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FIXED ANGLE INVERSE SCATTERING FOR ALMOST
SYMMETRIC OR CONTROLLED PERTURBATIONS*

RAKESHT AND MIKKO SALO?

Abstract. We consider the fixed angle inverse scattering problem and show that a compactly
supported potential is uniquely determined by its scattering amplitude for two opposite fixed angles.
We also show that almost symmetric or horizontally controlled potentials are uniquely determined by
their fixed angle scattering data. This is done by establishing an equivalence between the frequency
domain and the time domain formulations of the problem, and by solving the time domain problem
by extending the methods of [Rakesh and M. Salo, Inverse Problems, 36 (2020), 035005] which
adapts the ideas introduced in [A. Bukhgeim and M. Klibanov, Soviet Math. Dokl., 24 (1981), pp.
244-247] and [O. Imanuvilov and M. Yamamoto, Comm. Partial Differential Equations, 26 (2001),
pp. 1409-1425] on the use of Carleman estimates for inverse problems.
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1. Introduction. In inverse scattering problems the objective is to determine
certain properties of a scatterer from measurements that are made far away. In
stationary scattering theory in R™, n > 1, the measurements are often formulated
in terms of the scattering amplitude. If A > 0 is a frequency and if w € S~ =
{v € R™; |v| = 1}, consider the plane wave ' (x) = e"*“"® propagating in direction w.
The interaction of this plane wave with a real valued scattering potential ¢ € C2°(R™)
is described by the outgoing eigenfunction (or distorted plane wave) 1, = ¥* + 17,
which solves the Schrodinger equation

(~A+q— AP, =0in R

and where the scattered wave 1 is outgoing. There are several equivalent ways to
describe the outgoing condition (or Sommerfeld radiation condition), but for us it is
enough that 97 is given by the outgoing resolvent applied to the compactly supported
function —qy*:

vy = (=A+q— (A +i0)") " (—qv).
Writing 2 = rf, where r > 0 and # € S~ !, the scattered wave has the asymptotics

n—1 n—1

g (rf) = e T a (N, 0,w) +o(rm 7)) as r — o0o.

The function a4 is called the scattering amplitude or far field pattern, corresponding
to the potential g. One could interpret aq(X,6,w) as a scattering measurement for
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q that corresponds to sending a plane wave at frequency A > 0 propagating in the
direction w € S"~! and measuring the scattered wave in the direction § € S”~!. See,
e.g., [CK98, DZ19, Me95, Yal0] for more details on these facts.

Next, we formulate four fundamental inverse scattering problems, related to re-
covering a potential from (partial) knowledge of its quantum mechanical scattering
amplitude:

1. Full data. Recover ¢ from ag.

2. Fized frequency. Recover ¢ from a4(Xg, -, +) with Ag > 0 fixed.

3. Backscattering. Recover ¢ from a,(\,w, —w) for A > 0 and w € S"71.
4. Fized angle. Recover q from a,(-,wo, - ), where wg € S"~1 is fixed.

The full data problem is formally overdetermined when n > 2, since one seeks to
recover a function of n variables from a function of 2n—1 variables. Similarly, the fixed
frequency problem is formally overdetermined when n > 3 (it is formally determined
when n = 2). Both of these problems have been solved; we only mention that one
can determine ¢ from the high frequency asymptotics of a, [Sa82] and that the fixed
frequency problem is equivalent to a variant of the inverse conductivity problem of
Calderén addressed in [SU87, Bu08]. There have been many related works and we
refer to [Uh92, No08, Uh14] for references.

The backscattering and the fixed angle inverse scattering problems are formally
determined in any dimension (both the unknown and the data depend on n variables).
The one-dimensional case is well understood [Mall, DT79]. Known results for n > 2
include uniqueness for potentials that are small or belong to a generic set [ER92, St92,
MUO08, B+20], recovery of main singularities [GU93, OPS01, Ru01], identification of
the zero potential in fixed angle scattering [BLMB&9], and the recovery of angularly
controlled potentials from backscattering data [RU14]. See the references in [RU14,
Mel8] for further results. However, these problems remain open in general.

We establish several new results for the fixed angle inverse scattering problem,
when n > 2. Our first result shows that a compactly supported potential is uniquely
determined by the scattering amplitude at two opposite fixed angles.

THEOREM 1.1. Fizw € S" 1, n > 2, and let ¢1,q2 € C°(R™) be real valued. If
ag, (AN w,0) =ag, (A, w,0) and ag (N —w,0) =aq, (A —w,0)

for all X >0 and 0 € S*~1, then ¢, = ¢o.

As a corollary, it follows that a reflection symmetric potential is uniquely deter-
mined by its fixed angle scattering data.

COROLLARY 1.2. Fiz w € S" ! and let q1,qo € C°(R™) be reflection symmetric
in the sense that

q;(n+tw) = gq;(n — tw) foralln e R™ withn Lw, teR, j=1,2.
If ag,(\,w,0) = ag,(\,w,8) for all X >0, 6 € S, then ¢1 = go.

We show that the above results follow directly from corresponding results for the
time domain inverse problems that were studied in [RS20]. In fact, in this paper we
show that the time and frequency domain formulations of the fixed angle scattering
problem are equivalent. When n > 3 is odd, such an equivalence has been discussed in
[Me95, Uh01, MU] in the context of Lax—Phillips scattering theory. We give a direct
argument that works in any dimension.
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The work [RS20] was concerned with wave equation inverse problems with two
measurements, and with a single measurement problem when the unknown coefficient
is even with respect to a special direction. Our goal is to solve the single measurement
problem for coefficients which may have other types of controlled behavior. If w is a
unit vector in R™ representing the special direction, then an important step in [RS20]
was to patch up two solutions of the wave equation in the regions t > z-w and t < z-w
to generate a solution in R™ x R. This was done to avoid contributions coming from
t = - w to the estimates. In this article we use similar estimates as in [RS20], but
instead work in the regions ¢t > z - w and t < x - w separately and study carefully
the boundary contributions coming from ¢ = x - w. This leads to Theorem 3.1 which
extends [RS20, Corollary 1.3], and to Theorem 4.1 which would not be accessible
using the methods in [RS20]. The corresponding frequency domain results are given
below in Theorems 1.3 and 1.5. This approach may be useful in solving other formally
determined inverse problems for the wave equation as well.

The next result considers potentials that satisfy a generalized reflection symmetry
or small perturbations of such potentials. We fix an (n—1) x (n—1) orthogonal matrix
A, take w = e,, and, for any z € R", write z = (y, 2) with y € R*~! and z € R. For
any function p on R™, we define its generalized even and odd parts as

(11) Peven(y:2) 1= 5 [p(92) + Py, —2)],
(1.2) Poda(y, z) := % [p(y, 2) — p(Ay, —2)].

THEOREM 1.3. Let M > 1 and w = e,. There is an ¢ = e(M) > 0 with the
following property: if q,p € C°(R™) are supported in B and ||q||gn+s < M, ||p|lgn+s <
M, then the condition

ag+p( A\, w,0) = ag(A,w,0) for all X >0 and 6§ € S™~!

implies p = 0, provided
Poaallzr1(By < ellpllz2(m)
or
[Peven|| 1 (B) < €llpllL2(m)-
In particular, if ¢ € C2°(R™) satisfies a generalized reflection symmetry in the
sense that ¢oqq = 0 Or Geven = 0, then ¢ is uniquely determined by its fixed angle
scattering data.

The next result involves functions which are horizontally controlled, as defined
next.

Definition 1.4. Given M,e > 0, a function r(y,2) € H'(R"), with support in
{]y| < 1}, is said to be horizontally (M, ¢)-controlled if

Lo Vaald < [ s Pdyre [ o)y

Rn—1 Rn—1
for almost every z € (—1,1).

THEOREM 1.5. Let M > 1 and w = e,. There is an ¢ = (M) > 0 with the
following property: if q,p € C°(R™) are supported in B and ||q||cn+a < M, ||p|lgn+a <
M, then the condition

agip(Nw,0) = ag(\,w,0) for all X >0 and 6 € S"~1
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implies p = 0, provided the function

r(y,z) == / p(y, s)ds, (y,2) € R",

— 00

is horizontally (M, €)-controlled.

For example, the fixed angle scattering data determines uniquely any perturbation
p(y, 2) of the form

N
p(y,z) = ij(Z)s@j(y% (y,2) €R",

where ¢1,...,¢n are fixed linearly independent functions in C2°(R"~1) and p; are
arbitrary functions in C$°(R) supported in a fixed interval; see Lemma 4.2. Theorem
1.5 is analogous to the result for angularly controlled potentials in backscattering
[RU14] or the result in [Ro89] for potentials which are analytic in y (see also [SS85]).

We prove the above theorems by reducing them (see section 5) to certain inverse
problems for the wave equation in the time domain. These time domain problems
are solved by extending the methods of [RS20] which adapted the ideas introduced in
[BK81] and [IY01] on the use of Carleman estimates for formally determined inverse
problems. Please refer to [Kh89, Ya99, Bu00, Be04, Is06, K113, SU13, BY17] for
further details about this method and its variants.

More specifically, our proofs will proceed as follows:

1. First, the time domain fixed angle scattering problem is reduced to an inverse
source problem for the wave equation. If the source were zero, this would
be a standard unique continuation problem which could be solved using a
Carleman estimate. Here the source is nonzero but it has a special form: the
unknown part of the source is time independent and related to the trace of
the solution on a certain characteristic boundary.

2. We then invoke a Carleman estimate for the wave equation with boundary
terms which estimates the solution in terms of the source and the boundary
terms. Because of step 1, the source can be estimated by the trace of the
solution on the characteristic part of the boundary. If the Carleman weight
is pseudoconvex and decays rapidly away from the characteristic boundary,
then it just remains to control the characteristic boundary terms.

