
Soliciting Stakeholders’ Fairness Notions in Child Maltreatment 

Hao-Fei Cheng 
University of Minnesota 
cheng635@umn.edu 

Paige Bullock 
Kenyon College 

bullock1@kenyon.edu 

Predictive Systems 

Logan Stapleton 
University of Minnesota 

stapl158@umn.edu 

Alexandra Chouldechova 
Carnegie Mellon University 

achould@cmu.edu 

Haiyi Zhu 
Carnegie Mellon University 

haiyiz@cs.cmu.edu 

Ruiqi Wang 
Carnegie Mellon University 
ruiqiw1@andrew.cmu.edu 

Zhiwei Steven Wu 
Carnegie Mellon University 

zstevenwu@cmu.edu 

ABSTRACT 

Recent work in fair machine learning has proposed dozens of tech-
nical defnitions of algorithmic fairness and methods for enforcing 
these defnitions. However, we still lack an understanding of how to 
develop machine learning systems with fairness criteria that refect 
relevant stakeholders’ nuanced viewpoints in real-world contexts. 
To address this gap, we propose a framework for eliciting stakehold-
ers’ subjective fairness notions. Combining a user interface that 
allows stakeholders to examine the data and the algorithm’s predic-
tions with an interview protocol to probe stakeholders’ thoughts 
while they are interacting with the interface, we can identify stake-
holders’ fairness beliefs and principles. We conduct a user study 
to evaluate our framework in the setting of a child maltreatment 
predictive system. Our evaluations show that the framework allows 
stakeholders to comprehensively convey their fairness viewpoints. 
We also discuss how our results can inform the design of predictive 
systems. 
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1 INTRODUCTION 

Machine learning (ML) algorithms are increasingly being used to 
support human decision-making in high-stakes contexts, such as 
online information curation, resume screening, mortgage lending, 
police surveillance, public resource allocation, and pretrial deten-
tion. However, concerns have been raised that algorithmic systems 
might inherit human biases from historical data, and thereby per-
petuate discrimination against already vulnerable subgroups. 

These concerns have given rise to a rapidly growing research 
area of fair machine learning. Recent work in this area has produced 
dozens of quantitative notions of algorithmic fairness [2, 17, 24, 30, 
56, 70], and provided methods for enforcing these notions [1, 2, 24, 
40, 41, 79]. 

Existing research on fair machine learning has primarily focused 
on fairness at the level of pre-defned groups. This group fairness 
approach frst fxes a small collection of groups defned by protected 
attributes (e.g., race or gender) and then asks for approximate equal-
ity of some statistic of the predictor, such as positive classifcation 
rate or false positive rate,1 across these groups (see, e.g., [1, 30, 45]). 
While notions of group fairness are easy to operationalize, they 
are aggregate in nature and make no promises of fairness to fner 
subgroups or individuals [24, 31, 41]. In contrast, the individual 
fairness approach aims to address this limitation by asking for ex-
plicit fairness criteria at an individual level. For example, Dwork 
et al. [24] propose an individual fairness notion that requires that 
similar people are treated similarly. Their formulation of fairness 
crucially relies on a task-specifc metric that captures whether two 
individuals are similar for the purpose of the task at hand. Due to 
the challenges of specifying such a metric in any given real-world 
decision-making problem, it remains difcult to operationalize in-
dividual fairness in practice. 

Irrespective of the approach one takes to quantify fairness, it 
is important to engage relevant stakeholders in the design of real-
world decision-making systems. As Shah [65] has argued, achieving 
legitimacy or łsocial licensež from the broader community is critical 

1False positives occur when a subject has true negative label, but a classifer erro-
neously classifes the subject positively. For example, if a child is truly at low risk of 
maltreatment, but a classify predicts that they are a high-risk, this is a false positive. 
False negatives occur when subjects with true positive labels are negatively classifed. 
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to the ability of even the best-conceived technologies to have a pos-
itive social impact. Similarly, [46, 76] recommend that stakeholders 
afected by the decisions should be centered in these processes. 

One example of a łfairž technology that failed to be adopted due 
to a lack of stakeholder support is a school start time scheduling 
tool proposed in Boston intended to decrease bussing costs while 
improving racial equity and better accommodating diferences in 
circadian rhythms across students of diferent ages. The system’s 
design failed to account for the excess burden that the proposed 
times would place on families with multiple children who attend 
diferent schools, particularly for lower-income parents who tend 
to have infexible work schedules [75]. This is not an isolated ex-
ample. In a recent study, Veale et al. [69] interviewed 27 public 
sector ML practitioners across 5 OECD countries and noted the 
common disconnects between current fair ML approaches and the 
organizational and institutional realities, constraints, and needs in 
which algorithms are applied. 

Thus, involving afected stakeholders in the algorithm design 
processÐparticularly, in the process of defning fairnessÐis of ut-
most importance. To this end, we propose a novel framework for 
eliciting stakeholders’ opinions around algorithmic fairness. The 
framework combines two components: an interactive interface 
that allows stakeholders to examine the data and audit an algo-
rithm’s predictions, and an interview protocol that is designed to 
probe stakeholders’ thoughts and beliefs on fairness and biases of 
the algorithm while they are interacting with the interface. 

We evaluated our framework in the high-stakes context of de-
veloping machine learning-based risk assessment tools to assist 
child abuse hotline call workers in their screening decisions. Our 
work is motivated by the Allegheny Family Screening Tool (AFST), 
which has been used in Allegheny County, PA since the summer of 
2016 [68]. We conducted in-depth interviews with 12 participants 
from two groups of stakeholders (parents and social workers) to 
understand their fairness viewpoints. The interviews allow us to 
identify fairness approaches that align with stakeholders’ beliefs, 
and allow stakeholders to provide rich reasoning to explain their 
viewpoints. For child maltreatment risk assessment, the stakehold-
ers we interviewed slightly preferred equalized odds (i.e., equalizing 
accuracy at identifying low- and high-risk cases across the sensi-
tive attributes), compared to unawareness (i.e., not considering 
the sensitive attributes at all) and statistical parity (i.e., equalizing 
high-risk predictions across sensitive attributes). When asked to 
make individual fairness comparisons, there was little agreement 
between these stakeholders in most scenarios. 

We propose a novel method for engaging human stakeholders 
in the algorithm design process - in the process of defning fairness. 
Our work also contributes empirical understanding of stakeholders’ 
fairness opinions in the high-stakes context of developing machine 
learning-based risk assessment tools. 

2 RELATED WORK 

2.1 Fairness in Machine Learning 

There has been signifcant development in research on machine 
learning fairness and accountability in recent years [2, 17, 30, 56, 
59, 70]. Prior literature on ML fairness can generally be classifed 
into two categories: group fairness and individual fairness. The 

more commonly studied notion, group fairness, requires parity of 
some statistical measure across a fxed number of protected groups. 
In this paper, we ask study participants about three of the most 
popular notions of group fairness: fairness through unawareness 
(henceforth unawareness), which is the notion that in order to be fair, 
an algorithm should explicitly not consider a protected attribute 
(e.g. race or gender) when making its decisions [58]; statistical (or 
demographic) parity, which entails that a fair algorithm has parity 
of positive classifcation rates across a fxed number of protected 
groups; and equalized odds [30], which entails that a fair algorithm 
has equal accuracies Ðtrue positive and false positive ratesÐ across 
a fxed number of protected groups. While all three notions ofer 
some theoretical fairness guarantees, they also have diferent short-
comings. First, unawareness has long been critiqued: [58] argue 
that even when protected attributes are not considered as predictive 
features, there may be łbackground knowledgež Ðother data which 
serves as proxy or strong predictor for the removed attributesÐ 
which recreates the efect of including the removed attributes, e.g. 
someone’s zipcode may be a strong predictor of their race. In gen-
eral, policy and decision making which actively disregards sensitive 
attributes, e.g. color-blind policies to mitigate racial discrimination, 
have been critiqued, as well [4]. Second, [30] critique statistical 
parity on the grounds that 1) it is not fair insofar as it łpermits that 
we accept the qualifed applicants in one demographic, but random 
individuals in another, so long as the percentages of acceptance 
matchž; and 2) we might incorrectly classify a number of samples 
in order to maintain equal rates of positive classifcation. Third, 
equalized odds can be impossible to achieve simultaneously with 
other common fairness notions, like statistical parity or calibration 
[16, 45]. In general, group fairness metrics provide no meaningful 
guarantees of fairness to individuals or more refned sub-groups 
[24, 31, 41]. 

