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ABSTRACT

Recent work in fair machine learning has proposed dozens of tech-
nical definitions of algorithmic fairness and methods for enforcing
these definitions. However, we still lack an understanding of how to
develop machine learning systems with fairness criteria that reflect
relevant stakeholders’ nuanced viewpoints in real-world contexts.
To address this gap, we propose a framework for eliciting stakehold-
ers’ subjective fairness notions. Combining a user interface that
allows stakeholders to examine the data and the algorithm’s predic-
tions with an interview protocol to probe stakeholders’ thoughts
while they are interacting with the interface, we can identify stake-
holders’ fairness beliefs and principles. We conduct a user study
to evaluate our framework in the setting of a child maltreatment
predictive system. Our evaluations show that the framework allows
stakeholders to comprehensively convey their fairness viewpoints.
We also discuss how our results can inform the design of predictive
systems.
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1 INTRODUCTION

Machine learning (ML) algorithms are increasingly being used to
support human decision-making in high-stakes contexts, such as
online information curation, resume screening, mortgage lending,
police surveillance, public resource allocation, and pretrial deten-
tion. However, concerns have been raised that algorithmic systems
might inherit human biases from historical data, and thereby per-
petuate discrimination against already vulnerable subgroups.

These concerns have given rise to a rapidly growing research
area of fair machine learning. Recent work in this area has produced
dozens of quantitative notions of algorithmic fairness [2, 17, 24, 30,
56, 70], and provided methods for enforcing these notions [1, 2, 24,
40, 41, 79].

Existing research on fair machine learning has primarily focused
on fairness at the level of pre-defined groups. This group fairness
approach first fixes a small collection of groups defined by protected
attributes (e.g., race or gender) and then asks for approximate equal-
ity of some statistic of the predictor, such as positive classification
rate or false positive rate,! across these groups (see, e.g., [1, 30, 45]).
While notions of group fairness are easy to operationalize, they
are aggregate in nature and make no promises of fairness to finer
subgroups or individuals [24, 31, 41]. In contrast, the individual
fairness approach aims to address this limitation by asking for ex-
plicit fairness criteria at an individual level. For example, Dwork
et al. [24] propose an individual fairness notion that requires that
similar people are treated similarly. Their formulation of fairness
crucially relies on a task-specific metric that captures whether two
individuals are similar for the purpose of the task at hand. Due to
the challenges of specifying such a metric in any given real-world
decision-making problem, it remains difficult to operationalize in-
dividual fairness in practice.

Irrespective of the approach one takes to quantify fairness, it
is important to engage relevant stakeholders in the design of real-
world decision-making systems. As Shah [65] has argued, achieving
legitimacy or “social license” from the broader community is critical

! False positives occur when a subject has true negative label, but a classifier erro-
neously classifies the subject positively. For example, if a child is truly at low risk of
maltreatment, but a classify predicts that they are a high-risk, this is a false positive.
False negatives occur when subjects with true positive labels are negatively classified.
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to the ability of even the best-conceived technologies to have a pos-
itive social impact. Similarly, [46, 76] recommend that stakeholders
affected by the decisions should be centered in these processes.

One example of a “fair” technology that failed to be adopted due
to a lack of stakeholder support is a school start time scheduling
tool proposed in Boston intended to decrease bussing costs while
improving racial equity and better accommodating differences in
circadian rhythms across students of different ages. The system’s
design failed to account for the excess burden that the proposed
times would place on families with multiple children who attend
different schools, particularly for lower-income parents who tend
to have inflexible work schedules [75]. This is not an isolated ex-
ample. In a recent study, Veale et al. [69] interviewed 27 public
sector ML practitioners across 5 OECD countries and noted the
common disconnects between current fair ML approaches and the
organizational and institutional realities, constraints, and needs in
which algorithms are applied.

Thus, involving affected stakeholders in the algorithm design
process—particularly, in the process of defining fairness—is of ut-
most importance. To this end, we propose a novel framework for
eliciting stakeholders’ opinions around algorithmic fairness. The
framework combines two components: an interactive interface
that allows stakeholders to examine the data and audit an algo-
rithm’s predictions, and an interview protocol that is designed to
probe stakeholders’ thoughts and beliefs on fairness and biases of
the algorithm while they are interacting with the interface.

We evaluated our framework in the high-stakes context of de-
veloping machine learning-based risk assessment tools to assist
child abuse hotline call workers in their screening decisions. Our
work is motivated by the Allegheny Family Screening Tool (AFST),
which has been used in Allegheny County, PA since the summer of
2016 [68]. We conducted in-depth interviews with 12 participants
from two groups of stakeholders (parents and social workers) to
understand their fairness viewpoints. The interviews allow us to
identify fairness approaches that align with stakeholders’ beliefs,
and allow stakeholders to provide rich reasoning to explain their
viewpoints. For child maltreatment risk assessment, the stakehold-
ers we interviewed slightly preferred equalized odds (i.e., equalizing
accuracy at identifying low- and high-risk cases across the sensi-
tive attributes), compared to unawareness (i.e., not considering
the sensitive attributes at all) and statistical parity (i.e., equalizing
high-risk predictions across sensitive attributes). When asked to
make individual fairness comparisons, there was little agreement
between these stakeholders in most scenarios.

We propose a novel method for engaging human stakeholders
in the algorithm design process - in the process of defining fairness.
Our work also contributes empirical understanding of stakeholders’
fairness opinions in the high-stakes context of developing machine
learning-based risk assessment tools.

2 RELATED WORK

2.1 Fairness in Machine Learning

There has been significant development in research on machine
learning fairness and accountability in recent years [2, 17, 30, 56,
59, 70]. Prior literature on ML fairness can generally be classified
into two categories: group fairness and individual fairness. The
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more commonly studied notion, group fairness, requires parity of
some statistical measure across a fixed number of protected groups.
In this paper, we ask study participants about three of the most
popular notions of group fairness: fairness through unawareness
(henceforth unawareness), which is the notion that in order to be fair,
an algorithm should explicitly not consider a protected attribute
(e.g. race or gender) when making its decisions [58]; statistical (or
demographic) parity, which entails that a fair algorithm has parity
of positive classification rates across a fixed number of protected
groups; and equalized odds [30], which entails that a fair algorithm
has equal accuracies —true positive and false positive rates— across
a fixed number of protected groups. While all three notions offer
some theoretical fairness guarantees, they also have different short-
comings. First, unawareness has long been critiqued: [58] argue
that even when protected attributes are not considered as predictive
features, there may be “background knowledge” —other data which
serves as proxy or strong predictor for the removed attributes—
which recreates the effect of including the removed attributes, e.g.
someone’s zipcode may be a strong predictor of their race. In gen-
eral, policy and decision making which actively disregards sensitive
attributes, e.g. color-blind policies to mitigate racial discrimination,
have been critiqued, as well [4]. Second, [30] critique statistical
parity on the grounds that 1) it is not fair insofar as it “permits that
we accept the qualified applicants in one demographic, but random
individuals in another, so long as the percentages of acceptance
match”; and 2) we might incorrectly classify a number of samples
in order to maintain equal rates of positive classification. Third,
equalized odds can be impossible to achieve simultaneously with
other common fairness notions, like statistical parity or calibration
[16, 45]. In general, group fairness metrics provide no meaningful
guarantees of fairness to individuals or more refined sub-groups
[24, 31, 41].

On the other hand, notions of individual fairness explicitly con-
strain algorithmic decisions at an individual level [24, 37]. For ex-
ample, the individual fairness notion in [24] requires “treating sim-
ilar individuals similarly;” the meritocratic fairness notion in [37]
requires that the algorithm should “prioritize more deserving indi-
viduals” However, these approaches require strong assumptions,
such as a consistent measure for similarity or merits across individ-
uals, which usually do not hold in real-world contexts. Furthermore,
[76] suggests centering research not on proposing new technical
definitions, but rather on proposing new procedures for involving
stakeholders to determine which notion of fairness is best. To this
end, recent work [8, 33, 38] provides theoretical models of human
auditors or arbiters who can provide fairness feedback to assist an
algorithm to provably enforce individual fairness without an ex-
plicit similarity measure. Beyond individual fairness, there has also
been work that involves human efforts in developing algorithms
[5, 29, 50, 80], making final decisions after algorithm recommenda-
tions [47], and making decisions about fairness trade-offs [78] (as
satisfying the criteria for all fairness definitions is mathematically
impossible [26, 44]). However, some critique previous elicitation
methods for not capturing the reasons behind responses [34, 76].
Additionally, it remains a major challenge to devise mechanisms
to involve stakeholders in algorithmic development and auditing
that do not require unrealistic levels of technical knowledge among
participants.