3. If the Carleman weight has the properties in step 2, then the characteristic
boundary term will have an adverse sign. We deal with the adverse sign term
either by using a reflection argument, leading to Theorem 1.3, or by assuming
that the adverse sign term is controlled by other boundary terms, leading to
Theorem 1.5.

We emphasize that this method leads to uniqueness and Lipschitz stability results
for the time domain inverse problems; see Theorems 3.1 and 4.1 for precise statements.
Uniqueness in the frequency domain fixed angle problem then follows from the reduc-
tion in section 5 (stability does not follow immediately, since the reduction involves
analytic continuation). In our earlier work [RS20], an extension argument and a Car-
leman estimate in the extended domain were used for proving an analogue of Theorem
3.1. A similar extension argument could be used to prove Theorem 3.1. However, in
this paper, we instead use a Carleman estimate with explicit boundary terms, which
turns out to be simpler and contains more information than the extension method.
This new method also makes it possible to prove Theorem 1.5.
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The ideas in this article have been adapted to obtain similar results for the recov-
ery of ¢ from the fixed angle scattering data for the operator 62 — Ay + g for certain
Riemannian metrics (or nonconstant sound speeds) g, where A, is the Laplacian as-
sociated with g. The first results in this direction will appear in [MS20]. Another
natural question is the recovery of the Riemannian metric g from fixed angle scatter-
ing data associated with the operator 97 — A,. At the moment we do not see how
to adapt our method to this problem because the medium responses to an incoming
plane wave for two different metrics are supported on different regions in space time
and, hence, it is difficult to work with the difference of the two medium responses.

This work is organized as follows. Section 1 is the introduction; section 2 intro-
duces the time domain setting for the fixed angle scattering problem and contains
some useful facts from [RS20] and sections 3 and 4 contain the proofs of Theorems
3.1 and 4.1, respectively. In section 5, we prove the equivalence of time and frequency
domain scattering measurements which leads to Theorems 1.1 to 1.5. Finally, Appen-
dix A contains the derivation of a Carleman estimate with boundary terms for the
wave equation with a pseudoconvex weight. This is well known except for the explicit
form of the boundary terms, which is needed in our proofs; hence we give a detailed
argument.

2. The time domain setting. In this section we recall, from [RS20], some
notation and basic facts for the time domain inverse problem. The open unit ball in
R™ is denoted by B and S is its boundary, 0 = 9 — A, is the wave operator, and q(x)
is a smooth function on R™ with support in B. The vector e, = (0,0,...,1), parallel
to the z-axis, is the fized direction of the incoming plane wave and given x € R", we
write z = (y,2) with y € R"~1 2 € R.

Let Uy(x,t) = Uy(x,t,e,) be the solution of the initial value problem (IVP for
short)

(04 q)U, =0 in R™*, Uglp<—1y = 6(t — 2).

We can express U, in the form Uy(x,t) = §(t—z)+uq(x, t), where ug(z,t) = uq(z, t, e,)
is the unique solution of the IVP

(2.1) O+ q@ug =—q(x)é(t — 2) in R™ Ugl{r<—13 = 0.

This solution has the following properties.

PROPOSITION 2.1. There is a unique distributional solution ug of (2.1). The dis-
tribution uq(x,t) is supported in {t > z} and has a unique representation as a smooth
function on {t > z} which is also the unique smooth solution of the characteristic

VP,
O+ q@uqg =0 in {t > 2},
ug(y, z,2) = —% /ZOO q(y,s)ds for all (y,z) € R",
ug(z,t) =0 in {z <t < —1}.
For any M > 0,T > 1 there is a C = C(M,T) > 0 such that if ||q||cn+s < M, then
llugll oo ({z<t<Ty) < C.

This proposition is a restatement of a part of [RS20, Proposition 1.1]; [RS20]
contains the proof of the bound on |lu4|z~ and the remaining parts were proved
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earlier in [RU14, Theorem 1la]. The proof of [RU14, Theorem la], though written for
n = 3, goes through for all n > 1 with no changes.

Below, we regard the distribution u,(z,t) as a function on R™™! which is zero on
{t < z} and is a smooth function on {t > z}.

The single measurement inverse problem can be stated as follows:

given uy|gx (—1,7) for some T, determine ¢ in R™.

This corresponds to determining an inhomogeneity ¢ living inside B by sending a
plane wave §(t — z) and measuring the scattered wave u, on the boundary of B until
the time T'.

We reduce this inverse problem to a unique continuation problem for the wave
equation. To this end define the following subsets of R™ x R:

Q:=Bx (-T,7T), Y:=Sx(-T,7),
Qs :=QN{x(t—2) >0}, Yy =YXn{£(t—2) >0},
F:=Qn{t=z}, Tip:=QN{t=4+T}.

We will also need the vector fields

1 1
\/i(at +az)a N = \/i(at az)a
note that Z is tangential to I' and N is normal to T'.

Next, we state a result about a specific Carleman weight for the wave operator,
which follows from the discussion in [RS20, section 2.3] and [RS20, Lemma 3.2] (see
Appendix A for the definition of a strongly pseudoconvex function). Note that the
roles of ¢ and 1) in this paper are the reverse of the roles they play in [RS20].

LEMMA 2.2. Define

7 =

V(y, 2,t) == 5(a — 2)* + 5ly|* — (t — 2)?, (y,2) eR™, t € R.

Given T > 6, there exists a > 1 such that
e the function ¢ = e is strongly pseudoconver with respect to O in a (fized)
neighborhood of Q for sufficiently large X > 0;
e the smallest value of ¢ on T is strictly larger than the largest value of ¢ on
rrul'_p;
e the function

T
h(o) := sup / e20(9(y,2,6)=8(y,2,2)) ¢
(v.2)€BY-T

satisfies limy_, 00 h(0) = 0.

For later use, we also quote the following energy estimates from [RS20, Lemmas
3.3-3.5].

LEMMA 2.3. Let T > 1 and p € C°(R™) be supported in B. If a(z,t) is a smooth
function on {t > z} satisfying

Oa =0 in {(z,t); |z| > 1 and t > z},

oy, z,2) = /j p(y,s)ds on {|z| > 1},

a=0in{z<t< -1},

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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then
lOvallLz,) S el s,y + lallmzi s,
with the constant dependent only on T .

LEMMA 2.4. Let T > 1 and q € CZ(R™) be supported in B. For every o €
C>(Q,) we have

lellz2@wr) +IVarallzn S lallam + 1O+a)allzz @) +llellm @) +1ovel 2 s,
with the constant dependent only on ||q||p= and T

LEMMA 2.5. Let T > 1, g € C°(R™) be supported in B and ¢ € C*(Q..). There
are constants C,o9 > 1, depending only on ||q|| L=, H¢||CQ@+) and T, such that for

every a € C’OO(@+) and o > og one has the estimate
02||€U¢a||%2(r) + ||€U¢VF04||%2(F) < C[aglle“¢alliz<Q+) + 0||€U¢Vm,ta||%2(<,g+)
+ 7O+ g)alFz(q,) + 2le”alizs, ) + 1€7°VaallT2 (s, |-

3. Almost reflection symmetric perturbations. We will use the notation
from section 2. If A is an (n — 1) x (n — 1) orthogonal matrix and o € {+1,—1}, we
define

By, 2) = = [ply, 2) — op(Ay, —2)].

2
Comparing with (1.1)—(1.2), one has p = pogq when ¢ = 1 and P = peyen When
o = —1. The following result solves the time domain analogue of the fixed angle

scattering problem for almost reflection symmetric potentials and gives a Lipschitz
stability estimate.

THEOREM 3.1. Let M > 1, T > 6, and 0 € {1,—1}. There exist positive
constants C' and ¢, depending only on M and T, with the following property: if
q,p € CP(R™) are supported in B and ||q||cnts < M, ||p|lcn+s < M, then

Ipllz2(8)y < Cllugrp — ugllar =,y + ugrp — ugllar (=4 Am))
provided
19l 1By < €llpllz2(m)-

Theorem 3.1 will follow from the next result which proves uniqueness and stability
for a certain linear inverse problem.

PROPOSITION 3.2. Let M > 1 and T > 6. There is a C(M,T) > 0 so that if
O+ g )wi(z,t) = (Zw)(z, 2) fr(2,1) in Qx
for some qr € CX(R™) supported in B, fr € L>®(Q+) and wy € H*(Q+) with
lasllzoe(m) < M, [|fellze(@u) < M, then
Sl oy < s~y + 3w sy + 0w s2sa )]
+ +

Note the special structure of the right-hand side of the partial differential equation
(PDE for short). It has the (Zwy)(z,z) term which resides on I' and hence the
appropriate Carleman weight helps us absorb the right-hand side of the PDE into the
left-hand side of the inequality. That is why there is no fi term on the right-hand
side of the estimate.
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Proof of Theorem 3.1. Assume that ¢,p, and o are as in the statement of the
theorem and define
W = Ugp — Ugs

where uq4, and u, are as in Proposition 2.1. The function w is smooth on the region
t > z, solves the equation

O+ gw = —p(x)ugtp in Qu,
and on I, the bottom part of the boundary of @, has the trace

1 z
(3.1) w(y,z,z) = —5/ p(y, s)ds for all (y,z) € B,
—o0

so Zw(y,z,z) = —ﬁp(y,z). Thus, taking

wy = w, 4+ = q, fr=2V2uq4y,

one has (0 + ¢y)wy = (Zwy)|rfy in Q4. Moreover, |[fi| =g,y < C(M,T) by
Proposition 2.1.
Next, define w_ in @Q_ by reflection, that is,

w*(ywz?t) = _Uer(Ay?_Zu _t)7 (y,z,t) € Q*?
then on @Q_ we have

Ow_(y, 2,t) = —o(Ow4 ) (Ay, —z, —t)
= —o(—q4+wi + (Zwy)|r f+)(Ay, —2, —t).
Further, a tangential derivative of the trace of w_ on I is given by

