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Programming nonreciprocity and reversibility in
multistable mechanical metamaterials
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Nonreciprocity can be passively achieved by harnessing material nonlinearities. In particular,

networks of nonlinear bistable elements with asymmetric energy landscapes have recently

been shown to support unidirectional transition waves. However, in these systems energy

can be transferred only when the elements switch from the higher to the lower energy well,

allowing for a one-time signal transmission. Here, we show that in a mechanical metamaterial

comprising a 1D array of bistable arches nonreciprocity and reversibility can be independently

programmed and are not mutually exclusive. By connecting shallow arches with symmetric

energy wells and decreasing energy barriers, we design a reversible mechanical diode that

can sustain multiple signal transmissions. Further, by alternating arches with symmetric and

asymmetric energy landscapes we realize a nonreciprocal chain that enables propagation of

different transition waves in opposite directions.
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Nonreciprocity—asymmetric transmission of energy
between any two points in space—is receiving increasing
interest in many areas of physics1,2, including optics3,4,

electromagnetism5,6, elasticity7,8, and acoustic9–12. Focusing on
elastic systems, nonreciprocity has been successfully exploited to
realize selective signal transmission13–17, logic elements18,19,
direction-dependent insulators20,21, and switches22. To achieve
such remarkable behaviors, both active and passive strategies have
been proposed. On the one hand, nonreciprocity for linear waves
has been obtained either by imparting a rotation to the medium23

or by introducing activated materials with time-modulated
properties in space and time24–26 to break time-reversal sym-
metry. On the other hand, nonreciprocity has also been
demonstrated in passive media by harnessing nonlinear
phenomena27–30. In particular, mechanical metamaterials with
two or more stable equilibrium states have recently emerged as a
powerful platform to realize nonreciprocity, as they support only
unidirectional transition wave propagation when comprising an
array of bistable building blocks with asymmetric energy
wells19,31–34. However, although this strategy is appealing for its
simplicity and robustness, it typically leads to nonreversible wave
propagation since these systems release a net amount of energy
upon propagation of the pulses and needs to be manually
“recharged” (i.e., all elements need to be reset to their higher
energy well) to sustain a second wave.
Here, we demonstrate the realization of a multistable

mechanical metamaterial for which nonreciprocity and reversi-
bility can be independently programmed. Such control of the
dynamic response is made possible by the rich and highly tunable
behavior of shallow arches, as their energy landscape can be easily
adjusted to exhibit target energy barriers as well as symmetric or
asymmetric wells. We first show that chains comprising identical
arches with symmetric energy wells support the propagation of
nonlinear pulses that sequentially switch the elements to their
inverted stable configuration. However, although such signal
propagation is reciprocal and reversible, it is not stable (Fig. 1a), as
the wave evolves during propagation. Then, we demonstrate that
by carefully designing the arches and their arrangement to break
symmetry either at the structural or element level, we can enable
not only stable propagation of the signal but also a wide range of
nonreciprocal behaviors. For example, a reversible diode can be
created by connecting shallow arches with symmetric but graded
on-site energy potentials (Fig. 1b). Further, a tunable 1D non-
reciprocal chain, which enables propagation of different transition
waves in opposite directions, can be obtained by alternating
shallow arches with symmetric and asymmetric energy potentials
(Fig. 1c). As such, our work opens avenues for the design of the
next generation of nonlinear structures and devices with robust,
nonreciprocal elastic wave-steering capabilities.

Results
Symmetric elements—symmetric array. We consider 1D chains
comprising N shallow arches connected via rotating hinges that
impose continuity of rotations between adjacent elements. All
arches have end-to-end distance L= 120 mm and are made of
spring steel shims with thickness h= 0.3048 mm, width b=
10 mm, length l∈ [103.1, 105.0] mm, volumetric density ρ=
7850 kg/m3 and Young’s modulus E= 170 GPa (see Supple-
mentary Information “Fabrication” section for details). To excite
the system, we move with an indenter the midpoint of either
the first or last arch in the array at a constant speed α= 15 mm/s.
We then monitor the response of the chain with a high-speed
camera and track the position of the central point of the j-th arch,
wj(L/2, t), as a function of time t (see Supplementary Information
“Testing” section for details).

We start by focusing on an array comprising three arches (i.e.,
N= 3) with rise ej= wj(L/2, t= 0)= 12.4 mm (j= 1, 2, 3)
realized by elastically buckling flat metallic shims of length l=
105 mm (see Supplementary Information “Fabrication” section
for details). The results reported in Fig. 2a, b for a test in which
the indenter acts on the leftmost arch show two key features.
First, as recently observed for individually hinged arches under
displacement control35, the indenter makes the leftmost arch
snap to its symmetric stable configuration through the activation
of the first asymmetric deformation mode (see Fig. 2a). Second,
and most important, this reconfiguration does not remain
localized as the energy released by the arch upon snapping is
transmitted to the neighboring element through the rotation of
the hinges. As a result, the snapping of the first arch triggers a
cascade of snapping events that sequentially switches the other
two elements to their symmetric stable configuration (see
Supplementary Movie 1). This response is fully reciprocal and
reversible since actuating the first or the last arch (i.e. left-to-right
vs. right-to-left), from the top or the bottom (i.e., up-to-down vs.
down-to-up) always produces the same dynamic behavior (see
Supplementary Fig. 8 for details). However, if a fourth arch is
added to the chain (i.e., for N= 4), the input provided by the
indenter is not sufficient to generate a signal that switches all the
elements of the lattice (Fig. 2c, d, see Supplementary Movie 1).