Soliciting Stakeholders’ Fairness Notions in Child Maltreatment Predictive Systems

2.2 HCI Research on Algorithmic Fairness

With the increased attention on algorithmic fairness, researchers
and practitioners designed novel visualization techniques to help
people examine the machine learning algorithms and identify biases.
For examples, the What-if Tool and AI Fairness 360 are two open-
source tools that allow users to visually examine the behavior of
their machine learning models and identify potential biases [9, 74].
Other similar visual analytics systems are also developed that allow
users to audit the group and subgroup fairness of machine learning
models [13], or to help data scientists and practitioners make fair
decisions [3].

More recently, HCI researchers have begun to investigate human
perspectives on algorithmic fairness. Several recent studies have
investigated public [28, 63, 64, 71, 73] and practitioner [32, 55, 69]
perspectives on the use of algorithmic systems for public-sector
decisions. This body of work suggests that fairness principles need
to be context-specific, and the algorithmic systems should embody
the fairness notions derived from the community of stakeholders
[10, 11, 23, 48, 49, 62]. There has been encouraging work towards
this direction. For example, researchers have conducted workshops
and interviews to understand what people think fairness means
in the context of resource allocation [51] or targeted online ads
[77]. Researchers have also conducted surveys to gauge well non-
technical subjects understand existing fairness metrics [62], how
explaining these fairness differently affects subjects’ beliefs about
fairness [10], and what features should or should not be used by a
fair learning algorithm [28, 64]. While these studies provide us with
a better understanding of general public and user perceptions of
justice and fairness, it is often difficult to translate these qualitative
understandings into the system criteria and directly inform the
algorithm developments.

2.3 Hybrid Approach

More recently, interdisciplinary research teams have begun inves-
tigating how hybrid approaches combining the tools of both HCI
and machine learning can be effectively applied in developing fair
and accountable algorithmic systems. Such work includes the We-
BuildAI framework [52] and related approaches [39, 60] for incor-
porating stakeholder preferences into allocation decisions. A recent
workshop on Participatory Approaches to Machine Learning held
at ICML 2020 featured recent and ongoing work in this emerging
space. Featured research included studies of recommender systems
[19], approaches to patient triage during the COVID-19 pandemic
[36], and critical assessments of the role of participatory methods
in algorithm design [61].

3 FRAMEWORK FOR ELICITING FAIRNESS
FROM STAKEHOLDERS

3.1 Research Question

In the paper, we want to answer the following research question:
How can we effectively elicit fairness notions from a com-
munity of stakeholders who are not technical experts?

To answer this question, we propose an elicitation framework
that consists of two components: (1) an interactive interface that
allows stakeholders to express their subjective fairness notions, and
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(2) an associated interview protocol that further probes stakehold-
ers’ reasoning behind their elicited notions (see Figure 1).

Interactive interface: /,2;\\
\ )

Interactive interface: //1\\
Case-by-case view \_/

Case-by-case view N

Interview protocol:
Stakeholders compare pairs of cases
without seeing algorithmic predictions

Interview protocol:

> | -Stakeholders compare random pairs of
cases with algorithmic predictions
-Stakeholders explain pairs of cases that
are being treated unfairly

-Stakeholders evaluate how algorithms
should treat these cases

Interactive interface: N

Interactive interface: D\
3 Group view “

Similarity comparison view a4

Interview protocol: Interview protocol:

-Stakeholders define similarity metrics — -Stakeholders evaluate algorithm’s
-Stakeholders use scatter plot to select performance on different (sub)groups
pairs of cases for comparisons -Stakeholders explain common group
-Stakeholders identify and explain pairs fairness approaches that are appropriate
of cases that are being treated unfairly for each sensitive group

Figure 1: Fairness elicitation framework using our interac-
tive interface and interview protocol. Arrows indicate the
progression of our interviews,? starting from the case-by-
case view (step 1) and proceeding to the group view (step 4).

3.2 Interface Design

3.2.1 Design goals. The goal of the interface is to enable stakehold-
ers to express their perspectives by reasoning about the algorithm’s
impact at different levels, ranging from individual decisions to the
effects on demographic groups.

Goal 1: Elicitation at the “macro” level. Corresponding to the
“group fairness” notion, the interface should enable users to ex-
amine the data and algorithm performance in the groups defined
by the users (not limited to groups defined by common protected
attributes such as gender and race). The interface should present
the various statistical metrics for each subgroup and visualize them
for stakeholders to investigate. The stakeholders can then express
whether each statistical group fairness measure is aligned with
their perspectives.

Goal 2: Elicitation at the “micro” level. Corresponding to the
“individual fairness” notion, the interface should enable users to
inspect the data and algorithm recommendations at a case-by-case
level. Combining the approaches from prior work [8, 38, 52], the
interface elicits individual fairness feedback by asking stakeholders
to make two types of pairwise comparisons: (1) whether the pair of
individuals should be treated similarly or not, and (2) whether one
individual should be prioritized over the other one or not.

Goal 3: Elicitation at the “meso” level. The goal is to enable
stakeholders to compare any single selected case with all other cases
in the dataset. Different stakeholders may have different criteria
for evaluating the similarity and priority across the cases. Thus
the interface should allow users to specify their own metrics when
exploring the data.

In our study, we changed the order of the interview slightly by asking participants
about their viewpoints on common group fairness approaches in step one due to time
consideration.
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3.2.2 Interactive interface. Our interactive interface prototype>
consists of three primary views: (i) a group view corresponding to
Goal 1 (Figure 2a), (ii) a case-by-case view corresponding to Goal 2
(Figure 2b), and (iii) a similarity comparison view corresponding to
Goal 3 (Figure 2c).

Group view: This view aims to give users a holistic view of the
algorithm’s performance by showing how it varies across groups
according to different metrics. Users have the option to select from a
list of common classification performance metrics. The drop-down
menus allow the user to select attributes with which to separate the
data into subgroups. The interface displays a bar chart depicting the
algorithm’s performance across the specified subgroups. A textual
description is also provided below the graph to provide an alter-
nate description of the algorithm’s performance. The visualization
corresponds to group fairness notions and the interactive interface
allows users to explore any group or performance metrics they are
interested in.

Case-by-case view: This view allows users to deliberate the al-
gorithm at a granular level of individual predictions. Each case of
algorithm prediction is presented as a card; the interface shows
two cases at a time for pairwise comparison. On each card, the
algorithmic prediction is shown on top, followed by features the
algorithm used to make the prediction. Hovering over each feature
will show users the detailed description of that feature, and the
possible values the feature can take. Users can browse through the
cases back and forth. The tool will randomly select a new case from
the dataset, and replace the currently displayed case. Users can ex-
plore new cases by changing the case on either the left or right. The
interface lets stakeholders inspect the profiles and detailed features
of any two individuals treated by the algorithm, allowing them to
determine if the pair should be treated equally. This aligns with the
definition of individual fairness [24] and works that operationalize
it (e.g. [8, 38]).

Similarity comparison view: This view shows a one-dimensional
scatter plot that compares a selected reference case with all other
cases in the dataset. This allows users to explore the dataset at a
macro view and narrow down to individual cases for inspection.
This scatter plot displays all the cases in the dataset, with each
case represented by a dot on the plot, color-coded according to the
algorithm prediction. The reference case is positioned at the far left
of the plot, with other cases ordered by similarity to the reference
case along the x-axis. A weighted Euclidean distance metric is
used to calculate the similarity of the cases.* The y-axis shows the
distribution of the cases at that similarity level. A control panel
allows users to change the weight associated with each feature.
Users can customize the weights to re-rank the cases in an order
that aligns with their viewpoints. Users can select a case from the
plot to compare with the reference case, or set a new case as the
reference case. The similarity comparison view allows stakeholders
to compare a reference case with all the other cases. The dots at the
same position on the X-axis have the same similarity score (same
distance from the reference case), which allows users to quickly see
the distribution of the similarity scores across a large number of

3 A demo of our interface can be assessed here (note that the data shown in the demo
are synthetic): https://z.umn.edu/fairnessElicitationInterface
4The weighted Euclidean distance between cases p and q is calculated

2 wi(qi — pi)?, where w; denotes the user-assigned weight for feature i.
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cases. This allows them to quickly narrow down to individual cases
from the whole dataset for comparison, such as looking at cases
where the cases with high level of feature similarity and evaluate if
they should receive the same decision.