On the other hand, notions of individual fairness explicitly con-
strain algorithmic decisions at an individual level [24, 37]. For ex-
ample, the individual fairness notion in [24] requires łtreating sim-
ilar individuals similarly;ž the meritocratic fairness notion in [37] 
requires that the algorithm should łprioritize more deserving indi-
viduals.ž However, these approaches require strong assumptions, 
such as a consistent measure for similarity or merits across individ-
uals, which usually do not hold in real-world contexts. Furthermore, 
[76] suggests centering research not on proposing new technical 
defnitions, but rather on proposing new procedures for involving 
stakeholders to determine which notion of fairness is best. To this 
end, recent work [8, 33, 38] provides theoretical models of human 
auditors or arbiters who can provide fairness feedback to assist an 
algorithm to provably enforce individual fairness without an ex-
plicit similarity measure. Beyond individual fairness, there has also 
been work that involves human eforts in developing algorithms 
[5, 29, 50, 80], making fnal decisions after algorithm recommenda-
tions [47], and making decisions about fairness trade-ofs [78] (as 
satisfying the criteria for all fairness defnitions is mathematically 
impossible [26, 44]). However, some critique previous elicitation 
methods for not capturing the reasons behind responses [34, 76]. 
Additionally, it remains a major challenge to devise mechanisms 
to involve stakeholders in algorithmic development and auditing 
that do not require unrealistic levels of technical knowledge among 
participants. 
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3.2.2 Interactive interface. Our interactive interface prototype3 

consists of three primary views: (i) a group view corresponding to 
Goal 1 (Figure 2a), (ii) a case-by-case view corresponding to Goal 2 
(Figure 2b), and (iii) a similarity comparison view corresponding to 
Goal 3 (Figure 2c). 
Group view: This view aims to give users a holistic view of the 
algorithm’s performance by showing how it varies across groups 
according to diferent metrics. Users have the option to select from a 
list of common classifcation performance metrics. The drop-down 
menus allow the user to select attributes with which to separate the 
data into subgroups. The interface displays a bar chart depicting the 
algorithm’s performance across the specifed subgroups. A textual 
description is also provided below the graph to provide an alter-
nate description of the algorithm’s performance. The visualization 
corresponds to group fairness notions and the interactive interface 
allows users to explore any group or performance metrics they are 
interested in. 
Case-by-case view: This view allows users to deliberate the al-
gorithm at a granular level of individual predictions. Each case of 
algorithm prediction is presented as a card; the interface shows 
two cases at a time for pairwise comparison. On each card, the 
algorithmic prediction is shown on top, followed by features the 
algorithm used to make the prediction. Hovering over each feature 
will show users the detailed description of that feature, and the 
possible values the feature can take. Users can browse through the 
cases back and forth. The tool will randomly select a new case from 
the dataset, and replace the currently displayed case. Users can ex-
plore new cases by changing the case on either the left or right. The 
interface lets stakeholders inspect the profles and detailed features 
of any two individuals treated by the algorithm, allowing them to 
determine if the pair should be treated equally. This aligns with the 
defnition of individual fairness [24] and works that operationalize 
it (e.g. [8, 38]). 
Similarity comparison view: This view shows a one-dimensional 
scatter plot that compares a selected reference case with all other 
cases in the dataset. This allows users to explore the dataset at a 
macro view and narrow down to individual cases for inspection. 
This scatter plot displays all the cases in the dataset, with each 
case represented by a dot on the plot, color-coded according to the 
algorithm prediction. The reference case is positioned at the far left 
of the plot, with other cases ordered by similarity to the reference 
case along the x-axis. A weighted Euclidean distance metric is 
used to calculate the similarity of the cases.4 The y-axis shows the 
distribution of the cases at that similarity level. A control panel 
allows users to change the weight associated with each feature. 
Users can customize the weights to re-rank the cases in an order 
that aligns with their viewpoints. Users can select a case from the 
plot to compare with the reference case, or set a new case as the 
reference case. The similarity comparison view allows stakeholders 
to compare a reference case with all the other cases. The dots at the 
same position on the X-axis have the same similarity score (same 
distance from the reference case), which allows users to quickly see 
the distribution of the similarity scores across a large number of 

3A demo of our interface can be assessed here (note that the data shown in the demo 
are synthetic): https://z.umn.edu/fairnessElicitationInterface
4The weighted Euclidean distance between cases p and q is calculated 

nby:
p

Í 
=1 wi (qi − pi )2 , where wi denotes the user-assigned weight for feature i .
i 

cases. This allows them to quickly narrow down to individual cases 
from the whole dataset for comparison, such as looking at cases 
where the cases with high level of feature similarity and evaluate if 
they should receive the same decision. 

3.3 Interview Protocol 

To complement this interface, we develop interview protocols to 
probe stakeholders’ fairness viewpoints and principles. Our pro-
tocols are based on the think-aloud approach, which is one of the 
most valuable usability engineering methods in HCI [57]. We ask 
stakeholders to use the interface we described above łwhile con-
tinuously thinking out loudÐthat is, verbalizing their thoughts as 
they move through the user interfacež[57]. Think aloud serves as 
ła window on the soul,ž letting us discover what participants really 
think about the fairness and bias of the algorithm [57]. 

First, we ask stakeholders to compare pairs of cases in the data 
without showing the algorithmic predictions, in the case-by-case 
view (Figure 2b). We ask stakeholders if both cases should be treated 
equally (i.e. receive the same prediction by the algorithm), and if 
not, what alternative outcomes should the two cases receive to 
align with the stakeholders’ fairness principles. In this stage, we 
only show users the features for the cases, as we aim to collect 
stakeholders’ fairness notions regardless of the predictions of those 
outcomes, and the factors they would consider when evaluating 
the cases in the context. 

Participants start by comparing pairs of cases that difer by only 
one factor, then move onto pairs that difer by two or more fac-
tors. At this stage, we also ask our participants whether three com-
mon group fairness approaches (unawareness, statistical parity, and 
equalized odds) are appropriate with respect to sensitive attributes 
(e.g. for child maltreatment, these are victim age, victim gender, 
family race, use of public assistance service and perpetrator gender). 
For a given sensitive attribute, we elicit opinions on whether the 
following approaches should be met for the algorithm to be fair: 

(1) the sensitive attribute should not be a predictive factor (un-
awareness);5 

(2) the rates of positive classifcation should be equal across a 
sensitive attribute (statistical parity); or 

(3) the false positive and false negative rates should be equal 
across a sensitive attribute (equalized odds). 

See Figure 3 for visual explanations of statistical parity and equal-
ized odds. We used similar visuals in our interviews, as well. 