Predictive numerical model. To get a deeper understanding of
the snapping signal transmission through the chain, we establish
a numerical model. We focus on the j-th arch, use Euler-Bernoulli
beam theory36 to describe its response35,37–42 and impose con-
tinuity of rotations between neighboring elements43,44

∂wj�1

∂xj�1

�
�
�
�
xj�1¼L

¼ ∂wj

∂xj

�
�
�
�
xj¼0

; ð1Þ

where xj∈ [0, L] represents the local axial coordinates and wj(xj, t)
denotes the time-dependent profile of the j-th arch. Importantly,
the constraints described by Eq. (1) introduce concentrated
moments at both ends of the j-th arch,MLj

, andMRj
(Fig. 2e), and

these satisfy

MRj�1
¼ �MLj

; MRj
¼ �MLjþ1

: ð2Þ
It follows that the response of a chain comprising N arches can be
described by

ρA
∂2wj

∂t2 þ β
∂wj
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dxj4
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¼ 0

for j ¼ 1; :::;N

ð3Þ

where A and I are the area and moment of inertia of the arches’
cross-section, ρ and E are the volumetric density and Young’s
modulus of the material, β represents the viscous damping
coefficient and δ1j and δNj are Kronecker delta functions. More-
over, Q1 is the reaction force measured at the indenter, and w0j

and pj are the initial unstressed position of the midsurface and the
midplane force produced by the stretching of the midsurface of
the j-th arch, respectively (see Supplementary Information
“Mathematical model” section for more details). For our system,
wj(xj, t) can be expressed as a series of sine functions35

wjðxj; tÞ ¼ w0jðxjÞ þ ∑
Nt

n¼1
ψnjðtÞ sin

nπxj
L

� �

: ð4Þ

Substitution of Eq. (4) into Eqs. (3) leads to a system of Nt ×N
coupled ordinary differential equations that we numerically solve
to obtain the modal amplitudes ψnj. As shown in Fig. 2b, d,
the numerical predictions are in very good agreement with the
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experimental results when choosing Nt= 3 and β= 1.4 kg/(m⋅s)
(see Supplementary Information “Mathematical model” section
for details and Supplementary Movie 2) and capture both the
propagation of the snapping signal through the entire chain for
N= 3 and its arrest for N= 4.
To understand the absence of a stable propagation in the

system comprising N= 4 elements, we focus on a single hinged
arch and use Euler-Bernoulli beam theory to determine its energy
landscape when one of its ends is forced to rotate (see
Supplementary Information ‘Mathematical model’ for details).
As observed in our experiments, we find that it is energetically
more favorable for the arches to activate the first antisymmetric
mode when snapping between the two stable states (see cyan path
in Fig. 2f). However, despite the asymmetric deformation path,
the on-site energy potential of the arches is symmetric and
characterized by two wells of equal height at wL/2= ±ej separated
by an energy barrier Vb= 26 mJ. As such, there is no net-release
of energy when the arches snap between their two stable
configurations, and the stable propagation of the snapping signal
is only possible in unrealistic systems without any form of
dissipation (see numerical results for β= 0 in Supplementary
Fig. 9).

Symmetric elements—graded and asymmetric array. To achieve
stable wave propagation as well as to independently control
reciprocity and reversibility, we then introduce asymmetry into
the system both at the structural and arch levels. To begin with,

we build a 1D non-symmetric array by assembling elastically
deformed shallow arches with monotonically decreasing rises
(Fig. 3a and Supplementary Table 1 for details). Since the energy
barrier Vb monotonically decreases as ej becomes smaller (Fig. 3b,
c), the effect of dissipation can be counteracted by tuning the rises
to make ΔVb

j ¼ Vb
j�1 � Vb

j larger than the energy dissipated by
the j-th arch during snapping. As shown in Fig. 3d, when the
indenter excites the leftmost arch with the highest rise, a stable
snapping wave propagates from left-to-right. Importantly, such
wave propagation is reversible and nonreciprocal. Since all the
arches have a symmetric energy landscape, the wave can be
excited by snapping the first arch both up-to-down and down-to-
up and there is no need to “manually” recharge the system to
propagate a new signal (i.e., the behavior is fully reversible—see
Supplementary Fig. 10). However, when the indenter excites the
arch with the lowest rise the energy released upon its snapping is
not enough to make the next arch jump. As such, there is no wave
propagation from right-to-left and the system acts as a
mechanical diode (see Supplementary Movie 3).
Although in Fig. 3d, we focus on a specific system with N= 10

and Δej= ej− ej+1 ~ 500 μm, we next use our model (which
nicely captures the experimental results of Fig. 3d) to system-
atically investigate the effect of Δej on the signal propagation in
1D arrays of graded shallow arches. We find that Δej plays a very
important role, as it directly affects the difference in an energy
barrier between neighboring elements, ΔVb

j (see Fig. 3b). More
specifically, the numerical results reported in Fig. 3e show that for

a Symmetric elements – Symmetric array

Reciprocal, reversible - (not stable)

…

b Symmetric elements – Graded and asymmetric array

c Symmetric/Asymmetric elements – Asymmetric array

…

… …

Nonreciprocal (diode), reversible 

Nonreciprocal, non reversible

…

On-site energy potential 

Fig. 1 Programming nonreciprocity and reversibility. a Signal propagation in a chain comprising identical bistable elements with symmetric energy wells is
reciprocal and reversible, but not stable. b Signal propagation in a chain comprising bistable elements with symmetric energy wells, but decreasing energy
barriers is nonreciprocal and reversible. c Signal propagation in a chain comprising bistable elements with both symmetric and asymmetric energy wells is
nonreciprocal and nonreversible.
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Fig. 2 Symmetric elements—symmetric array. a, b Array comprising three identical arches with rise ej= 12.4 mm (j= 1, 2, 3) and symmetric energy wells.
a Snapshots at t= 0 s, 0.88 s, 0.90 s and b evolution of the positions of the midpoints of the arches, wj(L/2, t), for a test in which the indenter acts on the
leftmost arch. Thick-dotted and thin lines correspond to experimental and numerical results, respectively. c, d Same as a, b but for an array comprising four
arches. e Schematic of the system. f On-site energy potential for an elastically deformed shallow arch as a function of ψ2 and w(L/2). Note that w(L/2)=
ψ1− ψ3 (see Eq. 4). The red line indicates a deformation path along which only the first symmetric mode is activated. The cyan line corresponds to the
minimum energy path. g Comparison between the red and cyan paths shown in f, highlighting the symmetry of the two energy minima and the energy
barrier, Vb, separating them.
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Δej ≤ 150 μm, the velocity of the transition wave (calculated by
monitoring the time at which the arches reach the inverted stable
configuration—see Supplementary Fig. 11 for details) mono-
tonically decreases during propagation and eventually vanishes.
For such small values of Δej, ΔVb