Z’UJ_(y,Z,Z) ZO'(ZW+)(Ay, —%, _Z)v (y,Z) 6B7

so, if we define

Q—(yaz) = _OQ+(Ay7 —Z _t)v f_(y,z) = _f+(Ay7 _Zv_t)7 (y,z) € B,

then (O 4+ ¢ )w_ = (Zw_)|rf- in Q_ and ||f_||p=_) < C(M,T).
Thus, we are exactly in the situation of Proposition 3.2, which implies that

Z”wﬂ:”Hl(I‘) < O(M, T)(Jlwy — w— |z (r)
X

+ Y (lwelm gy + 10wllz ) + lwsll g ,ar)-
+

By Lemma 2.3, which applies in Q4 as well as in (J_, one has

10vwilr2(ss) < C(T)(lwsllgr sy + lwzllmsinr))-

Using the definition of w_, one also has

lw-|mr sy + lw-|lgrs_ar) < llwillgs,) + llwe g s
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Moreover, using (3.1) and the definition of wy, Z, we have

Pl 2By S 12wz ) < llws [z ry-

Combining these estimates gives that

(3.2) Ipllz2B) < Cllwy —w_|lgr @y + lwy | g sy + lwi |z snry)-

Next, to estimate the jump from w_ to w; across I', we observe that for all
(y,2) € B

z —Zz

—mexxrwuwxw»:/ m%@w+a/ p(Ay, s) ds

— 00 — 00

:/wm%@m—LwM%@—wM%ﬂnw

— 00

=4mmﬂﬂWM%MW4/MwW-

Writing h(y, z) = fzoo p(y, s) ds, one has

wi(y,2,2) —w_(y,2,2) = wy (P(y, 2)) + h(y, 2) for all (y,z) € B,

where P : (y,2) — (y, /1 = [y[%, /1 — |y2) maps B to X NT. It follows that
lwi —w- gy S llwellas,ar) + |2l 5B)-
Since h(y, W) =0 for |y| < 1, a simple Poincaré inequality implies that
17l () S 10:hll 5y = Dl (5)-
Inserting these facts into (3.2), we see that
ol 25y < CUDIa By + lwi gz, ) + lwi g (24 ar))-

We now choose ¢ so small that Ce < 1/2. If p satisfies ||p||z1(5) < ellpllr2(m), the
|5/l 71 () term can be absorbed by the left-hand side and the theorem follows. |

Proof of Proposition 3.2. Let ¢ be the weight in Lemma 2.2, so that ¢ is strongly
pseudoconvex for [ in a neighborhood of Q. We first use a Carleman estimate with
boundary terms on Q4 (below we write w and ¢ instead of w and ¢4 for convenience).
By Theorem A.7, for o > og with o¢ > 1 sufficiently large, one has the estimate

03||e”¢w||i2(Q+) + UHe"d’VwHQB(Q” + U/BQ > Fy(x,0w, Vw)v; dS
+
S e @+ Quliiz g, -
It is proved in section A.2 that the functions Fj(z, qo, g1, - . ., gn+1) are quadratic forms

in the g; variables with smooth coefficients depending on x. Moreover, it will be
important that on I', a subset of 0@, the functions F; depend only on the tangential
derivatives of w and not on the normal derivative of w (see (A.29)).
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Now the energy estimate in Lemma 2.5 shows that
(3.4) 02||60¢w||2L2(r) + ||€U¢VFU)||%2(F) S U3||€a¢w”%2(Q+)
+oleVulzaq,) + 1”@+ quliia g, ) + o*lle”wlias, ) + e Vwlias, ).

Combining (3.3) and (3.4) and dropping the L?(Q), ) terms on the left give the estimate

(3.5) 02||e"¢w||:£2(p) + ||6”¢er||%2(m + 0/ e*Fi(z, ow, Vrw)v; dS
r
S e (O + Quliag,) + o’ le”wliacs, ury) + olle”Vullias, ury)-
For the terms over I'p, using the energy estimate in Lemma 2.4, we have
lwliZ2 o,y + IVOlZa 0,
S Il @y + 16+ Qwllie g, + 1wl s, + 180wlias, )
Sl e + vl s, + 10wz, )

In the last line we used that (O+q)w = (Zw)|r f+ with f; bounded. Since ¢ satisfies
supr,. ¢ < infr ¢ — 4§ for some § > 0 (see Lemma 2.2), we have

o* 7w Zarpy + olle” Vol Lo,

< el oy + 2 Pl sy + [0

Inserting this estimate into (3.5), and choosing o so large that the term with o3e=2%7

can be absorbed on the left, we observe that

(3.6) 02||e‘7¢w||%2(r) + ||60¢V1"w||%2(1-) + 0A62”¢Fj(x,aw, Vrw)v; dS

S e”? @+ Qullfzq, ) + o’ [”w”%%zm +IVwllizgs,))| -
Again (O + q)w = (Zw)|r f4+ with fi bounded, so

1”@+ @wlF2(q,) S M)l Vrwl[Ta ),
where h(c) is the function in Lemma 2.2 with h(c) — 0 as 0 — oo. Thus, for o large

(depending on M and T'), the h(o) term can be absorbed on the left. Fixing such a
o, from (3.6) we obtain the estimate

(3.7)  cllwli +U/F€2”¢Fj($70wavrw)w dS < C(wlZas,) + IVwliss,))

for some positive constants ¢, C' depending on M, T.
We rewrite the estimate (3.7) for w = w4 as
(3.8)

cllw 17 ry +0/F€2"¢Fj($70w+7vrw+)vj dS < C(llwilies,) + IVwrlizs,))-
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Fiz v to be the downward pointing unit normal to I', so v is an exterior normal for
Q. An analogous argument in @)_ yields the following estimate for w_:t
(3.9)

cllw-l3 ) = U/FGQWFJ(%JM,VFM)W dS < C(lw-llf2s_) + IVw-|f2s_)-

Note the negative sign in front of o in (3.9) in comparison with the positive sign in
front of o in (3.8); that is so because the v we fixed is an interior normal for Q_ on
I'. Adding up (3.8) and (3.9) and noting that the F; are quadratic forms in cwy and
Vrw4, we have

(310) ¢ lwlinmy < Clwy —w-llm @y (lwillmwy + o 7))
£
+C Y (lwtliegs.) + IVer]ias.))
+

for some positive constants ¢, C' depending on o (hence on M and T'). Using Cauchy’s
inequality with ¢ allows one to absorb the [wi||f1(r) terms on the right into the
terms on the left. This proves the proposition. ]

4. Horizontally controlled potentials. The following result is the time do-
main analogue of Theorem 1.5 and also contains a Lipschitz stability estimate.

THEOREM 4.1. Let M > 1 and T > 3. There exist constants C(M,T) > 0,

e(M,T) > 0 so that if ¢,p € CX(R"™) are supported in B and |q|lgn+s < M,
Hp||cn+4 < M, then

Ipll25)y < Cllugrp — ugllmr =,y + lugrp — ugllar (=, nr))

provided that the function

r(y,z) = / p(y, s)ds

is horizontally (M, e)-controlled.

The following lemma gives an example of a perturbation p such that the corre-
sponding function r is (M, €)-controlled.

LEMMA 4.2. Suppose @1, ..., ¢r are linearly independent functions in C°(R"~1)
supported in the ball of radius 1/v/2 and define

R
(4.1) Py, 2) =Y _p;i(2)e;(y)
j=1
for some functions p; € C2(R) supported in (—1/v/2,1/+/2). The function

r(y, z) = / p(y, s)ds

is (M, 0)-controlled for some M depending on R and p1,...,pR.

IThe F} are constructed in Theorem A.7 and would seem to depend on the domains Q4. However,
the F; depend on g which itself depends on a function h which satisfies the algebraic identity (A.25).
We can construct the h so that the algebraic identity is satisfied on @ rather than Q4 and Q—
separately. Then the g in Theorem A.7 will be the same for Q4+ and Q_.
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Proof. Note that p is smooth and supported in B. The function r(y, z) has the
form

) =@ e = [ T py(s) ds.

j=1 —oo

By the triangle inequality

R
2R O,

j=1
and, moreover,
R R
f P2 = 3 5@ s ~ 3 G
Jik= ji=

since the matrix ((¢;, ¢x) L2(Rn—1))§?k:1 is positive definite by the linear independence
of ¢1,...,pr. Thus r(y,z) is horizontally (M, 0)-controlled for some M depending
on R,p1,...,¢R. ]

Theorem 4.1 will be a consequence of the following proposition.

PROPOSITION 4.3. Let M > 1, T > 3. There are C(M,T), e(M,T) > 0 so that
if

O+ Qu(z,t) = (Zw)(z, 2) f(z,t) in Qu,
for some q € C(R™) supported in B, f € L=(Q4), and w € H*(Q,) such that
lallroe(m) < M and || fl| (@) < M, then
lwll2ry + [ ZwllL2ry < Clwllms,) + 100wl L2s,))

provided that the function r(y, z) := w(y, z, z) is (M, e)-controlled.

Proof of Theorem 4.1. Define

W i= Ugqp — Uqg-
By Proposition 2.1, the function w is smooth in {t > z} and solves
O+ Qw = —pugyp in Q4,
and r(y, z) := w(y, 2, 2) is given by
1 z
r(y,z) = —5/ p(y, s)ds.

In particular,

1 1
ﬁaz(w(yv Zy Z)) = _mp(yv Z)

We may thus use Proposition 4.3 with the choice f(z,t) := 2v/2u,1p(,t), and with
some new choice of M, to obtain that

(4.2) Zw(y, z,z) =

(4.3) w2y + 1 Zwll L2y < Cllwllmsy) + 10vwlr2(sy)),

where C' only depends on M and 7. By Lemma 2.3 we have

(4.4) 10, w22, < CUlwllg =,y + [lwllz (=, nr))-

Theorem 4.1 follows by combining (4.3), (4.2), and (4.4). d
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The proof of Proposition 4.3 is again based on a Carleman estimate. However,
in this case, it is convenient to use a weight ¢ that is independent of y and satisfies
Nolr > 0, 0;¢|q, < 0. The following lemma gives one such a weight.

