was the largest with 37% decrease when com-

pared against IDW All and the smallest when compared against Exponential with just 2% 

decrease. These results suggest kriging to be the most consistent spatial estimation method 

in mapping yield monitor data for corn grain and silage across a large range of field sizes 

and yield levels. Contrary to the finding by Souza et  al. (2016) that yield monitor data 

lack spatial structure, the result suggests that spatial information can be used to better esti-

mate yield at the field- and within-field levels for both corn grain and silage. The results 

Fig. 2  Comparison of normalized root mean squared error (NRMSE) per field. Each point on a plot repre-
sents NRMSE of a field for corn silage (a–f) and corn grain (g–l). Each dot represents NRMSE from area-
based evaluation and a cross represents NRMSE from point-based evaluation. Spatial estimation methods 
included nearest neighbor (NN), inverse distance weighting (IDW) with varying number of nearest points 
(10, 20, 30, all) and kriging with exponential (Exponential) or Matérn (Matérn) covariance functions

Fig. 3  Comparison of average normalized root mean squared error from year 2009–2018 for each spatial 
estimation method, including nearest neighbor (NN), inverse distance weighting (IDW) with varying num-
ber of nearest points and kriging with exponential (Exponential) or Matérn (Matérn) covariance functions
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also contradict Bazzi et al. (2015), who stated that the spatial estimation method was of 

peripheral importance in generating a yield map. The contradictory results may stem from 

varying data cleaning protocol, such effects were not tested. The analysis shows that the 

difference between Matérn, the best performing method, and IDW All, the lowest perform-

ing model, averaged 46% per field, suggesting that spatial estimation method is a signifi-

cant factor when generating a yield map. Both Souza et al. (2016) and Bazzi et al. (2015) 

included only a limited number of fields and focused on grain crops (soybean and corn). 

The apparent inconsistency in conclusions between this study and the work by Souza et al. 

(2016) and Bazzi et al. (2015) may be due to differences in location and the size and source 

of the data, including crop type.

A rasterized yield map based on yield monitor data often is used, along with other data, 

such as vegetation indices or electrical conductivity maps, to delineate management zones 

(Basso et al. 2007; Blackmore 2000; Brock et al. 2005; Diker et al. 2004; Hornung et al. 

2006; Kharel et al. 2018; Khosla et al. 2008) or to understand the interaction between yield 

and other features such as soil, landscape and topography (Anderson-Cook et al. 2002; Cox 

and Gerrard 2007; Kitchen et al. 1999; Maestrini and Basso 2018b; Yang et al. 2001). Out 

of the 12 studies listed above, only five studies (Basso et al. 2007; Hornung et al. 2006; 

Khosla et al. 2008; Kitchen et al. 1999; Maestrini and Basso 2018b) used a form of kriging 

to generate a rasterized yield map. The analysis suggests that greater attention is required 

to yield mapping by both researchers and practitioners who aim to use yield data to develop 

management zones and/or prescription maps, given that the choice of estimation method 

affects the rasterized yield maps generated from the yield monitor data. Findings in this 

Fig. 4  Comparison of average normalized root mean squared error (NRMSE) by corn field size, ranging 
up to 140 ha for each spatial estimation method, including nearest neighbor (NN), inverse distance weight-
ing (IDW) with varying number of nearest points and kriging with exponential (Exponential) or Matérn 
(Matérn) covariance functions. A regular linear regression model with NRMSE as the dependent and log 
of area in hectare as the independent variable was fitted for each spatial estimation method to analyze the 
performances conditioned on field sizes
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paper span a large number of fields, variety in field sizes and yield levels, as well as corn 

harvested for grain and corn grown for silage and suggest the need for kriging with Matérn 

isotropic covariance function to account for the spatial structure of yield within fields.

Conclusions

Out of the seven spatial estimation methods tested, kriging with Matérn isotropic covari-

ance function resulted in the lowest NRMSE across four farms, ten years of silage yield 

data, nine years of grain yield data and across a wide range of field sizes (1–140  ha), 

reflecting the diversity of fields in corn production in New York. On average, Exponential 

was the second-best method, followed by IDW 10, IDW 20, NN, IDW 30 and IDW All. 

These results support the original hypothesis. Kriging with Matérn covariance function is 

Table 4  Summary of linear 
model based on two independent 
variables

Year implies the year when the data were collected and log(field size) 
implies a log-transformed field size. The dependent variable was the 
coefficient of variation of yield on each field (CV), which was cal-
culated by averaging the standard deviation of yield by the average 
yield of the field. The summary output shows beta estimates, standard 
errors, T-statistics and P-Values

Term Estimate Standard Error T-statistics P-value

(Intercept) 0.261 0.011 22.969  < 0.001

log(field size)  − 0.023 0.003  − 8.298  < 0.001

Year2009 0 – – –

Year2010  − 0.039 0.011  − 3.482 0.001

Year2011 0.028 0.011 2.442 0.015

Year2012  − 0.001 0.012  − 0.116 0.908

Year2013 0.010 0.012 0.808 0.419

Year2014 0.027 0.012 2.300 0.022

Year2015  − 0.017 0.012  − 1.509 0.132

Year2016  − 0.006 0.032  − 0.204 0.838

Year2017 0.016 0.012 1.264 0.207

Year2018  − 0.056 0.012  − 4.609  < 0.001

Fig. 5  Comparison of normal-
ized root mean squared error 
(NRMSE) across seven spatial 
estimation methods and average 
coefficient of variation in yield 
for 1318 corn fields
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Table 5  Linear mixed effect model summary for 7–10 years of data per farm (7484 ha [245 fields] of silage 
and 6971 ha [253 fields] of grain) from four farms (Grain A and B, Silage A and B), where Method refers 
to seven spatial estimation methods (Fixed effect); log(Area) implies a log-transformed field size (Fixed 
effect); Farm refers to Grain A, B, Silage A, B (Fixed effect); Year reflects year of harvest (Fixed effect); 
and Field reflects the unique combination of farm, fieldname and harvest year (Random effect)