j is not sufficient to overcome the
effects of dissipation of the system, and stable wave propagation is
not supported. By contrast, for Δej > 150 μm the difference in

energy barriers between consecutive arches is larger than the
dissipation upon snapping and the signal propagates through
the entire chain. Further, our numerical results indicate that the
waves accelerate during propagation. This is because the energy
that the arches need to absorb to overcome the energy barrier and
snap monotonically decreases along the chain, causing a faster
transition rate.
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Fig. 3 Symmetric elements—graded and asymmetric array. a Schematic of the system with N= 10 arches with decreasing rises. b Energy barrier, Vb,
versus arch rise, ej. c Normalized on-site energy potential, V �minðVÞ, versus the position of the arch midpoint. d Evolution of the positions of the
midpoints of the arches, wj(L/2, t), for tests in which the indenter acts on the leftmost (left-to-right) and rightmost (right-to-left) arches (see
Supplementary Fig. 19 for corresponding numerical contour maps). Thick-dotted and thin lines correspond to experimental and numerical results,
respectively. e Local speed of the transition wave along the chain for different values of Δej as predicted by our model.
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Symmetric/asymmetric elements—asymmetric array. The
results of Fig. 3 indicate that graded 1D arrays of shallow arches
with symmetric energy landscape can support stable, reversible,
and unidirectional propagation of transition waves. Next, to
achieve additional control on nonreciprocity, we introduce ele-
ments with asymmetric on-site energy potential. Such asymmetry
at the arch level can be easily realized by plastically deforming the
metallic shim into the target shape, ej sinðπx=LÞ. As shown in
Fig 4a, the plastic deformation makes the two energy minima
different. Specifically for arches with ej= 12.4 mm, our model
predicts that the transition between the two stable states involves
a net change ΔV= 34.8 mJ in stored potential energy. Depending
on the direction of the transition, the arch either absorbs energy45

or releases it, enabling unidirectional propagation of transition
waves over long distance19,32. Although previous studies have
considered arrays of purely asymmetric elements19,31–33, here we
investigate the dynamic response of systems comprising a mix-
ture of symmetric and asymmetric elements. This is possible
because the plastically and elastically deformed arches, despite
their different energy landscape, share the same shape and,
therefore, are geometrically compatible and can be easily com-
bined to form arrays. For example, in Fig. 4b we consider a chain
comprising seven arches with symmetric on-site potential (i.e.,

elastically deformed arches—see blue arches in Fig. 4b) and three
with asymmetric energy profile (i.e., plastically deformed arches—
see purple arches in Fig. 4b) set in their higher energy well—all
with rise ej= 12.4 mm. When the arches are arranged as in
Fig. 4b (with one plastically deformed arch every two elastically
deformed ones), the energy released upon snapping by the plas-
tically deformed arches enables signal propagation through the
entire array both left-to-right and right-to-left (see Fig. 4c).
However, because of the structural asymmetry of the chain, the
energy is released by the asymmetric elements at different loca-
tions when the wave travels left-to-right and right-to-left, leading
to different signal propagation in the two directions. When the
indenter acts on the leftmost unit, the second arch reaches the
inverted stable configuration at tsnap2 ¼ 0:89 s, whereas the last
one snaps at tsnap10 ¼ 0:93 s. By contrast, when the rightmost unit
is excited, the pulse is initiated at tsnap9 ¼ 0:62 s and arrives at the
other end of the chain at tsnap1 ¼ 0:66 s. Interestingly, while for
left-to-right propagation the arches snap in sequence (i.e., the
leftmost arch snaps first and the rightmost one snaps as last), for
right-to-left propagation the arch excited by the indenter is the
last one to snap at tsnap10 ¼ 0:85 s. Finally, it is important to
note that the signal propagation in this system is nonreversible as
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Fig. 4 Symmetric/asymmetric elements—asymmetric array. a On-site energy potential for a plastically deformed shallow arch. The red line indicates a
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midpoints of the arches, wj(L/2, t), for tests in which the indenter acts on the leftmost (left-to-right) and rightmost (right-to-left) arches (see
Supplementary Fig. 19 for corresponding numerical contour maps). Thick-dotted and thin lines correspond to experimental and numerical results,
respectively.
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the plastically deformed arches can only snap from the high
energy well to the lower energy well. As such, the chain needs to
be manually recharged to support the propagation of a new signal
(see Supplementary Fig. 13 and Supplementary Movie 4).
Next, to better understand how the global structural asym-

metry affects the nonreciprocity of wave propagation, we
numerically investigate the response of chains comprising N=
48, 49, and 50 (Fig. 5a and Supplementary Fig. 14) elastically and
plastically deformed arches periodically arranged according to the
pattern shown in Fig. 4b. We find that for all considered chains
the pulses propagate at a speed cglobal ~ 243 unit/s in both
directions. However, the time at which the signal is initiated for
left-to-right and right-to-left propagation can be programmed by
altering the asymmetry of the chain through N. More specifically,
in a symmetric chain with N= 50 the snapping signal is initiated
at the same time for both propagation directions (i.e., tsnap2 ¼
0.89 s and tsnap49 ¼ 0.89 s for left-to-right and right-to-left
propagation, respectively). Differently, for N= 49 and 48 the
system is asymmetric (as there are either one or no elastically
deformed arches separating the rightmost plastically deformed
one from the right end) and the wave starts at tsnap48 ¼ 0.62 s and
tsnap47 ¼ 0.80 s when the rightmost arch is excited.

