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FIXED ANGLE INVERSE SCATTERING FOR ALMOST
SYMMETRIC OR CONTROLLED PERTURBATIONS\ast 

RAKESH\dagger AND MIKKO SALO\ddagger 

Abstract. We consider the fixed angle inverse scattering problem and show that a compactly
supported potential is uniquely determined by its scattering amplitude for two opposite fixed angles.
We also show that almost symmetric or horizontally controlled potentials are uniquely determined by
their fixed angle scattering data. This is done by establishing an equivalence between the frequency
domain and the time domain formulations of the problem, and by solving the time domain problem
by extending the methods of [Rakesh and M. Salo, Inverse Problems, 36 (2020), 035005] which
adapts the ideas introduced in [A. Bukhgeim and M. Klibanov, Soviet Math. Dokl., 24 (1981), pp.
244--247] and [O. Imanuvilov and M. Yamamoto, Comm. Partial Differential Equations, 26 (2001),
pp. 1409--1425] on the use of Carleman estimates for inverse problems.
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1. Introduction. In inverse scattering problems the objective is to determine
certain properties of a scatterer from measurements that are made far away. In
stationary scattering theory in Rn, n \geq 1, the measurements are often formulated
in terms of the scattering amplitude. If \lambda > 0 is a frequency and if \omega \in Sn - 1 =
\{ v \in Rn ; | v| = 1\} , consider the plane wave \psi i(x) = ei\lambda \omega \cdot x propagating in direction \omega .
The interaction of this plane wave with a real valued scattering potential q \in C\infty 

c (Rn)
is described by the outgoing eigenfunction (or distorted plane wave) \psi q = \psi i + \psi sq ,
which solves the Schr\"odinger equation

( - \Delta + q  - \lambda 2)\psi q = 0 in Rn

and where the scattered wave \psi sq is outgoing. There are several equivalent ways to
describe the outgoing condition (or Sommerfeld radiation condition), but for us it is
enough that \psi sq is given by the outgoing resolvent applied to the compactly supported

function  - q\psi i:
\psi sq = ( - \Delta + q  - (\lambda + i0)2) - 1( - q\psi i).

Writing x = r\theta , where r \geq 0 and \theta \in Sn - 1, the scattered wave has the asymptotics

\psi sq(r\theta ) = ei\lambda rr - 
n - 1
2 aq(\lambda , \theta , \omega ) + o(r - 

n - 1
2 ) as r \rightarrow \infty .

The function aq is called the scattering amplitude or far field pattern, corresponding
to the potential q. One could interpret aq(\lambda , \theta , \omega ) as a scattering measurement for
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5468 RAKESH AND MIKKO SALO

q that corresponds to sending a plane wave at frequency \lambda > 0 propagating in the
direction \omega \in Sn - 1 and measuring the scattered wave in the direction \theta \in Sn - 1. See,
e.g., [CK98, DZ19, Me95, Ya10] for more details on these facts.

Next, we formulate four fundamental inverse scattering problems, related to re-
covering a potential from (partial) knowledge of its quantum mechanical scattering
amplitude:

1. Full data. Recover q from aq.
2. Fixed frequency. Recover q from aq(\lambda 0, \cdot , \cdot ) with \lambda 0 > 0 fixed.
3. Backscattering. Recover q from aq(\lambda , \omega , - \omega ) for \lambda > 0 and \omega \in Sn - 1.
4. Fixed angle. Recover q from aq( \cdot , \omega 0, \cdot ), where \omega 0 \in Sn - 1 is fixed.

The full data problem is formally overdetermined when n \geq 2, since one seeks to
recover a function of n variables from a function of 2n - 1 variables. Similarly, the fixed
frequency problem is formally overdetermined when n \geq 3 (it is formally determined
when n = 2). Both of these problems have been solved; we only mention that one
can determine q from the high frequency asymptotics of aq [Sa82] and that the fixed
frequency problem is equivalent to a variant of the inverse conductivity problem of
Calder\'on addressed in [SU87, Bu08]. There have been many related works and we
refer to [Uh92, No08, Uh14] for references.

The backscattering and the fixed angle inverse scattering problems are formally
determined in any dimension (both the unknown and the data depend on n variables).
The one-dimensional case is well understood [Ma11, DT79]. Known results for n \geq 2
include uniqueness for potentials that are small or belong to a generic set [ER92, St92,
MU08, B+20], recovery of main singularities [GU93, OPS01, Ru01], identification of
the zero potential in fixed angle scattering [BLM89], and the recovery of angularly
controlled potentials from backscattering data [RU14]. See the references in [RU14,
Me18] for further results. However, these problems remain open in general.

We establish several new results for the fixed angle inverse scattering problem,
when n \geq 2. Our first result shows that a compactly supported potential is uniquely
determined by the scattering amplitude at two opposite fixed angles.

Theorem 1.1. Fix \omega \in Sn - 1, n \geq 2, and let q1, q2 \in C\infty 
c (Rn) be real valued. If

aq1(\lambda , \omega , \theta ) = aq2(\lambda , \omega , \theta ) and aq1(\lambda , - \omega , \theta ) = aq2(\lambda , - \omega , \theta )

for all \lambda > 0 and \theta \in Sn - 1, then q1 = q2.

As a corollary, it follows that a reflection symmetric potential is uniquely deter-
mined by its fixed angle scattering data.

Corollary 1.2. Fix \omega \in Sn - 1 and let q1, q2 \in C\infty 
c (Rn) be reflection symmetric

in the sense that

qj(\eta + t\omega ) = qj(\eta  - t\omega ) for all \eta \in Rn with \eta \bot \omega , t \in R, j = 1, 2.

If aq1(\lambda , \omega , \theta ) = aq2(\lambda , \omega , \theta ) for all \lambda > 0, \theta \in Sn - 1, then q1 = q2.

We show that the above results follow directly from corresponding results for the
time domain inverse problems that were studied in [RS20]. In fact, in this paper we
show that the time and frequency domain formulations of the fixed angle scattering
problem are equivalent. When n \geq 3 is odd, such an equivalence has been discussed in
[Me95, Uh01, MU] in the context of Lax--Phillips scattering theory. We give a direct
argument that works in any dimension.
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FIXED ANGLE INVERSE SCATTERING 5469

The work [RS20] was concerned with wave equation inverse problems with two
measurements, and with a single measurement problem when the unknown coefficient
is even with respect to a special direction. Our goal is to solve the single measurement
problem for coefficients which may have other types of controlled behavior. If \omega is a
unit vector in Rn representing the special direction, then an important step in [RS20]
was to patch up two solutions of the wave equation in the regions t \geq x\cdot \omega and t \leq x\cdot \omega 
to generate a solution in Rn \times R. This was done to avoid contributions coming from
t = x \cdot \omega to the estimates. In this article we use similar estimates as in [RS20], but
instead work in the regions t \geq x \cdot \omega and t \leq x \cdot \omega separately and study carefully
the boundary contributions coming from t = x \cdot \omega . This leads to Theorem 3.1 which
extends [RS20, Corollary 1.3], and to Theorem 4.1 which would not be accessible
using the methods in [RS20]. The corresponding frequency domain results are given
below in Theorems 1.3 and 1.5. This approach may be useful in solving other formally
determined inverse problems for the wave equation as well.

The next result considers potentials that satisfy a generalized reflection symmetry
or small perturbations of such potentials. We fix an (n - 1)\times (n - 1) orthogonal matrix
A, take \omega = en, and, for any x \in Rn, write x = (y, z) with y \in Rn - 1 and z \in R. For
any function p on Rn, we define its generalized even and odd parts as

peven(y, z) :=
1

2
[p(y, z) + p(Ay, - z)] ,(1.1)

podd(y, z) :=
1

2
[p(y, z) - p(Ay, - z)] .(1.2)

Theorem 1.3. Let M > 1 and \omega = en. There is an \varepsilon = \varepsilon (M) > 0 with the
following property: if q, p \in C\infty 

c (Rn) are supported in B and \| q\| Cn+4 \leq M , \| p\| Cn+4 \leq 
M , then the condition

aq+p(\lambda , \omega , \theta ) = aq(\lambda , \omega , \theta ) for all \lambda > 0 and \theta \in Sn - 1

implies p = 0, provided
\| podd\| H1(B) \leq \varepsilon \| p\| L2(B)

or
\| peven\| H1(B) \leq \varepsilon \| p\| L2(B).

In particular, if q \in C\infty 
c (Rn) satisfies a generalized reflection symmetry in the

sense that qodd = 0 or qeven = 0, then q is uniquely determined by its fixed angle
scattering data.

The next result involves functions which are horizontally controlled, as defined
next.

Definition 1.4. Given M, \varepsilon \geq 0, a function r(y, z) \in H1(Rn), with support in
\{ | y| \leq 1\} , is said to be horizontally (M, \varepsilon )-controlled if\int 

Rn - 1

| \nabla yr(y, z)| 2 dy \leq M

\int 
Rn - 1

| r(y, z)| 2 dy + \varepsilon 

\int 
Rn - 1

| \partial zr(y, z)| 2 dy

for almost every z \in ( - 1, 1).

Theorem 1.5. Let M > 1 and \omega = en. There is an \varepsilon = \varepsilon (M) > 0 with the
following property: if q, p \in C\infty 

c (Rn) are supported in B and \| q\| Cn+4 \leq M , \| p\| Cn+4 \leq 
M , then the condition

aq+p(\lambda , \omega , \theta ) = aq(\lambda , \omega , \theta ) for all \lambda > 0 and \theta \in Sn - 1
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5470 RAKESH AND MIKKO SALO

implies p = 0, provided the function

r(y, z) :=

\int z

 - \infty 
p(y, s) ds, (y, z) \in Rn,

is horizontally (M, \varepsilon )-controlled.

For example, the fixed angle scattering data determines uniquely any perturbation
p(y, z) of the form

p(y, z) =
N\sum 
j=1

pj(z)\varphi j(y), (y, z) \in Rn,

where \varphi 1, . . . , \varphi N are fixed linearly independent functions in C\infty 
c (Rn - 1) and pj are

arbitrary functions in C\infty 
c (R) supported in a fixed interval; see Lemma 4.2. Theorem

1.5 is analogous to the result for angularly controlled potentials in backscattering
[RU14] or the result in [Ro89] for potentials which are analytic in y (see also [SS85]).

We prove the above theorems by reducing them (see section 5) to certain inverse
problems for the wave equation in the time domain. These time domain problems
are solved by extending the methods of [RS20] which adapted the ideas introduced in
[BK81] and [IY01] on the use of Carleman estimates for formally determined inverse
problems. Please refer to [Kh89, Ya99, Bu00, Be04, Is06, Kl13, SU13, BY17] for
further details about this method and its variants.

More specifically, our proofs will proceed as follows:
1. First, the time domain fixed angle scattering problem is reduced to an inverse

source problem for the wave equation. If the source were zero, this would
be a standard unique continuation problem which could be solved using a
Carleman estimate. Here the source is nonzero but it has a special form: the
unknown part of the source is time independent and related to the trace of
the solution on a certain characteristic boundary.

2. We then invoke a Carleman estimate for the wave equation with boundary
terms which estimates the solution in terms of the source and the boundary
terms. Because of step 1, the source can be estimated by the trace of the
solution on the characteristic part of the boundary. If the Carleman weight
is pseudoconvex and decays rapidly away from the characteristic boundary,
then it just remains to control the characteristic boundary terms.

3. If the Carleman weight has the properties in step 2, then the characteristic
boundary term will have an adverse sign. We deal with the adverse sign term
either by using a reflection argument, leading to Theorem 1.3, or by assuming
that the adverse sign term is controlled by other boundary terms, leading to
Theorem 1.5.

We emphasize that this method leads to uniqueness and Lipschitz stability results
for the time domain inverse problems; see Theorems 3.1 and 4.1 for precise statements.
Uniqueness in the frequency domain fixed angle problem then follows from the reduc-
tion in section 5 (stability does not follow immediately, since the reduction involves
analytic continuation). In our earlier work [RS20], an extension argument and a Car-
leman estimate in the extended domain were used for proving an analogue of Theorem
3.1. A similar extension argument could be used to prove Theorem 3.1. However, in
this paper, we instead use a Carleman estimate with explicit boundary terms, which
turns out to be simpler and contains more information than the extension method.
This new method also makes it possible to prove Theorem 1.5.
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FIXED ANGLE INVERSE SCATTERING 5471

The ideas in this article have been adapted to obtain similar results for the recov-
ery of q from the fixed angle scattering data for the operator \partial 2t  - \Delta g + q for certain
Riemannian metrics (or nonconstant sound speeds) g, where \Delta g is the Laplacian as-
sociated with g. The first results in this direction will appear in [MS20]. Another
natural question is the recovery of the Riemannian metric g from fixed angle scatter-
ing data associated with the operator \partial 2t  - \Delta g. At the moment we do not see how
to adapt our method to this problem because the medium responses to an incoming
plane wave for two different metrics are supported on different regions in space time
and, hence, it is difficult to work with the difference of the two medium responses.

This work is organized as follows. Section 1 is the introduction; section 2 intro-
duces the time domain setting for the fixed angle scattering problem and contains
some useful facts from [RS20] and sections 3 and 4 contain the proofs of Theorems
3.1 and 4.1, respectively. In section 5, we prove the equivalence of time and frequency
domain scattering measurements which leads to Theorems 1.1 to 1.5. Finally, Appen-
dix A contains the derivation of a Carleman estimate with boundary terms for the
wave equation with a pseudoconvex weight. This is well known except for the explicit
form of the boundary terms, which is needed in our proofs; hence we give a detailed
argument.

2. The time domain setting. In this section we recall, from [RS20], some
notation and basic facts for the time domain inverse problem. The open unit ball in
Rn is denoted by B and S is its boundary, \square = \partial 2t  - \Delta x is the wave operator, and q(x)
is a smooth function on Rn with support in B. The vector en = (0, 0, . . . , 1), parallel
to the z-axis, is the fixed direction of the incoming plane wave and given x \in Rn, we
write x = (y, z) with y \in Rn - 1, z \in R.