LEMMA 4.4. For any T > 3 there exist a > b > T so that if one defines

Wy 2 0) = (2~ ) + (E - b)),

then, for A > 0 sufficiently large, the function
By, 1) 1= MWD
is strongly pseudoconvex for O in a neighborhood of Q. Moreover,
N¢|r >0, Z¢|r <0, Odlg <0,

the smallest value of ¢ on I is strictly larger than the largest value of ¢ on 'y, and
T
9oy, 2) = / 206w a)=0.22) gy < T 41,

uniformly over o > 1 and (y, z) € B.

Proof. Let a > b > T > 3. Note first that 0,4 = z — a # 0 whenever |z] <1,
showing that V1 is nonvanishing near ). The symbol of [J is

ply, 2,0, ¢, 1) = =7+ [f* + ¢*.
Since 1 only depends on z and t, we compute
{pa 1/}} = 2((2 - CL) - 2T(t - b)v
{p.Ap. ¥} = (20)(20) + (27)(27) = 4(¢* + 7).

Thus always {p, {p,¥}} > 0. If one has {p, {p,¥}}(y,2,t,m,{,7) = 0 at some point
where p = 0, then ( = 7 = 0 and hence p = |n|? = 0, showing that n = ( = 7 = 0.
This proves that {p, {p,¥}} > 0 whenever p = {p,v} = 0 and (n,{,7) # 0, and thus
the level surfaces of 1 are pseudoconvex for [J. Combining Propositions A.3 and A.5,

it follows that ¢ is strongly pseudoconvex for [ near @ if A > 0 is sufficiently large.
Now take T' > 3 and compute

V2NyYlp =t —b—(z—a)lp =a—b,
V2Zilp =t —b+ (z—a)lp <2—a—b
with
Oplg=t—Dblg <T —b.
Thus No|r > 0, Zé|r < 0, and 9,¢|g < 0 whenever ¢ >b>T > 3. On I' we have
1 1
W7 = (2 - @+ (D)) = (-0 + (L b))

since |z] <1 and a,b > 1. On 'y we have

V= T) = 5((c =) + (T = 0) < S((a+ 12 + (T - )%,
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Comparing the two values on the right, we have
(1—a)?+ (1= [(a+1)*+ (T —b)? =—-T%+2bT — 4da — 20+ 1.

Given T > 3, we want to choose a > b > T so that the expression on the right is
positive. Choosing a > b but a very close to b, it is enough to choose b > T so that

—T? + (2T — 6)b+1 > 0.

Since T > 3, it is enough to choose b so that b > QT;:é and b>T.

With the above choices, we have proved everything except for the claim about
9. However, since 0;¢|g < 0, the integrand in g, is < 1 and hence g,|5 < T +1
uniformly in o. 0

Proof of Proposition 4.3. Let ¢ be as in Lemma 4.4. Repeating the argument
in Proposition 3.2 (but using Lemma 4.4 for the properties of ¢), we arrive at the
estimate (3.6), which we restate below except that we write the integrand on I' as
VI EJ as in Theorem A.7. So, for any o > oy with og large enough, we have

(4.5) 02||e”¢w||2L2(F) + ||e”¢pr||%2(F) + O'/Fl/jEj ds
S e @+ @i, + 0% [lulies,) + IVl )

with constants depending only on M and T'. Since (O+q)w = Zw|r f, where || f||p~ <
M, one has

7@ + @ywll 2,y < M”07 Zw)|p| 12y < Mllgee™ Zw|| 12 (ry.
By Lemma 4.4, the function g, is bounded uniformly over o, hence one has
e”®(0+ qQwllr2(q,) < Clle”® Zw||2ry with C = C(M,T). Thus (4.5) gives
(4.6)  o?[le”®wlF2ry + €7 Vrw|Fa +U/Fquj ds
S e Zullay + 0% [wlfaqs,) + V0l

At this point we study the integral over I' in (4.6). Now ¢ is independent of y
and
N¢|F > 07 Z(b‘r <0

by Lemma 4.4. Hence, using the expressions for E7 in (A.29), we have
(4.7 0/ VETdS > ca/((Zv)2 +0v?)dS — CJ/(|Vyv\2 + |v||Zv])dS
r r r
for some positive ¢, C' independent of ¢; note that v = e?®w. Since
Zv = e"?(Zw + o(Z)w),
for every r > 0 we have

7 Zw|[F2ry = 120 = e o(Z$)wl[2r)
< (L4 0)1Zv]Za) + 1+ 1/1)[e7Po(Zg)wll r)-
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Taking 3 := 15 € (0,1), so + = %, we have

1Z0]132 ) > Blle”® Zwl|ary — le”®o(Zg)wlLa ).

B
1-p5
Using this estimate in (4.7) with sufficiently small 5 € (0,1), together with 2ab <
ea® + e 1b? for € > 0, for o sufficiently large one has

O’/ VETdS > ca/ 2 ((Zw)?* + o*w?) dS — Ca/ 79|V, w|? dS.
r r

r

Inserting this into (4.6) leads to

e wlla ) + ol ZwlFary S e Zwlaqy
+ ol Vywllia ) + 0% [0, + IVwliam,)]

which, when compared to (3.6), has improved powers of o on the left-hand side but
with a V,w term on the right-hand side. Choosing o large enough, we may absorb
the [[e”? Zwl|75 ) term into the left side, hence,

(4.8)  *[le”wl|72ry + olle” Zw| 21

S olle”Vywl2ary + 0% [[wllas,, + IVel3as,)|
Now ¢ is independent of y, so invoking the assumption that r(y, z) := w(y, z, 2)
is (M, e)-controlled (e still to be determined) leads to the estimate

ol\e”¢VwaI%z<r> < MU”eWwH%z(r) + EUH@WZU’H%z(F)'

Using this in (4.8), choosing (M, T) > 0 small enough, and o large enough, we may
absorb the eo(|e?®Zw||72py term and the Molle”®w|72 ) term into the left-hand
side of (4.8). So fixing a large enough o and letting all constants depend on o, we
obtain

lwllZe ) + 12022y S Nwl2e,) + IVWIZ2(s,)-

This proves the proposition. ]

5. Equivalence of frequency and time domain problems. The following
theorem shows that the scattering amplitude for a fixed direction w € S™~! and the
boundary measurements in the wave equation problem in section 2 are equivalent
information. Related results in the context of Lax—Phillips scattering theory in odd
dimensions n > 3 are discussed in [Me95, Uh01, MU]. We write u,(z,t,w) for the
solution in Proposition 2.1, where e,, is replaced by w, so that uy(z,,w) is smooth in
{t >z w}.

THEOREM 5.1. Let n > 2 and fir w € S"~1, Ao > 0. For any real valued q1,qs €
C2°(R™) with support in B, one has

ag (A, 0,w) = ag, (N, 0,w) for X > Xg and 6 € S"*
if and only if

gy (2, 4,0) = 11gy (2, 8,0) for (1) € (S x R) N {t > 7 - w}.
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Given the previous result, Theorem 1.1 and Corollary 1.2 in the introduction
follow immediately from [RS20, Theorem 1.2] and [RS20, Corollary 1.3], respectively.
In a similar way, Theorems 1.3 and 1.5 follow from Theorems 3.1 and 4.1, respectively.

We first give a formal argument explaining why Theorem 5.1 could be true. It
will be convenient to use the slightly nonstandard conventions

~ oo o 1 o0 .
o) = / GMFWY AL, P(t) = A / e~ IMP(N) dA
2 J_ o
for the Fourier transform and its inverse for Schwartz functions (and via extension
also for tempered distributions) on the real line.
Let ¢ € C°(R™) be supported in B, and let Uy(z,t,w) solve

(07 —A+q@)U; =0 R" xR,  Uplp<_1y = 6(t — 7 w).

Then of course uy = Uy — 6(t — - w). Suppose for the moment that the Fourier
transform of U, in the time variable is well defined. The function U, should then
solve for each A € R the equation

(=A + q(z) = \)U,(z,\) = 0 in R™.

One has U,(x,\) = e + @,(z,)\), where i,(z,)\) extends holomorphically to
{Im(\) > 0} since u, vanishes for ¢ < —1. These are exactly the properties that
characterize the outgoing eigenfunction v, (z, A\,w) discussed in section 1, and thus
one might expect that
Uy (2, M\, w) = by (2, A, w).
We now recall the Rellich uniqueness theorem [Re43]. The following formulation
is a consequence of [H5673, Corollary 3.2].

PROPOSITION 5.2. Let A > 0, let u be a tempered distribution with u € LE (R™),
and assume that u satisfies (—A — A\>)u =0 in R™\ B. If

1
liminf — / lul? dzx = 0,
R—oo R Jro|z|<2r

then uw =0 in R"\ B.

Using Proposition 5.2 and asymptotics of 1 (see (5.5) below), the condition
aq, (A, -, w) = ag, (A, -, w) implies that the outgoing eigenfunctions for ¢; and ¢, agree
outside the support of the potentials:

(51) w‘h('?)‘aw)‘]R"\E = wlh('?)‘vw)h]{"\ﬁ’

If the map A = 9, (z, A\, w) was smooth near A = 0, then one would have (5.1) for all
A € R. Taking the inverse Fourier transform in A would imply that

Ug (51, w)lem\ = Uga (11, W) [go -

This would show that the boundary measurements for the wave equation problem,
for a plane wave traveling in direction w, agree for ¢; and gs.

The argument above is only formal, since it requires taking Fourier transforms
in time and needs the regularity of the map A — ¢,(z, A\,w) on the real line. The
regularity of this map is related to the poles of the meromorphic continuation of the
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resolvent (—A + ¢ — A\?)~! initially defined in {Im()\) > 0}. It is well known [Me95]
that the resolvent family has at most finitely many poles in {Im(\) > 0}, located at
iry,...,irn, where —r? ... —r% are the negative eigenvalues of —A + ¢q. Moreover,
there may be a pole at A = 0 corresponding to a bound state or resonance at zero
energy. Such poles do not exist in {Im(X\) > 0} if ¢ > 0, but for signed potentials they
can exist and thus the argument above does not work in general.