Second, we ask stakeholders to make pairwise comparisons again 
with cases showing the algorithmic prediction (Figure 2b). Partici-
pants compare cases that are selected randomly from the dataset. 
We ask users to identify and explain (pairs of) cases that are be-
ing treated unfairly. We also asked them to evaluate if the algo-
rithm predictions are in general biased according to their fairness 
notions. 

Third, we ask stakeholders to use the similarity comparison view 
to compare reference cases with all the other cases in the data (Fig-
ure 2c). We ask stakeholders to defne their own similarity metrics 
by ranking the importance of each feature in determining similar 

5Though there may be signifcant problems with unawareness as an approach to 
fairness (as noted in Section 2), we think it important to gather stakeholder beliefs 
about it, as it is a common and widely-used policy (e.g. color-blind policies). 
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(a) Two examples which violate and satisfy statistical 
parity between infants and adolescents (two subgroups 
along the sensitive attribute victim age), respectively. 
The orange box with no fringe on top contains children 
predicted to be at high risk of maltreatment; the blue 
fringe box at bottom is low-risk prediction. On the left, 
the proportion of high-risk predictions for infants is 75%, 
whereas for adolescents this rate is 50%. On the right, the 
proportions of high-risk predictions for infants and ado-
lescents are 50%. 

(b) Two examples which violate and satisfy equal-
ized odds between infants and adolescents, respectively. 
Green children are truly at high risk of maltreatment; 
white are truly at low risk. False positives (children who 
are truly at low risk of maltreatment are predicted to be 
at high risk) are in the upper righthand corner; false neg-
atives (children who are truly high-risk are predicted to 
be at low risk) are in the lower left corner. In the left ex-
ample, the false positive and false negative rates for in-
fants are each 33.¯ 3%3%; for adolescents these rates are 33.¯ 

and 50%, respectively. This violates equalized odds, be-
cause the false negative rates difer between infants and 
adolescents. On the right, for both infants and adoles-
cents, the false positive and false negative rates are 33.3̄% 
and 50%, respectively. 

Figure 3: High-risk prediction rates must be equal along a 
sensitive attribute to satisfy statistical parity. False positive 
and false negative rates must equal to satisfy equalized odds. 

‘actuarial’ is used to indicate that a tool relies on associations in-
ferred from data between an outcome and so-called risk factors (i.e., 
input features). This terminology is used to contrast with, ‘clinical 
risk assessment’, also known as professional judgment, in which 
experts subjectively assess risk. One of the earliest actuarial risk 
assessment tools was developed by Burgess [12] to calculate the 
recidivism risk for ofenders being released from Illinois state pris-
ons. Actuarial risk assessment instruments are now widely used 
throughout the criminal justice system, from pre-trial [20, 21], to 
sentencing [42, 54] to probation and parole [7]. They are also used 
in academic advising, healthcare, welfare allocation, homelessness 
services, and many other settings [6, 14, 43, 66]. 

Over the past couple of decades, many child welfare agencies 
have incorporated actuarial risk assessment toolsÐor hybrid models 
that combine prediction with professional judgmentÐinto various 
stages of the child protection decision-making process [35, 68]. 
While the most widely-used tools take the form of simple point 
systems that consider only a handful of manually-entered factors, 
machine learning models such as neural networks have been consid-
ered since at least the early 2000s [53]. Contemporary tools such as 
the AFST difer from the majority of existing tools in that they rely 
on a much larger set of features that are automatically populated 
from multi-system administrative data. This obviates the problem 
of inter-rater reliability, wherein diferent users may have diferent 
assessments of manually-entered features in a manner that results 
in diferent risk scores. But it leaves open the possibility of more 
systematic errors potentially going undetected for long periods of 
time [18]. See Figure 4 for further explanation of the child welfare 
screening process used at Allegheny County Department of Human 
Services (DHS). 

4.2 Ethical Considerations Surrounding the 
Use of Algorithmic Tools in Child Welfare 
Decision-Making 

The use of algorithmic decision support tools in the child welfare 
context is a contentious issue. For instance, there is the possibility 
that communities of color and families experiencing poverty may 
be disadvantaged by virtue of having more comprehensive data 
available on them in the government administrative data systems 
used to evaluate algorithmic risk scores. Such concerns have been 
given voice by authors such as Virginia Eubanks, who in her book 
Automating Inequality [25] argues that such tools oversample the 
poor and present a fundamentally fawed approach to improving 
child welfare decision-making. Similar objections have been raised 
by Richard Wexler, a long-time critic of algorithmic tools in child 
welfare. 

While child welfare agencies are sensitive to these concerns,7 

many also believe that data-driven decision-making approaches 
hold the promise of signifcantly improving decisions and family 
outcomes. Few would argue against using all available resources 

6This visual was constructed according to resources on AFST and the 
screening process at DHS’ website at www.alleghenycounty.us/Human-
Services/Programs-Services/Children-Families/When-a-Report-is-Made.aspx 
and www.alleghenycounty.us/Human-Services/News-Events/Accomplishments/ 
Allegheny-Family-Screening-Tool.aspx.
7See, e.g., Allegheny County’s response to Eubanks: https://www.alleghenycounty.us/ 
WorkArea/linkit.aspx?LinkIdentifer=id&ItemID=6442461672 
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Figure 4: Allegheny DHS screening process.6 Step 1: The ex-
ternal caller, e.g. the child’s teacher, family member, calls a 
child welfare hotline to make a report, which directs to ei-
ther a state or county hotline. The state hotline takes down 
the caller’s information and forwards it to the county staf 
in step 2 for screening. The county hotline goes directly to 
the call screening staf (call screeners and supervisors) in 
step 2, where they gather information from the caller, re-
trieve existing information from the department’s database 
about the case, and assess the risk of harm to the child. Here, 
the AFST risk score is considered. Step 3: the call screening 
staf determines whether to screen out the report —meaning 
that the call is not investigated further by the department 
(step 4)— or to screen in, which can entail assigning a case-
worker to the case and investigating further (step 5). Steps 
6+: the case may be referred to a caseworker and/or other 
child welfare staf (supervisors, administrators, etc.), where 
they might proceed in a number of directions, e.g. further 
observation, investigation, or intervention (e.g. removal of 
the child or referral to other governmental services). 

to promote child safety. Indeed, it can be viewed as unethical to 
knowingly do otherwise. Administrative system data is one increas-
ingly available resource, but it is one that is challenging for human 
decision-makers to make efective and systematic use of in every 
instance. This is where algorithmic tools enter. 

In exploring how to realize the potential upside of such tools, it 
is essential that agencies take a rigorous approach to development, 
deployment, and evaluation, and that this approach is informed by 
ethical considerations. Allegheny County’s work on the Allegheny 
Family Screening Tool (AFST) used for call screening, for instance, 
involved both a pre-deployment ethical analysis conducted by re-
searchers Tim Dare and Eileen Gambrill [68] and an independent 
post-deployment impact evaluation [27]. Studies of afected com-
munity perspectives [11] have also found that certain proposed 
uses of algorithmic tools are viewed by families and child welfare 
workers as providing considerable beneft. However, study partic-
ipants voiced concern over the potential for such tools to exhibit 
biases and emphasized the need for a human-in-the-loop approach. 

Our proposed elicitation framework is intended to respond to 
the clear need for algorithmic systems in sensitive domains to 
refect relevant fairness and equity desiderata. We hope that the 
methodology we propose can work in concert with participatory 
design, community engagement, and impact evaluation strategies to 
develop tools that achieve meaningful legitimacy and demonstrably 
improve child and family outcomes. 