Let Uq(x, t) = Uq(x, t, en) be the solution of the initial value problem (IVP for
short)

(\square + q)Uq = 0 in Rn+1, Uq| \{ t< - 1\} = \delta (t - z).

We can express Uq in the form Uq(x, t) = \delta (t - z)+uq(x, t), where uq(x, t) = uq(x, t, en)
is the unique solution of the IVP

(2.1) (\square + q)uq =  - q(x)\delta (t - z) in Rn+1, uq| \{ t< - 1\} = 0.

This solution has the following properties.

Proposition 2.1. There is a unique distributional solution uq of (2.1). The dis-
tribution uq(x, t) is supported in \{ t \geq z\} and has a unique representation as a smooth
function on \{ t \geq z\} which is also the unique smooth solution of the characteristic
IVP,

(\square + q)uq = 0 in \{ t > z\} ,

uq(y, z, z) =  - 1

2

\int z

 - \infty 
q(y, s) ds for all (y, z) \in Rn,

uq(x, t) = 0 in \{ z < t <  - 1\} .

For any M > 0, T > 1 there is a C = C(M,T ) > 0 such that if \| q\| Cn+4 \leq M , then

\| uq\| L\infty (\{ z\leq t\leq T\} ) \leq C.

This proposition is a restatement of a part of [RS20, Proposition 1.1]; [RS20]
contains the proof of the bound on \| uq\| L\infty and the remaining parts were proved
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5472 RAKESH AND MIKKO SALO

earlier in [RU14, Theorem 1a]. The proof of [RU14, Theorem 1a], though written for
n = 3, goes through for all n \geq 1 with no changes.

Below, we regard the distribution uq(x, t) as a function on Rn+1 which is zero on
\{ t < z\} and is a smooth function on \{ t \geq z\} .

The single measurement inverse problem can be stated as follows:

given uq| S\times ( - 1,T ) for some T , determine q in Rn.

This corresponds to determining an inhomogeneity q living inside B by sending a
plane wave \delta (t - z) and measuring the scattered wave uq on the boundary of B until
the time T .

We reduce this inverse problem to a unique continuation problem for the wave
equation. To this end define the following subsets of Rn \times R:

Q := B \times ( - T, T ), \Sigma := S \times ( - T, T ),
Q\pm := Q \cap \{ \pm (t - z) > 0\} , \Sigma \pm := \Sigma \cap \{ \pm (t - z) \geq 0\} ,

\Gamma := Q \cap \{ t = z\} , \Gamma \pm T := Q \cap \{ t = \pm T\} .

We will also need the vector fields

Z :=
1\surd 
2
(\partial t + \partial z), N :=

1\surd 
2
(\partial t  - \partial z);

note that Z is tangential to \Gamma and N is normal to \Gamma .
Next, we state a result about a specific Carleman weight for the wave operator,

which follows from the discussion in [RS20, section 2.3] and [RS20, Lemma 3.2] (see
Appendix A for the definition of a strongly pseudoconvex function). Note that the
roles of \phi and \psi in this paper are the reverse of the roles they play in [RS20].

Lemma 2.2. Define

\psi (y, z, t) := 5(a - z)2 + 5| y| 2  - (t - z)2, (y, z) \in Rn, t \in R.

Given T > 6, there exists a > 1 such that
\bullet the function \phi = e\lambda \psi is strongly pseudoconvex with respect to \square in a (fixed)

neighborhood of Q for sufficiently large \lambda > 0;
\bullet the smallest value of \phi on \Gamma is strictly larger than the largest value of \phi on
\Gamma T \cup \Gamma  - T ;

\bullet the function

h(\sigma ) := sup
(y,z)\in B

\int T

 - T
e2\sigma (\phi (y,z,t) - \phi (y,z,z)) dt

satisfies lim\sigma \rightarrow \infty h(\sigma ) = 0.

For later use, we also quote the following energy estimates from [RS20, Lemmas
3.3--3.5].

Lemma 2.3. Let T > 1 and p \in C\infty 
c (Rn) be supported in B. If \alpha (x, t) is a smooth

function on \{ t \geq z\} satisfying

\square \alpha = 0 in \{ (x, t) ; | x| > 1 and t > z\} ,

\alpha (y, z, z) =

\int z

 - \infty 
p(y, s) ds on \{ | x| > 1\} ,

\alpha = 0 in \{ z < t <  - 1\} ,
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FIXED ANGLE INVERSE SCATTERING 5473

then
\| \partial \nu \alpha \| L2(\Sigma +) \lesssim \| \alpha \| H1(\Sigma +) + \| \alpha \| H1(\Sigma +\cap \Gamma )

with the constant dependent only on T .

Lemma 2.4. Let T > 1 and q \in C\infty 
c (Rn) be supported in B. For every \alpha \in 

C\infty (Q+) we have

\| \alpha \| L2(\Gamma T )+\| \nabla x,t\alpha \| L2(\Gamma T ) \lesssim \| \alpha \| H1(\Gamma )+\| (\square +q)\alpha \| L2(Q+)+\| \alpha \| H1(\Sigma +)+\| \partial \nu \alpha \| L2(\Sigma +)

with the constant dependent only on \| q\| L\infty and T .

Lemma 2.5. Let T > 1, q \in C\infty 
c (Rn) be supported in B and \phi \in C2(Q+). There

are constants C, \sigma 0 > 1, depending only on \| q\| L\infty , \| \phi \| C2(Q+) and T , such that for

every \alpha \in C\infty (Q+) and \sigma \geq \sigma 0 one has the estimate

\sigma 2\| e\sigma \phi \alpha \| 2L2(\Gamma ) + \| e\sigma \phi \nabla \Gamma \alpha \| 2L2(\Gamma ) \leq C
\Bigl[ 
\sigma 3\| e\sigma \phi \alpha \| 2L2(Q+) + \sigma \| e\sigma \phi \nabla x,t\alpha \| 2L2(Q+)

+ \| e\sigma \phi (\square + q)\alpha \| 2L2(Q+) + \sigma 2\| e\sigma \phi \alpha \| 2L2(\Sigma +) + \| e\sigma \phi \nabla x,t\alpha \| 2L2(\Sigma +)

\Bigr] 
.

3. Almost reflection symmetric perturbations. We will use the notation
from section 2. If A is an (n - 1)\times (n - 1) orthogonal matrix and \sigma \in \{ +1, - 1\} , we
define

\u p(y, z) :=
1

2
[p(y, z) - \sigma p(Ay, - z)] .

Comparing with (1.1)--(1.2), one has \u p = podd when \sigma = 1 and \u p = peven when
\sigma =  - 1. The following result solves the time domain analogue of the fixed angle
scattering problem for almost reflection symmetric potentials and gives a Lipschitz
stability estimate.

Theorem 3.1. Let M > 1, T > 6, and \sigma \in \{ 1, - 1\} . There exist positive
constants C and \varepsilon , depending only on M and T , with the following property: if
q, p \in C\infty 

c (Rn) are supported in B and \| q\| Cn+4 \leq M , \| p\| Cn+4 \leq M , then

\| p\| L2(B) \leq C(\| uq+p  - uq\| H1(\Sigma +) + \| uq+p  - uq\| H1(\Sigma +\cap \Gamma ))

provided
\| \u p\| H1(B) \leq \varepsilon \| p\| L2(B).

Theorem 3.1 will follow from the next result which proves uniqueness and stability
for a certain linear inverse problem.

Proposition 3.2. Let M > 1 and T > 6. There is a C(M,T ) > 0 so that if

(\square + q\pm )w\pm (x, t) = (Zw\pm )(x, z) f\pm (x, t) in Q\pm 

for some q\pm \in C\infty 
c (Rn) supported in B, f\pm \in L\infty (Q\pm ) and w\pm \in H2(Q\pm ) with

\| q\pm \| L\infty (B) \leq M , \| f\pm \| L\infty (Q\pm ) \leq M , then\sum 
\pm 

\| w\pm \| H1(\Gamma ) \leq C
\Bigl[ 
\| w+  - w - \| H1(\Gamma ) +

\sum 
\pm 

(\| w\pm \| H1(\Sigma \pm ) + \| \partial \nu w\pm \| L2(\Sigma \pm ))
\Bigr] 
.

Note the special structure of the right-hand side of the partial differential equation
(PDE for short). It has the (Zw\pm )(x, z) term which resides on \Gamma and hence the
appropriate Carleman weight helps us absorb the right-hand side of the PDE into the
left-hand side of the inequality. That is why there is no f\pm term on the right-hand
side of the estimate.

D
ow

nl
oa

de
d 

08
/0

2/
21

 to
 1

32
.1

74
.2

54
.7

2.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5474 RAKESH AND MIKKO SALO

Proof of Theorem 3.1. Assume that q, p, and \sigma are as in the statement of the
theorem and define

w := uq+p  - uq,

where uq+p and uq are as in Proposition 2.1. The function w is smooth on the region
t \geq z, solves the equation

(\square + q)w =  - p(x)uq+p in Q+,

and on \Gamma , the bottom part of the boundary of Q+, has the trace

(3.1) w(y, z, z) =  - 1

2

\int z

 - \infty 
p(y, s) ds for all (y, z) \in \=B,

so Zw(y, z, z) =  - 1
2
\surd 
2
p(y, z). Thus, taking

w+ = w, q+ = q, f+ = 2
\surd 
2uq+p,

one has (\square + q+)w+ = (Zw+)| \Gamma f+ in Q+. Moreover, \| f+\| L\infty (Q+) \leq C(M,T ) by
Proposition 2.1.

Next, define w - in Q - by reflection, that is,

w - (y, z, t) =  - \sigma w+(Ay, - z, - t), (y, z, t) \in Q - ;

then on Q - we have

\square w - (y, z, t) =  - \sigma (\square w+)(Ay, - z, - t)
=  - \sigma ( - q+w+ + (Zw+)| \Gamma f+)(Ay, - z, - t).

Further, a tangential derivative of the trace of w - on \Gamma is given by

Zw - (y, z, z) = \sigma (Zw+)(Ay, - z, - z), (y, z) \in \=B,

so, if we define

q - (y, z) =  - \sigma q+(Ay, - z, - t), f - (y, z) =  - f+(Ay, - z, - t), (y, z) \in \=B,

then (\square + q - )w - = (Zw - )| \Gamma f - in Q - and \| f - \| L\infty (Q - ) \leq C(M,T ).
Thus, we are exactly in the situation of Proposition 3.2, which implies that\sum 
\pm 

\| w\pm \| H1(\Gamma ) \leq C(M,T )(\| w+  - w - \| H1(\Gamma )

+
\sum 
\pm 

(\| w\pm \| H1(\Sigma \pm ) + \| \partial \nu w\pm \| L2(\Sigma \pm ) + \| w\pm \| H1(\Sigma \pm \cap \Gamma ))).

By Lemma 2.3, which applies in Q+ as well as in Q - , one has

\| \partial \nu w\pm \| L2(\Sigma \pm ) \leq C(T )(\| w\pm \| H1(\Sigma \pm ) + \| w\pm \| H1(\Sigma \pm \cap \Gamma )).

Using the definition of w - , one also has

\| w - \| H1(\Sigma  - ) + \| w - \| H1(\Sigma  - \cap \Gamma ) \leq \| w+\| H1(\Sigma +) + \| w+\| H1(\Sigma +\cap \Gamma ).
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FIXED ANGLE INVERSE SCATTERING 5475

Moreover, using (3.1) and the definition of w+, Z, we have

\| p\| L2(B) \lesssim \| Zw+\| L2(\Gamma ) \leq \| w+\| H1(\Gamma ).

Combining these estimates gives that

(3.2) \| p\| L2(B) \leq C(\| w+  - w - \| H1(\Gamma ) + \| w+\| H1(\Sigma +) + \| w+\| H1(\Sigma +\cap \Gamma )).

Next, to estimate the jump from w - to w+ across \Gamma , we observe that for all
(y, z) \in \=B

 - 2(w+(y, z, z) - w - (y, z, z)) =

\int z

 - \infty 
p(y, s) ds+ \sigma 

\int  - z

 - \infty 
p(Ay, s) ds

=

\int \infty 

 - \infty 
p(y, s) ds - 

\int \infty 

z

(p(y, s) - \sigma p(Ay, - s)) ds

=  - 2w+(y,
\sqrt{} 
1 - | y| 2,

\sqrt{} 
1 - | y| 2) - 2

\int \infty 

z

\u p(y, s) ds.

Writing h(y, z) =
\int \infty 
z

\u p(y, s) ds, one has

w+(y, z, z) - w - (y, z, z) = w+(P (y, z)) + h(y, z) for all (y, z) \in \=B,

where P : (y, z) \mapsto \rightarrow (y,
\sqrt{} 
1 - | y| 2,

\sqrt{} 
1 - | y| 2) maps B to \Sigma + \cap \Gamma . It follows that

\| w+  - w - \| H1(\Gamma ) \lesssim \| w+\| H1(\Sigma +\cap \Gamma ) + \| h\| H1(B).

Since h(y,
\sqrt{} 
1 - | y| 2) = 0 for | y| \leq 1, a simple Poincar\'e inequality implies that

\| h\| H1(B) \lesssim \| \partial zh\| H1(B) = \| \u p\| H1(B).

Inserting these facts into (3.2), we see that

\| p\| L2(B) \leq C(\| \u p\| H1(B) + \| w+\| H1(\Sigma +) + \| w+\| H1(\Sigma +\cap \Gamma )).

We now choose \varepsilon so small that C\varepsilon \leq 1/2. If p satisfies \| \u p\| H1(B) \leq \varepsilon \| p\| L2(B), the
\| \u p\| H1(B) term can be absorbed by the left-hand side and the theorem follows.