3.3 Interview Protocol

To complement this interface, we develop interview protocols to
probe stakeholders’ fairness viewpoints and principles. Our pro-
tocols are based on the think-aloud approach, which is one of the
most valuable usability engineering methods in HCI [57]. We ask
stakeholders to use the interface we described above “while con-
tinuously thinking out loud—that is, verbalizing their thoughts as
they move through the user interface”[57]. Think aloud serves as
“a window on the soul,” letting us discover what participants really
think about the fairness and bias of the algorithm [57].

First, we ask stakeholders to compare pairs of cases in the data
without showing the algorithmic predictions, in the case-by-case
view (Figure 2b). We ask stakeholders if both cases should be treated
equally (i.e. receive the same prediction by the algorithm), and if
not, what alternative outcomes should the two cases receive to
align with the stakeholders’ fairness principles. In this stage, we
only show users the features for the cases, as we aim to collect
stakeholders’ fairness notions regardless of the predictions of those
outcomes, and the factors they would consider when evaluating
the cases in the context.

Participants start by comparing pairs of cases that differ by only
one factor, then move onto pairs that differ by two or more fac-
tors. At this stage, we also ask our participants whether three com-
mon group fairness approaches (unawareness, statistical parity, and
equalized odds) are appropriate with respect to sensitive attributes
(e.g. for child maltreatment, these are victim age, victim gender,
family race, use of public assistance service and perpetrator gender).
For a given sensitive attribute, we elicit opinions on whether the
following approaches should be met for the algorithm to be fair:

(1) the sensitive attribute should not be a predictive factor (un-
awareness);5

(2) the rates of positive classification should be equal across a
sensitive attribute (statistical parity); or

(3) the false positive and false negative rates should be equal
across a sensitive attribute (equalized odds).

See Figure 3 for visual explanations of statistical parity and equal-
ized odds. We used similar visuals in our interviews, as well.

Second, we ask stakeholders to make pairwise comparisons again
with cases showing the algorithmic prediction (Figure 2b). Partici-
pants compare cases that are selected randomly from the dataset.
We ask users to identify and explain (pairs of) cases that are be-
ing treated unfairly. We also asked them to evaluate if the algo-
rithm predictions are in general biased according to their fairness
notions.

Third, we ask stakeholders to use the similarity comparison view
to compare reference cases with all the other cases in the data (Fig-
ure 2c). We ask stakeholders to define their own similarity metrics
by ranking the importance of each feature in determining similar

5Though there may be significant problems with unawareness as an approach to
fairness (as noted in Section 2), we think it important to gather stakeholder beliefs
about it, as it is a common and widely-used policy (e.g. color-blind policies).
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Figure 2: Our fairness elicitation interface contains three different views, which allows stakeholders examine the algorithm at
different levels. In this example, the interface is presenting synthetic data from a child maltreatment prediction system (see

Section 4.3).

pairs. We then ask participants to identify cases that should be
prioritized by the algorithm. We also invite participants to identify
pairs that are similar to each other, but received different predic-
tions by the algorithm. Stakeholders are free to explain the reasons
behind their selections, and the information they rely on to identify
them.

Lastly, we show stakeholders the group view of the interface
(Figure 2a). Stakeholders can define the groups they want to in-
spect, and see the algorithm’s performance on the groups. We ask
stakeholders to explore the groups and subgroups they are most
concerned with. If participants believe any particular groups (and
subgroups) are being treated unfairly, we ask follow-up questions
to probe the reasons for this belief.

Throughout the interview, participants are encouraged to share
their views on the cases before them even if those views do not
reflect perceptions of fairness per se. Participants may indicate, for
instance, that they are uncomfortable with the use of algorithms in
certain cases, that particular case characteristics are of paramount

importance to the decision-making process, or that having model
explanations would improve their understanding of the tool. This
is all valuable, actionable feedback that may be incorporated into
the algorithm re-training process.

4 USER STUDY: ELICITING SUBJECTIVE
FAIRNESS NOTIONS IN CHILD
MALTREATMENT PREDICTION

4.1 Background: Predictive Tools in Child
Welfare and Related Contexts

While the use of predictive models in critical societal domains has
only recently begun to receive widespread attention from the com-
puter science community, predictive “risk assessment tools” have a
long history in child welfare and beyond. Machine learning tools
of the kind we discuss in this paper fall into a family of methods
traditionally referred to as ‘actuarial risk assessment.’ The term
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parity between infants and adolescents (two subgroups
along the sensitive attribute victim age), respectively.
The orange box with no fringe on top contains children
predicted to be at high risk of maltreatment; the blue
fringe box at bottom is low-risk prediction. On the left,
the proportion of high-risk predictions for infants is 75%,
whereas for adolescents this rate is 50%. On the right, the
proportions of high-risk predictions for infants and ado-
lescents are 50%.
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(b) Two examples which violate and satisfy equal-
ized odds between infants and adolescents, respectively.
Green children are truly at high risk of maltreatment;
white are truly at low risk. False positives (children who
are truly at low risk of maltreatment are predicted to be
at high risk) are in the upper righthand corner; false neg-
atives (children who are truly high-risk are predicted to
be at low risk) are in the lower left corner. In the left ex-
ample, the false positive and false negative rates for in-
fants are each 33.3%; for adolescents these rates are 33.3%
and 50%, respectively. This violates equalized odds, be-
cause the false negative rates differ between infants and
adolescents. On the right, for both infants and adoles-
cents, the false positive and false negative rates are 33.3%
and 50%, respectively.

Figure 3: High-risk prediction rates must be equal along a
sensitive attribute to satisfy statistical parity. False positive
and false negative rates must equal to satisfy equalized odds.
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‘actuarial’ is used to indicate that a tool relies on associations in-
ferred from data between an outcome and so-called risk factors (i.e.,
input features). This terminology is used to contrast with, ‘clinical
risk assessment’, also known as professional judgment, in which
experts subjectively assess risk. One of the earliest actuarial risk
assessment tools was developed by Burgess [12] to calculate the
recidivism risk for offenders being released from Illinois state pris-
ons. Actuarial risk assessment instruments are now widely used
throughout the criminal justice system, from pre-trial [20, 21], to
sentencing [42, 54] to probation and parole [7]. They are also used
in academic advising, healthcare, welfare allocation, homelessness
services, and many other settings [6, 14, 43, 66].

Over the past couple of decades, many child welfare agencies
have incorporated actuarial risk assessment tools—or hybrid models
that combine prediction with professional judgment—into various
stages of the child protection decision-making process [35, 68].
While the most widely-used tools take the form of simple point
systems that consider only a handful of manually-entered factors,
machine learning models such as neural networks have been consid-
ered since at least the early 2000s [53]. Contemporary tools such as
the AFST differ from the majority of existing tools in that they rely
on a much larger set of features that are automatically populated
from multi-system administrative data. This obviates the problem
of inter-rater reliability, wherein different users may have different
assessments of manually-entered features in a manner that results
in different risk scores. But it leaves open the possibility of more
systematic errors potentially going undetected for long periods of
time [18]. See Figure 4 for further explanation of the child welfare
screening process used at Allegheny County Department of Human
Services (DHS).

4.2 Ethical Considerations Surrounding the
Use of Algorithmic Tools in Child Welfare
Decision-Making

The use of algorithmic decision support tools in the child welfare

context is a contentious issue. For instance, there is the possibility

that communities of color and families experiencing poverty may
be disadvantaged by virtue of having more comprehensive data
available on them in the government administrative data systems
used to evaluate algorithmic risk scores. Such concerns have been
given voice by authors such as Virginia Eubanks, who in her book

Automating Inequality [25] argues that such tools oversample the

poor and present a fundamentally flawed approach to improving

child welfare decision-making. Similar objections have been raised
by Richard Wexler, a long-time critic of algorithmic tools in child
welfare.