We now give a rigorous proof of Theorem 5.1, working on the set {Im(\) > r},
where the resolvent family has no poles, and using the Laplace transform in time
instead of the Fourier transform. We first recall a few basic facts about the resolvent
family. Below C; := {\ € C; Im(\) > 0}.

PROPOSITION 5.3. Let ¢ € C2°(R™) be real valued and let ro = max(—inf g,0)'/2,
For any X € C4 \ i(0,ro], there is a bounded operator

R,(\) : L*(R™) — L*(R™)

such that for any f € L*(R™), the function u = Ry(\)f is the unique solution in
L(R") of
(=A+q—X)u=f inR"™

For any fixed r > rg, one has
|Re(M)|lz2—r2 < Crg, Im(A) > 7.
For any fized p € C(R™) and for A in the set C1 \ i(0, 7], the family

(PRq(N)p)xec,\i(0,r0]

is a holomorphic family of bounded operators on L?(R™) that extends continuously to
(C+ \ Z[O, 7’0] .

Proof. The operator —A + ¢ with domain H?(R"), is a self-adjoint unbounded
operator in L?(R") with spectrum contained in [—r3,00). If A € C \ (0, 7], then \?
is away from the spectrum, and one can choose R;(A) to be the standard L? resolvent
(—A + g — A?)7L. One has the estimate

1
(>‘27 [—7‘%, OO)) .

IRMllzors < oo

Writing A = o + ip, the range of o — (o +iu)? is a parabola opening to the right,
so its distance from the spectrum is at least 204 when o2 > 1(u* — r2) and at
least p? — 0% — r2 when o < 1(p? —r). Thus, for Im(A) > r > rg, one has
dist(A\%,[-73,00)) > ¢ > 0 for some constant ¢ depending on r and 7o (in fact the

distance is > ¢(1 + |o])). It follows that
[Bg(ML2- L2 < Crg.

The last statement follows from the meromorphic extension of the resolvent family
from {Im(A) > 0} to C (resp., a logarithmic cover of C\ {0}) if n is odd (resp., if n
is even), and from the fact that the only poles of this family in {Im(\) > 0} are in
1[0, o). See [DZ19] for the case of odd dimensions, and [Va89, Me95] for the general
case (note that [Me95] uses the opposite convention of extending the resolvent family
from {Im(A) < 0}). Here we only need the continuous extension of the resolvent
family up to the real axis minus the origin (i.e., the limiting absorption principle), so
we do not need to worry about the behavior of the extension beyond the real axis. 0O
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We also recall the following fact about Fourier—Laplace transforms.

LEMMA 5.4. Suppose F(z) is analytic on {Im(z) > r} for some r € R and
|F(2)] < C(1+ |z|)Neftim(z) forIm(z) > r

for some positive R, C, N independent of z. There exists an f € D'(R) with supp(f) C
[~R,00) and e+t f € S'(R), (e ="t F)(-) = F(- 4ip) for every > 7.

Proof. Here f(\) = f(=)) will be the Fourier transform of f following the con-
vention in [H683a, section 7.1]. Define

Ul(z) == e 2R (—(z —ir)), Im(z) < 0;
then U(z) is analytic on {Im(z) < 0} and, on this set,
[U(2)] < BB O 4 |2 — ir)Nelr=ImE) < € 5 v (142N

for some C, N independent of z. Hence, from [H683a, section 7.4], there is a u € D' (R)
with supp(u) C [0,00) and (e~"u) (o) = U(o — in) for every n > 0, 0 € R. Define
f e D'(R) by

fO) = u(- + R);

then supp(f) C [-R,o0) and, for every n > 0, we have
(€7 ) (o) = (7™ u(- + R)) (—0) = ") (e u) (~0)
= =9 (—g —in) = F(o +i(n+1)).
The result follows by taking n = p — r for any u > r. |

The next result gives a precise relation between the time domain and frequency
domain measurements. We write (u, ) for the distributional pairing of u and .
Recall from Proposition 5.3 that 15(-,\,w) € L*(R™) when Im(X) > ro, but for
Im(X) = 0 one may have ¥3(-,\,w) ¢ L*(R").

PROPOSITION 5.5. Suppose w € Sn=1 s fived and g € C°(R™) is real valued and
supported in B. Define ro := max(— inf ¢,0)"/? and
Pi(, A w) i= Rg(A)(—qe™™®), X e Cy\i(0,7].
We have

(uq(,t,w), p(2)X(1) Jrzxr, = (V3(@,0 +imw), o(2)(e"X) (o) )Rz xE,

for all > 1o and all ¢ € CX(R™), x € CZ(R).

Remark 5.6. Recall that by the Schwartz kernel theorem, any distribution u(z,t)
on R™ x R is uniquely determined by the values of (u(x,t), o(x)x(t) )rnxr, as ¢
varies over C°(R™) and x varies over C2°(R) (see [H683a, proof of Theorem 5.1.1]).
The relation in Proposition 5.5 may be formally interpreted as an inverse Laplace
transform identity

1 .
uq(xv t7w) = % [ N e—z)\t,(/);(x’ )\,Cd) dA
m(\)=p

when p > ro.
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Proof of Proposition 5.5. Fix r > ry. By Proposition 5.3, for Im(X) > r, one has
the estimates

(5.2) lvg (- A w)llzz < Cr qllge ™Mz 2 < O ™)

For any ¢ € C°(R"™), define

F,(\) = - Yy (z, A, w)p(x) de for Im(\) > r.

By Proposition 5.3, F, is analytic on {Im(\) > r} and
[FoN)] < Crge™ Vol Im(A) 2

Using Lemma 5.4, there is a distribution f, € D'(R) with supp(f,) C [-1,00) and
(e=W=mtf ) () = Fy(- +iu) for every pu > r. This means that

(e o x) = (F(- +in),X),  x € CZ(R).
Now, given p > r, define the linear map
K:CER™Y) = D'(R), Kp=e Btf .

If p; — 0 in CZ°(R™), then F,,(A) — 0 when Im(A) > 7, which implies that

(e foy )R, = (Fp, (- + i), X)r — 0

as j — oo for any fixed y € C°(R). Thus K is continuous, and by the Schwartz
kernel theorem [H683a, Theorem 5.2.1] there is a unique K € D'(R™ x R) so that

(K, o(@)x(t) = (Ko, x) = (e” " f,x) = (Fu(+ +ip), X)
(5.3) = (Yy(z,0 +ip,w), o(x)X(0))Rr xR, -

Since f, is supported in [—1,00), it follows that K is supported in {t > —1}. We
define
vg(z,t) = e K(z,t) € D'(R™ x R).

Then also v, is supported in {t > —1}.
If we show that

(5.4) O+ q)vg = —¢é(t —z-w) in R" X R,

uniqueness of distributional solutions of the wave equation supported in {t > —1}
(see, e.g., [H683b, Theorem 23.2.7]) implies that u, = vy, s0

(ug, p(2)x (1)) = (K, p(x)e" X (1))
= (¥3(x,0 +ip,w), o(2)(e"X) (0) Rz xR, -

This proves the proposition.
To show (5.4), we first use (5.3) to see that

(0] K, p(x)x(1)) = (K, () (=0,) x(t))

= ((=io)¥g(z, 0 +ip,w), p(2)X(0)) Ry xR, -
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Similarly
(ALK, p(2)x(t) = (Azthy(z,0 +ip,w), o(x)X(0))rr xR,
and
(g(@) K, o(x)x (1) = (qg(z)g(z, 0 + ip, w), p(2)X(0))rE xR, -

Thus, since v, = e"* K, we obtain that

(07 — As + q)vg, p(2)x(t))
((0F + 200, + 11 = Da + Q) () X (1))
(=8 +q = (0 +ip)*)5 (2,0 + ip,w), o(z) (" x) (0))rs k.,
q(a)e’ T o (2)(X) (0)ra xR,
q(z)e™"TU5(t — @ - w), p(x)e X (1))
q(x)o(t — - w),p(x)x(t)).
This proves (5.4). d

It is now easy to complete the reduction from the scattering amplitude to time
domain measurements.

(
(=
(=
(=

Proof of Theorem 5.1. Let rg = max(— inf ¢1, — inf g2, 0)'/2. By Proposition 5.3
the resolvents Ry, ()) are well defined for A € C, \ i(0,7¢], and thus for such A one
may define

Yy, (A w) = Ry, (A) (—qzeiree).

By Proposition 5.3, the map A — w;j(-,)\,w) extends continuously as a map C \
i[0,70] — L% .(R™) (this is the limiting absorption principle; see, e.g., [Yal0, section

6.2]). By [YalO0, section 6.7], for any A > 0 the limit satisfies

—1

(5.5) w;j (ro, \,w) = e“rr’%laqj()\, 0,w) + o(r*nT), r — 00.

Assume first that a4, (A, 0,w) = ag, (A, 0,w) for all A > g and all §. Together
with the fact that ¢; and ¢o vanish outside B, this implies that for any fixed A > Ao,

the function g — 1y, satisfies

(—A = X)((2 o~ Ya) (s )\w)):OinR”\E

(5, — ¥5,) (@, A w) = of|2]~*7) as [z] = co.

S

. vanishes

The Rellich uniqueness theorem (see Proposition 5.2), implies that Yy, —
outside B. In particular, for any ¢ € C°(R™ \ B), the function

wtp(A) = <<,¢);1 - w;z)( T A7("))a §0>
satisfies
w¢|[,\07oo) = 0.