While asymmetry enables as to tune the time at which the
pulses are initiated from the left and right end, control on the
speed of the pulses can be achieved by varying the density of
plastically deformed elements in the chain. To demonstrate this
point, in Fig. 5b we report the numerically predicted velocity for
left-to-right propagation in chains with N= 49 plastically and
elastically deformed arches arranged according to different
periodic patterns. First, we find that stable wave propagation is
only possible when the plastically deformed arches are separated
by three or less elastically deformed ones. Second, the results
indicate that cglobal monotonically increases with the density of
plastically deformed arches and approaches ~497 units/s in the

limit of a chain comprising only plastically deformed elements.
Note that cglobal can be evaluated by balancing the total
transported kinetic energy, Ed, the difference ΔV between the
higher and lower energy well for the asymmetric elements, and
the energy dissipated as ref. 46

cglobal ¼
2βLEd

ΔV
: ð5Þ

where Ed can be estimated as

Ed ¼ ∑
nsc

j¼1

1
2

1
n
∑
n

i¼1
vðj�1Þnþi

� �2

nL; ð6Þ

n denoting the number of arches in the super-cell that captures
the periodic pattern of elastic/plastic arches and nsc being the
number of super-cells in the chain. Moreover, vj is the speed at
which the j-th arch snaps (i.e., the snapping-speed), which can be
computed as

vj ¼
jwjðL=2; tinÞj þ jwjðL=2; tendÞj

tend � tin
ð7Þ

tin and tend denoting the instants of time at which the snapping of
the j-th arch starts and ends, respectively (see Supplementary
Fig. 15). In Fig. 5b we compare the predictions from Eq. (5) with
the numerical results for chains with varying density of plastically
deformed elements and find that the model nicely captures the
wave speed observed in the simulations. Finally, it is interesting to
point out that the alternation of elastically and plastically
deformed elements leads to pulses with locally modulated speed.
This is because the energy released upon snapping by the
plastically deformed arches makes the following elastic element to
snap faster, whereas the absence of released energy between
consecutive elastically deformed ones delays their snapping.
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Fig. 5 Tuning nonreciprocity and wave speed. a Snapping times for transition waves propagating both left-to-right and right-to-left in chains comprising N
= 48, 49, and 50 elastically and plastically deformed arches periodically arranged according to the pattern shown in Fig. 4b. Note that for N= 49 the
arches do not snap in sequence when excited right-to-left (the blue dot representing the snapping time for the 49-th arch is tsnap49 ¼ 0.86 s. b Local speed of
the transition waves along the chain for different patterns of elastically/plastically deformed arches. The dashed lines correspond to the predictions of Eqs.
(5–7). (i) Chain with all plastic arches, (ii) chain with one plastic and one elastic arches, (iii) chain with one plastic and two elastic arches, (iv) chain with
one plastic and three elastic arches, (v) chain with one plastic and four elastic arches.
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Discussion
To summarize, we have shown that in 1D multistable systems
nonreciprocity and reversibility can be programmed independently
and easily realized. A reversible diode can be created by assembling
elements with symmetric on-site energy potentials but decreasing
energy barriers. On the other hand, chains capable of sustaining
nonreciprocal transition waves traveling in opposite directions can
be realized by alternating arches with symmetric and asymmetric
energy wells. Although the dynamic response of the reversible
diode is controlled by the difference in rise between the arches,
the behavior of the nonreciprocal chain can be tuned by varying
the arrangement of the symmetric and asymmetric elements and is
negligibly affected by their rise (see Supplementary Fig. 16). Fur-
ther, all the considered systems are input-independent, as the
speed of the supported waves is insensitive to the loading rate α at
which the indenter moves the first arch (see Supplementary
Fig. 17). Although in this study we verified the concept for 1D
chains, our findings can be easily generalized to 2D and 3D net-
works of arches to realize passive smart systems with enhanced
selective signal transmission and wave guidance capabilities.

Methods
Details on the geometry, design, fabrication, testing, analytical model, and
numerical solutions of the 1D chains comprising shallow arches are provided in the
Supplementary Information.

Data availability
The experimental and numerical data in support of the findings in this study are available
from the corresponding author upon request.

Code availability
All numerical codes used to study the nonreciprocity and reversibility of 1D chains of
shallow arches are available from the corresponding author upon request.
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S1 Supplementary Discussion

S1.1 Fabrication

The structures considered in this study comprise a 1D array of shallow arches made out of

metallic beams and connected via rotating hinges. All beams have width b = 10 mm, length l ∈

[103.1, 105.0] mm and are made of spring steel shims (McMaster-Carr product ID: 9014K611)

with thickness h = 0.3048 mm and Young’s modulus E = 170 GPa, while all hinges are real-

ized using Lego components. Specifically, as shown in Supplementary Fig. 1, the hinges com-

prise the following components: (i) a round brick 2 × 2 with axle hole (LEGO part 4249139);

(ii) an axle (LEGO part 3705); (iii) axle and pin connectors angled at 180 degrees (LEGO part

32034). Note that in order to ensure a tight connection between the beam and the hinges, slits

of 3 mm length and 0.33 mm width are cut into both arms using a vertical knee drilling milling

machine with slitting saw (Vectrax); (iv) two bushes (LEGO part 32123); and (v) a round brick

1



4 × 4 with a center axle hole (LEGO part 4211097). Note that for a structure with N arches we

use N + 1 of these hinges with their 4 × 4 round brick connected and glued (using Krazy Glue

All purposes) to a Lego plate (LEGO part 91405). The axels of the hinges (LEGO part 3705)

are located at a distance L = 120 mm from each other.

iii) hinge, LEGO part 32034

v) brick, LEGO part 4211097

i) brick, LEGO part 4249139

iv) bush, LEGO part 32123

ii) axle, LEGO part 3705

Supplementary Fig. 1: Hinges used in the experimental campaign. Picture of the hinge used to build
our arches. The parts used to fabricate them are highlighted.

In the remaining part of this Section we first describe how we fabricate chains comprising

only elastically deformed shallow arches and then report our manufacturing process to realize

plastically deformed arches that are introduced into the chain in selected locations.