While child welfare agencies are sensitive to these concerns,’
many also believe that data-driven decision-making approaches
hold the promise of significantly improving decisions and family
outcomes. Few would argue against using all available resources

®This visual was constructed according to resources on AFST and the
screening process at DHS’ website at www.alleghenycounty.us/Human-
Services/Programs-Services/Children-Families/When-a-Report-is-Made.aspx
and www.alleghenycounty.us/Human-Services/News-Events/Accomplishments/
Allegheny-Family-Screening-Tool.aspx.

7See, e.g., Allegheny County’s response to Eubanks: https://www.alleghenycounty.us/
WorkArea/linkit.aspx?LinkIdentifier=id&ItemID=6442461672
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Figure 4: Allegheny DHS screening process.® Step 1: The ex-
ternal caller, e.g. the child’s teacher, family member, calls a
child welfare hotline to make a report, which directs to ei-
ther a state or county hotline. The state hotline takes down
the caller’s information and forwards it to the county staff
in step 2 for screening. The county hotline goes directly to
the call screening staff (call screeners and supervisors) in
step 2, where they gather information from the caller, re-
trieve existing information from the department’s database
about the case, and assess the risk of harm to the child. Here,
the AFST risk score is considered. Step 3: the call screening
staff determines whether to screen out the report —meaning
that the call is not investigated further by the department
(step 4)— or to screen in, which can entail assigning a case-
worker to the case and investigating further (step 5). Steps
6+: the case may be referred to a caseworker and/or other
child welfare staff (supervisors, administrators, etc.), where
they might proceed in a number of directions, e.g. further
observation, investigation, or intervention (e.g. removal of
the child or referral to other governmental services).

to promote child safety. Indeed, it can be viewed as unethical to
knowingly do otherwise. Administrative system data is one increas-
ingly available resource, but it is one that is challenging for human
decision-makers to make effective and systematic use of in every
instance. This is where algorithmic tools enter.

In exploring how to realize the potential upside of such tools, it
is essential that agencies take a rigorous approach to development,
deployment, and evaluation, and that this approach is informed by
ethical considerations. Allegheny County’s work on the Allegheny
Family Screening Tool (AFST) used for call screening, for instance,
involved both a pre-deployment ethical analysis conducted by re-
searchers Tim Dare and Eileen Gambrill [68] and an independent
post-deployment impact evaluation [27]. Studies of affected com-
munity perspectives [11] have also found that certain proposed
uses of algorithmic tools are viewed by families and child welfare
workers as providing considerable benefit. However, study partic-
ipants voiced concern over the potential for such tools to exhibit
biases and emphasized the need for a human-in-the-loop approach.

Our proposed elicitation framework is intended to respond to
the clear need for algorithmic systems in sensitive domains to
reflect relevant fairness and equity desiderata. We hope that the
methodology we propose can work in concert with participatory
design, community engagement, and impact evaluation strategies to
develop tools that achieve meaningful legitimacy and demonstrably
improve child and family outcomes.
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4.3 Context and Data

We evaluated our framework in a real-world, high-stakes context—
child maltreatment prediction. Our study was motivated by recent
efforts by child welfare agencies around the country to incorporate
algorithmic decision support tools into their existing processes.
Our study was most closely related to AFST, which since August
2016 has been used during child abuse call screening in Allegheny
County, Pennsylvania [68]. The AFST score is based on data re-
lated to the victim child(ren), parents, legal guardians, perpetrators,
prior child welfare history, criminal history, and use of public as-
sistance. Call screeners are presented with an AFST score for each
referral. Due to the sensitive nature of the data, our study relied
exclusively on synthetic data based on the real dataset provided
by the Allegheny County Department of Human Services. We also
converted the AFST score into binary labels—high-risk and low-risk
cases.

4.4 Study Design

We recruited two groups of stakeholders for the user study: (1)
social workers with experience of investigating allegations of child
abuse and (2) parents. To recruit the social workers, we reached
out to the departments of social work of four public universities in
the US, which helped us send out the recruitment emails to their
undergraduate and graduate students. To recruit the parents, we
posted recruitment messages on the social media of the authors
and sent out recruitment emails to parent groups. We recruited 12
participants in total for the study, and Table 1 shows the details of
the participants.

We conducted the user studies over video chat. In each study, the
researcher first gave an introduction of the study and an overview of
how to use the interactive interface described in Section 3.2. Then,
we invited each participant to use the tool to explore the child
maltreatment prediction data. We followed the interview protocol
introduced in Section 3.3 to elicit participants’ fairness notions
surrounding the algorithm’s decisions. Participants shared their
screen in the video chat so that researchers could see the same
information in the process. Participants were also encouraged to
think aloud during the study. Each user study lasted for about 90
minutes. Each participant was compensated with a $30 Amazon gift
card. The user study was reviewed and approved by the Carnegie
Mellon University Institutional Review Board.

4.5 Data Analysis

All study sessions were audio-recorded with consent from the par-
ticipants. The first two authors transcribed all 12 interviews with
20.5 hours of recorded audio. We employed a qualitative, grounded
theory analysis to inductively analyze our data and generate the
findings and insights from the interviews. We adopted Charmaz’s
approach of grounded theory analysis which allows us to consider
prior ideas and theory in the analysis [15]. We open coded inter-
view transcripts, held team meetings to discuss emerging themes
and ideas, and iterate on our codebook. We describe the findings of
our analysis in the next section.
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Social worker  Enrolled in

ID Age Gender Race . .
experience social work programs
S1 25-34  Woman Latinx Yes Yes
S2  25-3¢  Woman Black  Yes Yes
S3  25-3¢  Woman White No Yes
S4 18-24  Non-Binary Other No Yes
S5 18-24  Woman White No Yes
S6 18-24  Woman White Yes Yes
S7 25-34¢  Woman White  Yes Yes
S8 18-24  Woman White  Yes Yes
ID Age Gender Race  No. of children Children age(s)
P1 25-34 Man Asian 2 2 or younger, 3-7
P2 45-54 Woman Asian 2 13-17, 18+
P3 45-54 Woman Other 1 18+
P4 45-54 Woman White 3 18+

Table 1: Participant Summary

5 RESULTS

In this section, we summarize participants’ viewpoints on both
group and individual fairness gathered throughout the interview
process. Overall we see no difference in patterns of responses be-
tween social workers and parents. Throughout this section, we
follow the prior literature and refer to the three group fairness
approaches by these abbreviated phrases: unawareness means to
leave a sensitive attribute (e.g. race) out of the model; statistical
parity means to equalize the positive classification rates between
groups within a sensitive attribute (e.g. different racial groups);
and equalized odds means to equalize the false positive and false
negative rates between groups within a sensitive attribute. The
highlights of our results are as follows:

(1) Among the three group fairness approaches, equalized odds
was the most supported group fairness criteria (66.7%), fol-
lowed by statistical parity (43.3%) and unawareness (41.7%).

(2) Even though equalized odds was the most supported, there
were nuances within this, e.g. many participants were willing
to accept disparities in accuracy across groups rather than
sacrifice overall accuracy.

(3) Even though there are heated discussions around the over-
representation of Black children in the child welfare system
[22], participants thought that statistical parity was not nec-
essarily fair, though it is a good goal.

(4) Participants thought unawareness could both address and
enforce systemic discrimination.

(5) Among the individual fairness comparisons, we did not ob-
serve unanimous agreement between participants for most
of the pairs.

(6) Participants maintained consistent responses to each group
fairness question across different protected attributes (i.e. vic-
tim age, victim gender, family race, use of public assistance,
and perpetrator gender).

(7) Participants interpreted our fairness questions differently
and experienced cognitive overload when examining cases
with a high number of different attributes, leading to addi-
tional challenges.

Cheng et al.

5.1 Group Fairness Approaches

5.1.1  Summary of Group Fairness Choices. We asked the partici-
pants whether three common group fairness approaches (unaware-
ness, statistical parity, and equalized odds) are appropriate for each
of the five sensitive attributes (victim age, victim gender, family race,
use of public assistance service and perpetrator gender). Particu-
larly, for a given sensitive attribute, we asked whether the following
criteria should be met for the algorithm to be fair:

(1) the sensitive attribute should not be considered for decision-
making (unawareness);

(2) the high-risk predictions be the same rate across the sensitive
attribute (statistical parity); or

(3) the predictions should be equally accurate at identifying low-
and high-risk cases across the sensitive attribute (equalized
odds).