Proof of Proposition 3.2. Let \phi be the weight in Lemma 2.2, so that \phi is strongly
pseudoconvex for \square in a neighborhood of Q. We first use a Carleman estimate with
boundary terms on Q+ (below we write w and q instead of w+ and q+ for convenience).
By Theorem A.7, for \sigma \geq \sigma 0 with \sigma 0 \geq 1 sufficiently large, one has the estimate

\sigma 3\| e\sigma \phi w\| 2L2(Q+) + \sigma \| e\sigma \phi \nabla w\| 2L2(Q+) + \sigma 

\int 
\partial Q+

e2\sigma \phi Fj(x,\sigma w,\nabla w)\nu j dS

(3.3)

\lesssim \| e\sigma \phi (\square + q)w\| 2L2(Q+).

It is proved in section A.2 that the functions Fj(x, q0, q1, . . . , qn+1) are quadratic forms
in the qj variables with smooth coefficients depending on x. Moreover, it will be
important that on \Gamma , a subset of \partial Q+, the functions Fj depend only on the tangential
derivatives of w and not on the normal derivative of w (see (A.29)).
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5476 RAKESH AND MIKKO SALO

Now the energy estimate in Lemma 2.5 shows that

(3.4) \sigma 2\| e\sigma \phi w\| 2L2(\Gamma ) + \| e\sigma \phi \nabla \Gamma w\| 2L2(\Gamma ) \lesssim \sigma 3\| e\sigma \phi w\| 2L2(Q+)

+ \sigma \| e\sigma \phi \nabla w\| 2L2(Q+) + \| e\sigma \phi (\square + q)w\| 2L2(Q+) + \sigma 2\| e\sigma \phi w\| 2L2(\Sigma +) + \| e\sigma \phi \nabla w\| 2L2(\Sigma +).

Combining (3.3) and (3.4) and dropping the L2(Q+) terms on the left give the estimate

(3.5) \sigma 2\| e\sigma \phi w\| 2L2(\Gamma ) + \| e\sigma \phi \nabla \Gamma w\| 2L2(\Gamma ) + \sigma 

\int 
\Gamma 

e2\sigma \phi Fj(x, \sigma w,\nabla \Gamma w)\nu j dS

\lesssim \| e\sigma \phi (\square + q)w\| 2L2(Q+) + \sigma 3\| e\sigma \phi w\| 2L2(\Sigma +\cup \Gamma T ) + \sigma \| e\sigma \phi \nabla w\| 2L2(\Sigma +\cup \Gamma T ).

For the terms over \Gamma T , using the energy estimate in Lemma 2.4, we have

\| w\| 2L2(\Gamma T ) + \| \nabla w\| 2L2(\Gamma T )

\lesssim \| w\| 2H1(\Gamma ) + \| (\square + q)w\| 2L2(Q+) + \| w\| 2H1(\Sigma +) + \| \partial \nu w\| 2L2(\Sigma +)

\lesssim \| w\| 2H1(\Gamma ) + \| w\| 2H1(\Sigma +) + \| \partial \nu w\| 2L2(\Sigma +).

In the last line we used that (\square + q)w = (Zw)| \Gamma f+ with f+ bounded. Since \phi satisfies
sup\Gamma T

\phi \leq inf\Gamma \phi  - \delta for some \delta > 0 (see Lemma 2.2), we have

\sigma 3\| e\sigma \phi w\| 2L2(\Gamma T ) + \sigma \| e\sigma \phi \nabla w\| 2L2(\Gamma T )

\lesssim \sigma 3e - 2\delta \sigma \| e\sigma \phi w\| 2H1(\Gamma ) + \sigma 3e2\sigma sup\Gamma T
\phi (\| w\| 2H1(\Sigma +) + \| \partial \nu w\| 2L2(\Sigma +)).

Inserting this estimate into (3.5), and choosing \sigma so large that the term with \sigma 3e - 2\delta \sigma 

can be absorbed on the left, we observe that

(3.6) \sigma 2\| e\sigma \phi w\| 2L2(\Gamma ) + \| e\sigma \phi \nabla \Gamma w\| 2L2(\Gamma ) + \sigma 

\int 
\Gamma 

e2\sigma \phi Fj(x, \sigma w,\nabla \Gamma w)\nu j dS

\lesssim \| e\sigma \phi (\square + q)w\| 2L2(Q+) + \sigma 3eC\sigma 
\Bigl[ 
\| w\| 2L2(\Sigma +) + \| \nabla w\| 2L2(\Sigma +)

\Bigr] 
.

Again (\square + q)w = (Zw)| \Gamma f+ with f+ bounded, so

\| e\sigma \phi (\square + q)w\| 2L2(Q+) \lesssim h(\sigma )\| e\sigma \phi \nabla \Gamma w\| 2L2(\Gamma ),

where h(\sigma ) is the function in Lemma 2.2 with h(\sigma ) \rightarrow 0 as \sigma \rightarrow \infty . Thus, for \sigma large
(depending on M and T ), the h(\sigma ) term can be absorbed on the left. Fixing such a
\sigma , from (3.6) we obtain the estimate

(3.7) c\| w\| 2H1(\Gamma ) + \sigma 

\int 
\Gamma 

e2\sigma \phi Fj(x, \sigma w,\nabla \Gamma w)\nu j dS \leq C(\| w\| 2L2(\Sigma +) + \| \nabla w\| 2L2(\Sigma +))

for some positive constants c, C depending on M,T .
We rewrite the estimate (3.7) for w = w+ as

(3.8)

c\| w+\| 2H1(\Gamma ) + \sigma 

\int 
\Gamma 

e2\sigma \phi Fj(x, \sigma w+,\nabla \Gamma w+)\nu j dS \leq C(\| w+\| 2L2(\Sigma +) + \| \nabla w+\| 2L2(\Sigma +)).
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FIXED ANGLE INVERSE SCATTERING 5477

Fix \nu to be the downward pointing unit normal to \Gamma , so \nu is an exterior normal for
Q+. An analogous argument in Q - yields the following estimate for w - :

1

(3.9)

c\| w - \| 2H1(\Gamma )  - \sigma 

\int 
\Gamma 

e2\sigma \phi Fj(x, \sigma w - ,\nabla \Gamma w - )\nu j dS \leq C(\| w - \| 2L2(\Sigma  - ) + \| \nabla w - \| 2L2(\Sigma  - )).

Note the negative sign in front of \sigma in (3.9) in comparison with the positive sign in
front of \sigma in (3.8); that is so because the \nu we fixed is an interior normal for Q - on
\Gamma . Adding up (3.8) and (3.9) and noting that the Fj are quadratic forms in \sigma w\pm and
\nabla \Gamma w\pm , we have

c
\sum 
\pm 

\| w\pm \| 2H1(\Gamma ) \leq C\| w+  - w - \| H1(\Gamma )(\| w+\| H1(\Gamma ) + \| w - \| H1(\Gamma ))(3.10)

+ C
\sum 
\pm 

(\| w\pm \| 2L2(\Sigma \pm ) + \| \nabla w\pm \| 2L2(\Sigma \pm ))

for some positive constants c, C depending on \sigma (hence onM and T ). Using Cauchy's
inequality with \varepsilon allows one to absorb the \| w\pm \| H1(\Gamma ) terms on the right into the
terms on the left. This proves the proposition.

4. Horizontally controlled potentials. The following result is the time do-
main analogue of Theorem 1.5 and also contains a Lipschitz stability estimate.

Theorem 4.1. Let M > 1 and T > 3. There exist constants C(M,T ) > 0,
\varepsilon (M,T ) > 0 so that if q, p \in C\infty 

c (Rn) are supported in B and \| q\| Cn+4 \leq M ,
\| p\| Cn+4 \leq M , then

\| p\| L2(B) \leq C(\| uq+p  - uq\| H1(\Sigma +) + \| uq+p  - uq\| H1(\Sigma +\cap \Gamma ))

provided that the function

r(y, z) :=

\int z

 - \infty 
p(y, s) ds

is horizontally (M, \varepsilon )-controlled.

The following lemma gives an example of a perturbation p such that the corre-
sponding function r is (M, \epsilon )-controlled.

Lemma 4.2. Suppose \varphi 1, . . . , \varphi R are linearly independent functions in C\infty 
c (Rn - 1)

supported in the ball of radius 1/
\surd 
2 and define

(4.1) p(y, z) :=
R\sum 
j=1

pj(z)\varphi j(y)

for some functions pj \in C\infty 
c (R) supported in ( - 1/

\surd 
2, 1/

\surd 
2). The function

r(y, z) :=

\int z

 - \infty 
p(y, s) ds

is (M, 0)-controlled for some M depending on R and \varphi 1, . . . , \varphi R.

1The Fj are constructed in Theorem A.7 and would seem to depend on the domains Q\pm . However,
the Fj depend on g which itself depends on a function h which satisfies the algebraic identity (A.25).
We can construct the h so that the algebraic identity is satisfied on Q rather than Q+ and Q - 
separately. Then the g in Theorem A.7 will be the same for Q+ and Q - .
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5478 RAKESH AND MIKKO SALO

Proof. Note that p is smooth and supported in B. The function r(y, z) has the
form

r(y, z) =
R\sum 
j=1

rj(z)\varphi j(y), rj(z) =

\int z

 - \infty 
pj(s) ds.

By the triangle inequality\int 
Rn - 1

| \nabla yr(y, z)| 2 dy \lesssim 
R\sum 
j=1

| rj(z)| 2

and, moreover,\int 
Rn - 1

| r(y, z)| 2 dy =
R\sum 

j,k=1

rj(z)rk(z)(\varphi j , \varphi k)L2(Rn - 1) \sim 
R\sum 
j=1

| rj(z)| 2

since the matrix ((\varphi j , \varphi k)L2(Rn - 1))
R
j,k=1 is positive definite by the linear independence

of \varphi 1, . . . , \varphi R. Thus r(y, z) is horizontally (M, 0)-controlled for some M depending
on R,\varphi 1, . . . , \varphi R.

Theorem 4.1 will be a consequence of the following proposition.

Proposition 4.3. Let M > 1, T > 3. There are C(M,T ), \varepsilon (M,T ) > 0 so that
if

(\square + q)w(x, t) = (Zw)(x, z)f(x, t) in Q+,

for some q \in C\infty 
c (Rn) supported in B, f \in L\infty (Q+), and w \in H2(Q+) such that

\| q\| L\infty (B) \leq M and \| f\| L\infty (Q+) \leq M , then

\| w\| L2(\Gamma ) + \| Zw\| L2(\Gamma ) \leq C(\| w\| H1(\Sigma +) + \| \partial \nu w\| L2(\Sigma +))

provided that the function r(y, z) := w(y, z, z) is (M, \varepsilon )-controlled.

Proof of Theorem 4.1. Define

w := uq+p  - uq.

By Proposition 2.1, the function w is smooth in \{ t \geq z\} and solves

(\square + q)w =  - puq+p in Q+,

and r(y, z) := w(y, z, z) is given by

r(y, z) =  - 1

2

\int z

 - \infty 
p(y, s) ds.

In particular,

(4.2) Zw(y, z, z) =
1\surd 
2
\partial z(w(y, z, z)) =  - 1

2
\surd 
2
p(y, z).

We may thus use Proposition 4.3 with the choice f(x, t) := 2
\surd 
2uq+p(x, t), and with

some new choice of M , to obtain that

(4.3) \| w\| L2(\Gamma ) + \| Zw\| L2(\Gamma ) \leq C(\| w\| H1(\Sigma +) + \| \partial \nu w\| L2(\Sigma +)),

where C only depends on M and T . By Lemma 2.3 we have

(4.4) \| \partial \nu w\| L2(\Sigma +) \leq C(\| w\| H1(\Sigma +) + \| w\| H1(\Sigma +\cap \Gamma )).

Theorem 4.1 follows by combining (4.3), (4.2), and (4.4).
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FIXED ANGLE INVERSE SCATTERING 5479

The proof of Proposition 4.3 is again based on a Carleman estimate. However,
in this case, it is convenient to use a weight \phi that is independent of y and satisfies
N\phi | \Gamma > 0, \partial t\phi | Q+

\leq 0. The following lemma gives one such a weight.

Lemma 4.4. For any T > 3 there exist a > b \geq T so that if one defines

\psi (y, z, t) :=
1

2
((z  - a)2 + (t - b)2),

then, for \lambda > 0 sufficiently large, the function

\phi (y, z, t) := e\lambda \psi (y,z,t)

is strongly pseudoconvex for \square in a neighborhood of Q. Moreover,

N\phi | \Gamma > 0, Z\phi | \Gamma < 0, \partial t\phi | Q \leq 0,

the smallest value of \phi on \Gamma is strictly larger than the largest value of \phi on \Gamma T , and

g\sigma (y, z) :=

\int T

z

e2\sigma (\phi (y,z,t) - \phi (y,z,z)) dt \leq T + 1,

uniformly over \sigma \geq 1 and (y, z) \in B.

Proof. Let a > b \geq T > 3. Note first that \partial z\psi = z  - a \not = 0 whenever | z| \leq 1,
showing that \nabla \psi is nonvanishing near Q. The symbol of \square is

p(y, z, t, \eta , \zeta , \tau ) =  - \tau 2 + | \eta | 2 + \zeta 2.

Since \psi only depends on z and t, we compute

\{ p, \psi \} = 2\zeta (z  - a) - 2\tau (t - b),

\{ p, \{ p, \psi \} \} = (2\zeta )(2\zeta ) + (2\tau )(2\tau ) = 4(\zeta 2 + \tau 2).

Thus always \{ p, \{ p, \psi \} \} \geq 0. If one has \{ p, \{ p, \psi \} \} (y, z, t, \eta , \zeta , \tau ) = 0 at some point
where p = 0, then \zeta = \tau = 0 and hence p = | \eta | 2 = 0, showing that \eta = \zeta = \tau = 0.
This proves that \{ p, \{ p, \psi \} \} > 0 whenever p = \{ p, \psi \} = 0 and (\eta , \zeta , \tau ) \not = 0, and thus
the level surfaces of \psi are pseudoconvex for \square . Combining Propositions A.3 and A.5,
it follows that \phi is strongly pseudoconvex for \square near Q if \lambda > 0 is sufficiently large.

Now take T > 3 and compute
\surd 
2N\psi | \Gamma = t - b - (z  - a)| \Gamma = a - b,

\surd 
2Z\psi | \Gamma = t - b+ (z  - a)| \Gamma \leq 2 - a - b

with
\partial t\psi | Q = t - b| Q \leq T  - b.