The summary output shows beta coefficients, standard errors, degrees of freedom, t and p values for the 
fixed effects, as well as the residual and group variances of the random effects

Estimate Standard Error Degrees of 
Freedom

T value P value

[Intercept] 13.05 0.79 1333 16.55  < 0.001

Models [IDW All] 0.00 – – – –

Models [IDW 30]  − 1.46 0.13 7896  − 11.69  < 0.001

Models [IDW 20]  − 1.77 0.13 7896  − 14.09  < 0.001

Models [IDW 10]  − 2.26 0.13 7896  − 18.01  < 0.001

Models [NN]  − 1.34 0.13 7896  − 10.69  < 0.001

Models [Exponential]  − 3.07 0.13 7896  − 24.53  < 0.001

Models [Matérn]  − 3.26 0.13 7896  − 26.05  < 0.001

log(Area)  − 0.57 0.08 1702  − 7.55  < 0.001

Farm [Silage A] 0.00 – – – –

Farm [Silage B]  − 0.35 0.17 1304  − 2.05 0.040

Farm [Grain A] 3.63 0.16 1304 22.46  < 0.001

Farm [Grain B] 0.41 0.15 1304 2.75 0.006

Year [2009] 0.00 – – – –

Year [2010]  − 1.94 0.80 1304  − 2.43 0.015

Year [2011]  − 0.86 0.78 1304  − 1.11 0.266

Year [2012]  − 1.67 0.78 1304  − 2.14 0.032

Year [2013]  − 1.68 0.78 1304  − 2.16 0.031

Year [2014]  − 2.86 0.77 1304  − 3.70  < 0.001

Year [2015]  − 1.42 0.77 1304  − 1.84 0.066

Year [2016]  − 1.66 0.77 1304  − 2.16 0.031

Year [2017]  − 1.81 0.77 1304  − 2.35 0.019

Year [2018]  − 2.69 0.77 1304  − 3.48 0.001

Models [IDW All]: log(Area) 0.00 – – – –

Models [IDW 30]: log(Area)  − 0.31 0.04 7896  − 7.55  < 0.001

Models [IDW 20]: log(Area)  − 0.29 0.04 7896  − 7.09  < 0.001

Models [IDW 10]: log(Area)  − 0.26 0.04 7896  − 6.33  < 0.001

Models [NN]: log(Area)  − 0.35 0.04 7896  − 8.70  < 0.001

Models [Exponential]: log(Area)  − 0.20 0.04 7896  − 4.94  < 0.001

Models [Matérn]: log(Area)  − 0.19 0.04 7896  − 4.69  < 0.001

Random Effects

 Residual ( �2) 0.69

 Intercept [Field] ( �
Field

) 3.84

 Number of observations for Field 1318

 Total number of observations 9226
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highly recommended to derive single year corn yield raster maps for corn grain and corn 

silage yield monitor data and development of multi-year yield stability maps that include 

not only spatial, but also temporal variation in yield.
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Table 6  The least square mean estimates, their respective standard errors and 95% confidence intervals of 
normalized root mean squared error (NRMSE) for seven spatial estimation methods

The response for the linear mixed model was NRMSE; four farms (Grain A, B, Silage A, B), the seven spa-
tial estimation methods, harvest year (2009 ~ 2018) and the logged transformed size of the field in hectare 
were treated as additive fixed effects

Spatial estimation methods Estimates Standard Error 95% confidence interval

Nearest neighbor (NN) 7.94 0.10 7.75–8.13

Inverse distance weighting (IDW)

 10 nearest points (IDW 10) 7.34 0.10 7.15–7.53

 20 nearest points (IDW 20) 7.73 0.10 7.54–7.92

 30 nearest points (IDW 30) 7.97 0.10 7.77–8.16

 All data points (IDW All) 10.44 0.10 10.25–10.64

Kriging

 Exponential isotropic (Exponential) 6.71 0.10 6.52–6.90

 Matérn isotropic (Matérn) 6.55 0.10 6.36–6.74

Table 7  Tukey comparison of least square estimates of normalized root mean squared error (NRMSE) 
between kriging with Matérn isotropic covariance function (Matérn) and six other methods, including 
inverse distance weighting (IDW) with varying number of points, nearest neighbor (NN) and kriging with 
exponential isotropic covariance function (Exponential)

Contrast Estimate Standard Error Z ratio P-value

IDW All—Matérn 3.892 0.035 111.854  < 0.0001

IDW30—Matérn 1.415 0.035 40.679  < 0.0001

IDW20—Matérn 1.176 0.035 33.810  < 0.0001

IDW10—Matérn 0.787 0.035 22.629  < 0.0001

NN—Matérn 1.387 0.035 39.860  < 0.0001

Exponential—Matérn 0.156 0.035 4.497  < 0.0001
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