See Figure 3 on page 6 for visual explanations of statistical parity
and equalized odds.

Among the three group fairness criteria, equalized odds was the
most preferred group fairness criteria (66.7%), followed by statistical
parity (43.3%) and unawareness (41.7%) (see Figure 6).

5.1.2  Reasons for & against Unawareness. Our participants think
unawareness is an appropriate fairness criteria in 41.7% of situa-
tions. 6 out of 12 participants believed that algorithm should be
unaware of victim gender, family race, use of public assistance and
perpetrator gender. On the other hand, only 2 out of 12 participants
believed that the algorithm should be unaware of victim age. (see
Figure 5a).

Algorithms should be aware of important predictive at-
tributes. Many participants disfavored unawareness, i.e. endorsed
awareness, for sensitive attributes they thought were important
indicators of risk. For example, S2 thought age should be taken
into account, since “when you’re a younger child that doesn’t have
language, you definitely are higher risk than a child that does have
language” (S2). Many other participants reiterated that victim age
is an indicator of language and, thus, of risk. This is one reason
why we saw only 2 of 12 participants endorsing unawareness for
victim age (see Figure 5a). Others thought an algorithm should
be aware of only important predictive attributes. For example, S7
-who endorsed unawareness for victim age- said, ‘T wouldn’t want
to like teach the algorithm to prioritize [a case] based on age... I would
want it more about the type of alleged abuse,” indicating that type of
abuse is an important predictor, whereas victim age is not.
Awareness could reinforce systemic discrimination. Some
participants endorsed unawareness, because they were concerned
that awareness of sensitive attributes would lead to systemic dis-
crimination. For example, P3 thought that the algorithm ought to
be unaware of family race, since awareness “opens up... room for
systemic racism” and would “bring unconscious biases” (P3). Fur-
thermore, some suggested awareness of sensitive attributes to audit
the algorithm’s decision, but not when making predictions. P3 said
that the algorithm should be aware of family race “only to report
certain disparities” between races (P3). Similarly, S4 endorsed un-
awareness so that the algorithm would not inherit biases based
on gender, saying: “There is a big bias on gender. Everybody has
different opinions on what gender is [and] what entails gender" and
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(a) Responses to the question “Should a fair algorithm be aware of a
given sensitive attribute?” (awareness))®
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(b) Responses to “Should a fair algorithm classify equal proportions of
cases as high-risk between subgroups within a given sensitive attribute?”
(statistical parity)
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(c) Responses to “Should a fair algorithm have equal accuracy (false pos-
itive and false negative rates) between subgroups within a given sensitive
attribute?” (equalized odds)’
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Figure 5: Frequencies of responses to the three group fair-
ness questions for sensitive attributes victim age through
perpetrator gender. Also, e.g. infants and adolescents are
two subgroups within the victim age sensitive attribute.
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Figure 6: Comparisons of stakeholders’ support for each of
the three group fairness notions. See Figure 5 for further ex-
planation of questions asked.

»

a fair algorithm should be unaware of gender “to erase all of that
(S4). One participant, S7, endorsed unawareness to prevent bias, not
just for marginalized groups, saying that an algorithm that is aware
of victim gender “would definitely learn to prioritize female victims”
over male victims, so it should be unaware of victim gender (S7).
Awareness could help address systemic discrimination.
Other participants the opposite: that an algorithm should be aware
of sensitive attributes, because awareness could help address and
correct for historical disparities. For example, S1 thought an al-
gorithm should be aware of family race in order to “negate any...
racial biases” (S1). S4 thought that family race should be one of
the most important predictive factors, saying “people of color are
disproportionately affected and they always have been;” so “if you're
a person of color, you should be prioritized over white people,” because
fair predictive systems “should be targeted to help people who we...
know need the help” (S4).

Endorsing awareness may come with apprehension. Some
participants identified a reason for unawareness, but ultimately
decided against it. For example, S6 thought that the algorithm ought
to be aware of all sensitive attributes, saying, “The more information
you have, the better. But I can understand how that can also lead
to bias” (S6). S5 said that victim “age is an important factor,” but
it should not be overemphasized as a predictor: there is “room for
algorithm error if, it’s focusing so much on age, rather than [on] other
factors” (S5).

5.1.3 Reasons for & against Statistical Parity. Our participants
thought statistical parity was a slightly more appropriate fairness
approach than unawareness, supported in 43.3% of the cases. Simi-
larly, statistical parity was most supported for victim gender (7/12)
and family race (6/12) and least supported for victim age (3/12) (see
Figure 5b).

Statistical parity is a good goal, but is not necessarily fair.
While many participants wanted to see similar positive predictive
rates across these groups, they also thought that disparities in the
prediction rates do not indicate that an algorithm is unfair. For
example, with regards to high-risk prediction rates, S5 said, “You'd

8‘No’ means the participant believes the algorithm should be unaware of the attribute.
“Yes’ means the participant believes the algorithm should be aware of it.

The observant reader might notice that the equalized odds responses are split 8-4,
which is the same as the proportion of social workers versus parents. This is simply a
coincidence. The four participants who responded ‘No’ were half social workers and
half parents. In general, we tested for clustering of our social workers’ and parents’
responses to all questions to see if there were any divisions between the two groups
of participants and found little.
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want to see similar numbers achieved, but if the numbers aren’t quite
the same, I think that’s also okay as long as you’re still detecting
fairly” (S5). P1 said, “T wouldn’t say that if the algorithm predicts
differently across different races, then it’s an unfair algorithm” (P1).
Statistical parity overlooks contextual differences between
cases. Some participants who disfavored statistical parity reasoned
that equalizing positive classification rates may overlook contextual
differences specific to each case. For example, P2 said that statistical
parity “is arbitrary... It depends on what the cases are” (P2).
Statistical parity overlooks different base rates between
groups. Many participants recognized that different groups may
have different base rates of being at high risk of abuse, especially
among different victim age groups. As a result, many expressed
apprehension towards statistical parity. For example, P4 and S4
disfavored statistical parity among victim of different ages, because,
as P4 said, ‘T think the prediction [rates] will be higher in the lower
age group, so [different age groups] shouldn’t be looked at the same”
(P4). S8 explained why they disfavored statistical parity using a
scenario where the base rates of high-risk classification among
different ages are different due to circumstances unrelated to abuse:
“Children under five are not school age yet. So, there may be fewer
adult eyes on the child. There might be more eyes on older children, so
there might be higher rates of referrals; but, that doesn’t mean there’s
higher rates of abuse” (S8). P1 disfavored statistical parity between
victim genders, because “there’s probably difference, in terms of the
risk, between the two genders” (P1). When asked whether statistical
parity is fair, S7 said, “Yes, with an asterisk, because I do think in
cases of alleged sexual abuse, I would expect to see a higher percentage
of high-risk for female victims” (S7).

Furthermore, some participants advocated for something like

calibrating the rates of high-risk predictions to the base rates. For ex-
ample, S3 said, an algorithm “should be making high-risk predictions
based on what demographic data says is the most at risk” (S3). They
even recognized that “there might be certain populations that are
under-reported are over-represented, but I think that to the best of our
ability high-risk predictions from the algorithm should match... demo-
graphic information” (S3). This comment is particularly interesting,
considering concerns over the child welfare system stemming from
over-representation of Black children in foster care [22], as will be
further explained in Section 6.1.1.
Mandating statistical parity is not fair. Some participants dis-
favored statistical parity, because they did not think it was fair
to mandate this condition be met. For example, if the algorithm
were focused on achieving statistical parity, S8 said they “would
worry that [the algorithm] would be focused on meeting a number”
(S8). P2 said, “The algorithm should not try to balance [the rates of
classification] out so that it appears to be fair... Trying to balance out
the rates of high-risk predictions means... you’re manipulating the
situation” (P2).

5.1.4 Reasons for & against Equalized Odds. Equalized odds was
the most supported fairness approach: participants thought it was
an appropriate fairness approach 66.7% of the time. There were
no differences in the frequencies of support across all sensitive
attributes (see Figure 5c).