Thus N\phi | \Gamma > 0, Z\phi | \Gamma < 0, and \partial t\phi | Q \leq 0 whenever a > b \geq T > 3. On \Gamma we have

\psi (y, z, z) =
1

2
((z  - a)2 + (z  - b)2) \geq 1

2
((1 - a)2 + (1 - b)2)

since | z| \leq 1 and a, b \geq 1. On \Gamma T we have

\psi (y, z, T ) =
1

2
((z  - a)2 + (T  - b)2) \leq 1

2
((a+ 1)2 + (T  - b)2).
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Comparing the two values on the right, we have

(1 - a)2 + (1 - b)2  - 
\bigl[ 
(a+ 1)2 + (T  - b)2

\bigr] 
=  - T 2 + 2bT  - 4a - 2b+ 1.

Given T > 3, we want to choose a > b \geq T so that the expression on the right is
positive. Choosing a > b but a very close to b, it is enough to choose b \geq T so that

 - T 2 + (2T  - 6)b+ 1 > 0.

Since T > 3, it is enough to choose b so that b > T 2 - 1
2T - 6 and b \geq T .

With the above choices, we have proved everything except for the claim about
g\sigma . However, since \partial t\phi | Q \leq 0, the integrand in g\sigma is \leq 1 and hence g\sigma | B \leq T + 1
uniformly in \sigma .

Proof of Proposition 4.3. Let \phi be as in Lemma 4.4. Repeating the argument
in Proposition 3.2 (but using Lemma 4.4 for the properties of \phi ), we arrive at the
estimate (3.6), which we restate below except that we write the integrand on \Gamma as
\nu jEj as in Theorem A.7. So, for any \sigma \geq \sigma 0 with \sigma 0 large enough, we have

(4.5) \sigma 2\| e\sigma \phi w\| 2L2(\Gamma ) + \| e\sigma \phi \nabla \Gamma w\| 2L2(\Gamma ) + \sigma 

\int 
\Gamma 

\nu jEj dS

\lesssim \| e\sigma \phi (\square + q)w\| 2L2(Q+) + \sigma 3eC\sigma 
\Bigl[ 
\| w\| 2L2(\Sigma +) + \| \nabla w\| 2L2(\Sigma +)

\Bigr] 
with constants depending only onM and T . Since (\square +q)w = Zw| \Gamma f , where \| f\| L\infty \leq 
M , one has

\| e\sigma \phi (\square + q)w\| L2(Q+) \leq M\| e\sigma (\phi  - \phi | \Gamma )(e\sigma \phi Zw)| \Gamma \| L2(Q+) \leq M\| g\sigma e\sigma \phi Zw\| L2(\Gamma ).

By Lemma 4.4, the function g\sigma is bounded uniformly over \sigma , hence one has
\| e\sigma \phi (\square + q)w\| L2(Q+) \leq C\| e\sigma \phi Zw\| L2(\Gamma ) with C = C(M,T ). Thus (4.5) gives

(4.6) \sigma 2\| e\sigma \phi w\| 2L2(\Gamma ) + \| e\sigma \phi \nabla \Gamma w\| 2L2(\Gamma ) + \sigma 

\int 
\Gamma 

\nu jEj dS

\lesssim \| e\sigma \phi Zw\| 2L2(\Gamma ) + \sigma 3eC\sigma 
\Bigl[ 
\| w\| 2L2(\Sigma +) + \| \nabla w\| 2L2(\Sigma +)

\Bigr] 
.

At this point we study the integral over \Gamma in (4.6). Now \phi is independent of y
and

N\phi | \Gamma > 0, Z\phi | \Gamma < 0

by Lemma 4.4. Hence, using the expressions for Ej in (A.29), we have

(4.7) \sigma 

\int 
\Gamma 

\nu jEj dS \geq c\sigma 

\int 
\Gamma 

((Zv)2 + \sigma 2v2) dS  - C\sigma 

\int 
\Gamma 

(| \nabla yv| 2 + | v| | Zv| ) dS

for some positive c, C independent of \sigma ; note that v = e\sigma \phi w. Since

Zv = e\sigma \phi (Zw + \sigma (Z\phi )w),

for every r > 0 we have

\| e\sigma \phi Zw\| 2L2(\Gamma ) = \| Zv  - e\sigma \phi \sigma (Z\phi )w\| 2L2(\Gamma )

\leq (1 + r)\| Zv\| 2L2(\Gamma ) + (1 + 1/r)\| e\sigma \phi \sigma (Z\phi )w\| 2L2(\Gamma ).
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Taking \beta := 1
1+r \in (0, 1), so 1

r = \beta 
1 - \beta , we have

\| Zv\| 2L2(\Gamma ) \geq \beta \| e\sigma \phi Zw\| 2L2(\Gamma )  - 
\beta 

1 - \beta 
\| e\sigma \phi \sigma (Z\phi )w\| 2L2(\Gamma ).

Using this estimate in (4.7) with sufficiently small \beta \in (0, 1), together with 2ab <
\epsilon a2 + \epsilon  - 1b2 for \varepsilon > 0, for \sigma sufficiently large one has

\sigma 

\int 
\Gamma 

\nu jEj dS \geq c\sigma 

\int 
\Gamma 

e2\sigma \phi ((Zw)2 + \sigma 2w2) dS  - C\sigma 

\int 
\Gamma 

e2\sigma \phi | \nabla yw| 2 dS.

Inserting this into (4.6) leads to

\sigma 3\| e\sigma \phi w\| 2L2(\Gamma ) + \sigma \| e\sigma \phi Zw\| 2L2(\Gamma ) \lesssim \| e\sigma \phi Zw\| 2L2(\Gamma )

+ \sigma \| e\sigma \phi \nabla yw\| 2L2(\Gamma ) + \sigma 3eC\sigma 
\Bigl[ 
\| w\| 2L2(\Sigma +) + \| \nabla w\| 2L2(\Sigma +)

\Bigr] 
,

which, when compared to (3.6), has improved powers of \sigma on the left-hand side but
with a \nabla yw term on the right-hand side. Choosing \sigma large enough, we may absorb
the \| e\sigma \phi Zw\| 2L2(\Gamma ) term into the left side, hence,

(4.8) \sigma 3\| e\sigma \phi w\| 2L2(\Gamma ) + \sigma \| e\sigma \phi Zw\| 2L2(\Gamma )

\lesssim \sigma \| e\sigma \phi \nabla yw\| 2L2(\Gamma ) + \sigma 3eC\sigma 
\Bigl[ 
\| w\| 2L2(\Sigma +) + \| \nabla w\| 2L2(\Sigma +)

\Bigr] 
.

Now \phi is independent of y, so invoking the assumption that r(y, z) := w(y, z, z)
is (M, \varepsilon )-controlled (\varepsilon still to be determined) leads to the estimate

\sigma \| e\sigma \phi \nabla yw\| 2L2(\Gamma ) \leq M\sigma \| e\sigma \phi w\| 2L2(\Gamma ) + \varepsilon \sigma \| e\sigma \phi Zw\| 2L2(\Gamma ).

Using this in (4.8), choosing \varepsilon (M,T ) > 0 small enough, and \sigma large enough, we may
absorb the \varepsilon \sigma \| e\sigma \phi Zw\| 2L2(\Gamma ) term and the M\sigma \| e\sigma \phi w\| 2L2(\Gamma ) term into the left-hand

side of (4.8). So fixing a large enough \sigma and letting all constants depend on \sigma , we
obtain

\| w\| 2L2(\Gamma ) + \| Zw\| 2L2(\Gamma ) \lesssim \| w\| 2L2(\Sigma +) + \| \nabla w\| 2L2(\Sigma +).

This proves the proposition.

5. Equivalence of frequency and time domain problems. The following
theorem shows that the scattering amplitude for a fixed direction \omega \in Sn - 1 and the
boundary measurements in the wave equation problem in section 2 are equivalent
information. Related results in the context of Lax--Phillips scattering theory in odd
dimensions n \geq 3 are discussed in [Me95, Uh01, MU]. We write uq(x, t, \omega ) for the
solution in Proposition 2.1, where en is replaced by \omega , so that uq(x, t, \omega ) is smooth in
\{ t \geq x \cdot \omega \} .

Theorem 5.1. Let n \geq 2 and fix \omega \in Sn - 1, \lambda 0 > 0. For any real valued q1, q2 \in 
C\infty 
c (Rn) with support in B, one has

aq1(\lambda , \theta , \omega ) = aq2(\lambda , \theta , \omega ) for \lambda \geq \lambda 0 and \theta \in Sn - 1

if and only if

uq1(x, t, \omega ) = uq2(x, t, \omega ) for (x, t) \in (S \times R) \cap \{ t \geq x \cdot \omega \} .
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5482 RAKESH AND MIKKO SALO

Given the previous result, Theorem 1.1 and Corollary 1.2 in the introduction
follow immediately from [RS20, Theorem 1.2] and [RS20, Corollary 1.3], respectively.
In a similar way, Theorems 1.3 and 1.5 follow from Theorems 3.1 and 4.1, respectively.

We first give a formal argument explaining why Theorem 5.1 could be true. It
will be convenient to use the slightly nonstandard conventions

\~f(\lambda ) =

\int \infty 

 - \infty 
ei\lambda tf(t) dt, \u F (t) =

1

2\pi 

\int \infty 

 - \infty 
e - i\lambda tF (\lambda ) d\lambda 

for the Fourier transform and its inverse for Schwartz functions (and via extension
also for tempered distributions) on the real line.

Let q \in C\infty 
c (Rn) be supported in B, and let Uq(x, t, \omega ) solve

(\partial 2t  - \Delta + q(x))Uq = 0 in Rn \times R, Uq| \{ t< - 1\} = \delta (t - x \cdot \omega ).

Then of course uq = Uq  - \delta (t  - x \cdot \omega ). Suppose for the moment that the Fourier

transform of Uq in the time variable is well defined. The function \~Uq should then
solve for each \lambda \in R the equation

( - \Delta + q(x) - \lambda 2) \~Uq(x, \lambda ) = 0 in Rn.

One has \~Uq(x, \lambda ) = ei\lambda x\cdot \omega + \~uq(x, \lambda ), where \~uq(x, \lambda ) extends holomorphically to
\{ Im(\lambda ) > 0\} since uq vanishes for t <  - 1. These are exactly the properties that
characterize the outgoing eigenfunction \psi q(x, \lambda , \omega ) discussed in section 1, and thus
one might expect that

\~Uq(x, \lambda , \omega ) = \psi q(x, \lambda , \omega ).

We now recall the Rellich uniqueness theorem [Re43]. The following formulation
is a consequence of [H\"o73, Corollary 3.2].

Proposition 5.2. Let \lambda > 0, let u be a tempered distribution with u \in L2
loc(Rn),

and assume that u satisfies ( - \Delta  - \lambda 2)u = 0 in Rn \setminus B. If

lim inf
R\rightarrow \infty 

1

R

\int 
R<| x| <2R

| u| 2 dx = 0,

then u = 0 in Rn \setminus B.

Using Proposition 5.2 and asymptotics of \psi sqj (see (5.5) below), the condition
aq1(\lambda , \cdot , \omega ) = aq2(\lambda , \cdot , \omega ) implies that the outgoing eigenfunctions for q1 and q2 agree
outside the support of the potentials:

(5.1) \psi q1( \cdot , \lambda , \omega )| Rn\setminus B = \psi q2( \cdot , \lambda , \omega )| Rn\setminus B .

If the map \lambda \mapsto \rightarrow \psi qj (x, \lambda , \omega ) was smooth near \lambda = 0, then one would have (5.1) for all
\lambda \in R. Taking the inverse Fourier transform in \lambda would imply that

Uq1( \cdot , t, \omega )| Rn\setminus B = Uq2( \cdot , t, \omega )| Rn\setminus B .

This would show that the boundary measurements for the wave equation problem,
for a plane wave traveling in direction \omega , agree for q1 and q2.

The argument above is only formal, since it requires taking Fourier transforms
in time and needs the regularity of the map \lambda \mapsto \rightarrow \psi q(x, \lambda , \omega ) on the real line. The
regularity of this map is related to the poles of the meromorphic continuation of the
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resolvent ( - \Delta + q  - \lambda 2) - 1 initially defined in \{ Im(\lambda ) > 0\} . It is well known [Me95]
that the resolvent family has at most finitely many poles in \{ Im(\lambda ) > 0\} , located at
ir1, . . . , irN , where  - r21, . . . , - r2N are the negative eigenvalues of  - \Delta + q. Moreover,
there may be a pole at \lambda = 0 corresponding to a bound state or resonance at zero
energy. Such poles do not exist in \{ Im(\lambda ) \geq 0\} if q \geq 0, but for signed potentials they
can exist and thus the argument above does not work in general.

We now give a rigorous proof of Theorem 5.1, working on the set \{ Im(\lambda ) > r\} ,
where the resolvent family has no poles, and using the Laplace transform in time
instead of the Fourier transform. We first recall a few basic facts about the resolvent
family. Below C+ := \{ \lambda \in C ; Im(\lambda ) > 0\} .

Proposition 5.3. Let q \in C\infty 
c (Rn) be real valued and let r0 = max( - inf q, 0)1/2.

For any \lambda \in C+ \setminus i(0, r0], there is a bounded operator

Rq(\lambda ) : L
2(Rn) \rightarrow L2(Rn)

such that for any f \in L2(Rn), the function u = Rq(\lambda )f is the unique solution in
L2(Rn) of

( - \Delta + q  - \lambda 2)u = f in Rn.

For any fixed r > r0, one has

\| Rq(\lambda )\| L2\rightarrow L2 \leq Cr,q, Im(\lambda ) \geq r.

For any fixed \rho \in C\infty 
c (Rn) and for \lambda in the set C+ \setminus i(0, r0], the family

(\rho Rq(\lambda )\rho )\lambda \in C+\setminus i(0,r0]

is a holomorphic family of bounded operators on L2(Rn) that extends continuously to
C+ \setminus i[0, r0].