S1.2 Chains comprising only elastically deformed shallow arches

As shown in Supplementary Fig. 2, a chain comprising N elastically deformed arches is fabri-

cated using the following 3 steps:
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Step 1: N strips of length l (with l ∈ [103.1, 105.0] mm) and width b = 10 mm are cut out of

the steel shim by using a shearing tool. The strips are visually inspected to make sure they do

not have any residual bending induced by the cutting procedure.

Step 2: Both ends of all steel strips are inserted into the cuts of the Lego connectors to form a

1D chain. Glue (Krazy Glue All purposes) is applied to prevent any sliding.

Step 3: An axial force is sequentially applied to all the strips to buckle them and form an ar-

ray of N arches with end-to-end distance LTOT = N L. Specifically, the axles (LEGO part

3705) are slid into the hinges connected to the arches (LEGO part 32034) and LEGO bushes

(LEGO part 32123) are added on the axles to prevent other movements rather than rotation of

the hinges. Lastly, an acrylic plate with LEGO round bricks (LEGO part 4249139) glued on it

is fixed on the top to prevent bending of the axles. The array of arches is now ready to be tested.

S1.3 Chains comprising elastically deformed and plastically deformed shal-
low arches

As part of this study, we also fabricated structures comprising Nel elastically deformed arches

and Npl plastically deformed shallow arches introduced in selected locations. As shown in Sup-

plementary Fig. 3, these structures are fabricated using the following 5 steps:

Step 1: Nel strips of length l =105.0 mm and width b = 10 mm are cut out of the steel shim

by using a shearing tool. The strips are visually inspected to make sure they do not have any

residual bending induced by the cutting procedure.

Step 2: Npl strips of length l =105.0 mm and width b = 10 mm are cut with a shearing tool out

of the steel shim. The strips are visually inspected to make sure they do not have any residual

bending induced by the cutting procedure.

Step 3: Iron cylinders of diameter 34 and 25 mm are used to plastically deform the Npl steel

beams into a sinusoidal-like shape.
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Step 1a) Step 1b) Step 1c)

Step 2a) Step 2b) Step 2c)

Step 3b)

Step 3a)

Supplementary Fig. 2: Fabrication. Fabrication steps to manufacture a chain comprising only elasti-
cally deformed shallow arches. Step 1a-1c, cutting the steel shims by using a shearing tool; Step 2a-2c,
both ends of the steel strips are inserted into the Lego hinges and glue is applied to prevent sliding; Step
3a-3b, the array of arches is inserted into the Lego axles.

Step 4: The shape of the Npl plastically deformed arch is visually compared with that of the

target sinusoidal profile (which is laser cut out of an acrylic sheet with thickness 12.7 mm) to

make sure the obtained shape is close enough to the desired one. In the unlikely event the arch

has a very different shape with respect the benchmark, we either repeat Step 3 or start over from

Step 2.

Step 5: Both ends of the Nel steel strips and the Npl plastically deformed arches are inserted
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into the cuts of the LEGO connectors to form a 1D chain (with the plastically deformed arches

arranged in the desired location). Glue (Krazy Glue All purposes) is applied to prevent any

sliding. The gluing is repeated on all the steel strips that are assembled together to form our

array of arches.

Step 6: The Npl plastically deformed arches are directly connected to the LEGO supports. An

axial force is sequentially applied to the Nel strips to buckle them and form arches that are

then connected to the Lego supports. Specifically, the axles (LEGO part 3705) are slid into the

hinges connected to the arches (LEGO part 32034) and LEGO bushes (LEGO part 32123) are

added on the axles to prevent other movements rather than rotation of the hinges. Lastly, an

acrylic plate with LEGO round bricks (LEGO part 4249139) glued on it is fixed on the top to

prevent bending of the axles. The array of arches is now ready to be tested.
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Step 1 – 2 a) Step 1 – 2 b) Step 1 – 2 c)

Step 5a) Step 5b) Step 5c)

Step 3a) Step 3b) Step 4)

Step 6c)

Step 5c)

Step 6b)Step 6a)

Supplementary Fig. 3: Fabrication. Fabrication steps to manufacture a chain comprising elastically
deformed and plastically deformed shallow arches. Step 1a-1c, Step 2a-2c, cutting the steel shims by
using a shearing tool; Step 3a-3b, iron cylinders are used to plastically deform the steel stripes; Step
4, the shape of the plastically deformed arch is visually compared with a target sinusoidal profile; Step
5a-5c, both ends of the steel strips and plastically deformed arches are inserted into the Lego hinges and
glue is applied to prevent sliding; Step 6a-6c, the array of arches is inserted into the Lego axles.
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S1.4 Testing

In all our tests we used an indenter (see inset in Supplementary Fig. 4) to push the central

part of the first arch in the chain at a constant velocity of 15 mm/s (via a motorized translation

stage - LTS300, Thorlabs). During our tests the reaction force is measured using a 10 lb load

cell (LSB200 Miniature S-Beam Jr. Load cell, FUTEK Advanced Sensor Technology, Inc.).

Moreover, a high speed camera (Photron Mini Series) is mounted above the testing area to track

the displacements of the markers positioned at L/2 of each arch comprising our specimen. The

camera records the entire experiment from the contact between the arch and the indenter up to

the snapping of the entire array at a rate of 6400 fps.
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Supplementary Fig. 4: Experimental setup. Components of the experimental setup used to test our
array of arches.
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S1.5 Mathematical model

To get a better understanding of the dynamic response of our system, we establish a numerical

model. As in our experiments, we consider a 1D array comprising N shallow arches connected

via rotating hinges, see Supplementary Fig. 5. Focusing on the j-th arch (j ∈ [1, N ]), we

describe its initial shape as

wj(xj, t = 0) = ej sin
(πxj
L

)
(S1)

where xj ∈ [0, L] (L denoting the span of the arches) and the rise ej is positive if the arch is

curved upwards and negative if the arch is curved downwards. We then apply a monotonically

increasing displacement d(t) (d(t) < 0 when pushing downwards) to the midpoint of the first

arch in the array (note that the equations can be very easily adjusted to account for the loading of

any other arch in the array) and solve for the time-dependent transverse profile of the j-th arch,

wj(xj, t) (which is defined positive for positive values of z). Towards this end, we use Euler-