However, by Proposition 5.3 the function A — w, () is holomorphic in Cy \ (0, o]
and has a continuous extension to C \7[0, ro]. Since it vanishes on [\g, 00), one must
have w,(A) = 0. In particular, for any p > ro one has

<( ;1 - 1][}22)(30, o+ iu,w), (p($)>Rg = Oa ocR.
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The relation in Proposition 5.5 then implies that
(ug, (z,1,0) = ug, (z,1,w), p(2)x())rp xR, =0
for all ¢ € C°(R™\ B) and x € C2°(R). This means that
Ug, (2,1, W) = ug, (z,t,w), (z,t) € (R"\ B) x R.

In particular, one has ug, (z,t,w) = ug, (z,t,w) for (z,t) € (S xR)N{t > = w} as
required.

Let us now prove the converse. Assume for simplicity that w = e,, and assume
that ug, (2,t,e,) = ug, (x,t,ep) for (z,t) € (S x R)N{t > z}. By Proposition 2.1, the
function o := uq, — ug, solves

Oa=0 in {(z,t); |z| > 1 and t > z},

aly, z,2) = —f/z (@1 — q2)(y,s)ds on {|z| > 1},

— 00

a=0 in{z<t< -1}

Moreover, a|(sxr)n{t>z} = 0. Thus by Lemma 2.3 one also has d,a|(sxr)n{t>z} = 0.
Now the Cauchy data of « vanish on the lateral boundary of the set {(z,t); || >
1 and ¢ > 2z}, and Holmgren’s uniqueness theorem applied in this set shows that « is
identically zero in the relevant domain of dependence. However, by the finite speed of
propagation the support of « is contained in the same domain of dependence. Thus
« is identically zero in {(x,t); || > 1 and ¢ > z}, which implies that

Uqy (T, ) = ug, (,t,€n),  (2,t) € (R"\ B) xR.

The relation in Proposition 5.5 now gives that for any u > ro and for any ¢ €
Ce(R™\ B),

(( P 32)(35,0 +ip, en), o(x))re =0, o cR.

Since by Proposition 5.3 the function A — ((¢5, —3,)(+, A, en), ¢) is holomorphic in

C4 \ i(0,70] and has a continuous extension to C \ i[0, 7], it follows that
(( P 22)(58, A en),@(z))rn = 0, A>0.

Thus 95, (-, A, en) =15, (-, A, €,) vanishes outside B for any A > 0. By the asymptotics
given in (5.5), we obtain that a4, (X, 0,e,) = a4 (A, 0,€,) for all A > 0 and § € S"~!
as required. 0

Appendix A. Carleman estimates for second order PDEs.

This exposition of the statement and the derivation of Carleman estimates with
boundary terms for second order operators with real coefficients are based mostly on
Chapter 4 of [Ta99] and Chapter VIII of [H676]. What is new here is the explicit
expression for the boundary terms and perhaps our explanations are not as terse as
in [Ta99).

A.1. The Carleman estimate. We use the following notation in this exposi-
tion. For complex valued functions f(z) on R™, f; = 0;f = aanj’ Of = (01 f,.-.,0nf),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/02/21 to 132.174.254.72. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

5488 RAKESH AND MIKKO SALO

Djf =108;f,and S = {(¢,0) € R® x R : [¢|* + 02 = 1}. Further,  will represent a
bounded open subset of R™ with Lipschitz boundary and

P(z,D)=> "> a*(z)D;Dy + Y ¥ (x)D; + c(x)

j=1k=1 j=1

will be a second order operator with a’* = a*/ being real valued functions in C(€),
and b/, ¢ are bounded complex valued functions on Q. We often drop the summation
symbol when it is clear from the context that a summation is involved. The principal
symbol of P(z, D) is the function

p(z, &) = ¥ (2)¢;&, 1€Q, LERY

note that the double summation over j, k is implied in the above definition.
For differentiable functions p(z, &) and g(z,&) on Q x R™, we define their Poisson
bracket as

—~ 0p 9 Op Oq
Py = g ot — oL
j; (95] 8xj E)xj 8§7

Definition A.1. Suppose ¢(x) is a real valued smooth function on Q satisfying
(0¢)(x) # 0 at each point = € Q. The level surfaces of ¢ are said to be pseudoconvex
with respect to P(z, D) on Q if

(A1) {p.{p, 9} }(2,€) >0

for all z € Q and all nonzero ¢ € R™ satisfying

(A.2) p(z,§) =0, {p,¢}(z,§) =0.

Definition A.2. Suppose ¢(ml is a real valued smooth function on € satisfying
(0¢)(z) # 0 at each point € Q. The level surfaces of ¢ are said to be strongly
pseudoconvex with respect to P(x, D) on ( if the level surfaces of ¢ are pseudoconvex

and

1
(A3) L @000} > 0
for all z € Q and all ¢ = £ +icd¢(z), £ € R™, o # 0, satisfying

(A4) p(x,¢) =0, {p(z,(),¢(z)} = 0.

The following proposition (Theorem 1.8 in [Ta99]) is useful in constructing weights
for Carleman estimates.

PROPOSITION A.3. Suppose 2 is a bounded open subset of R™ with Lipschitz
boundary, P(x,D) is a second order differential operator on Q with the principal
part having real coefficients, and ¢ is a real valued smooth function on Q with ¢
never zero on Q. The level surfaces of ¢ are strongly pseudoconvex on Q if and only
if they are pseudoconvex on Q.

We prove the Carleman estimates for weights ¢ which satisfy the strong pseudo-
convexity condition defined below.
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Definition A.4. Suppose ¢(x) is a real valued smooth function on € satisfying
(0¢)(z) # 0 at each point x € 0. We say that ¢ is strongly pseudoconvex on ) with
respect to P(x, D) if for all x € Q and all £ € R™ we have

(AS) {p7 {pa (b}}(l‘,&) >0, when p(l’,f) = {pa ¢}(l‘,f) =0, {#£0,

and

(A6) (@ 0pw. 0} >0, when p(x,0) =0, ¢ =& +i006(x), 7 £0.

Note that we make a distinction between the phrases “level surfaces of ¢ are
strongly pseudoconvex” and “¢ is strongly pseudoconvex.” If ¢ is strongly pseudo-
convex with respect to P(z, D) on €, then the level surfaces of ¢ are clearly strongly
pseudoconvex with respect to P(z, D) on €, but the converse is not true. However,
¢ needs to be strongly pseudoconvex for Carleman estimates to hold. The following
proposition ([H676, Theorem 8.6.3]) is useful in constructing strongly pseudoconvex
weights.

PROPOSITION A.5. Suppose 2 is a bounded open subset of R™ with Lipschitz
boundary, P(x,D) is a second order differential operator on Q with the principal
part having real coefficients, and v is a real valued function in C1(Q) with O never
zero on ). If the level surfaces of 1 are strongly pseudoconvex with respect to P(x, D)

on Q, then for large enough real X, ¢ = e is strongly pseudoconvex with respect to
P(z, D) on Q.

It is often easier to construct suitable functions whose level surfaces are pseudo-
convex, than to directly construct functions which are strongly pseudoconvex. How-
ever, Carleman estimates require strongly pseudoconvex functions. So one first con-
structs a useful function 1) whose level surfaces are pseudoconvex. Then, by Proposi-
tion A.3, the level surfaces of ¢ are strongly pseudoconvex and, hence, by Proposition
A5, ¢ = e is strongly pseudoconvex for large enough A. Further, ¢ and ¢ have the
same level surfaces.

In verifying pseudoconvexity of level surfaces of ¢, it is useful to have explicit
expressions for (A.1) and (A.3). These are available in [H676] and one has
op Op (8pk- 9p p ) ¥

(A7) P Ap, ¥} = Yk

o¢; 98y 0&; Ok Pk 0808k,
(A.8)
0.0l 0} = Uselo) (0.0 ()40 (el ) 5. 0) )

The strong pseudoconvexity of ¢ may be expressed as a positive definiteness
condition which will be useful when proving Carleman estimates.

LEMMA A.6. If ¢ is strongly pseudoconvex with respect to P(x, D) on S then there
is a constant ¢ > 0 such that for { =& +ic0¢ we have

(A9) (0., O} > ¢
for (z,€,0) € A x S with p(x, &) — o*p(x,0¢) = {p, ¢} (z,£) = 0.

Here, the value of the left-hand side, when o = 0, is to be understood in the sense of
a limit as o — 0.
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Proof. We have
p(x,¢) = o’ (& + io;) (& +iodr)

= %58, — 0P G0k + iod oy +ical ¢ oy,
10)
= pl,€) — o*p(z,00) + io ¢
0¢;
where
A(Ivgva) = p(’rvg) - UZp(:E, a¢)7 B(Ivg) = {p7 ¢}(I7§)
are real valued. Hence, for o # 0, using {A, A} = 0, {B,B} = 0, and {B, A} =

—{A, B}, we have
5 (P00, 0} = 51 (A, 6,0) — i0B(#,), Az, £,0) + i B, €)}

2i0
= {4, B} = {p.{p. 8} }(z,&) — o*{p(x,0¢),{p, ¢} } (2, )
= {p,{p, #}}(,€) + *{{p, ¢}, p(x, 09) } (2, )
= {p, {p, 9} }(x,€) + o*{p, {p, &} } (2, 09),

where the last step follows from the relation

(A.10) {p, {p, ¢}}(x,09) = {{p, ¢}, p(x,09) }(x, &)

which is verified at the end of this proof. Hence

lim ——{p(z, ), p(z, O)} = {p. {p, S} } (2, €).

c—0 210

So if we define ﬁ{p(w, ¢),p(x,¢)} to be {p,{p, ¢} }(x,&) when o = 0, then the quan-

tity ﬁ{p(m, ¢),p(,¢)} is a continuous real valued function on the compact set Qx S.

Now the definition of strong pseduoconvexity guarantees that ﬁ{p(x, ¢),p(z, ()} is
positive on the set

{(x,f,o) € ﬁ xS p(xvg) - U2p(1’,3¢) =0= {p7 ¢}(I,§)}
provided ¢ # 0. When o = 0, the points on this set lie in

{(2,6) € QxR™: £#£0, p(z,8) =0, {p,o}(z,€) =0}

and {p,{p,#}} is positive on this set by the definition of strong pseudoconvexity.
Hence the lemma follows by continuity and compactness.