Proof. The operator  - \Delta + q with domain H2(Rn), is a self-adjoint unbounded
operator in L2(Rn) with spectrum contained in [ - r20,\infty ). If \lambda \in C+ \setminus i(0, r0], then \lambda 2
is away from the spectrum, and one can choose Rq(\lambda ) to be the standard L2 resolvent
( - \Delta + q  - \lambda 2) - 1. One has the estimate

\| Rq(\lambda )\| L2\rightarrow L2 \leq 1

dist(\lambda 2, [ - r20,\infty ))
.

Writing \lambda = \sigma + i\mu , the range of \sigma \mapsto \rightarrow (\sigma + i\mu )2 is a parabola opening to the right,
so its distance from the spectrum is at least 2\sigma \mu when \sigma 2 \geq 1

2 (\mu 
2  - r20) and at

least \mu 2  - \sigma 2  - r20 when \sigma 2 \leq 1
2 (\mu 

2  - r20). Thus, for Im(\lambda ) \geq r > r0, one has
dist(\lambda 2, [ - r20,\infty )) \geq c > 0 for some constant c depending on r and r0 (in fact the
distance is \geq c(1 + | \sigma | )). It follows that

\| Rq(\lambda )\| L2\rightarrow L2 \leq Cr,q.

The last statement follows from the meromorphic extension of the resolvent family
from \{ Im(\lambda ) > 0\} to C (resp., a logarithmic cover of C \setminus \{ 0\} ) if n is odd (resp., if n
is even), and from the fact that the only poles of this family in \{ Im(\lambda ) \geq 0\} are in
i[0, r0]. See [DZ19] for the case of odd dimensions, and [Va89, Me95] for the general
case (note that [Me95] uses the opposite convention of extending the resolvent family
from \{ Im(\lambda ) < 0\} ). Here we only need the continuous extension of the resolvent
family up to the real axis minus the origin (i.e., the limiting absorption principle), so
we do not need to worry about the behavior of the extension beyond the real axis.
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5484 RAKESH AND MIKKO SALO

We also recall the following fact about Fourier--Laplace transforms.

Lemma 5.4. Suppose F (z) is analytic on \{ Im(z) > r\} for some r \in R and

| F (z)| \leq C(1 + | z| )NeR Im(z) for Im(z) > r

for some positive R,C,N independent of z. There exists an f \in \scrD \prime (R) with supp(f) \subset 
[ - R,\infty ) and e - (\mu  - r)tf \in \scrS \prime (R), (e - (\mu  - r)tf)\~( \cdot ) = F ( \cdot + i\mu ) for every \mu > r.

Proof. Here \^f(\lambda ) = \~f( - \lambda ) will be the Fourier transform of f following the con-
vention in [H\"o83a, section 7.1]. Define

U(z) := e - iRzF ( - (z  - ir)), Im(z) < 0;

then U(z) is analytic on \{ Im(z) < 0\} and, on this set,

| U(z)| \leq eR Im(z)C(1 + | z  - ir| )NeR(r - Im(z)) \leq Cr,R,N (1 + | z| )N

for some C,N independent of z. Hence, from [H\"o83a, section 7.4], there is a u \in \scrD \prime (R)
with supp(u) \subset [0,\infty ) and (e - \eta tu)\widehat (\sigma ) = U(\sigma  - i\eta ) for every \eta > 0, \sigma \in R. Define
f \in \scrD \prime (R) by

f(\cdot ) := u( \cdot +R);

then supp(f) \subset [ - R,\infty ) and, for every \eta > 0, we have

(e - \eta tf)\~(\sigma ) = (e - \eta tu( \cdot +R))\widehat ( - \sigma ) = eR(\eta  - i\sigma )(e - \eta tu)\widehat ( - \sigma )
= eR(\eta  - i\sigma )U( - \sigma  - i\eta ) = F (\sigma + i(\eta + r)).

The result follows by taking \eta = \mu  - r for any \mu > r.

The next result gives a precise relation between the time domain and frequency
domain measurements. We write \langle u, \varphi \rangle for the distributional pairing of u and \varphi .
Recall from Proposition 5.3 that \psi sq( \cdot , \lambda , \omega ) \in L2(Rn) when Im(\lambda ) > r0, but for
Im(\lambda ) = 0 one may have \psi sq( \cdot , \lambda , \omega ) /\in L2(Rn).

Proposition 5.5. Suppose \omega \in Sn - 1 is fixed and q \in C\infty 
c (Rn) is real valued and

supported in B. Define r0 := max( - inf q, 0)1/2 and

\psi sq( \cdot , \lambda , \omega ) := Rq(\lambda )( - qei\lambda x\cdot \omega ), \lambda \in C+ \setminus i(0, r0].

We have

\langle uq(x, t, \omega ), \varphi (x)\chi (t) \rangle Rn
x\times Rt

= \langle \psi sq(x, \sigma + i\mu , \omega ), \varphi (x)(e\mu t\chi )\u (\sigma ) \rangle Rn
x\times R\sigma 

for all \mu > r0 and all \varphi \in C\infty 
c (Rn), \chi \in C\infty 

c (R).
Remark 5.6. Recall that by the Schwartz kernel theorem, any distribution u(x, t)

on Rn \times R is uniquely determined by the values of \langle u(x, t), \varphi (x)\chi (t) \rangle Rn
x\times Rt as \varphi 

varies over C\infty 
c (Rn) and \chi varies over C\infty 

c (R) (see [H\"o83a, proof of Theorem 5.1.1]).
The relation in Proposition 5.5 may be formally interpreted as an inverse Laplace
transform identity

uq(x, t, \omega ) =
1

2\pi 

\int 
Im(\lambda )=\mu 

e - i\lambda t\psi sq(x, \lambda , \omega ) d\lambda 

when \mu > r0.
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Proof of Proposition 5.5. Fix r > r0. By Proposition 5.3, for Im(\lambda ) \geq r, one has
the estimates

(5.2) \| \psi sq( \cdot , \lambda , \omega )\| L2 \leq Cr,q\| qe - Im(\lambda )x\cdot \omega \| L2 \leq Cr,qe
Im(\lambda ).

For any \varphi \in C\infty 
c (Rn), define

F\varphi (\lambda ) =

\int 
Rn

\psi sq(x, \lambda , \omega )\varphi (x) dx for Im(\lambda ) \geq r.

By Proposition 5.3, F\varphi is analytic on \{ Im(\lambda ) > r\} and

| F\varphi (\lambda )| \leq Cr,qe
Im(\lambda )\| \varphi \| L2 , Im(\lambda ) \geq r.

Using Lemma 5.4, there is a distribution f\varphi \in \scrD \prime (R) with supp(f\varphi ) \subset [ - 1,\infty ) and
(e - (\mu  - r)tf\varphi )\~( \cdot ) = F\varphi ( \cdot + i\mu ) for every \mu > r. This means that

\langle e - (\mu  - r)tf\varphi , \chi \rangle = \langle F\varphi ( \cdot + i\mu ), \u \chi \rangle , \chi \in C\infty 
c (R).

Now, given \mu > r, define the linear map

\scrK : C\infty 
c (Rn) \rightarrow \scrD \prime (R), \scrK \varphi = e - (\mu  - r)tf\varphi .

If \varphi j \rightarrow 0 in C\infty 
c (Rn), then F\varphi j

(\lambda ) \rightarrow 0 when Im(\lambda ) \geq r, which implies that

\langle e - (\mu  - r)tf\varphi j
, \chi \rangle Rt

= \langle F\varphi j
( \cdot + i\mu ), \u \chi \rangle R \rightarrow 0

as j \rightarrow \infty for any fixed \chi \in C\infty 
c (R). Thus \scrK is continuous, and by the Schwartz

kernel theorem [H\"o83a, Theorem 5.2.1] there is a unique K \in \scrD \prime (Rn \times R) so that

\langle K,\varphi (x)\chi (t)\rangle = \langle \scrK \varphi , \chi \rangle = \langle e - (\mu  - r)tf\varphi , \chi \rangle = \langle F\varphi ( \cdot + i\mu ), \u \chi \rangle 
= \langle \psi sq(x, \sigma + i\mu , \omega ), \varphi (x)\u \chi (\sigma )\rangle Rn

x\times R\sigma 
.(5.3)

Since f\varphi is supported in [ - 1,\infty ), it follows that K is supported in \{ t \geq  - 1\} . We
define

vq(x, t) = e\mu tK(x, t) \in \scrD \prime (Rn \times R).

Then also vq is supported in \{ t \geq  - 1\} .
If we show that

(5.4) (\square + q)vq =  - q\delta (t - x \cdot \omega ) in Rn \times R,

uniqueness of distributional solutions of the wave equation supported in \{ t \geq  - 1\} 
(see, e.g., [H\"o83b, Theorem 23.2.7]) implies that uq = vq, so

\langle uq, \varphi (x)\chi (t)\rangle = \langle K,\varphi (x)e\mu t\chi (t)\rangle 
= \langle \psi sq(x, \sigma + i\mu , \omega ), \varphi (x)(e\mu t\chi )\u (\sigma )\rangle Rn

x\times R\sigma 
.

This proves the proposition.
To show (5.4), we first use (5.3) to see that

\langle \partial jtK,\varphi (x)\chi (t)\rangle = \langle K,\varphi (x)( - \partial t)j\chi (t)\rangle 
= \langle ( - i\sigma )j\psi sq(x, \sigma + i\mu , \omega ), \varphi (x)\u \chi (\sigma )\rangle Rn

x\times R\sigma .
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Similarly
\langle \Delta xK,\varphi (x)\chi (t)\rangle = \langle \Delta x\psi 

s
q(x, \sigma + i\mu , \omega ), \varphi (x)\u \chi (\sigma )\rangle Rn

x\times R\sigma 

and
\langle q(x)K,\varphi (x)\chi (t)\rangle = \langle q(x)\psi sq(x, \sigma + i\mu , \omega ), \varphi (x)\u \chi (\sigma )\rangle Rn

x\times R\sigma 
.

Thus, since vq = e\mu tK, we obtain that

\langle (\partial 2t  - \Delta x + q)vq, \varphi (x)\chi (t)\rangle 
= \langle (\partial 2t + 2\mu \partial t + \mu 2  - \Delta x + q)K,\varphi (x)e\mu t\chi (t)\rangle 
= \langle ( - \Delta x + q  - (\sigma + i\mu )2)\psi sq(x, \sigma + i\mu , \omega ), \varphi (x)(e\mu t\chi )\u (\sigma )\rangle Rn

x\times R\sigma 

= \langle  - q(x)ei(\sigma +i\mu )x\cdot \omega , \varphi (x)(e\mu t\chi )\u (\sigma )\rangle Rn
x\times R\sigma 

= \langle  - q(x)e - \mu x\cdot \omega \delta (t - x \cdot \omega ), \varphi (x)e\mu t\chi (t)\rangle 
= \langle  - q(x)\delta (t - x \cdot \omega ), \varphi (x)\chi (t)\rangle .

This proves (5.4).

It is now easy to complete the reduction from the scattering amplitude to time
domain measurements.

Proof of Theorem 5.1. Let r0 = max( - inf q1, - inf q2, 0)
1/2. By Proposition 5.3

the resolvents Rqj (\lambda ) are well defined for \lambda \in C+ \setminus i(0, r0], and thus for such \lambda one
may define

\psi sqj ( \cdot , \lambda , \omega ) = Rqj (\lambda )( - qjei\lambda x\cdot \omega ).

By Proposition 5.3, the map \lambda \mapsto \rightarrow \psi sqj ( \cdot , \lambda , \omega ) extends continuously as a map C+ \setminus 
i[0, r0] \rightarrow L2

loc(Rn) (this is the limiting absorption principle; see, e.g., [Ya10, section
6.2]). By [Ya10, section 6.7], for any \lambda > 0 the limit satisfies

(5.5) \psi sqj (r\theta , \lambda , \omega ) = ei\lambda rr - 
n - 1
2 aqj (\lambda , \theta , \omega ) + o(r - 

n - 1
2 ), r \rightarrow \infty .

Assume first that aq1(\lambda , \theta , \omega ) = aq2(\lambda , \theta , \omega ) for all \lambda \geq \lambda 0 and all \theta . Together
with the fact that q1 and q2 vanish outside B, this implies that for any fixed \lambda \geq \lambda 0,
the function \psi sq1  - \psi sq2 satisfies

( - \Delta  - \lambda 2)((\psi sq1  - \psi sq2)( \cdot , \lambda , \omega )) = 0 in Rn \setminus B,

(\psi sq1  - \psi sq2)(x, \lambda , \omega ) = o(| x|  - 
n - 1
2 ) as | x| \rightarrow \infty .

The Rellich uniqueness theorem (see Proposition 5.2), implies that \psi sq1  - \psi 
s
q2 vanishes

outside B. In particular, for any \varphi \in C\infty 
c (Rn \setminus B), the function

w\varphi (\lambda ) = \langle (\psi sq1  - \psi sq2)( \cdot , \lambda , \omega ), \varphi \rangle 

satisfies
w\varphi | [\lambda 0,\infty ) = 0.

However, by Proposition 5.3 the function \lambda \mapsto \rightarrow w\varphi (\lambda ) is holomorphic in C+ \setminus i(0, r0]
and has a continuous extension to C+ \setminus i[0, r0]. Since it vanishes on [\lambda 0,\infty ), one must
have w\varphi (\lambda ) \equiv 0. In particular, for any \mu > r0 one has

\langle (\psi sq1  - \psi sq2)(x, \sigma + i\mu , \omega ), \varphi (x)\rangle Rn
x
= 0, \sigma \in R.
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FIXED ANGLE INVERSE SCATTERING 5487

The relation in Proposition 5.5 then implies that

\langle uq1(x, t, \omega ) - uq2(x, t, \omega ), \varphi (x)\chi (t)\rangle Rn
x\times Rt

= 0

for all \varphi \in C\infty 
c (Rn \setminus B) and \chi \in C\infty 

c (R). This means that

uq1(x, t, \omega ) = uq2(x, t, \omega ), (x, t) \in (Rn \setminus B)\times R.