Bernoulli beam theory [1] to describe the behavior of the individual arches [2, 3, 4, 5, 6, 7, 8],

so that their potential energy is given by

Vj =
1

2
EI

∫ L

0

(
∂2wj

∂x2j
− d2w0j

dx2j

)2

dxj−
1

2
Pj

∫ L

0

(
∂wj

∂xj

)2

dxj+
EA

8L

[∫ L

0

(
∂wj

∂xj

)2

−
(
dw0j

dxj

)2

dxj

]2
(S2)

where w0j is the initial unstressed position of the midsurface of the j-th arch, Pj is the axial

force applied to the j-th arch to elastically buckle it. Moreover,A and I are the area and moment

of inertia of the cross section, E is the Young’s modulus of the material.

Further, we impose continuity of rotations between neighboring elements [9, 10]

∂wj−1

∂xj−1

∣∣∣∣
xj−1=L

=
∂wj

∂xj

∣∣∣∣
xj=0

. (S3)

Importantly the constraints described by Eq. (S3) introduce concentrated moments, MLj and
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MRj , at both ends of the j-th arch

MRj
=MRj(t)δ

′ (xj − L) , MLj
=MLj(t)δ

′ (xj) , (S4)

δ being the Dirac delta function, that satisfy

MRj−1
= −MLj

, MRj
= −MLj+1

. (S5)

indenter, d(t)z
Arch 1 Arch N

1 Njj-1 j+1… …

indenter, d(t)
a

b c

d

Supplementary Fig. 5: Schematic. a, Schematic of a 1D array comprising N shallow arches. b,
Schematic of the arch where the indenter is applied. c, Schematic of the last arch in the chain. d,
Schematic of a central portion of the chain where arches interact with neighboring elements both on the
left and on the right hand side.

It follows that the the response of an array comprising N arches can be described as

ρA
∂2wj

∂t2
+ β

∂wj

∂t
+ EI

(
∂4wj

∂xj4
−
d4w0j

dxj4

)
+ pj

∂2wj

∂xj2
+Q1 +MRj = 0

for j = 1

(S6a)

ρA
∂2wj

∂t2
+ β

∂wj

∂t
+ EI

(
∂4wj

∂xj4
−
d4w0j

dxj4

)
+ pj

∂2wj

∂xj2
+MLj +MRj = 0

for j = 2, .., N − 1

(S6b)

ρA
∂2wj

∂t2
+ β

∂wj

∂t
+ EI

(
∂4wj

∂xj4
−
d4w0j

dxj4

)
+ pj

∂2wj

∂xj2
+MLj = 0

for j = N

(S6c)
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where pj = pj(t) is the midplane force produced by the stretching of the middle surface of

the j-th arch. Moreover, ρ and β are the volumetric density and the viscous damping coefficient,

respectively. Further, Q1 denotes the force measured at the midpoint of the first arch,

Q1 = Q1(t) δ

(
x1 −

L

2

)
(S7)

where δ is the Dirac delta function.

Additionally, since we are considering an indenter that controls the displacement of the first

arch, we impose

w1

(
L

2
, t

)
= e1 + d (t) , (S8)

which holds true while the first arch is in contact with the indenter. Note that if the j-th arch is

elastically deformed, the midplane force is given by [2, 7, 11]

p (t) =

[
EA

L0j

(L0j − L)−
EA

2L

∫ L

0

(
∂wj

∂xj

)2

dxj

]
, (S9)

and the initial unstressed position of the midsurface is

w0j = 0, (S10)

where L0j denotes the length of the j-th beam in its undeformed configuration. Differently, if

the j-th arch is plastically deformed, the midplane force is given by [2, 4, 12]

p (t) = −EA
2L

∫ L

0

[(
∂wj

∂xj

)2

−
(
dw0j

dxj

)2
]
dxj, (S11)

and the initial unstressed position of the midsurface is

w0j (xj) = ej sin
(πxj
L

)
. (S12)

Importantly, for our system the deformed shape wj(xj, t) can be expressed as a series of

sine functions [2]
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wj(xj, t) = w0j(xj) +
Nt∑
n=1

ψnj(t) sin
(nπxj

L

)
. (S13)

If the j-th arch is an elastically deformed one, substitution Eqs. (S9), (S10), and (S13) into

Eqs. (S6), multiplication of all terms by sin (mπxj/L) (m being an integer, m = 1, .., Nt) and

integration with respect to xj from 0 to L yields

ρA

2
ψ̈nj +

β

2
ψ̇nj +

EI

2

(nπ
L

)4
ψnj −

EAL

2

(nπ
L

)2(L0j − L
L

− 1

4

Nt∑
k=1

(
kπ

L

)2

ψk
2
j

)
ψnj + qn +mRnj = 0

for j = 1, n = 1, ..., Nt

(S14a)

ρA

2
ψ̈nj +

β

2
ψ̇nj +

EI

2

(nπ
L

)4
ψnj −

EAL

2

(nπ
L

)2(L0j − L
L

− 1

4

Nt∑
k=1

(
kπ

L

)2

ψk
2
j

)
ψnj +mRnj +mLnj = 0

for j ∈ [2, ..., N − 1], n = 1, ..., Nt

(S14b)

ρA

2
ψ̈nj +

β

2
ψ̇nj +

EI

2

(nπ
L

)4
ψnj −

EAL

2

(nπ
L

)2(L0j − L
L

− 1

4

Nt∑
k=1

(
kπ

L

)2

ψk
2
j

)
ψnj +mLnj = 0

for j = N, n = 1, ..., Nt

(S14c)

where

qn = Q sin
(nπ

2

)
, mRnj

= −MRj

(nπ
L

)
cos(nπ), mLnj

= −MLj

(nπ
L

)
. (S15)