Equalized odds aligns with existing fairness beliefs. We found
that participants tended to agree with equalized odds since it is
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more closely aligned with their existing fairness beliefs—many
participants expressed that they want the accuracy of the algorithm
to be as high and as even as possible. For example, S4 said, ‘T think
the goal is for [the algorithm] to be 100% accurate. But if  had to choose
one over the other. Yeah, I would want [the accuracies between groups]
to be [equal]. It should have the same accuracy and it should be high”
(S4). Numerous participants echoed almost this exact sentiment,
e.g. S6 said, ‘T would want for it to have the same accuracy and for the
accuracy to be really high across all groups” (S6). This is consistent
with equalizing the true positive and true negative rates across
groups, which equalized odds entails.

Accuracy should not be sacrificed to achieve equalized odds.
However, an algorithm cannot always achieve equalized odds. Par-
ticipants also discussed trade-offs they are willing to accept if equal-
ized odds is not attainable. To achieve equalized odds, one can lower
the accuracy —i.e., increase the false positive rate or false negative
rate— for the group where the algorithm originally performs better.
The participants generally disagree with such practices to attain
equalized odds. S8 said, “T wouldn’t want to lower the accuracy of
a group. That seems counter-intuitive. You want it to be accurate as
much as it can” (S8). For this reason, S8 disfavored equalized odds.
Other participants, however, thought that the accuracies should not
be lowered and endorsed equalized odds. For example, S5 endorsed
equalized odds for all sensitive attributes, but responded, T don’t
think the accuracy should be lowered” (S5).

It’s worth noting that other participants, such as P3, were fine
with lowering the accuracy of one group to match the other in
order to achieve equalized odds.

Improvements in accuracy should help as many high-risk
people as possible. In the case that equal odds cannot be achieved,
some participants wanted the algorithm to improve accuracy for
larger groups of people in order to help as many people as possible.
For example, S6 said, ‘T obviously want [the algorithm] to be as
accurate as possible across all groups. I would want it to have the
same accuracy and for the accuracy to be really high across all groups.
But, when there are different accuracies, you would want a higher
accuracy for groups that are bigger. Hopefully, you would help the
most... children as possible.” (S6). S6 clarified that not only large
groups, but those who are high-risk should be prioritized: “If the
most abused or neglected group is like Hispanic girls you would want
that [group] to have higher accuracy than like white boys” (S6). S4
also expressed similar ideas, saying ‘T think [the algorithm] should
be more accurate on non-white races and ethnicities than white ones,
Jjust because I feel like they are people of color and are more at risk”
(S4).

Equalized odds hides historical inaccuracies. Instead of equal-
ized odds, some participants would rather be aware of an algo-
rithm’s historical false positive and false negative rates for a given
group. As a social worker, S8 thought that mandating equalized
odds hides where the algorithm is more or less accurate: instead,
they said, “T would want to know where [the algorithm] was less ac-
curate, so that we could be looking at what’s getting in the way. And
how can we improve” (S8). Participants recognized the role of the
human decision-maker that considers the algorithm’s prediction as
a non-binding recommendation. For example, P1 did not think that
you have to make “your decision purely based on the algorithm: you
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can know that the algorithm has different prediction accuracy across
different factors” (P1).

It’s worth noting that other participants recognized the impor-
tance of knowing historical inaccuracies, yet endorsed equalized
odds. For example, when asked whether differences in false positive
or false negative rates across groups were unfair, S5 (who endorsed
equalized odds for all sensitive attributes) responded, “it depends
on why the difference is there” (S5).

5.1.5 Group fairness guided by data and research. In addition to
the established group fairness definitions that often ask for par-
ity between the metrics, participants also discussed an additional
guideline that the algorithm should be following. S3 expressed the
idea that, instead of having statistical parity between the groups,
the positive prediction rate should be matched to the historical
demographic data: ‘T think that [the algorithm] should be making
high-risk predictions based on what demographic data says is the
most high-risk. The high-risk predictions... from the algorithm should
match as close as possible to the demographic information that showed
you who was being victims of abuse” (S3). This approach, however,
has the risk of potentially reinforcing historical injustice. To put that
into practice, S3 thought that statistical parity was not appropriate
across perpetrator genders: ‘T think it should match demographic
information and demographic information has shown us that perpe-
trators are more likely to be male” (S3). When asked which sensitive
attributes equalized odds is an appropriate fairness measure for, S2
said, “my thought process is that I want to make sure that whatever
decision that I would make is informed by research” (S2).

At the same time, when discussing if the algorithm should con-
sider a feature in its prediction, participants thought that if the
algorithm’s decisions are supported by research findings and exist-
ing data, then this is a signal that the algorithm is fair. For example,
when asked about which sensitive attributes a fair algorithm should
be aware of, S7 said that “any factor that’s supported by research as
being linked to a higher frequency of outcomes should be considered
by the algorithm... If it’s not supported in the research, then I don’t
think it needs to be introduced” (S7).

5.2 Individual Fairness Notions

5.2.1 Summary of Individual Fairness Choices. Participants use the
case-by-case view (Figure 2b) to evaluate different pairs of cases
treated by the algorithm. For the first 14 pairs of cases, the actual
algorithm predictions are not shown and participants discussed
their opinions on how the algorithm should be treating these cases.
Figure 7 shows participants’ responses to the 14 pairs of fixed cases.
For each pair of cases A and B, we offered participants the following
five options to choose from:

(1) (Equally prioritize): cases A and B should be given the same

classification (either high- or low-risk);

(2) (Prioritize A): only case A should be classified as high-risk;

(3) (Prioritize B): only case B should be classified as high-risk;

(4) (Not comfortable answering); or

(5) (No opinion).
We did not observe unanimous agreement. Though there is
frequent majority consensus among the individual fairness compar-
isons —only three case pairs (1, 11, and 14) do not exceed a majority
(above the 50% line),— we only saw unanimous agreement between

CHI ’21, May 8-13, 2021, Yokohama, Japan

Frequencies of responses

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Case pair number
.Noopinion

. Prioritize A .Prioritize B .Equally prioritize

Figure 7: Frequencies of responses by case number, where
the case pair numbers correspond to differences between the
pair as follows. Case 1: Victim age; 2: Victim gender; 3: Fam-
ily race; 4: Use of public assistance; 5: Perpetrator gender; 6

Allegation type, Perpetrator age; 7: Family race, Referral his-
tory; 8: Use of public assistance, Victim age, Reporter type;
9: Victim age, Perpetrator age (Perpetrator not related to vic-
tim); 10: Victim age, Perpetrator age (Perpetrator related to
victim); 11: Number of parents, Region wealth, Perpetrator
relationship to victim; 12: Region wealth, Use of public assis-
tance, Referral history; 13: Family race, Region wealth, Use
of public assistance; 14: Number of parents, Victim age, Vic-
tim gender

Not comfortable
answering

participants in one (case pair 6) of fourteen cases. This is signifi-
cant, because if we expected there to be one best fair response for
each case, then (even among our small number of participants) we
might have expected unanimous consensus among more case pairs.
Yet, only five pairs had 10 or more participants who responded the
same.' One common theme between these 5 pairs was that the
only differences between the pairs were allegation type, gender,
race or a combination of them. Most agreed on equally prioritizing
those in case pairs 2, 3, and 5, wherein the cases differ only along
victim gender, family race, and perpetrator gender, respectively.
In case pair 6, the pairs differed only along allegation type and
perpetrator age: all participants voted to prioritize the case with the
more serious allegation. In case pair 7, the pairs differed only along
referral history and family race: all participants but one voted to
prioritize the case with more prior referrals.

In all the other cases, responses were more contentious. In case
pair 1, where the cases differ only in victim age, we saw an almost
even split between prioritizing the case with younger age (6 partic-
ipants) and prioritizing both cases equally (5 participants). For case
pair 11, we saw another even split between prioritizing both cases
equally (5 participants) and prioritizing the case with the single

The threshold for unanimous consensus is not entirely clear. We point out this
threshold of 10 participants in agreement as an example. However, if we chose 9
participants as a threshold, the number of case pairs increases to eight out of fourteen.
The point still remains that full unanimous consensus was not reached in most cases.
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parent, non-parent perpetrator in a less wealthy region (6 partici-
pants). For case 14, we saw an even split between prioritizing both
cases equally (4 participants), prioritizing the case with a younger,
male child and two parents (5 participants), and prioritizing the
case with an older, female child and single parents (3 participants).