In particular, one has uq1(x, t, \omega ) = uq2(x, t, \omega ) for (x, t) \in (S \times R) \cap \{ t \geq x \cdot \omega \} as
required.

Let us now prove the converse. Assume for simplicity that \omega = en, and assume
that uq1(x, t, en) = uq2(x, t, en) for (x, t) \in (S\times R)\cap \{ t \geq z\} . By Proposition 2.1, the
function \alpha := uq1  - uq2 solves

\square \alpha = 0 in \{ (x, t) ; | x| > 1 and t > z\} ,

\alpha (y, z, z) =  - 1

2

\int z

 - \infty 
(q1  - q2)(y, s) ds on \{ | x| > 1\} ,

\alpha = 0 in \{ z < t <  - 1\} .

Moreover, \alpha | (S\times R)\cap \{ t>z\} = 0. Thus by Lemma 2.3 one also has \partial \nu \alpha | (S\times R)\cap \{ t>z\} = 0.
Now the Cauchy data of \alpha vanish on the lateral boundary of the set \{ (x, t) ; | x| \geq 
1 and t \geq z\} , and Holmgren's uniqueness theorem applied in this set shows that \alpha is
identically zero in the relevant domain of dependence. However, by the finite speed of
propagation the support of \alpha is contained in the same domain of dependence. Thus
\alpha is identically zero in \{ (x, t) ; | x| \geq 1 and t \geq z\} , which implies that

uq1(x, t, en) = uq2(x, t, en), (x, t) \in (Rn \setminus B)\times R.

The relation in Proposition 5.5 now gives that for any \mu > r0 and for any \varphi \in 
C\infty 
c (Rn \setminus B),

\langle (\psi sq1  - \psi sq2)(x, \sigma + i\mu , en), \varphi (x)\rangle Rn
x
= 0, \sigma \in R.

Since by Proposition 5.3 the function \lambda \mapsto \rightarrow \langle (\psi sq1  - \psi sq2)( \cdot , \lambda , en), \varphi \rangle is holomorphic in

C+ \setminus i(0, r0] and has a continuous extension to C+ \setminus i[0, r0], it follows that

\langle (\psi sq1  - \psi sq2)(x, \lambda , en), \varphi (x)\rangle Rn
x
= 0, \lambda > 0.

Thus \psi sq1( \cdot , \lambda , en) - \psi 
s
q2( \cdot , \lambda , en) vanishes outside B for any \lambda > 0. By the asymptotics

given in (5.5), we obtain that aq1(\lambda , \theta , en) = aq2(\lambda , \theta , en) for all \lambda > 0 and \theta \in Sn - 1

as required.

Appendix A. Carleman estimates for second order PDEs.
This exposition of the statement and the derivation of Carleman estimates with

boundary terms for second order operators with real coefficients are based mostly on
Chapter 4 of [Ta99] and Chapter VIII of [H\"o76]. What is new here is the explicit
expression for the boundary terms and perhaps our explanations are not as terse as
in [Ta99].

A.1. The Carleman estimate. We use the following notation in this exposi-
tion. For complex valued functions f(x) on Rn, fj = \partial jf = \partial f

\partial xj
, \partial f = (\partial 1f, . . . , \partial nf),
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5488 RAKESH AND MIKKO SALO

Djf = 1
i \partial jf , and S = \{ (\xi , \sigma ) \in Rn \times R : | \xi | 2 + \sigma 2 = 1\} . Further, \Omega will represent a

bounded open subset of Rn with Lipschitz boundary and

P (x,D) =
n\sum 
j=1

n\sum 
k=1

ajk(x)DjDk +
n\sum 
j=1

bj(x)Dj + c(x)

will be a second order operator with ajk = akj being real valued functions in C1(\Omega ),
and bj , c are bounded complex valued functions on \Omega . We often drop the summation
symbol when it is clear from the context that a summation is involved. The principal
symbol of P (x,D) is the function

p(x, \xi ) = ajk(x)\xi j\xi k, x \in \Omega , \xi \in Rn;

note that the double summation over j, k is implied in the above definition.
For differentiable functions p(x, \xi ) and q(x, \xi ) on \Omega \times Rn, we define their Poisson

bracket as

\{ p, q\} =
n\sum 
j=1

\partial p

\partial \xi j

\partial q

\partial xj
 - \partial p

\partial xj

\partial q

\partial \xi j
.

Definition A.1. Suppose \phi (x) is a real valued smooth function on \Omega satisfying
(\partial \phi )(x) \not = 0 at each point x \in \Omega . The level surfaces of \phi are said to be pseudoconvex
with respect to P (x,D) on \Omega if

(A.1) \{ p, \{ p, \phi \} \} (x, \xi ) > 0

for all x \in \Omega and all nonzero \xi \in Rn satisfying

(A.2) p(x, \xi ) = 0, \{ p, \phi \} (x, \xi ) = 0.

Definition A.2. Suppose \phi (x) is a real valued smooth function on \Omega satisfying
(\partial \phi )(x) \not = 0 at each point x \in \Omega . The level surfaces of \phi are said to be strongly
pseudoconvex with respect to P (x,D) on \Omega if the level surfaces of \phi are pseudoconvex
and

(A.3)
1

i\sigma 
\{ p(x, \zeta ), p(x, \zeta )\} > 0

for all x \in \Omega and all \zeta = \xi + i\sigma \partial \phi (x), \xi \in Rn, \sigma \not = 0, satisfying

(A.4) p(x, \zeta ) = 0, \{ p(x, \zeta ), \phi (x)\} = 0.

The following proposition (Theorem 1.8 in [Ta99]) is useful in constructing weights
for Carleman estimates.

Proposition A.3. Suppose \Omega is a bounded open subset of Rn with Lipschitz
boundary, P (x,D) is a second order differential operator on \Omega with the principal
part having real coefficients, and \phi is a real valued smooth function on \Omega with \partial \phi 
never zero on \Omega . The level surfaces of \phi are strongly pseudoconvex on \Omega if and only
if they are pseudoconvex on \Omega .

We prove the Carleman estimates for weights \phi which satisfy the strong pseudo-
convexity condition defined below.
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FIXED ANGLE INVERSE SCATTERING 5489

Definition A.4. Suppose \phi (x) is a real valued smooth function on \Omega satisfying
(\partial \phi )(x) \not = 0 at each point x \in \Omega . We say that \phi is strongly pseudoconvex on \Omega with
respect to P (x,D) if for all x \in \Omega and all \xi \in Rn we have

(A.5) \{ p, \{ p, \phi \} \} (x, \xi ) > 0, when p(x, \xi ) = \{ p, \phi \} (x, \xi ) = 0, \xi \not = 0,

and

(A.6)
1

i\sigma 
\{ p(x, \zeta ), p(x, \zeta )\} > 0, when p(x, \zeta ) = 0, \zeta = \xi + i\sigma \partial \phi (x), \sigma \not = 0.

Note that we make a distinction between the phrases ``level surfaces of \phi are
strongly pseudoconvex"" and ``\phi is strongly pseudoconvex."" If \phi is strongly pseudo-
convex with respect to P (x,D) on \Omega , then the level surfaces of \phi are clearly strongly
pseudoconvex with respect to P (x,D) on \Omega , but the converse is not true. However,
\phi needs to be strongly pseudoconvex for Carleman estimates to hold. The following
proposition ([H\"o76, Theorem 8.6.3]) is useful in constructing strongly pseudoconvex
weights.

Proposition A.5. Suppose \Omega is a bounded open subset of Rn with Lipschitz
boundary, P (x,D) is a second order differential operator on \Omega with the principal
part having real coefficients, and \psi is a real valued function in C1(\Omega ) with \partial \psi never
zero on \Omega . If the level surfaces of \psi are strongly pseudoconvex with respect to P (x,D)
on \Omega , then for large enough real \lambda , \phi = e\lambda \psi is strongly pseudoconvex with respect to
P (x,D) on \Omega .

It is often easier to construct suitable functions whose level surfaces are pseudo-
convex, than to directly construct functions which are strongly pseudoconvex. How-
ever, Carleman estimates require strongly pseudoconvex functions. So one first con-
structs a useful function \psi whose level surfaces are pseudoconvex. Then, by Proposi-
tion A.3, the level surfaces of \psi are strongly pseudoconvex and, hence, by Proposition
A.5, \phi = e\lambda \psi is strongly pseudoconvex for large enough \lambda . Further, \psi and \phi have the
same level surfaces.

In verifying pseudoconvexity of level surfaces of \phi , it is useful to have explicit
expressions for (A.1) and (A.3). These are available in [H\"o76] and one has

\{ p, \{ p, \psi \} \} = \psi jk
\partial p

\partial \xi j

\partial p

\partial \xi k
+

\biggl( 
\partial pk
\partial \xi j

\partial p

\partial \xi k
 - pk

\partial 2p

\partial \xi j\partial \xi k

\biggr) 
\psi j ,(A.7)

1

i\sigma 
\{ p(x, \zeta ), p(x, \zeta )\} = \psi jk(x)

\partial p

\partial \xi j
(x, \zeta )

\partial p

\partial \xi k
(x, \zeta ) + \sigma  - 1Im

\biggl( 
pk(x, \zeta )

\partial p

\partial \xi k
(x, \zeta )

\biggr) 
.

(A.8)

The strong pseudoconvexity of \phi may be expressed as a positive definiteness
condition which will be useful when proving Carleman estimates.

Lemma A.6. If \phi is strongly pseudoconvex with respect to P (x,D) on \Omega then there
is a constant c > 0 such that for \zeta = \xi + i\sigma \partial \phi we have

(A.9)
1

i\sigma 
\{ p(x, \zeta ), p(x, \zeta )\} \geq c

for (x, \xi , \sigma ) \in \Omega \times S with p(x, \xi ) - \sigma 2p(x, \partial \phi ) = \{ p, \phi \} (x, \xi ) = 0.

Here, the value of the left-hand side, when \sigma = 0, is to be understood in the sense of
a limit as \sigma \rightarrow 0.
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Proof. We have

p(x, \zeta ) = ajk(\xi j + i\sigma \phi j)(\xi k + i\sigma \phi k)

= ajk\xi j\xi k  - \sigma 2ajk\phi j\phi k + i\sigma ajk\xi k\phi j + i\sigma ajk\xi j\phi k

= p(x, \xi ) - \sigma 2p(x, \partial \phi ) + i\sigma 
\partial p

\partial \xi j
\phi j

= A(x, \xi , \sigma ) + i\sigma B(x, \xi ),

where
A(x, \xi , \sigma ) = p(x, \xi ) - \sigma 2p(x, \partial \phi ), B(x, \xi ) = \{ p, \phi \} (x, \xi )

are real valued. Hence, for \sigma \not = 0, using \{ A,A\} = 0, \{ B,B\} = 0, and \{ B,A\} =
 - \{ A,B\} , we have

1

2i\sigma 
\{ p(x, \zeta ), p(x, \zeta )\} =

1

2i\sigma 
\{ A(x, \xi , \sigma ) - i\sigma B(x, \xi ), A(x, \xi , \sigma ) + i\sigma B(x, \xi )\} 

= \{ A,B\} = \{ p, \{ p, \phi \} \} (x, \xi ) - \sigma 2\{ p(x, \partial \phi ), \{ p, \phi \} \} (x, \xi )
= \{ p, \{ p, \phi \} \} (x, \xi ) + \sigma 2\{ \{ p, \phi \} , p(x, \partial \phi )\} (x, \xi )
= \{ p, \{ p, \phi \} \} (x, \xi ) + \sigma 2\{ p, \{ p, \phi \} \} (x, \partial \phi ),

where the last step follows from the relation

(A.10) \{ p, \{ p, \phi \} \} (x, \partial \phi ) = \{ \{ p, \phi \} , p(x, \partial \phi )\} (x, \xi )

which is verified at the end of this proof. Hence

lim
\sigma \rightarrow 0

1

2i\sigma 
\{ p(x, \zeta ), p(x, \zeta )\} = \{ p, \{ p, \phi \} \} (x, \xi ).

So if we define 1
2i\sigma \{ p(x, \zeta ), p(x, \zeta )\} to be \{ p, \{ p, \phi \} \} (x, \xi ) when \sigma = 0, then the quan-

tity 1
2i\sigma \{ p(x, \zeta ), p(x, \zeta )\} is a continuous real valued function on the compact set \Omega \times S.

Now the definition of strong pseduoconvexity guarantees that 1
2i\sigma \{ p(x, \zeta ), p(x, \zeta )\} is

positive on the set

\{ (x, \xi , \sigma ) \in \Omega \times S : p(x, \xi ) - \sigma 2p(x, \partial \phi ) = 0 = \{ p, \phi \} (x, \xi )\} 

provided \sigma \not = 0. When \sigma = 0, the points on this set lie in

\{ (x, \xi ) \in \Omega \times Rn : \xi \not = 0, p(x, \xi ) = 0, \{ p, \phi \} (x, \xi ) = 0\} 

and \{ p, \{ p, \phi \} \} is positive on this set by the definition of strong pseudoconvexity.
Hence the lemma follows by continuity and compactness.