Moreover, by substituting Eqs. (S10) and (S13) into Eq. (S8) we obtain

−d(t)− e1 +
‖(Nt+1)/2‖∑

n=1

−(−1)nψ2n−1 = 0. (S16)

Differently, if the j-th arch is a plastically deformed one, substitution of Eqs. (S11), (S12),

and (S13) into Eqs. (S6b)-(S6c), multiplication of all terms by sin (mπxj/L) (m being an inte-

ger, m = 1, .., Nt) and integration with respect to xj from 0 to L yields
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ρA

2
ψ̈nj +

β

2
ψ̇nj +

EI

2

(π
L

)4
ψnj +

EA

4L

(π
L

)2(2ejπ

L
ψnj +

Nt∑
k=1

(
kπ

L

)2

ψk
2
j

)
(ψnj + ej) +mRnj +mLnj = 0

for j ∈ [2, ..., N − 1], n = 1

ρA

2
ψ̈nj +

β

2
ψ̇nj +

EI

2

(nπ
L

)4
ψnj +

EA

4L

(nπ
L

)2(2ejπ

L
ψnj +

Nt∑
k=1

(
kπ

L

)2

ψk
2
j

)
ψnj +mRnj +mLnj = 0
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(S17a)
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(S17b)

where mRnj
, and mLnj

are given by Eq. (S15). Note that, since in all our analyses the first arch

in the chain is always an elastically deformed one, in Eqs. (S17) we don’t not include the case

j = 1.

Eqs. (S3), (S5), (S14), (S16), and (S17) are solved by numerical integration using the

Runge-Kutta method (via the ODE45 function in Matlab) to obtain ψnj(t). Note that in all

our analyses we use ρ = 7850 kg/m3, A = 3.05 mm2, E = 170 GPa, I = 0.02 mm4 (all

values that are measured), β = 6.71 · 10−1 kg/(m · s) for chains comprising only elastically

deformed shallow arches and β = 1.41 kg/(m · s) for chains comprising both elastically and

plastically deformed shallow arches (note that these values are chosen to better capture the

response observed in our tests).

At this point it is important to emphasize that Eqs. (S8) and (S14a) describe the behavior

of the first arch when this is in contact with the indenter (i.e. until |Q1(t)| > 0) [2]. When

|Q1(t)| = 0 the first arch leaves the indenter, Eq. (S8) does not hold true anymore and Eq. (S14a)

simplify to
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ψ̈nj +

β

2
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(nπ
L
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EAL
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(
kπ

L
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2
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ψnj +mRnj

= 0

for j = 1, n = 1, ..., Nt

(S18a)

The system comprising Eqs. (S3),(S5), (S18), Eqs. (S14b)-(S14c) for elastically deformed

arches and Eqs. (S17) for plastically deformed arches is again numerically integrated using

the Runge-Kutta method (via the ODE45 function in Matlab) with initial conditions (positions

and velocities) given by Eqs. (S16) and Eqs. (S14) or Eqs. (S17) for elastically and plastically

deformed arches, respectively.

To determine the number Nt of modes required for our model to accurately capture the

response of our chains, we first focus on an array comprising N = 3 elastically deformed

shallow arches with ej = 12.4 mm. When considering Nt = 5 modes, we find that both ψ4 and

ψ5 are negligible with respect the first three modes (i.e. ψj with j = 1, 2, 3) during the entire

simulation (see Supplementary Fig. 6). As such, these results indicate that Nt = 3 modes are

sufficient to capture the response of chains comprising elastically deformed arches. Next, we

focus on an array comprising 3 elastically deformed arches and a plastically deformed one. As

shown in 7, also for this case ψ4 and ψ5 are negligible during the entire simulation. Therefore,

Nt = 3 modes are sufficient to capture also the response of chains comprising both elastically

and plastically deformed arches.

Finally, we note that substitution of Eq. (S13) into Eq. (S2) yields

Vj =
π4EI

4L3

Nt∑
n=1

n4ψ2
nj − EA

π2

4L

L0 − L
L0

Nt∑
n=1

n2ψ2
nj +

π4EA

32L3

[
Nt∑
n=1

n2ψ2
nj

]2
(S19)

for elastically deformed arches and

Vj =
π4EI

4L3

Nt∑
n=1

n4ψ2
nj +

π4EA

32L3

[
2w0jψ1j +

Nt∑
n=1

n2ψ2
nj

]2
(S20)
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for plastically deformed ones. Eqs. (S19) and (S20) with Nt = 3 are used to calculate the

energy landscapes for the elastically and plastically deformed arches shown in Figs. 2f and 4a

of the main text.
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Supplementary Fig. 6: Effect of Nt on the response of an array comprising only elastic arches.
Convergence analysis for a 1D array with N = 3 elastically deformed shallow arches. For all the three
arches both the fourth, ψ4, and the fifth, ψ5, modes are negligible.
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Supplementary Fig. 7: Effect of Nt on the response of an array comprising elastic and plastic
arches. Convergence analysis for a 1D array with 3 elastically deformed shallow arches and one plasti-
cally deformed one. For all the three arches both the fourth, ψ4, and the fifth, ψ5, modes are negligible.
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S1.6 Additional results

a)
t = 0 s; t = 0.88 s; t = 0.90 s

t = 0 s; t = 0.88 s; t = 0.90 s

t = 0 s; t = 0.88 s; t = 0.90 s

d)
t = 0 s; t = 0.88 s; t = 0.90 s

Direction right-to-left | Down-to-up

Direction right-to-left | Up-to-downc)

b) Direction left-to-right | Down-to-up

Direction left-to-right | Up-to-down

Supplementary Fig. 8: Symmetric elements – Symmetric array. Chain comprising three identical
arches with rise ej = 12.4 mm (j = 1,2,3) and symmetric energy wells. a, Signal propagation left-to-
right by exciting the leftmost arch from up-to-down. b, Signal propagation left-to-right by exciting the
leftmost arch from down-to-up. c, Signal propagation right-to-left by exciting the rightmost arch from
up-to-down.d, Signal propagation right-to-left by exciting the rightmost arch from down-to-up.
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Supplementary Fig. 9: Symmetric elements – Symmetric array: response of an ideal chain with no
damping. Numerical simulation of an array comprising N = 50 elastically deformed shallow arches all
with rise ej = 12.4 mm in the absence of damping (i.e. β = 0). An ideal system with all identical elastic
elements and no damping can potentially sustain a transition wave over arbitrary distances.
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wj(L/2, 0) [mm]