4.3 Context and Data 

We evaluated our framework in a real-world, high-stakes contextÐ 
child maltreatment prediction. Our study was motivated by recent 
eforts by child welfare agencies around the country to incorporate 
algorithmic decision support tools into their existing processes. 
Our study was most closely related to AFST, which since August 
2016 has been used during child abuse call screening in Allegheny 
County, Pennsylvania [68]. The AFST score is based on data re-
lated to the victim child(ren), parents, legal guardians, perpetrators, 
prior child welfare history, criminal history, and use of public as-
sistance. Call screeners are presented with an AFST score for each 
referral. Due to the sensitive nature of the data, our study relied 
exclusively on synthetic data based on the real dataset provided 
by the Allegheny County Department of Human Services. We also 
converted the AFST score into binary labelsÐhigh-risk and low-risk 
cases. 

4.4 Study Design 

We recruited two groups of stakeholders for the user study: (1) 
social workers with experience of investigating allegations of child 
abuse and (2) parents. To recruit the social workers, we reached 
out to the departments of social work of four public universities in 
the US, which helped us send out the recruitment emails to their 
undergraduate and graduate students. To recruit the parents, we 
posted recruitment messages on the social media of the authors 
and sent out recruitment emails to parent groups. We recruited 12 
participants in total for the study, and Table 1 shows the details of 
the participants. 

We conducted the user studies over video chat. In each study, the 
researcher frst gave an introduction of the study and an overview of 
how to use the interactive interface described in Section 3.2. Then, 
we invited each participant to use the tool to explore the child 
maltreatment prediction data. We followed the interview protocol 
introduced in Section 3.3 to elicit participants’ fairness notions 
surrounding the algorithm’s decisions. Participants shared their 
screen in the video chat so that researchers could see the same 
information in the process. Participants were also encouraged to 
think aloud during the study. Each user study lasted for about 90 
minutes. Each participant was compensated with a $30 Amazon gift 
card. The user study was reviewed and approved by the Carnegie 
Mellon University Institutional Review Board. 

4.5 Data Analysis 

All study sessions were audio-recorded with consent from the par-
ticipants. The frst two authors transcribed all 12 interviews with 
20.5 hours of recorded audio. We employed a qualitative, grounded 
theory analysis to inductively analyze our data and generate the 
fndings and insights from the interviews. We adopted Charmaz’s 
approach of grounded theory analysis which allows us to consider 
prior ideas and theory in the analysis [15]. We open coded inter-
view transcripts, held team meetings to discuss emerging themes 
and ideas, and iterate on our codebook. We describe the fndings of 
our analysis in the next section. 
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ID Age Gender Race 
Social worker 
experience 

Enrolled in 
social work programs 

S1 25-34 Woman Latinx Yes Yes 
S2 25-34 Woman Black Yes Yes 
S3 25-34 Woman White No Yes 
S4 18-24 Non-Binary Other No Yes 
S5 18-24 Woman White No Yes 
S6 18-24 Woman White Yes Yes 
S7 25-34 Woman White Yes Yes 
S8 18-24 Woman White Yes Yes 
ID Age Gender Race No. of children Children age(s) 
P1 25 - 34 Man Asian 2 2 or younger, 3-7 
P2 45 - 54 Woman Asian 2 13-17, 18+ 
P3 45 - 54 Woman Other 1 18+ 
P4 45 - 54 Woman White 3 18+ 

Table 1: Participant Summary 

5 RESULTS 

In this section, we summarize participants’ viewpoints on both 
group and individual fairness gathered throughout the interview 
process. Overall we see no diference in patterns of responses be-
tween social workers and parents. Throughout this section, we 
follow the prior literature and refer to the three group fairness 
approaches by these abbreviated phrases: unawareness means to 
leave a sensitive attribute (e.g. race) out of the model; statistical 
parity means to equalize the positive classifcation rates between 
groups within a sensitive attribute (e.g. diferent racial groups); 
and equalized odds means to equalize the false positive and false 
negative rates between groups within a sensitive attribute. The 
highlights of our results are as follows: 

(1) Among the three group fairness approaches, equalized odds 
was the most supported group fairness criteria (66.7%), fol-
lowed by statistical parity (43.3%) and unawareness (41.7%). 

(2) Even though equalized odds was the most supported, there 
were nuances within this, e.g. many participants were willing 
to accept disparities in accuracy across groups rather than 
sacrifce overall accuracy. 

(3) Even though there are heated discussions around the over-
representation of Black children in the child welfare system 
[22], participants thought that statistical parity was not nec-
essarily fair, though it is a good goal. 

(4) Participants thought unawareness could both address and 
enforce systemic discrimination. 

(5) Among the individual fairness comparisons, we did not ob-
serve unanimous agreement between participants for most 
of the pairs. 

(6) Participants maintained consistent responses to each group 
fairness question across diferent protected attributes (i.e. vic-
tim age, victim gender, family race, use of public assistance, 
and perpetrator gender). 

(7) Participants interpreted our fairness questions diferently 
and experienced cognitive overload when examining cases 
with a high number of diferent attributes, leading to addi-
tional challenges. 

Cheng et al. 

5.1 Group Fairness Approaches 

5.1.1 Summary of Group Fairness Choices. We asked the partici-
pants whether three common group fairness approaches (unaware-
ness, statistical parity, and equalized odds) are appropriate for each 
of the fve sensitive attributes (victim age, victim gender, family race, 
use of public assistance service and perpetrator gender). Particu-
larly, for a given sensitive attribute, we asked whether the following 
criteria should be met for the algorithm to be fair: 

(1) the sensitive attribute should not be considered for decision-
making (unawareness); 

(2) the high-risk predictions be the same rate across the sensitive 
attribute (statistical parity); or 

(3) the predictions should be equally accurate at identifying low-
and high-risk cases across the sensitive attribute (equalized 
odds). 

See Figure 3 on page 6 for visual explanations of statistical parity 
and equalized odds. 

Among the three group fairness criteria, equalized odds was the 
most preferred group fairness criteria (66.7%), followed by statistical 
parity (43.3%) and unawareness (41.7%) (see Figure 6). 