It remains to verify (A.10) which we do now using Euler's identity for homo-
geneous functions and the fact that \partial p

\partial \xi j
(x, \xi ) is homogeneous of degree 1 in \xi and

pj(x, \xi ) is homogeneous of degree 2 in \xi . We have

\{ \{ p(x, \xi ), \phi \} , p(x, \partial \phi )\} (x, \xi ) = \partial 

\partial \xi j

\biggl( 
\partial p

\partial \xi k
(x, \xi ) \phi k(x)

\biggr) \biggl( 
pj(x, \partial \phi ) +

\partial p

\partial \xi k
(x, \partial \phi )\phi jk(x)

\biggr) 
=

\biggl( 
\partial 2p

\partial \xi j\xi k
(x, \xi ) \phi k(x)

\biggr) \biggl( 
pj(x, \partial \phi ) +

\partial p

\partial \xi k
(x, \partial \phi )\phi jk(x)

\biggr) 
=

\partial p

\partial \xi j
(x, \partial \phi )

\biggl( 
pj(x, \partial \phi ) +

\partial p

\partial \xi k
(x, \partial \phi )\phi jk(x)

\biggr) D
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since \partial 2p
\partial \xi j\xi k

(x, \xi )\phi k(x) =
\partial 2p
\partial \xi j\xi k

(x, \xi )\phi k(x)| \xi =\partial \phi = \partial p
\partial \xi j

(x, \partial \phi ), and

\{ p, \{ p, \phi \} \} (x, \partial \phi ) = \partial p

\partial \xi j
(x, \partial \phi )\{ p, \phi \} j(x, \partial \phi ) - pj(x)

\biggl( 
\partial \{ p, \phi \} 
\partial \xi j

\biggr) 
(x, \partial \phi )

=
\partial p

\partial \xi j
(x, \partial \phi )

\biggl( 
\partial pj
\partial \xi k

(x, \partial \phi )\phi k +
\partial p

\partial \xi k
(x, \partial \phi )\phi jk

\biggr) 
 - pj

\partial 2p

\partial \xi k\xi j
(x, \partial \phi )\phi k

=
\partial p

\partial \xi j
(x, \partial \phi )

\biggl( 
2pj(x, \partial \phi ) +

\partial p

\partial \xi k
(x, \partial \phi )\phi jk

\biggr) 
 - pj

\partial p

\partial \xi j
(x, \partial \phi )

=
\partial p

\partial \xi j
(x, \partial \phi )

\biggl( 
pj(x, \partial \phi ) +

\partial p

\partial \xi k
(x, \partial \phi )\phi jk

\biggr) 
.

Here is the main result about Carleman estimates with boundary terms.

Theorem A.7. Suppose \Omega is a bounded open set in Rn, n \geq 2, with a Lipschitz
boundary, and P (x,D) is a second order differential operator on \Omega with bounded
coefficients whose principal symbol p(x, \xi ) has real C1 coefficients. If \phi is a smooth
function on \Omega with \partial \phi never zero in \Omega and \phi is strongly pseudoconvex with respect to
P (x,D) on \Omega , then for large enough \sigma and for all real valued u \in C2(\Omega ) one has

(A.11) \sigma 

\int 
\Omega 

e2\sigma \phi (| \partial u| 2 + \sigma 2u2) + \sigma 

\int 
\partial \Omega 

\nu jEj \lesssim 
\int 
\Omega 

e2\sigma \phi | Pu| 2

with the constant independent of \sigma and u. Here \nu = (\nu 1, . . . , \nu n) is the outward unit
normal to \partial \Omega ,

Ej := A(x, \partial v, \sigma v)
\partial B

\partial \xi j
(x) - \partial A

\partial \xi j
(x, \partial v, \sigma v) (B(x, \partial v) + g(x)v),

v = e\sigma \phi u, g some real valued function independent of \lambda , \sigma , u, and

(A.12) A(x, \xi , \sigma ) := p(x, \xi ) - \sigma 2p(x, \partial \phi ), B(x, \xi ) := \{ p, \phi \} (x, \xi ).

Remark A.8. It is not difficult to see that the expressions for Ej and (A.11) imply
that

\sigma 

\int 
\Omega 

e2\sigma \phi (| \partial u| 2 + \sigma 2u2) \lesssim 
\int 
\Omega 

e2\sigma \phi | Pu| 2 + \sigma 

\int 
\partial \Omega 

e2\sigma \phi (| \partial u| 2 + \sigma 2u2)

for all u \in C2(\Omega ).

Proof. Since the statement of Theorem A.7 is not affected by a first order per-
turbation to P we may assume that bj = 0, c = 0. The Carleman estimate follows
quickly from an algebraic inequality derived with the help of Lemma A.6. Below

A(x, \xi , \sigma ) = ajk\xi j\xi k  - \sigma 2ajk\phi j\phi k, B(x, \xi ) = \{ p(x, \xi ), \phi (x)\} 

so A(x, \xi , \sigma ) is a quadratic form in (\xi , \sigma ) and B(x, \xi ) is a linear form in \xi . Hence

A(x,D, \sigma ) = ajkDjDk  - \sigma 2ajk\phi j\phi k, A(x, \partial v, \sigma v) = ajkvjvk  - \sigma 2v2ajk\phi j\phi k,

B(x,D) = \{ p, \phi \} (x,D), B(x, \partial v) = \{ p, \phi \} (x, \partial v).

For convenience, sometimes we abbreviate P (x,D)u(x) to Pu, A(x,D, \sigma )v(x) to Av,
and B(x,D)v(x) to Bv.
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Define v := e\sigma \phi u; we show there is a smooth function g(x), independent of u and
\sigma , so that for large enough \sigma 

e2\sigma \phi | Pu| 2 \gtrsim \sigma (| \partial v| 2 + \sigma 2| v| 2) + \sigma \partial jE
j on \Omega (A.13)

with the constant independent of u, \sigma , x and each Ej is a quadratic form in (\partial v, \sigma v)
defined in the statement of Theorem A.7. Now v = e\sigma \phi u implies u = e - \sigma \phi v so
e\sigma \phi \partial u = \partial v  - \sigma \partial \phi v and \partial v = e\sigma \phi (\partial u+ \sigma \partial \phi u). Hence

e2\sigma \phi (| \partial u| 2 + \sigma 2u2) \lesssim | \partial v| 2 + \sigma 2| v| 2 \lesssim e2\sigma \phi (| \partial u| 2 + \sigma 2u2)

with the constant independent of \sigma , u and x \in \Omega . Applying this to (A.13) we recover
(A.11), so it remains to prove (A.13).

Since u = e - \sigma \phi v we have e\sigma \phi Dju = e\sigma \phi Dj(e
 - \sigma \phi v) = (Dj + i\sigma \phi j)v hence

e\sigma \phi p(x,D)u = p(x,D + i\sigma \partial \phi )v.

Now

p(x,D + i\sigma \partial \phi ) = ajk(Dj + i\sigma \phi j)(Dk + i\sigma \phi k)

= ajk(DjDk  - \sigma 2\phi j\phi k) + 2i\sigma ajk\phi jDk + \sigma ajk\phi jk

= A(x,D, \sigma ) + i\sigma B(x,D) + \sigma r(x)

for the known bounded function r(x) := ajk\phi jk. Hence, for any real valued function
g(x) \in C1(\Omega )

e2\sigma \phi | Pu| 2 = | Av + i\sigma Bv + \sigma rv| 2 = | (Av + i\sigma Bv + \sigma gv) + \sigma (r  - g)v| 2

\gtrsim | Av + i\sigma Bv + \sigma gv| 2  - c\sigma 2| v| 2

\geq | Av| 2 + \sigma 2| Bv| 2  - i\sigma (AvBv  - AvBv)

+ 2\sigma Av gv  - 2\sigma 2gv Im(Bv) - c\sigma 2| v| 2

\gtrsim \sigma 2| Bv| 2  - i\sigma (AvBv  - AvBv) + 2\sigma Av gv  - c\sigma | Bv| \sigma | v|  - c\sigma 2| v| 2

\gtrsim \sigma 2| Bv| 2 + 2i\sigma Av Bv + 2\sigma Av gv  - c\sigma 2| v| 2(A.14)

because Av is real and Bv is purely imaginary. Here the constant c may change from
line to line and c and the constant in the inequality depend only on g, \phi , and ajk.

Next we express \sigma 2| Bv| 2 + 2i\sigma Av Bv + 2\sigma Av gv as the sum of a divergence of
a vector field and a quadratic form in (\partial v, \sigma v) closely tied to the pseudoconvexity
condition; see section 8.2 of [H\"o76] for a more general version of these calculations.

We first work with 2iAv Bv; A(x,D, \sigma )v is a sum of terms of the form a(x)DjDkv
and \sigma 2a(x)v, and B(x,D)v is a sum of terms of the form b(x)Dmv with a, b, v real
valued functions. If Av = \sigma 2a(x)v and Bv = b(x)Dmv, then

2iAv Bv = 2\sigma 2abvmv = \sigma 2ab(v2)m = \sigma 2(abv2)m  - \sigma 2(ab)mv
2

=  - am(\sigma v)2 b - \sigma 2av2 bm + \sigma 2(abv2)m

= \{ A,B\} (x, \partial v, \sigma v) - A(x, \partial v, \sigma v) bm +
n\sum 
l=1

\partial 

\partial xl

\biggl( 
A(x, \partial v, \sigma v)

\partial B

\partial \xi l
(x)

\biggr) 

= \{ A,B\} (x, \partial v, \sigma v) - A(x, \partial v, \sigma v)
n\sum 
s=1

\partial 2B

\partial \xi s \partial xs
(x)

+
n\sum 
l=1

\partial 

\partial xl

\biggl( 
A(x, \partial v, \sigma v)

\partial B

\partial \xi l
(x)

\biggr) 
.(A.15)
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If Av = a(x)DjDkv and B(x,D)v = b(x)Dmv, then

2iAv Bv =  - 2abvjkvm =  - ab ((vkvm)j + (vjvm)k  - (vjvk)m)

= (ab)jvkvm + (ab)kvjvm  - (ab)mvjvk  - (abvkvm)j  - (abvjvm)k + (abvjvk)m

= (ab)jvkvm + (ab)kvjvm  - (ab)mvjvk

+
\sum 
l

\partial 

\partial xl

\biggl( 
 - \partial A
\partial \xi l

(x, \partial v, \sigma v)B(x, \partial v) +A(x, \partial v, \sigma v)
\partial B

\partial \xi l
(x)

\biggr) 
.

(A.16)

Now

(ab)jvkvm + (ab)kvjvm  - (ab)mvjvk

= (avk bjvm + avj bkvm  - amvjvk b) + (ajvk bvm + akvj bvm  - avjvk bm)

= \{ A,B\} (x, \partial v, \sigma v) +M(x, \partial v)B(x, \partial v) - A(x, \partial v, \sigma v)bm

= \{ A,B\} (x, \partial v, \sigma v) +M(x, \partial v)B(x, \partial v) - A(x, \partial v, \sigma v)

n\sum 
s=1

\partial 2B

\partial \xi s \partial xs
(x),

where M(x, \xi ) = aj\xi k + ak\xi j is homogeneous and linear of degree 1 in \xi and is
independent of B(x, \xi ). Hence using (A.16) we have

2iAv Bv = \{ A,B\} (x, \partial v, \sigma v) +M(x, \partial v)B(x, \partial v) - A(x, \partial v, \sigma v)
n\sum 
s=1

\partial 2B

\partial \xi s \partial xs
(x)

+
n\sum 
l=1

\partial 

\partial xl

\biggl( 
A(x, \partial v, \sigma v)

\partial B

\partial \xi l
(x) - \partial A

\partial \xi l
(x, \partial v, \sigma v)B(x, \partial v)

\biggr) 
.(A.17)

If Av = \sigma 2a(x)v, then one can see that the last term in (A.15) is the same as the last
term in (A.17) because in this case \partial A

\partial \xi l
= 0. Hence, since (A.17) is bilinear in A and

B, we may conclude that for the A,B given by (A.12) and for M given by

M(x, \xi ) =
\sum 
j,k

((ajk)j\xi k + (ajk)k\xi j) = 2
\sum 
j,k

(ajk)j\xi k,

one has

2iAv Bv = \{ A,B\} (x, \partial v, \sigma v) +M(x, \partial v)B(x, \partial v) - A(x, \partial v, \sigma v)
n\sum 
s=1

\partial 2B

\partial \xi s \partial xs
(x) + \partial lF

l

\geq \{ A,B\} (x, \partial v, \sigma v) - A(x, \partial v, \sigma v)
n\sum 
s=1

\partial 2B

\partial \xi s \partial xs
(x) + \partial lF

l

 - c1
\surd 
\sigma | B(x, \partial v)| 2  - c2\surd 

\sigma 
| \partial v| 2,

(A.18)

where

F l := A(x, \partial v, \sigma v)
\partial B

\partial \xi l
(x) - \partial A

\partial \xi l
(x, \partial v, \sigma v)B(x, \partial v).

Now we examine the term 2Av gv in (A.14). If Av = \sigma 2a(x)v, then

2Av gv = 2\sigma 2agv2 = 2A(x, \partial v, \sigma v)g(x).(A.19)
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5494 RAKESH AND MIKKO SALO

If Av = a(x)DjDkv, then

2Av gv =  - 2avjkgv =  - agvjkv  - agvjkv

= 2agvjvk  - (agvjv)k  - (agvkv)j + (ag)kvjv + (ag)jvkv

= 2A(x, \partial v, \sigma v)g(x) +N(x, \partial v)v  - 
\sum 
l

\partial 

\partial xl

\biggl( 
\partial A

\partial \xi l
(x, \partial v, \sigma v) g(x)v

\biggr) 
,(A.20)

where N(x, \xi ) = (ag)k\xi j + (ag)j\xi k is linear in \xi . Note that (A.20) is valid even in
the (A.19) case with N \equiv 0. Hence using linearity of (A.20) in A, for the A(x,D, \sigma )v
given by (A.12) we have

2A(x,D, \sigma )v g(x)v(A.21)

\geq 2A(x, \partial v, \sigma v)g(x) - \partial 

\partial xl

\biggl( 
\partial A

\partial \xi l
(x, \partial v, \sigma v) gv

\biggr) 
 - c1

\surd 
\sigma | v| 2  - c2\surd 

\sigma 
| \partial v| 2.

So using (A.18) and (12) in (A.14), for large enough \sigma (determined by \phi , ajk, and g),
and using that \sigma 2| B(x, \partial v)| 2 \geq \sigma d| B(x, \partial v)| 2 when \sigma \geq d, we obtain

e2\sigma \phi | Pu| 2 \gtrsim \sigma \{ A,B\} (x, \partial v, \sigma v) + \sigma d| B(x, \partial v)| 2 + \sigma h(x)A(x, \partial v, \sigma v) + \sigma \partial lE
l

 - c1
\surd 
\sigma | \partial v| 2  - c2\sigma 

2v2,(A.22)

where

(A.23) h(x) := 2g(x) - 
n\sum 
s=1

\partial 2B

\partial \xi s \partial xs
(x)

and

(A.24) El := A(x, \partial v, \sigma v)
\partial B

\partial \xi l
(x) - \partial A

\partial \xi l
(x, \partial v, \sigma v) (B(x, \partial v) + g(x)v).