5.2.2  Examples of agreed pairs vs contentious pairs. For the highly
agreed-upon pairs, all participants had a strong and clearly-defined
consensus on how these features affect the prioritization that a
maltreatment case should receive. In one situation, the implication
of a single feature was so clear that the participants universally
agree on prioritizing on the case with the more severe allegation
type, and do not need to look at the other less significant features:
‘I think for me immediately what gets me to prioritize B over A is the
allegation type. For me I think allegation types should be prioritized
over the age. So that’s the first thing... I would screen... and I don’t
really think I have to look at the age anymore” (S4).

In some scenarios, the decision was a lot more contentious, espe-
cially when participants disagreed on the implications of a specific
factor. For example, participants disagreed about whether differ-
ences in victim’s age was a strong enough reason for an algorithm
to prioritize two cases differently. Some participants thought age
difference alone should not be a reason to differentiate two cases:
“Now the only thing that’s different is the age, so... it doesn’t really
feel right to say one should be prioritized over the other, necessarily...
Idon’t really think [age] should make a difference” (S5).

Some participants thought younger children were generally more
vulnerable than older children and, therefore, should be prioritized
first by the algorithm: “the twelve-year-old is going to be able to say
what’s happening easier than the four-year-old, because the twelve-
year-old girl would have a better idea what’s wrong and right than a
four year old.” (S6).

5.2.3 Heuristics on how individual cases are compared. When navi-
gating through the case-by-case and similarity comparison view,
participants were asked to make decisions for child maltreatment
cases based on the limited information available to the algorithm.
As a result, some information that the participants wanted to know
might not have been available when making the decisions. We ob-
served two different types of heuristics when the participants were
comparing different cases side-by-side.

Participants constructed stories upon available case infor-
mation. Some participants used the information available in each
case to reconstruct the story the victim is facing in each case. They
would attempt to compare and visualize which of the cases are
facing a more imminent risk. When there was information that was
missing, the participants would come up narratives of the potential
scenarios. For example, S1 said, “A really important factor definitely
would be like what kind of abuse, we’re talking about here like is it a
neglect case? Is it a case of a babysitter not paying attention to the kids
or is this like, if it was something physical or sexual then it’s obviously
one I would be much more concerned about” (S1). These participants
weighed the risks and probabilities of all these alternatives in order
to make a final decision.

Participants focused on the differences between cases. The
other way participants compared the cases was to focus primarily
on the differences in the features between the two cases. For these
participants, they would first look through the features one by one
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and identified the first differences they spotted between the cases.
Based on the differences, the participants would weigh in how each
of the differences affected the differences in their potential risk,
then made a final decision based on that. For example, S6 explained
how she chose to prioritize a case based on the difference in the
number of prior referrals: “the only difference really is the income
and the fact that this one had a referral. I guess I would choose the
one that’s already had a referral” (S6). Participants prioritized cases
with features that they thought were more significant.

We also asked participants to rank the importance of each fea-
ture in determining if two cases are similar or not. We found that
participants were more likely to use the features they ranked as
more important as the primary factor in deciding which case should
be prioritized by the algorithm.

When facing situations where the differences were of the same
significance to them, these participants would simply count the
pros and cons for prioritizing each case. For example, S4 reasoned,
“So going off the race. I would prioritize the right [i.e. case B]. But, then
because of public assessor, [I would] prioritize the left [i.e. case A].
And then on the socioeconomic factors I would prioritize have left. So,
because it’s two to one, I would prioritize case A over case B in this
situation” (S4).

5.3 Internal Consistency in Participants’
Responses

5.3.1 Internal consistency in group fairness questions. When asked
about group fairness questions, each participant often answered
similarly across all sensitive attributes. For each group fairness
question when participants responded to all five sensitive attributes
(victim age, victim gender, perpetrator gender, family race, and use
of public assistance), they responded to a mean of about 4.4 out of
5 questions (87.8%) the same. For equalized odds, all participants
answered only either ‘yes’ or ‘no’ over all sensitive attributes.

This indicates that our participants had internally consistent be-
liefs across protected attributes. Participant responses indicate that
this was because participants had a common reason for favoring or
disfavoring a group fairness approach across all protected attributes.
For example, when asked whether equalized odds across different
ages was fair, S8 gave a reason for responding ‘no’; then, they said
they “feel similarly regardless of the identity” (S8). This kind of re-
sponse was common among participants: they held the same reason,
so they answered the same across all protected attributes.

5.3.2 Internal consistency between group fairness and individual fair-
ness. Many participants maintained consistency in reasoning over
protected attributes between individual and group-level responses.
For example, when asked about case pair 1 —which differed only
based on age,— S3 thought that the younger child ought to be prior-
itized. Later, when asked whether statistical parity across different
ages is fair, S3 answered ‘no, reasoning: “because the cases that I
looked at, I selected the lower-age children [to be prioritized]” (S3).
Participants reasoned about individual cases when asked group-
level questions and vice versa. For example, S7 also reasoned about
a previous pair of cases when asked whether a fair algorithm should
be aware of victim gender. From the other direction, when presented
with case pair 3, wherein the only difference was that one family
was Caucasian and the other was African-American, S2 reasoned
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that “race... holds a lot of social meaning in America” (S2) and chose
to equally prioritize these pairs as a proxy for making sure that
these different races are being treated equally.

These results indicate internal consistency in reasoning across
individual and group fairness. We speculate that this is because
participants have preconceived notions of fairness that run through
all their answers.

5.4 Challenges of Interpreting the Responses

5.4.1 Different understanding of group fairness questions. When
participants were asked about group fairness criteria (statistical
parity or equalized odds in particular), they gave reasons that indi-
cated different understandings of these questions. As a result, the
meanings of ‘yes’ and ‘no’ answers to these questions were varied.
Some understood statistical parity and equalized odds ques-
tions as asking about sufficient conditions. Some participants
understood these questions as asking, Are statistical parity or equal-
ized odds sufficient conditions for fairness? For example, when asked
whether statistical parity was fair, S3 said they “want to see similar
numbers [i.e. rates of positive classification] achieved, but if the
numbers aren’t quite the same,... that’s also okay” (S3). Thus, S3
thinks that statistical parity is a sufficient condition for fairness,
because if the algorithm meets statistical parity, then this is a fair
outcome. Based on their reasoning, if they understood the question
as asking whether statistical parity was a necessary condition, they
may have answered ‘no’.

Some understood statistical parity and equalized odds ques-
tions as asking about necessary conditions. Some participants
understood these questions as asking, Are statistical parity or equal-
ized odds necessary conditions for fairness? For example, when asked
whether a fair algorithm should achieve statistical parity, P1 said,
“The question [is] weird because if I say ‘No, what I'm saying is that
a fair algorithm shouldn’t make high-risk prediction at the same
rate across groups” (P1). P1 answered ‘no’ to all statistical parity
questions, because, even though they indicated that ideally the
algorithm should classify different groups at similar rates, it “does
not have to” to be fair.

Some understood statistical parity and equalized odds ques-
tions as asking whether they should be mandatory. Another
group of participants understood these group-fairness question as
asking, Should the algorithm be mandated to fulfill statistical parity
or equalized odds in order to be fair? For example, P2 answered ‘no’
to all statistical parity questions, because “the algorithm should not
try to balance [the rates of classification] out so that it appears to be
fair.. Trying to balance out the rates of high-risk predictions means...
you’re manipulating the situation” (P2). P1 and S8 answered ‘no’
to all statistical parity and equalized odds questions: S8 said they
“would worry that [the algorithm] would be focused on meeting a
number” (S8); P1 said that “deliberately changing the algorithm to be
lower accuracy so that [the classification accuracies across protected
groups] match... just doesn’t make sense” (P1). These participants
thought that if group fairness constraints were met by mandating
the algorithm to do so, these were not necessarily fair situations.
Thus, their ‘yes’ or ‘no’ responses have no bearing on whether
statistical parity or equalized odds would be fair if they were met
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without being mandated. It’s possible they would have answered
‘yes’ if we asked this.

These varied understandings of group fairness questions illus-
trate that group fairness approaches can be complex and ambiguous.
Additionally, questions about group fairness definitions should spec-
ify whether they are about necessary and sufficient conditions, as
well as whether the question is asking to mandate these rules or
not.