5.1.2 Reasons for & against Unawareness. Our participants think 
unawareness is an appropriate fairness criteria in 41.7% of situa-
tions. 6 out of 12 participants believed that algorithm should be 
unaware of victim gender, family race, use of public assistance and 
perpetrator gender. On the other hand, only 2 out of 12 participants 
believed that the algorithm should be unaware of victim age. (see 
Figure 5a). 
Algorithms should be aware of important predictive at-
tributes. Many participants disfavored unawareness, i.e. endorsed 
awareness, for sensitive attributes they thought were important 
indicators of risk. For example, S2 thought age should be taken 
into account, since łwhen you’re a younger child that doesn’t have 
language, you defnitely are higher risk than a child that does have 
languagež (S2). Many other participants reiterated that victim age 
is an indicator of language and, thus, of risk. This is one reason 
why we saw only 2 of 12 participants endorsing unawareness for 
victim age (see Figure 5a). Others thought an algorithm should 
be aware of only important predictive attributes. For example, S7 
śwho endorsed unawareness for victim ageś said, łI wouldn’t want 
to like teach the algorithm to prioritize [a case] based on age... I would 
want it more about the type of alleged abuse,ž indicating that type of 
abuse is an important predictor, whereas victim age is not. 
Awareness could reinforce systemic discrimination. Some 
participants endorsed unawareness, because they were concerned 
that awareness of sensitive attributes would lead to systemic dis-
crimination. For example, P3 thought that the algorithm ought to 
be unaware of family race, since awareness łopens up... room for 
systemic racismž and would łbring unconscious biasesž (P3). Fur-
thermore, some suggested awareness of sensitive attributes to audit 
the algorithm’s decision, but not when making predictions. P3 said 
that the algorithm should be aware of family race łonly to report 
certain disparitiesž between races (P3). Similarly, S4 endorsed un-
awareness so that the algorithm would not inherit biases based 
on gender, saying: łThere is a big bias on gender. Everybody has 
diferent opinions on what gender is [and] what entails gender" and 
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want to see similar numbers achieved, but if the numbers aren’t quite 
the same, I think that’s also okay as long as you’re still detecting 
fairlyž (S5). P1 said, łI wouldn’t say that if the algorithm predicts 
diferently across diferent races, then it’s an unfair algorithmž (P1). 
Statistical parity overlooks contextual diferences between 
cases. Some participants who disfavored statistical parity reasoned 
that equalizing positive classifcation rates may overlook contextual 
diferences specifc to each case. For example, P2 said that statistical 
parity łis arbitrary... It depends on what the cases arež (P2). 
Statistical parity overlooks diferent base rates between 
groups. Many participants recognized that diferent groups may 
have diferent base rates of being at high risk of abuse, especially 
among diferent victim age groups. As a result, many expressed 
apprehension towards statistical parity. For example, P4 and S4 
disfavored statistical parity among victim of diferent ages, because, 
as P4 said, łI think the prediction [rates] will be higher in the lower 
age group, so [diferent age groups] shouldn’t be looked at the samež 
(P4). S8 explained why they disfavored statistical parity using a 
scenario where the base rates of high-risk classifcation among 
diferent ages are diferent due to circumstances unrelated to abuse: 
łChildren under fve are not school age yet. So, there may be fewer 
adult eyes on the child. There might be more eyes on older children, so 
there might be higher rates of referrals; but, that doesn’t mean there’s 
higher rates of abusež (S8). P1 disfavored statistical parity between 
victim genders, because łthere’s probably diference, in terms of the 
risk, between the two gendersž (P1). When asked whether statistical 
parity is fair, S7 said, łYes, with an asterisk, because I do think in 
cases of alleged sexual abuse, I would expect to see a higher percentage 
of high-risk for female victimsž (S7). 

Furthermore, some participants advocated for something like 
calibrating the rates of high-risk predictions to the base rates. For ex-
ample, S3 said, an algorithm łshould be making high-risk predictions 
based on what demographic data says is the most at riskž (S3). They 
even recognized that łthere might be certain populations that are 
under-reported are over-represented, but I think that to the best of our 
ability high-risk predictions from the algorithm should match... demo-

graphic informationž (S3). This comment is particularly interesting, 
considering concerns over the child welfare system stemming from 
over-representation of Black children in foster care [22], as will be 
further explained in Section 6.1.1. 
Mandating statistical parity is not fair. Some participants dis-
favored statistical parity, because they did not think it was fair 
to mandate this condition be met. For example, if the algorithm 
were focused on achieving statistical parity, S8 said they łwould 
worry that [the algorithm] would be focused on meeting a numberž 
(S8). P2 said, łThe algorithm should not try to balance [the rates of 
classifcation] out so that it appears to be fair... Trying to balance out 
the rates of high-risk predictions means... you’re manipulating the 
situationž (P2). 

5.1.4 Reasons for & against Equalized Odds. Equalized odds was 
the most supported fairness approach: participants thought it was 
an appropriate fairness approach 66.7% of the time. There were 
no diferences in the frequencies of support across all sensitive 
attributes (see Figure 5c). 
Equalized odds aligns with existing fairness beliefs. We found 
that participants tended to agree with equalized odds since it is 

more closely aligned with their existing fairness beliefsÐmany 
participants expressed that they want the accuracy of the algorithm 
to be as high and as even as possible. For example, S4 said, łI think 
the goal is for [the algorithm] to be 100% accurate. But if I had to choose 
one over the other. Yeah, I would want [the accuracies between groups] 
to be [equal]. It should have the same accuracy and it should be highž 
(S4). Numerous participants echoed almost this exact sentiment, 
e.g. S6 said,łI would want for it to have the same accuracy and for the 
accuracy to be really high across all groupsž (S6). This is consistent 
with equalizing the true positive and true negative rates across 
groups, which equalized odds entails. 
Accuracy should not be sacrifced to achieve equalized odds. 
However, an algorithm cannot always achieve equalized odds. Par-
ticipants also discussed trade-ofs they are willing to accept if equal-
ized odds is not attainable. To achieve equalized odds, one can lower 
the accuracy śi.e., increase the false positive rate or false negative 
rateś for the group where the algorithm originally performs better. 
The participants generally disagree with such practices to attain 
equalized odds. S8 said, łI wouldn’t want to lower the accuracy of 
a group. That seems counter-intuitive. You want it to be accurate as 
much as it canž (S8). For this reason, S8 disfavored equalized odds. 
Other participants, however, thought that the accuracies should not 
be lowered and endorsed equalized odds. For example, S5 endorsed 
equalized odds for all sensitive attributes, but responded, łI don’t 
think the accuracy should be loweredž (S5). 

It’s worth noting that other participants, such as P3, were fne 
with lowering the accuracy of one group to match the other in 
order to achieve equalized odds. 
Improvements in accuracy should help as many high-risk 
people as possible. In the case that equal odds cannot be achieved, 
some participants wanted the algorithm to improve accuracy for 
larger groups of people in order to help as many people as possible. 
For example, S6 said, łI obviously want [the algorithm] to be as 
accurate as possible across all groups. I would want it to have the 
same accuracy and for the accuracy to be really high across all groups. 
But, when there are diferent accuracies, you would want a higher 
accuracy for groups that are bigger. Hopefully, you would help the 
most... children as possible.ž (S6). S6 clarifed that not only large 
groups, but those who are high-risk should be prioritized: łIf the 
most abused or neglected group is like Hispanic girls you would want 
that [group] to have higher accuracy than like white boysž (S6). S4 
also expressed similar ideas, saying łI think [the algorithm] should 
be more accurate on non-white races and ethnicities than white ones, 
just because I feel like they are people of color and are more at riskž 
(S4). 
Equalized odds hides historical inaccuracies. Instead of equal-
ized odds, some participants would rather be aware of an algo-
rithm’s historical false positive and false negative rates for a given 
group. As a social worker, S8 thought that mandating equalized 
odds hides where the algorithm is more or less accurate: instead, 
they said, łI would want to know where [the algorithm] was less ac-
curate, so that we could be looking at what’s getting in the way. And 
how can we improvež (S8). Participants recognized the role of the 
human decision-maker that considers the algorithm’s prediction as 
a non-binding recommendation. For example, P1 did not think that 
you have to make łyour decision purely based on the algorithm: you 
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can know that the algorithm has diferent prediction accuracy across 
diferent factorsž (P1). 

It’s worth noting that other participants recognized the impor-
tance of knowing historical inaccuracies, yet endorsed equalized 
odds. For example, when asked whether diferences in false positive 
or false negative rates across groups were unfair, S5 (who endorsed 
equalized odds for all sensitive attributes) responded, łit depends 
on why the diference is therež (S5). 