It remains to verify (A.10) which we do now using Euler’s identity for homo-
geneous functions and the fact that 8%(30,5) is homogeneous of degree 1 in £ and

pj(z, &) is homogeneous of degree 2 in {. We have

({0, ), 6} pl, 00}, €) = a‘z (gg;@,a W)) (pm,aqs) n ggu,amk(x))

- (égg (z,€) ¢k(x)) <pj(x,a¢) + aagc(xaaﬁb)quk(x))

dp ap
- a—fj(m,aqﬁ) (pj(x,agb) + %C(w,aq[))(bjk(x))
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since ag & (2,8 (x) = 9¢; 5k( &)k ()| e=0p = df L (x,00), and

{p, {p. 6} }(x,00) = % (,06){p, 6}, (x,0¢) — p; (w )<3{§éf}> (2,00)
- gg( 09) (g?( 3¢)¢k+§§ (W%)(ﬁjk) P 852@ (z,00)dr,
N 35] (@,8¢) (27%'(3”»5(?5) 6‘1 (=, 8¢)¢]k> Pige agj P (2,00)
_ 5,5] (z,09) (pj(l',agb) o P (g, 3¢)¢Jk> .

Here is the main result about Carleman estimates with boundary terms.

THEOREM A.7. Suppose Q is a bounded open set in R™, n > 2, with a Lipschitz
boundary, and P(x,D) is a second order differential operator on 0 with bounded
coefficients whose principal symbol p(x,§) has real Ct coefficients. If ¢ is a smooth
function on Q with O¢ never zero in Q and ¢ is strongly pseudoconver with respect to
P(z,D) on Q, then for large enough o and for all real valued u € C*(Q) one has

(A.11) 0/ 62”¢(|8u|2+02u2)+0/ VI EI §/62"¢\Pu|2
Q o9 Q

with the constant independent of ¢ and u. Here v = (v1,...,v™) is the outward unit

normal to 01,

0B 0A

EI = Az, Ov, av)af() 9
y J

— (z,0v, 0v) (B(z, 0v) + g(x)v),

v =e"%u, g some real valued function independent of \,o,u, and

(A.12) Az, &, 0) = p(x,&) — o*p(x,00), B(x,&):= {p,d}(x,&).

Remark A.8. Tt is not difficult to see that the expressions for E/ and (A.11) imply
that

0/ e2?(|0ul? + o*u?) < / 62”¢|Pu|2+0/ e2?(|oul? + o*u?)
Q Q o9

for all u € C%(Q).

Proof. Since the statement of Theorem A.7 is not affected by a first order per-
turbation to P we may assume that b; = 0, ¢ = 0. The Carleman estimate follows
quickly from an algebraic inequality derived with the help of Lemma A.6. Below

Aw,&,0) = a6 — o*a gy0n,  Bla.§) = {p(x,€), 6(x)}
so A(z,&,0) is a quadratic form in (§,0) and B(x, &) is a linear form in . Hence

A(z,D,0) = a’*D;Dy, — 0*a?*¢;n, A(x,0v,00) = a?*vjuy — c*v?a? ¢y,

B<va) = {pa (b}(va)’ B(xaav) = {p, ¢}($78U)

For convenience, sometimes we abbreviate P(x, D)u(z) to Pu, A(z, D,o)v(z) to Av,
and B(z, D)v(x) to Bu.
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Define v := e“®u; we show there is a smooth function g(z), independent of u and
o, so that for large enough o

(A.13) e*7?|Pul? 2 o(|0v|* + o?|v|?) + 00, B on Q

with the constant independent of u, o,z and each E7 is a quadratic form in (dv,ov)
defined in the statement of Theorem A.7. Now v = e°®u implies u = e “%v so
e70u = Ov — 00¢v and Jv = e”?(Ju + 0d¢pu). Hence

e2?(|0ul? + o*u?) < 0v|* + o?|v|* < e27?(Joul? + o?u?)
with the constant independent of o, u and x € Q. Applying this to (A.13) we recover
(A.11), so it remains to prove (A.13).
Since u = e~?%v we have e Dju = e°®Dj(e~%v) = (D; +ioc¢;)v hence
®p(z, D)u = p(x, D + icdo)v.
Now
p(x, D +icdp) = a’*(D;j +iocg;)(Dy, + iodr)
= ajk(DjDk — 02¢j¢k) + 2iaajk¢jDk + oajkgbjk
= A(z,D,0) +iocB(x, D) + or(z)
for the known bounded function r(x) := alk ¢jr. Hence, for any real valued function
g(z) € CHQ)
e27?|Pul? = |Av + ic Bv + orv]? = |(Av + icBv 4 ogv) + o(r — g)v|?
> |Av +iocBv + ogv|* — co?|v|?
> |Av|® + 0?|Bv|* — ioc(AvBv — AvBv)
+ 20 Av gv — 202 gv Im(Bv) — co?|v|?
> 0%|Bv|? —io(AvBv — AvBv) + 20 Av gv — co|Bv| o|v| — co?|v|?
(A.14) > 02| Bv|? + 2ic Av Bv + 20 Av gv — co?|v]?
because Awv is real and Bv is purely imaginary. Here the constant ¢ may change from
line to line and ¢ and the constant in the inequality depend only on g, ¢, and a’*.
Next we express o2|Bv|? + 2ic Av Bv + 20 Av gv as the sum of a divergence of
a vector field and a quadratic form in (Qv,ov) closely tied to the pseudoconvexity
condition; see section 8.2 of [H676] for a more general version of these calculations.
We first work with 2iAv Bv; A(z, D, o)v is a sum of terms of the form a(z)D;Dyv

and o2a(x)v, and B(z, D)v is a sum of terms of the form b(z)D,,v with a,b,v real
valued functions. If Av = o2a(x)v and Bv = b(x)D,,v, then

2iAv Bv = 20 abv,,v = o2ab(v?),, = o%(abv?),, — o*(ab),v?

= —ap(ov)? b — o?av? by, + o*(abv?),,

= {A, B}(z,0v,00) — A(x, v, 00) by, -I—Za z < x,0v,00) gS( )>

= {A, B}(z,0v,00) — A(x, Ov, ov Z (’“)5 896

(A.15) +Z o ( ,0v, ov) gg (sc)) .
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If Av = a(x)D;Dyv and B(z, D)v = b(z)D,,v, then
2iAv Bv = —2abv;, vy = —ab ((0svm); + (VjVm)k — (V%) m)
= (ab) ;vxVm + (ab)rvjvm, — (ab)
ab)

= (ab) jvEVm + (ab)rvjvm, — (

mU; Uk — (abugvp,); — (abvjvm )k + (abv;vg)m
mU; Vg

(A.16)

OB
Z Bo; (-8& (z,0v,0v) B(z,dv) + A(x, dv, ov) agl( ))

Now

(ab) jviUm + (ab)kvjVm — (ab)mv;vg
= (avg bjvm + av; brvm — amv;jE b) + (ajvk buy, + arv; buy, — avjug by,)
= {A, B}(x, 0v,0v) + M (z,0v)B(z,dv) — A(x, v, ov)by,

= {A, B}(x,0v,ov) + M(x,0v)B(z,0v) — A(x, dv, ov Z 8§ 836 ),

where M(z,£) = a;& + ar; is homogeneous and linear of degree 1 in ¢ and is
independent of B(z,&). Hence using (A.16) we have

2iAv Bv = {A, B}(x,0v,o0v) + M (z,0v) B(x, dv) — A(x, v, ov Z (“)5 ax
- oB oA
(A.17) g o < z, dv, ov) 8&( ) — 7, ——(x,0v,00) B (x,av)) :

If Av = o2a(x)v, then one can see that the last term in (A.15) is the same as the last
term in (A.17) because in this case g—g = 0. Hence, since (A.17) is bilinear in A and

B, we may conclude that for the A, B given by (A.12) and for M given by

M(2,€) = ((a?%);86 + (@”*)rg) =2 (%),
7.k

7.k
one has
2iAv Bv = {A, B}(x, 0v,0v) + M (z,0v)B(z,0v) — A(x, v, ov) Zn: 05 (z) + O, F!
- ) ) ) 5 5 ) ) ra 655 6375 1
> {A, B}(z,0v,0v) — z) + O, F
(A.18)
_ 2_ 2 52
Cl\/E|B(fE,aU)| \/g|6’0| ’
where
0B 0A

F':= A(z,0v,00) —— —(x,dv, ov) B(x, 0v).

& (=) - &
Now we examine the term 24v gv in (A.14). If Av = o%a(z)v, then

(A.19) 240 gv = 20%agv® = 2A(x, 0, 0v)g(x).
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If Av = a(x)D;Dyv, then

240 gv = —2av;gV = —agV;EL — AUV
= 2agv;vi — (agvjv)i — (agurv); + (ag)rv;v + (ag),;viEv
0 [0A
A2 =2A N — —
(A.20) (x,0v,0v)g(x) + N(z, 0v)v zl: o, (8& (x,0v UU)g(.Z‘)’U) ,

where N(z,§) = (ag)x€; + (ag);&k is linear in {. Note that (A.20) is valid even in
the (A.19) case with N = 0. Hence using linearity of (A.20) in A, for the A(z, D,o)v
given by (A.12) we have
(A.21) 2A(z,D,o)vg(z)v
0 (0A Co 2
> 2A(z,0 - — ov|=.
> 240,00, 00)9(0) - - (52 o

So using (A.18) and (12) in (A.14), for large enough o (determined by ¢, a’*, and g),
and using that 02| B(x,0v)|? > od|B(x,dv)|?> when o > d, we obtain

(z,0v 0v)gv> —e1v/aol? -

e*?|Pul? > o{A, B}(z, v, 0v) + od|B(z,dv)|* + ah(m)A(m,auav) + 0O, E

(A.22) — 10 |0]? — cp0?0?

where

(A.23) h(z) := 2g(z Z 855 &rs

and

(A.24) E':= A(x, v, 0v) 83( ) — o4 —(z, 0v, o) (B(z, 0v) + g(z)v).