Arch 1 12.13
Arch 2 11.64
Arch 3 11.00
Arch 4 10.63
Arch 5 9.88
Arch 6 9.59
Arch 7 9.03
Arch 8 8.49
Arch 9 7.92
Arch 10 7.51

Supplementary Table 1: Measured rises of the elastically deformed shallow arches in the chain
considered in Fig. 3 of the main text.
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Supplementary Fig. 10: Symmetric elements – Graded and asymmetric array. Results for the same
structure considered in Fig. 3 of the main text. a, Schematic of the structure. b, Comparison between
the experimentally measured (thick-dotted lines) and numerically predicted (thin lines) positions of the
midpoints of the arches when the system is excited left-to-right and right-to-left as indicated in (a). c,
Schematic of the structure. d, Comparison between the experimentally measured (thick-dotted lines)
and numerically predicted (thin lines) positions of the midpoints of the arches when the system is excited
left-to-right and right-to-left as indicated in (c).
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tj tj+1

Supplementary Fig. 11: Speed per unit. Schematics illustrating how to compute the local speed in a
1D array of snapping arches.
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Supplementary Fig. 12: Reversible diode. Numerically predicted positions, wj(L/2, t), for an array
comprising N = 31 arches with modulated rise. For this chain ∆ej = 400m and e1 = 12.4 mm. The
pulse is initiated by pushing down the leftmost arch.
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Supplementary Fig. 13: Symmetric/Asymmetric elements – Asymmetric array. Results for the
same structure considered in Fig. 4 of the main text. a, Schematics of chain. b, Comparison between
the experimentally measured (thick-dotted lines) and numerically predicted (thin lines) positions of the
midpoints of the arches when the system is excited left-to-right and right-to-left as indicated in (a). c,
Schematics of the chain. d, Comparison between the experimentally measured (thick-dotted lines) and
numerically predicted (thin lines) positions of the midpoints of the arches when the system is excited
left-to-right and right-to-left as indicated in (c). No transition waves are supported as indicated in (d).
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Left-to-right Right-to-left

Supplementary Fig. 14: Effect of chain symmetry/asymmetry – Tunable nonreciprocity Numeri-
cally predicted positions of the arches’ midpoints, wj(L/2, t), as a function of time for the three chains
(comprising N = 48, 49 and 50 arches) considered in Fig. 5a of the main text. Results for both left-to-
right and right-to-left propagation are shown.
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tin tend

Supplementary Fig. 15: Estimation of cglobal for a chain comprising only plastically deformed
arches. For a chain comprising only elements with asymmetric on-site energy potential the wave speed,
cglobal, can be estimated by balancing the total transported kinetic energy Ed, the difference ∆φ between
the higher and lower energy well, and the energy dissipated as [13]

cglobal =
2βLEd

∆φ
(S23)

where

Ed =

N∑
j=1

1

2

(
∂uj
∂t

)2

L (S24)

with ∂uj/∂t computed as showed in this figure. Using Eq. (S23) , we find that in a chain comprising
N = 49 plastically deformed arches with ej=12.4 mm cglobal ∼ 503 units/s while from our simulations
we compute a cglobal ∼ 497 units/s, with a discrepancy around 1%.
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Supplementary Fig. 16: Effect of the arch rise, ej , on the response of a chain comprising both
elastically and plastically deformed arches. Numerically predicted local speed of the transition waves
for different rises ej in a chain comprising N = 49 elastically and plastically deformed arches arranged
as in Fig. 4b of the main text.
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Supplementary Fig. 17: Effect of loading rate α. a, Local speed of the transition waves in a graded
system with ∆ej = 400µm and e1 = 12.4 mm for different loading rates α. We find that the wave
speed is minimally affected by α. b, Local speed of the transition waves for different loading rates α in
a system comprising N = 49 elastically and plastically deformed arches with ej = 12.4 mm arranged
as in Fig. 4b of the main text. Also for this chain we find that the wave speed is minimally affected by α.

.
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a)

d)

b)

c)

Symmetric elements – Graded and asymmetric array

Symmetric/Asymmetric elements – Asymmetric array 

Supplementary Fig. 18: Propagation of transition waves in different chains. Numerically predicted
position across each arch, wj(xj , t), during the propagation of the wave in (a) a graded chain comprising
elastically deformed arches with ∆e = 400µm and e1 = 12.4 mm; (b) a graded chain comprising
elastically deformed arches with ∆e = 150µm and e1 = 12.4 mm; (c) a chain comprising N = 49
elastically and plastically deformed arches with ej = 12.4 mm arranged as in Fig. 4b of the main text;
(d) a chain comprising N = 49 plastically deformed arches with ej = 12.4 mm. The red dashed line in
(d) indicate the global speed, cglobal, predicted by Eq. (S23).
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Supplementary Fig. 19: Comparison between experimental and numerical transition waves. Nu-
merically predicted position across each arch, wj(xj , t), during the propagation of the wave in (a) the
graded chain comprising elastically deformed arches tested in Fig. 3d in the left-to-right direction; (b)
same graded chain tested in Fig. 3d in the right-to-left direction; (c) the chain comprising elastically
and plastically deformed arches tested in Fig. 4c in the left-to-right direction (pattern showed in the
schematic); (d) same chain tested in Fig. 4c in the right-to-left direction. The red dots represent the
experimentally measured snapping times for each arch.
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Supplementary Fig. 20: Graded array and damping. Numerically predicted relation between the
critical difference in the rises of two consecutive arches, ∆ecr, and the viscous damping, β, for a graded
and asymmetric array.
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