5.1.5 Group fairness guided by data and research. In addition to 
the established group fairness defnitions that often ask for par-
ity between the metrics, participants also discussed an additional 
guideline that the algorithm should be following. S3 expressed the 
idea that, instead of having statistical parity between the groups, 
the positive prediction rate should be matched to the historical 
demographic data: łI think that [the algorithm] should be making 
high-risk predictions based on what demographic data says is the 
most high-risk. The high-risk predictions... from the algorithm should 
match as close as possible to the demographic information that showed 
you who was being victims of abusež (S3). This approach, however, 
has the risk of potentially reinforcing historical injustice. To put that 
into practice, S3 thought that statistical parity was not appropriate 
across perpetrator genders: łI think it should match demographic 
information and demographic information has shown us that perpe-
trators are more likely to be malež (S3). When asked which sensitive 
attributes equalized odds is an appropriate fairness measure for, S2 
said, łmy thought process is that I want to make sure that whatever 
decision that I would make is informed by researchž (S2). 

At the same time, when discussing if the algorithm should con-
sider a feature in its prediction, participants thought that if the 
algorithm’s decisions are supported by research fndings and exist-
ing data, then this is a signal that the algorithm is fair. For example, 
when asked about which sensitive attributes a fair algorithm should 
be aware of, S7 said that łany factor that’s supported by research as 
being linked to a higher frequency of outcomes should be considered 
by the algorithm... If it’s not supported in the research, then I don’t 
think it needs to be introducedž (S7). 

5.2 Individual Fairness Notions 

5.2.1 Summary of Individual Fairness Choices. Participants use the 
case-by-case view (Figure 2b) to evaluate diferent pairs of cases 
treated by the algorithm. For the frst 14 pairs of cases, the actual 
algorithm predictions are not shown and participants discussed 
their opinions on how the algorithm should be treating these cases. 
Figure 7 shows participants’ responses to the 14 pairs of fxed cases. 
For each pair of cases A and B, we ofered participants the following 
fve options to choose from: 

(1) (Equally prioritize): cases A and B should be given the same 
classifcation (either high- or low-risk); 

(2) (Prioritize A): only case A should be classifed as high-risk; 
(3) (Prioritize B): only case B should be classifed as high-risk; 
(4) (Not comfortable answering); or 
(5) (No opinion). 

We did not observe unanimous agreement. Though there is 
frequent majority consensus among the individual fairness compar-
isons Ðonly three case pairs (1, 11, and 14) do not exceed a majority 
(above the 50% line),Ð we only saw unanimous agreement between 

Figure 7: Frequencies of responses by case number, where 
the case pair numbers correspond to diferences between the 
pair as follows. Case 1: Victim age; 2: Victim gender; 3: Fam-

ily race; 4: Use of public assistance; 5: Perpetrator gender; 6: 
Allegation type, Perpetrator age; 7: Family race, Referral his-
tory; 8: Use of public assistance, Victim age, Reporter type; 
9: Victim age, Perpetrator age (Perpetrator not related to vic-
tim); 10: Victim age, Perpetrator age (Perpetrator related to 
victim); 11: Number of parents, Region wealth, Perpetrator 
relationship to victim; 12: Region wealth, Use of public assis-
tance, Referral history; 13: Family race, Region wealth, Use 
of public assistance; 14: Number of parents, Victim age, Vic-
tim gender 

participants in one (case pair 6) of fourteen cases. This is signif-
cant, because if we expected there to be one best fair response for 
each case, then (even among our small number of participants) we 
might have expected unanimous consensus among more case pairs. 
Yet, only fve pairs had 10 or more participants who responded the 
same.10 One common theme between these 5 pairs was that the 
only diferences between the pairs were allegation type, gender, 
race or a combination of them. Most agreed on equally prioritizing 
those in case pairs 2, 3, and 5, wherein the cases difer only along 
victim gender, family race, and perpetrator gender, respectively. 
In case pair 6, the pairs difered only along allegation type and 
perpetrator age: all participants voted to prioritize the case with the 
more serious allegation. In case pair 7, the pairs difered only along 
referral history and family race: all participants but one voted to 
prioritize the case with more prior referrals. 

In all the other cases, responses were more contentious. In case 
pair 1, where the cases difer only in victim age, we saw an almost 
even split between prioritizing the case with younger age (6 partic-
ipants) and prioritizing both cases equally (5 participants). For case 
pair 11, we saw another even split between prioritizing both cases 
equally (5 participants) and prioritizing the case with the single 

10The threshold for unanimous consensus is not entirely clear. We point out this 
threshold of 10 participants in agreement as an example. However, if we chose 9 
participants as a threshold, the number of case pairs increases to eight out of fourteen. 
The point still remains that full unanimous consensus was not reached in most cases. 
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parent, non-parent perpetrator in a less wealthy region (6 partici-
pants). For case 14, we saw an even split between prioritizing both 
cases equally (4 participants), prioritizing the case with a younger, 
male child and two parents (5 participants), and prioritizing the 
case with an older, female child and single parents (3 participants). 

5.2.2 Examples of agreed pairs vs contentious pairs. For the highly 
agreed-upon pairs, all participants had a strong and clearly-defned 
consensus on how these features afect the prioritization that a 
maltreatment case should receive. In one situation, the implication 
of a single feature was so clear that the participants universally 
agree on prioritizing on the case with the more severe allegation 
type, and do not need to look at the other less signifcant features: 
łI think for me immediately what gets me to prioritize B over A is the 
allegation type. For me I think allegation types should be prioritized 
over the age. So that’s the frst thing... I would screen... and I don’t 
really think I have to look at the age anymorež (S4). 

In some scenarios, the decision was a lot more contentious, espe-
cially when participants disagreed on the implications of a specifc 
factor. For example, participants disagreed about whether difer-
ences in victim’s age was a strong enough reason for an algorithm 
to prioritize two cases diferently. Some participants thought age 
diference alone should not be a reason to diferentiate two cases: 
łNow the only thing that’s diferent is the age, so... it doesn’t really 
feel right to say one should be prioritized over the other, necessarily... 
I don’t really think [age] should make a diferencež (S5). 

Some participants thought younger children were generally more 
vulnerable than older children and, therefore, should be prioritized 
frst by the algorithm: łthe twelve-year-old is going to be able to say 
what’s happening easier than the four-year-old, because the twelve-
year-old girl would have a better idea what’s wrong and right than a 
four year old.ž (S6). 

5.2.3 Heuristics on how individual cases are compared. When navi-
gating through the case-by-case and similarity comparison view, 
participants were asked to make decisions for child maltreatment 
cases based on the limited information available to the algorithm. 
As a result, some information that the participants wanted to know 
might not have been available when making the decisions. We ob-
served two diferent types of heuristics when the participants were 
comparing diferent cases side-by-side. 
Participants constructed stories upon available case infor-
mation. Some participants used the information available in each 
case to reconstruct the story the victim is facing in each case. They 
would attempt to compare and visualize which of the cases are 
facing a more imminent risk. When there was information that was 
missing, the participants would come up narratives of the potential 
scenarios. For example, S1 said, łA really important factor defnitely 
would be like what kind of abuse, we’re talking about here like is it a 
neglect case? Is it a case of a babysitter not paying attention to the kids 
or is this like, if it was something physical or sexual then it’s obviously 
one I would be much more concerned aboutž (S1). These participants 
weighed the risks and probabilities of all these alternatives in order 
to make a fnal decision. 
Participants focused on the diferences between cases. The 
other way participants compared the cases was to focus primarily 
on the diferences in the features between the two cases. For these 
participants, they would frst look through the features one by one 

and identifed the frst diferences they spotted between the cases. 
Based on the diferences, the participants would weigh in how each 
of the diferences afected the diferences in their potential risk, 
then made a fnal decision based on that. For example, S6 explained 
how she chose to prioritize a case based on the diference in the 
number of prior referrals: łthe only diference really is the income 
and the fact that this one had a referral. I guess I would choose the 
one that’s already had a referralž (S6). Participants prioritized cases 
with features that they thought were more signifcant. 