& o0&

The quantity {4, B}(z,dv,ov) + d|B(x,dv)|* + h(z)A(z, 0v,ov) in (A.22) is a qua-
dratic form in the vector (9v,ov). If we can find a constant d > 0 and a smooth
function h(z) on Q so that

(A25) {4, B}s,€,0) +dB(@ &) + h(z)A(w,£,0) >0 for (1,6,0) €T x S,
then from (A.22), for large enough o,

e*7?|Pul? 2 o(|0v]? + o?|v|?) + 00, B — /7 |0v]? — o?|v]?
R o(|0v +o®vl*) + 00,

proving (A.13). Here g is determined by (A.23) and h. So it remains to prove (A.25).
For ( = £ 4+ i00¢ we have

p(z, & +i00¢) = A(x,€,0) +ioB(z,§),
L5 0op(, O = <A~ i0B, A+ i0BY(r, ) = 2(A(r,.0), Bz, ),

so, noting that A(z,&,0), B(x,£) are real valued and homogeneous in (§,0), from
Lemma A.6 we have

(A.26) {A,B}(z,£,0)>0 for (x,€,0) € QxS with A(z,£,0) =0, B(z,£) = 0.
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Hence? we can find a d > 0 so that
(A.27) {A, BY(z,&,0) +d|B(z,€)|> >0  for (z,£,0) € QxS with A(z,£,0) = 0.
Now fix an x €  and define the following quadratic forms in (£, o):

Q(Evg) = {A,B}(Jﬁ,f,o‘) +d|B($>§)|27
Q)\(€7U) = Q(f,U) + )\A((E,&,O’).

If we can find some constant A so that ¢)(£,0) > 0 for all (£,0) € S, then the same
A will work in a neighborhood (in Q) of this z. Hence, using a partition of unity
argument, we can construct quadruples (U;, V;, Xjs Aj i), i =1,...,m, with

e U;,V; open subsets of R", U; C Vj, and © C UL 1UJ7

o x; € C(V;), x; nonnegative, x; > 0 on Uj, and Zj LXj =1on

e \; eRand gy, (§0) >0 for all (z,§,0) € (QANV;) x S.

Hence, if h = Z;":l Ajx; then (A.25) holds for all (z,£,0) € Q x S because
{A, B}(2,€,0) + dB(x,€)* + h(z) A, €, 0)

= {A, B}(x,,0) + dB(x,£)” + A(z,€,0 Zm]

Z {A B}(Jj 57 )+dB(m,f)2+)\jA($,§,O')).

So we take g to be the function which satisfies (A.23). It remains to show that for
any fixed z € Q (A.27) implies there is a A € R with ¢\(¢,0) > 0 for all (§,0) € S

Fix an z € Q. Let Z) be the zero set of the quadratic form gy (&, o) in R**1\ {0};
then Zy is a collection of lines in (&, o) space. We claim that Zy (or the zero set of
any quadratic form) is projectively connected, that is, there is a continuously varying
family of lines in Z) connecting any two lines in Z). Without loss of generality we
assume the quadratic form is generated by a diagonal matrix with [ ones, m minus
ones, and k zeros; we prove the claim by induction on . If [ = 0 or m = 0, then it
is trivial so assume [ > 1, m > 1. If [ = 1, then the zero set is a cone times R* and
hence projectively connected (if I = m = 1 we need to use that k& > 1, which follows
since n > 2). If [ > 2 and the line through the origin and (p, ¢,) ;é 0 is in the zero
set with p € Rl g € R™,r € R*, then |p|? = |¢|2. We can find a p’ € R'™! so that
Ip'|> = |p|® = |q\27 also we can connect p to (p’,0) by a curve on a ball of radius |p|.
Hence the zero set of the quadratic form is projectively connected to the zero set of
a quadratic form with signature [ — 1, m, k and this zero set is projectively connected
by the induction hypothesis.

Now ¢ > 0 on S N{A = 0} by (A.27), hence, ¢ > 0 on SN {|A| < e} for some
€ > 0. Hence,

e x=q+AA>00nSN{A>0}if A\ > e maxg|q,
e n=q+AA>00n SN{A<0}if A\ < —e 'maxg|q,

2There is an € > 0 so that {4, B}(z,£,0) is positive on {(z,§,0) € Q@ x § : A(z,€,0) =

0,|B(x, £)|? < €}. Otherwise, there would be a convergent sequence (xy, &g, o)) in Q x S for which
Az, €k, 01) =0, |B(zk, £)|2 — 0, and {A, B}(xk, £k, 0) < 0; then taking limits we would violate
(A.26). So assume there is such a positive €; then choose d large enough so that de exceeds the
maximum of |[{A, B}(x,£,0))| over {(z,&,0) €EQ x S : A(z,&,0) = 0}.
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(A.28) ZxnNS is contained in A < 0 for A >0
and Z, NS is contained in A > 0 for A < 0.

We claim that this implies Z, NS is empty for some A, that is, for some A, ¢, is never
zero on S and hence has the same sign at every point on S. But ¢y, > 0on A =0
s0 gx > 0 on S which would prove our claim. It remains to show that (A.27), (A.28)
imply Z NS is empty for some .

We argue by contradiction and suppose that Z, NS # @ for all A € R. From
(A.27) and the projective connectedness of Zy, Z) NS is contained either in the set
A > 0ortheset A <0. Thus R = A, UA_, where the sets Ay and A_ are defined as

Ap={AeR:ZxNSCc{A>0}}, A :={decR:Z\nSc{A<0}}.

The sets Ay and A_ are nonempty because of (A.28) and disjoint since Z NS #
for all A\. They are also closed: if there is a sequence A\, — A* with Z,, NS contained
in A > 0 for all k, there is a convergent sequence ({x,0%) — (£*,0%) in S with
A&k, o) > 0 and gy, (&, 0r) = 0. Taking the limit we have ¢x~(£*,0*) = 0 and
A(&*,0%) > 0, which by (A.27) implies gx-(£*,0%) =0 and A(£*,0%) > 0s0 Z)- NS
is contained in A > 0. Hence A is closed and by a similar argument A_ is closed.
But now one has R = AL UA_, where A, and A_ are nonempty, disjoint, and closed
sets. This contradicts the connectedness of R. ]

A.2. Boundary terms for the wave operator. We determine the boundary
terms in Theorem A.7 for the wave operator [J. Here the independent variables are
(z,t) €e R" x R, 0 = 92 — A, and the Carleman weight function is ¢(z,t). So the
principal symbol of O is

p(&,m) =1 +€- &
Ezpressions for A, B: Now, if ( = (§,7) + i0(¢ps, ¢¢), then

p(¢) = —(T +iogs)” + (£ +iods) - (€ +iody)
= (€7 = 7%) = *(|62]® — ¢7) + 2i0 (£ - du — T,

hence,

Aw,t,6,7.0) = (|7 = 7°) = 0?(a]* = ¢F),  Ba,t,6,7) = 2(6 - du — 701).

Ezxpressions for the boundary terms EJ for O0: For j =1,...,n, we have
1. . 1 0B 0A
§EJ =3 <A(x,t,6v7av)8€j(x,t) - a—gj(:c,tﬁv,av)(B(x,t,av) —i—g(x,t)v))

= 0j([val* = vi) — ¢ (|¢al” — ¢7)0* — 20 (v - 2 — vadhe) — g(x, t)vjv
and (index 0 corresponds to t)

1EO _1 A(x,t,@v,av)a—B — %(a:,t,av,av)(B(x,t,ﬁv) + g(z,t)v)
2 2 or Ot

= *¢t(|vr|2 - Utz) + U2¢t(|¢m|2 - fbf)ﬂz + 2%(% C Py — vt¢t) + g(xvt)vtv-
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The boundary integrands on {t = z} when Q = (B xR)N{t > z}: Here z = (y, 2)
with y € R"1 and Q = (B x R) N {t > z}, where B is the unit ball in R". We
compute the boundary integrand coming from ¢ = z. The outward normal to the part
of 0Q on t = zis V2v = (VW = 0,v% = 1,* = —1). Hence

TSP = (0 + 00 (0ol = o) = 00 + 00) (0l = o 0?
= 2(v: + ) (Vg - P — vet) — (V2 + ve)g(z)v

= (v2 +ve) (¢ + ¢0) (v — v1) — 2(v2¢pz — Vir))
+ (= + ¢t)|vy|2 —2(v; +v1)(vy - dy)
— 0% (¢2 + ¢0) (¢ |” — 97)0* — (vz + v)g(z)v

= (vz + ) (V202 + vy + PV, — dovp) + (P2 + ¢t)\vy|2
= 2(vs + ) (vy - By)
—0%(p2 + G)(|al” — &7)0” — (v2 + v)g(x)v

= (b = 02) vz + ve)* + (92 + de) vy = 2(vs +ve) (vy - &)
— 0% (¢2 + ¢0) (¢ |* — ¢7)0* — (vz + vi)g(x)v.

We adopt the notations

Zv = %(vz—i—vt), Nv:= %(vt—vz),
so that Z is tangential and N is normal to ¢ = z. Thus the integrand in the boundary
term over t = z is given by
(A:29) VBT = A(N§)(Z0)? + 2Ze)v, |2 — 4(Z20)(v, - &)
—20%(Z2¢)(=2Z¢ N¢ + |9, [*)0* — 2(Zv)g(, t)v
= 4(NG)((Zv)* + 0*(Z)*v?) + 2(Z)(|vy|* — 0%|¢ [*v?)
—4(Zv)(vy - ¢y) — 2(Zv)gv.
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