The quantity \{ A,B\} (x, \partial v, \sigma v) + d| B(x, \partial v)| 2 + h(x)A(x, \partial v, \sigma v) in (A.22) is a qua-
dratic form in the vector (\partial v, \sigma v). If we can find a constant d > 0 and a smooth
function h(x) on \Omega so that

(A.25) \{ A,B\} (x, \xi , \sigma ) + dB(x, \xi )2 + h(x)A(x, \xi , \sigma ) > 0 for (x, \xi , \sigma ) \in \Omega \times S,

then from (A.22), for large enough \sigma ,

e2\sigma \phi | Pu| 2 \gtrsim \sigma (| \partial v| 2 + \sigma 2| v| 2) + \sigma \partial jE
j  - 

\surd 
\sigma | \partial v| 2  - \sigma 2| v| 2

\gtrsim \sigma (| \partial v| 2 + \sigma 2| v| 2) + \sigma \partial jE
j ,

proving (A.13). Here g is determined by (A.23) and h. So it remains to prove (A.25).
For \zeta = \xi + i\sigma \partial \phi we have

p(x, \xi + i\sigma \partial \phi ) = A(x, \xi , \sigma ) + i\sigma B(x, \xi ),

1

i\sigma 
\{ p(x, \zeta ), p(x, \zeta )\} =

1

i\sigma 
\{ A - i\sigma B,A+ i\sigma B\} (x, \xi ) = 2\{ A(x, \xi , \sigma ), B(x, \xi )\} ,

so, noting that A(x, \xi , \sigma ), B(x, \xi ) are real valued and homogeneous in (\xi , \sigma ), from
Lemma A.6 we have

(A.26) \{ A,B\} (x, \xi , \sigma ) > 0 for (x, \xi , \sigma ) \in \Omega \times S with A(x, \xi , \sigma ) = 0, B(x, \xi ) = 0.
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Hence2 we can find a d > 0 so that

(A.27) \{ A,B\} (x, \xi , \sigma )+ d| B(x, \xi )| 2 > 0 for (x, \xi , \sigma ) \in \Omega \times S with A(x, \xi , \sigma ) = 0.

Now fix an x \in \Omega and define the following quadratic forms in (\xi , \sigma ):

q(\xi , \sigma ) := \{ A,B\} (x, \xi , \sigma ) + d| B(x, \xi )| 2,
q\lambda (\xi , \sigma ) := q(\xi , \sigma ) + \lambda A(x, \xi , \sigma ).

If we can find some constant \lambda so that q\lambda (\xi , \sigma ) > 0 for all (\xi , \sigma ) \in S, then the same
\lambda will work in a neighborhood (in \Omega ) of this x. Hence, using a partition of unity
argument, we can construct quadruples (Uj , Vj , \chi j , \lambda j), j = 1, . . . ,m, with

\bullet Uj , Vj open subsets of Rn, Uj \subset Vj , and \Omega \subset \cup mj=1Uj ,

\bullet \chi j \in C\infty 
c (Vj), \chi j nonnegative, \chi j > 0 on Uj , and

\sum m
j=1 \chi j = 1 on \Omega ;

\bullet \lambda j \in R and q\lambda j
(\xi , \sigma ) > 0 for all (x, \xi , \sigma ) \in (\Omega \cap Vj)\times S.

Hence, if h =
\sum m
j=1 \lambda j\chi j then (A.25) holds for all (x, \xi , \sigma ) \in \Omega \times S because

\{ A,B\} (x, \xi , \sigma ) + dB(x, \xi )2 + h(x)A(x, \xi , \sigma )

= \{ A,B\} (x, \xi , \sigma ) + dB(x, \xi )2 +A(x, \xi , \sigma )

m\sum 
j=1

\lambda j\chi j(x)

=

m\sum 
j=1

\chi j(x)
\bigl( 
\{ A,B\} (x, \xi , \sigma ) + dB(x, \xi )2 + \lambda jA(x, \xi , \sigma )

\bigr) 
.

So we take g to be the function which satisfies (A.23). It remains to show that for
any fixed x \in \Omega (A.27) implies there is a \lambda \in R with q\lambda (\xi , \sigma ) > 0 for all (\xi , \sigma ) \in S.

Fix an x \in \Omega . Let Z\lambda be the zero set of the quadratic form q\lambda (\xi , \sigma ) in Rn+1 \setminus \{ 0\} ;
then Z\lambda is a collection of lines in (\xi , \sigma ) space. We claim that Z\lambda (or the zero set of
any quadratic form) is projectively connected, that is, there is a continuously varying
family of lines in Z\lambda connecting any two lines in Z\lambda . Without loss of generality we
assume the quadratic form is generated by a diagonal matrix with l ones, m minus
ones, and k zeros; we prove the claim by induction on l. If l = 0 or m = 0, then it
is trivial so assume l \geq 1, m \geq 1. If l = 1, then the zero set is a cone times Rk and
hence projectively connected (if l = m = 1 we need to use that k \geq 1, which follows
since n \geq 2). If l \geq 2 and the line through the origin and (p, q, r) \not = 0 is in the zero
set with p \in Rl, q \in Rm, r \in Rk, then | p| 2 = | q| 2. We can find a p\prime \in Rl - 1 so that
| p\prime | 2 = | p| 2 = | q| 2; also we can connect p to (p\prime , 0) by a curve on a ball of radius | p| .
Hence the zero set of the quadratic form is projectively connected to the zero set of
a quadratic form with signature l - 1,m, k and this zero set is projectively connected
by the induction hypothesis.

Now q > 0 on S \cap \{ A = 0\} by (A.27), hence, q > 0 on S \cap \{ | A| \leq \epsilon \} for some
\epsilon > 0. Hence,

\bullet q\lambda = q + \lambda A > 0 on S \cap \{ A > 0\} if \lambda > \epsilon  - 1 maxS | q| ,
\bullet q\lambda = q + \lambda A > 0 on S \cap \{ A < 0\} if \lambda <  - \epsilon  - 1 maxS | q| ,

2There is an \epsilon > 0 so that \{ A,B\} (x, \xi , \sigma ) is positive on \{ (x, \xi , \sigma ) \in \Omega \times S : A(x, \xi , \sigma ) =
0, | B(x, \xi )| 2 \leq \epsilon \} . Otherwise, there would be a convergent sequence (xk, \xi k, \sigma k) in \Omega \times S for which
A(xk, \xi k, \sigma k) = 0, | B(xk, \xi k)| 2 \rightarrow 0, and \{ A,B\} (xk, \xi k, \sigma k) \leq 0; then taking limits we would violate
(A.26). So assume there is such a positive \epsilon ; then choose d large enough so that d\epsilon exceeds the
maximum of | \{ A,B\} (x, \xi , \sigma ))| over \{ (x, \xi , \sigma ) \in \Omega \times S : A(x, \xi , \sigma ) = 0\} .
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so

(A.28) Z\lambda \cap S is contained in A < 0 for \lambda \gg 0

and Z\lambda \cap S is contained in A > 0 for \lambda \ll 0.

We claim that this implies Z\lambda \cap S is empty for some \lambda , that is, for some \lambda , q\lambda is never
zero on S and hence has the same sign at every point on S. But q\lambda > 0 on A = 0
so q\lambda > 0 on S which would prove our claim. It remains to show that (A.27), (A.28)
imply Z\lambda \cap S is empty for some \lambda .

We argue by contradiction and suppose that Z\lambda \cap S \not = \emptyset for all \lambda \in R. From
(A.27) and the projective connectedness of Z\lambda , Z\lambda \cap S is contained either in the set
A > 0 or the set A < 0. Thus R = \Lambda + \cup \Lambda  - , where the sets \Lambda + and \Lambda  - are defined as

\Lambda + := \{ \lambda \in R : Z\lambda \cap S \subset \{ A > 0\} \} , \Lambda  - := \{ \lambda \in R : Z\lambda \cap S \subset \{ A < 0\} \} .

The sets \Lambda + and \Lambda  - are nonempty because of (A.28) and disjoint since Z\lambda \cap S \not = \emptyset 
for all \lambda . They are also closed: if there is a sequence \lambda k \rightarrow \lambda \ast with Z\lambda k

\cap S contained
in A > 0 for all k, there is a convergent sequence (\xi k, \sigma k) \rightarrow (\xi \ast , \sigma \ast ) in S with
A(\xi k, \sigma k) > 0 and q\lambda k

(\xi k, \sigma k) = 0. Taking the limit we have q\lambda \ast (\xi \ast , \sigma \ast ) = 0 and
A(\xi \ast , \sigma \ast ) \geq 0, which by (A.27) implies q\lambda \ast (\xi \ast , \sigma \ast ) = 0 and A(\xi \ast , \sigma \ast ) > 0 so Z\lambda \ast \cap S
is contained in A > 0. Hence \Lambda + is closed and by a similar argument \Lambda  - is closed.
But now one has R = \Lambda + \cup \Lambda  - , where \Lambda + and \Lambda  - are nonempty, disjoint, and closed
sets. This contradicts the connectedness of R.

A.2. Boundary terms for the wave operator. We determine the boundary
terms in Theorem A.7 for the wave operator \square . Here the independent variables are
(x, t) \in Rn \times R, \square = \partial 2t  - \Delta x, and the Carleman weight function is \phi (x, t). So the
principal symbol of \square is

p(\xi , \tau ) =  - \tau 2 + \xi \cdot \xi .

Expressions for A, B: Now, if \zeta = (\xi , \tau ) + i\sigma (\phi x, \phi t), then

p(\zeta ) =  - (\tau + i\sigma \phi t)
2 + (\xi + i\sigma \phi x) \cdot (\xi + i\sigma \phi x)

= (| \xi | 2  - \tau 2) - \sigma 2(| \phi x| 2  - \phi 2t ) + 2i\sigma (\xi \cdot \phi x  - \tau \phi t),

hence,

A(x, t, \xi , \tau , \sigma ) = (| \xi | 2  - \tau 2) - \sigma 2(| \phi x| 2  - \phi 2t ), B(x, t, \xi , \tau ) = 2(\xi \cdot \phi x  - \tau \phi t).

Expressions for the boundary terms Ej for \square : For j = 1, . . . , n, we have

1

2
Ej =

1

2

\biggl( 
A(x, t, \partial v, \sigma v)

\partial B

\partial \xi j
(x, t) - \partial A

\partial \xi j
(x, t, \partial v, \sigma v)(B(x, t, \partial v) + g(x, t)v)

\biggr) 
= \phi j(| vx| 2  - v2t ) - \sigma 2\phi j(| \phi x| 2  - \phi 2t )v

2  - 2vj(vx \cdot \phi x  - vt\phi t) - g(x, t)vjv

and (index 0 corresponds to t)

1

2
E0 =

1

2

\biggl( 
A(x, t, \partial v, \sigma v)

\partial B

\partial \tau 
 - \partial A

\partial \tau 
(x, t, \partial v, \sigma v)(B(x, t, \partial v) + g(x, t)v)

\biggr) 
=  - \phi t(| vx| 2  - v2t ) + \sigma 2\phi t(| \phi x| 2  - \phi 2t )v

2 + 2vt(vx \cdot \phi x  - vt\phi t) + g(x, t)vtv.
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The boundary integrands on \{ t = z\} when \Omega = (B\times R)\cap \{ t > z\} : Here x = (y, z)
with y \in Rn - 1 and \Omega = (B \times R) \cap \{ t > z\} , where B is the unit ball in Rn. We
compute the boundary integrand coming from t = z. The outward normal to the part
of \partial \Omega on t = z is

\surd 
2\nu = (\nu y = 0, \nu z = 1, \nu t =  - 1). Hence

1\surd 
2
\nu jEj = (\phi z + \phi t)(| vx| 2  - v2t ) - \sigma 2(\phi z + \phi t)(| \phi x| 2  - \phi 2t )v

2

 - 2(vz + vt)(vx \cdot \phi x  - vt\phi t) - (vz + vt)g(x)v

= (vz + vt) ((\phi z + \phi t)(vz  - vt) - 2(vz\phi z  - vt\phi t))

+ (\phi z + \phi t)| vy| 2  - 2(vz + vt)(vy \cdot \phi y)
 - \sigma 2(\phi z + \phi t)(| \phi x| 2  - \phi 2t )v

2  - (vz + vt)g(x)v

= (vz + vt)( - vz\phi z + vt\phi t + \phi tvz  - \phi zvt) + (\phi z + \phi t)| vy| 2

 - 2(vz + vt)(vy \cdot \phi y)
 - \sigma 2(\phi z + \phi t)(| \phi x| 2  - \phi 2t )v

2  - (vz + vt)g(x)v

= (\phi t  - \phi z)(vz + vt)
2 + (\phi z + \phi t)| vy| 2  - 2(vz + vt)(vy \cdot \phi y)

 - \sigma 2(\phi z + \phi t)(| \phi x| 2  - \phi 2t )v
2  - (vz + vt)g(x)v.

We adopt the notations

Zv :=
1\surd 
2
(vz + vt), Nv :=

1\surd 
2
(vt  - vz),

so that Z is tangential and N is normal to t = z. Thus the integrand in the boundary
term over t = z is given by

\nu jEj = 4(N\phi )(Zv)2 + 2(Z\phi )| vy| 2  - 4(Zv)(vy \cdot \phi y)(A.29)

 - 2\sigma 2(Z\phi )( - 2Z\phi N\phi + | \phi y| 2)v2  - 2(Zv)g(x, t)v

= 4(N\phi )((Zv)2 + \sigma 2(Z\phi )2v2) + 2(Z\phi )(| vy| 2  - \sigma 2| \phi y| 2v2)
 - 4(Zv)(vy \cdot \phi y) - 2(Zv)gv.
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