We also asked participants to rank the importance of each fea-
ture in determining if two cases are similar or not. We found that 
participants were more likely to use the features they ranked as 
more important as the primary factor in deciding which case should 
be prioritized by the algorithm. 

When facing situations where the diferences were of the same 
signifcance to them, these participants would simply count the 
pros and cons for prioritizing each case. For example, S4 reasoned, 
łSo going of the race. I would prioritize the right [i.e. case B]. But, then 
because of public assessor, [I would] prioritize the left [i.e. case A]. 
And then on the socioeconomic factors I would prioritize have left. So, 
because it’s two to one, I would prioritize case A over case B in this 
situationž (S4). 

5.3 Internal Consistency in Participants’ 
Responses 

5.3.1 Internal consistency in group fairness questions. When asked 
about group fairness questions, each participant often answered 
similarly across all sensitive attributes. For each group fairness 
question when participants responded to all fve sensitive attributes 
(victim age, victim gender, perpetrator gender, family race, and use 
of public assistance), they responded to a mean of about 4.4 out of 
5 questions (87.8%) the same. For equalized odds, all participants 
answered only either ‘yes’ or ‘no’ over all sensitive attributes. 

This indicates that our participants had internally consistent be-
liefs across protected attributes. Participant responses indicate that 
this was because participants had a common reason for favoring or 
disfavoring a group fairness approach across all protected attributes. 
For example, when asked whether equalized odds across diferent 
ages was fair, S8 gave a reason for responding ‘no’; then, they said 
they łfeel similarly regardless of the identityž (S8). This kind of re-
sponse was common among participants: they held the same reason, 
so they answered the same across all protected attributes. 

5.3.2 Internal consistency between group fairness and individual fair-
ness. Many participants maintained consistency in reasoning over 
protected attributes between individual and group-level responses. 
For example, when asked about case pair 1 śwhich difered only 
based on age,ś S3 thought that the younger child ought to be prior-
itized. Later, when asked whether statistical parity across diferent 
ages is fair, S3 answered ‘no,’ reasoning: łbecause the cases that I 
looked at, I selected the lower-age children [to be prioritized]ž (S3). 
Participants reasoned about individual cases when asked group-
level questions and vice versa. For example, S7 also reasoned about 
a previous pair of cases when asked whether a fair algorithm should 
be aware of victim gender. From the other direction, when presented 
with case pair 3, wherein the only diference was that one family 
was Caucasian and the other was African-American, S2 reasoned 
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that łrace... holds a lot of social meaning in Americaž (S2) and chose 
to equally prioritize these pairs as a proxy for making sure that 
these diferent races are being treated equally. 

These results indicate internal consistency in reasoning across 
individual and group fairness. We speculate that this is because 
participants have preconceived notions of fairness that run through 
all their answers. 

5.4 Challenges of Interpreting the Responses 

5.4.1 Diferent understanding of group fairness questions. When 
participants were asked about group fairness criteria (statistical 
parity or equalized odds in particular), they gave reasons that indi-
cated diferent understandings of these questions. As a result, the 
meanings of ‘yes’ and ‘no’ answers to these questions were varied. 
Some understood statistical parity and equalized odds ques-
tions as asking about sufcient conditions. Some participants 
understood these questions as asking, Are statistical parity or equal-
ized odds sufcient conditions for fairness? For example, when asked 
whether statistical parity was fair, S3 said they łwant to see similar 
numbers [i.e. rates of positive classifcation] achieved, but if the 
numbers aren’t quite the same,... that’s also okayž (S3). Thus, S3 
thinks that statistical parity is a sufcient condition for fairness, 
because if the algorithm meets statistical parity, then this is a fair 
outcome. Based on their reasoning, if they understood the question 
as asking whether statistical parity was a necessary condition, they 
may have answered ‘no’. 
Some understood statistical parity and equalized odds ques-
tions as asking about necessary conditions. Some participants 
understood these questions as asking, Are statistical parity or equal-
ized odds necessary conditions for fairness? For example, when asked 
whether a fair algorithm should achieve statistical parity, P1 said, 
łThe question [is] weird because if I say ‘No,’ what I’m saying is that 
a fair algorithm shouldn’t make high-risk prediction at the same 
rate across groupsž (P1). P1 answered ‘no’ to all statistical parity 
questions, because, even though they indicated that ideally the 
algorithm should classify diferent groups at similar rates, it łdoes 
not have tož to be fair. 
Some understood statistical parity and equalized odds ques-
tions as asking whether they should be mandatory. Another 
group of participants understood these group-fairness question as 
asking, Should the algorithm be mandated to fulfll statistical parity 
or equalized odds in order to be fair? For example, P2 answered ‘no’ 
to all statistical parity questions, because łthe algorithm should not 
try to balance [the rates of classifcation] out so that it appears to be 
fair... Trying to balance out the rates of high-risk predictions means... 
you’re manipulating the situationž (P2). P1 and S8 answered ‘no’ 
to all statistical parity and equalized odds questions: S8 said they 
łwould worry that [the algorithm] would be focused on meeting a 
numberž (S8); P1 said that łdeliberately changing the algorithm to be 
lower accuracy so that [the classifcation accuracies across protected 
groups] match... just doesn’t make sensež (P1). These participants 
thought that if group fairness constraints were met by mandating 
the algorithm to do so, these were not necessarily fair situations. 
Thus, their ‘yes’ or ‘no’ responses have no bearing on whether 
statistical parity or equalized odds would be fair if they were met 

without being mandated. It’s possible they would have answered 
‘yes’ if we asked this. 

These varied understandings of group fairness questions illus-
trate that group fairness approaches can be complex and ambiguous. 
Additionally, questions about group fairness defnitions should spec-
ify whether they are about necessary and sufcient conditions, as 
well as whether the question is asking to mandate these rules or 
not. 

5.4.2 Unfairness versus wrong prediction. When participants were 
making pairwise comparisons between the cases, we found that 
some participants perceived the algorithm as making an unfair 
decision if they thought the algorithm made a mistake for a single 
case, rather than a pair of cases. For example, S6 explained why 
she thought a particular case (currently predicted as low-risk) was 
treated unfairly by the algorithm: łI would say, like this one is unfair. 
They have one parent and allegation is parents, substance abuse, it 
should be a higher risk predictionž (S6). When asked if the decision 
was reached based on of a comparison with a similar case, S6 ex-
plained ł I just think it’s unfair. This kid only has one parent and 
the allegation is substance abuse, that would mean that parent is 
not really able to take care of that kid, and the kid doesn’t have any 
other parents therež (S6). This participant did not identify unfairness 
based on comparing individual case pairs, but rather by a perceived 
misclassifcation of a single case made by the algorithm. 

5.4.3 Cognitive overload. The notion of individual fairness calls 
for comparison between individuals to determine if they should 
be treated similarly. However, we found that the comparison was 
not always easy for human stakeholders, especially in real-life 
scenarios where each case included numerous features. Participants 
explained that having to objectively compare the efect of multiple 
diferences between individuals can be challenging. łI think it’s 
tricky to compare things this way,... because of the multiple factor 
diference. It’s hard to say. If you can control all of them and only one 
is changing, then that might be easierž (P1). 