5.4.2  Unfairness versus wrong prediction. When participants were
making pairwise comparisons between the cases, we found that
some participants perceived the algorithm as making an unfair
decision if they thought the algorithm made a mistake for a single
case, rather than a pair of cases. For example, S6 explained why
she thought a particular case (currently predicted as low-risk) was
treated unfairly by the algorithm: ‘T would say, like this one is unfair.
They have one parent and allegation is parents, substance abuse, it
should be a higher risk prediction” (S6). When asked if the decision
was reached based on of a comparison with a similar case, S6 ex-
plained “I just think it’s unfair. This kid only has one parent and
the allegation is substance abuse, that would mean that parent is
not really able to take care of that kid, and the kid doesn’t have any
other parents there” (S6). This participant did not identify unfairness
based on comparing individual case pairs, but rather by a perceived
misclassification of a single case made by the algorithm.

5.4.3 Cognitive overload. The notion of individual fairness calls
for comparison between individuals to determine if they should
be treated similarly. However, we found that the comparison was
not always easy for human stakeholders, especially in real-life
scenarios where each case included numerous features. Participants
explained that having to objectively compare the effect of multiple
differences between individuals can be challenging. T think it’s
tricky to compare things this way,... because of the multiple factor
difference. It’s hard to say. If you can control all of them and only one
is changing, then that might be easier” (P1).

We did not measure the cognitive load of the participants directly;
thus, we cannot tell if the task of comparing individual pairs was
mentally taxing. The participants’ response reflected that it would
have been easier for them to compare pairs with limited differences
(e.g. selecting pairs with high similarity in similarity comparison
view), than to compare randomly-selected pairs (e.g. randomly pairs
in case-by-case view).

6 DISCUSSION

6.1 Implications for Model Design and
Development

In this section, we discuss the implications of our findings for the
design, development and evaluation of future predictive systems for
use in child welfare decision-making. While there is existing work
on how to directly incorporate pairwise comparison feedback in to
model training [38, 52], their mechanisms focus on simple aggrega-
tion rules. In comparison, our framework elicits richer perspectives,
especially the stakeholders’ reasoning behind their responses. These
findings can potentially lead to more structural changes to the risk
assessment tools. We discuss three directions on how to incorporate
our findings into model design and deployment.
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6.1.1 Group fairness. One interesting takeaway from our study
is that broadly accepted group-level indicators of potentially
unwarranted disparity within the child welfare system are not
unanimously held as indicators of algorithmic bias. For instance,
one of the most commonly cited indicators of bias is the over-
representation of Black children among those investigated and
placed in foster care [22]. In the language of group fairness, these
decisions fail to satisfy statistical parity. However, as we note in
our results, participants were evenly split on whether they viewed
statistical parity to be a desirable algorithmic fairness property,
especially for different races (see Figure 5b). This finding indicates
that common measures of bias in historical decision-making may
not constitute reliable fairness metrics for the purpose of algorithm
design and evaluation.

Our results also do not fully agree with prior work on human per-
ceptions of fairness [67], which suggests that statistical parity most
closely matches people’s existing notion of fairness. Our work dif-
fers from [67] in terms of context and user elicitation method: [67]
investigates opinions on criminal risk and skin cancer screening
by crowdsourcing opinions from the public; our work investigates
child welfare by engaging with relevant stakeholders. These dif-
ferences in methodology may explain the differences between our
results and [67]. This may also indicate that the appropriate fairness
approach is dependent on both context and stakeholders, which
further exemplifies the need for algorithm designers to incorporate
relevant stakeholders fairness viewpoints into the design process.

While we found that for child maltreatment prediction, there was
no single group fairness approach that was universally supported
by all participants, equalized odds aligned with the existing fairness
beliefs of most participants, as they tended to want an algorithm
to be as accurate as possible and similarly accurate for as many

people as possible.

6.1.2  Individual fairness. Our participants’ individual fairness feed-
back can be used in the model re-training process. A starting point
is to follow the same approach as in [8, 38] and formulate the pair-
wise comparison responses as constraints on the predictive model.
For example, if a participant indicated that case A should be priori-
tized over case B, then the model should provide a higher risk score
for case A. Our study showed that there are frequent disagreements
among the participants’ responses, so incorporating this individual
fairness feedback requires a mechanism to resolve disagreements.
Prior work [52] resolves such disagreements based on the Borda
rule from voting theory. Alternatively, one can also resolve such
disagreements through a deliberation process among stakeholders.
Furthermore, our interface provides richer information that enables
feedback beyond these pairwise constraints. For example, the simi-
larity interface in Figure 2c elicits from each participant a similarity
metric, which can potentially define individual fairness criteria
beyond the sets of pairwise comparisons. Another important factor
is that we choose not to present all of the attributes used in child
welfare screening, since it may be excessively cognitively difficult
for the participants to process over 100 attributes. For any given
comparison, the response of prioritizing case A over case B can be
interpreted as (1) providing a higher average risk score for all cases
like case A, or (2) providing higher risk scores for typical cases like
case A.
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6.1.3 Beyond fairness. While the primary focus of our study and
interface design is on fairness preference elicitation, our interview
protocol enables us to learn about stakeholder perspectives along
other dimensions as well. For example, our study also indicates that
the child maltreatment risk model and the overall decision process
can benefit from the inclusion of additional attributes. From the
outset of our study, participants expressed how challenging it was
to make prioritization decisions based on the limited information
provided. For example, S8 noted that there can be all sorts of reasons
that a family might need public assistance service and, depending
on what these reasons are, they could be either a protective factor
or a potential indicator that the family is struggling. Having access
to this additional information may help both the model and the
human decision-maker in determining the risk in each specific case.

Our participants naturally put more emphasis on certain features
when evaluating whether one of the two cases should be priori-
tized by the algorithm. Participants universally agreed that victim
age, allegation type and prior referrals were more important when
evaluating which case should be prioritized. More generally, in any
given context, an automated model selection procedure is prone
to produce an algorithm that doesn’t rely on or prioritize many of
the features that expert stakeholders believe are the most impor-
tant. This is problematic because model predictions that frequently
disagree with users’ perceptions may be viewed as not credible by
those users [72]; or, worse, users that frequently disagree with the
model predictions may be viewed as not credible. In the present
context, an algorithm that is trained to prioritize attributes that
stakeholders find important may see greater uptake than one that
optimizes for predictive accuracy alone.

Ultimately, a predictive model should be only one of the steps in
the pipeline of child maltreatment. In the end, the final decision is
made by human call screeners, who look at the model’s prediction
as a non-binding recommendation. It is important to look at the
fairness of the decisions of the entire socio-technical system, not just
the predictive model within it. We argue that it is critical that the
fairness viewpoints of these stakeholders be heard and incorporated
in the model. At the same time, while it may not be possible for the
algorithm to be fair in every possible scenario, it is more important
for the users (e.g., the call screeners in the child welfare context)
to recognize the limitations of the model in order to make a final
decision based on the recommendation of the model.

6.2 Limitations

As with any study, it is important to note the limitations of this work.
Since this is a qualitative study, the insights we report only represent
the fairness viewpoints of the 12 participants we interviewed. Other
stakeholders may hold different opinions from the participants
we interviewed. The proportion of responses in our results may
not reflect exact distributions. Nevertheless, our results highlight
that participants did not unanimously agree on what should be
considered fair, and they indicated qualitatively different reasoning
for their responses.

For ethical reasons, we did not interview parents who have in-
teracted with or are interacting with the child welfare system in
Allegheny County, PA. Therefore, the demographics of our parent
sample group may not reflect the demographics of parents in the
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child welfare system. In addition, while children are also stake-
holders of the child welfare system, we were unable to interview
children directly due to ethical concerns of asking children sensitive
questions and due to their lack of understanding about the system.
Finally, we primarily interviewed social workers with casework
experience. Further studies which aim to capture the beliefs of
all stakeholders within a child welfare department should likely
include more supervisors, administrators, and executives, as well.

7 CONCLUSION

In this work, we present a general framework to elicit stakeholders’
subjective fairness notions regarding algorithmic systems. We eval-
uate our framework on a child maltreatment predictive system and
conduct a user study with relevant stakeholders. The interviews
provide us with a comprehensive understanding of stakeholders’
perspective of algorithmic fairness. We find that equalized odds is
the slightly more preferred group fairness approach for child mal-
treatment risk assessment, but stakeholders do not unanimously
agree about individual fairness comparisons. We relate our findings
to incorporating stakeholders’ feedback in the design and develop-
ment of algorithmic predictive systems.
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