We did not measure the cognitive load of the participants directly; 
thus, we cannot tell if the task of comparing individual pairs was 
mentally taxing. The participants’ response refected that it would 
have been easier for them to compare pairs with limited diferences 
(e.g. selecting pairs with high similarity in similarity comparison 
view), than to compare randomly-selected pairs (e.g. randomly pairs 
in case-by-case view). 

6 DISCUSSION 

6.1 Implications for Model Design and 
Development 

In this section, we discuss the implications of our fndings for the 
design, development and evaluation of future predictive systems for 
use in child welfare decision-making. While there is existing work 
on how to directly incorporate pairwise comparison feedback in to 
model training [38, 52], their mechanisms focus on simple aggrega-
tion rules. In comparison, our framework elicits richer perspectives, 
especially the stakeholders’ reasoning behind their responses. These 
fndings can potentially lead to more structural changes to the risk 
assessment tools. We discuss three directions on how to incorporate 
our fndings into model design and deployment. 
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6.1.1 Group fairness. One interesting takeaway from our study 
is that broadly accepted group-level indicators of potentially 
unwarranted disparity within the child welfare system are not 
unanimously held as indicators of algorithmic bias. For instance, 
one of the most commonly cited indicators of bias is the over-
representation of Black children among those investigated and 
placed in foster care [22]. In the language of group fairness, these 
decisions fail to satisfy statistical parity. However, as we note in 
our results, participants were evenly split on whether they viewed 
statistical parity to be a desirable algorithmic fairness property, 
especially for diferent races (see Figure 5b). This fnding indicates 
that common measures of bias in historical decision-making may 
not constitute reliable fairness metrics for the purpose of algorithm 
design and evaluation. 

Our results also do not fully agree with prior work on human per-
ceptions of fairness [67], which suggests that statistical parity most 
closely matches people’s existing notion of fairness. Our work dif-
fers from [67] in terms of context and user elicitation method: [67] 
investigates opinions on criminal risk and skin cancer screening 
by crowdsourcing opinions from the public; our work investigates 
child welfare by engaging with relevant stakeholders. These dif-
ferences in methodology may explain the diferences between our 
results and [67]. This may also indicate that the appropriate fairness 
approach is dependent on both context and stakeholders, which 
further exemplifes the need for algorithm designers to incorporate 
relevant stakeholders fairness viewpoints into the design process. 

While we found that for child maltreatment prediction, there was 
no single group fairness approach that was universally supported 
by all participants, equalized odds aligned with the existing fairness 
beliefs of most participants, as they tended to want an algorithm 
to be as accurate as possible and similarly accurate for as many 
people as possible. 

6.1.2 Individual fairness. Our participants’ individual fairness feed-
back can be used in the model re-training process. A starting point 
is to follow the same approach as in [8, 38] and formulate the pair-
wise comparison responses as constraints on the predictive model. 
For example, if a participant indicated that case A should be priori-
tized over case B, then the model should provide a higher risk score 
for case A. Our study showed that there are frequent disagreements 
among the participants’ responses, so incorporating this individual 
fairness feedback requires a mechanism to resolve disagreements. 
Prior work [52] resolves such disagreements based on the Borda 
rule from voting theory. Alternatively, one can also resolve such 
disagreements through a deliberation process among stakeholders. 
Furthermore, our interface provides richer information that enables 
feedback beyond these pairwise constraints. For example, the simi-
larity interface in Figure 2c elicits from each participant a similarity 
metric, which can potentially defne individual fairness criteria 
beyond the sets of pairwise comparisons. Another important factor 
is that we choose not to present all of the attributes used in child 
welfare screening, since it may be excessively cognitively difcult 
for the participants to process over 100 attributes. For any given 
comparison, the response of prioritizing case A over case B can be 
interpreted as (1) providing a higher average risk score for all cases 
like case A, or (2) providing higher risk scores for typical cases like 
case A. 

6.1.3 Beyond fairness. While the primary focus of our study and 
interface design is on fairness preference elicitation, our interview 
protocol enables us to learn about stakeholder perspectives along 
other dimensions as well. For example, our study also indicates that 
the child maltreatment risk model and the overall decision process 
can beneft from the inclusion of additional attributes. From the 
outset of our study, participants expressed how challenging it was 
to make prioritization decisions based on the limited information 
provided. For example, S8 noted that there can be all sorts of reasons 
that a family might need public assistance service and, depending 
on what these reasons are, they could be either a protective factor 
or a potential indicator that the family is struggling. Having access 
to this additional information may help both the model and the 
human decision-maker in determining the risk in each specifc case. 

Our participants naturally put more emphasis on certain features 
when evaluating whether one of the two cases should be priori-
tized by the algorithm. Participants universally agreed that victim 
age, allegation type and prior referrals were more important when 
evaluating which case should be prioritized. More generally, in any 
given context, an automated model selection procedure is prone 
to produce an algorithm that doesn’t rely on or prioritize many of 
the features that expert stakeholders believe are the most impor-
tant. This is problematic because model predictions that frequently 
disagree with users’ perceptions may be viewed as not credible by 
those users [72]; or, worse, users that frequently disagree with the 
model predictions may be viewed as not credible. In the present 
context, an algorithm that is trained to prioritize attributes that 
stakeholders fnd important may see greater uptake than one that 
optimizes for predictive accuracy alone. 

Ultimately, a predictive model should be only one of the steps in 
the pipeline of child maltreatment. In the end, the fnal decision is 
made by human call screeners, who look at the model’s prediction 
as a non-binding recommendation. It is important to look at the 
fairness of the decisions of the entire socio-technical system, not just 
the predictive model within it. We argue that it is critical that the 
fairness viewpoints of these stakeholders be heard and incorporated 
in the model. At the same time, while it may not be possible for the 
algorithm to be fair in every possible scenario, it is more important 
for the users (e.g., the call screeners in the child welfare context) 
to recognize the limitations of the model in order to make a fnal 
decision based on the recommendation of the model. 

6.2 Limitations 

As with any study, it is important to note the limitations of this work. 
Since this is a qualitative study, the insights we report only represent 
the fairness viewpoints of the 12 participants we interviewed. Other 
stakeholders may hold diferent opinions from the participants 
we interviewed. The proportion of responses in our results may 
not refect exact distributions. Nevertheless, our results highlight 
that participants did not unanimously agree on what should be 
considered fair, and they indicated qualitatively diferent reasoning 
for their responses. 

For ethical reasons, we did not interview parents who have in-
teracted with or are interacting with the child welfare system in 
Allegheny County, PA. Therefore, the demographics of our parent 
sample group may not refect the demographics of parents in the 
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child welfare system. In addition, while children are also stake-
holders of the child welfare system, we were unable to interview 
children directly due to ethical concerns of asking children sensitive 
questions and due to their lack of understanding about the system. 
Finally, we primarily interviewed social workers with casework 
experience. Further studies which aim to capture the beliefs of 
all stakeholders within a child welfare department should likely 
include more supervisors, administrators, and executives, as well. 

7 CONCLUSION 

In this work, we present a general framework to elicit stakeholders’ 
subjective fairness notions regarding algorithmic systems. We eval-
uate our framework on a child maltreatment predictive system and 
conduct a user study with relevant stakeholders. The interviews 
provide us with a comprehensive understanding of stakeholders’ 
perspective of algorithmic fairness. We fnd that equalized odds is 
the slightly more preferred group fairness approach for child mal-
treatment risk assessment, but stakeholders do not unanimously 
agree about individual fairness comparisons. We relate our fndings 
to incorporating stakeholders’ feedback in the design and develop-
ment of algorithmic predictive systems. 
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