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Abstract—Massive multiple-input multiple-output (MIMO)
systems have been highlighted as a key enabling technology
for future communications networks. However, the efficacy of
MIMO hinges on the availability of accurate channel state
information (CSI). In frequency division duplex (FDD) massive
MIMO systems, downlink CSI acquisition involves determining
a sufficient amount of feedback compression to maintain high
spectral efficiency. Prior works have highlighted the efficacy
of deep convolutional neural networks (CNN) for learning an
encoding scheme for downlink CSI. However, the prior works
have approached the problem of channel estimation similarly to
other domains in which CNNs have found success (e.g., computer
vision). This paper proposes two techniques for tailoring CNN-
based autoencoders to the problem of massive MIMO CSI
recovery. The first technique is a power-based normalization
of CSI (spherical normalization), which can optimize the input
distribution and make the network more applicable to the
commonly adopted accuracy metric. The second technique is an
optimized CNN architecture for codeword efficiency. We pro-
pose networks, called SphNet and DualNet-Sph, which combine
these techniques, and we demonstrate that these new networks
outperform previously proposed deep learning networks for CSI
feedback.

Index Terms—Massive MIMO, CSI compressed feedback, deep
learning, FDD

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) technolo-
gies have the ability to increase the information capacity of
wireless channels [1], making them the subject of focus for
much research into future wireless communications networks.
To realize the spectral efficiency and spatial diversity gains
offered by massive MIMO, the base station must have accurate
and frequently updated channel state information (CSI) to en-
able message precoding. In frequency division duplex (FDD)
systems, gNB (or gNodeB) transmitters require user equipment
(UE) to provide downlink CSI feedback frequently. Given the
high antenna count in massive MIMO and the unpredictable
nature of any given wireless channel, techniques for determin-
ing an appropriate compression ratio which maintains accurate
CSI estimates at the base station are of critical importance.

Broadly speaking, research efforts in compressed CSI es-
timation have fallen in one of three categories. The first
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category, direct quantization, involves mapping continuous-
valued downlink CSI at the user equipment (UE) to discrete
levels. The resulting bit string is encoded and transmitted to
the base station (eNB or gNB) [2], [3]. While encoding under
direct quantization is time-efficient, the resulting compression
often consumes too much uplink bandwidth to be practical.
The second category, compressed sensing (CS), leverages the
sparsity of massive MIMO CSI under a linear transformation
(i.e., 2D Fourier Transform) [4], [S5]. While these methods
reduce feedback overhead, they predominantly involve strong
assumptions of sparisty which are not always true in real
channel environments and iterative solvers which increase the
time to decode compressed downlink estimates.

The third category of CSI estimation, deep learning, in-
volves the training of deep neural networks on large sets of CSI
data. Recent work has highlighted the efficacy of deep learning
in generating encoding schemes for CSI estimation. In [6],
the authors utilize an autoencoder comprised of convolutional
layers to learn an encoding of real and imaginary values of
downlink CSI. Other authors use different feedback modalities
to enhance estimation accuracy. In [7], the authors show that
using uplink and downlink CSI’s magnitude and absolute value
can provide more reliable channel estimates than compressed
real and imaginary downlink CSI values. In [8], the authors
show the impact of temporal correlation between timeslots in
increasing estimation accuracy at low compression ratios.

While the prior work has considered different feedback
modalities, small effort has gone into adapting the objective
function to channel data. Mean-squared error (MSE) is the
typical optimization target for the training of deep neural
networks, but the ultimate figure of merit for CSI estimation
accuracy is normalized mean-squared error (NMSE). Normal-
ization by the signal power is crucial when considering CSI,
as the data span several orders of magnitude. In this work, we
investigate the influence of power-based normalization in train-
ing convolutional neural networks (CNNs) for CSI feedback
in massive MIMO systems, and the following contributions
are claimed:

o Contribution #1: We propose a CSI feedback network
SphNet, which is the optimization of the autoencoder-
based CSI feedback neural network by

1) Utilizing spherical CSI feedback by separating
power from CSI matrices to produce a better data
distribution and objective function for the network.

2) Optimizing the autoencoder structure to produce
more efficient CSI codewords and more accurate
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CSI reconstruction accuracy.

o Contribution #2: We propose a CSI feedback network
DualNet-Sph, which is the enhancement of DualNet-
MAG that exploits bi-directional channel correlation [7]
by implementing the changes outlined in Contribution
#1.

We demonstrate enhanced CNN-based autoencoders, Sph-
Net and DualNet-Sph, which have improved estimation ac-
curacy for indoor and outdoor mobile networks.

This paper is organized as follows. Section II describes the
massive MIMO system model adopted for this work. Sec-
tion III describes the rationale for power-based spherical nor-
malization. Section IV discusses architectural improvements
for the CSI feedback network. Section V outlines how we
implement these improvements in DualNet-MAG. Section VI
presents our experimental results for the improved networks as
they relate to CsiNet and DualNet-Mag. Section VII concludes
the paper by highlighting some potential future directions.

II. SYSTEM MODEL

In this paper, we consider a single-cell massive MIMO
system, where the gNB is equipped with N, > 1 antennas and
each UE has a single antenna. Orthogonal frequency division
multiplexing (OFDM) is adopted over N subcarriers, and the
downlink received signal at the m—th subcarrier is

H
Yd,m = hd7mwt,mxd,m + Nd,m, (1)

where hy ,,, € CNvX1 denotes the channel vector of the m—th
subcarrier, wy ,, € CNe X1 denotes transmit precoding vector,
Zqm € C is the transmitted symbol, and ng,, € C is the
additive noise, and (-)¥ represents the conjugate transpose.
The uplink received signal of the m—th subcarrier is given by

H H
Yu,m = anhu,mxu,m + Wr,mnu,m7 (2)

where w,.,,, € CNe X1 denotes the received precoding vector,
and subscript v denotes uplink signals and noise, similar to (1).
The downlink and uplink CSI matrices in the spatial frequency
domain are denoted as Hy = [hdyl,...,hvaf]H € CNrxNy
and H, = hy1, ..y hd,Nf]H € CNr*No | respectively.

With the downlink channel matrix Hy, gNB can calculate
the transmit precoding vector in each subcarrier. However,
since the size of the CSI matrix Hy is proportional to Ny and
Ny, CSI feedback payload becomes huge for massive MIMO
system, which can greatly occupy the precious bandwidth.

To reduce the feedback overhead, we first exploit the
sparsity of CSI in the delay domain [9]. Since the delay
among multiple paths lies in a particularly limited period, CSI
matrices exhibit sparsity in the delay domain. With the help
of inverse discrete Fourier transform (IDFT), CSI matrix Hy
in frequency domain can be transformed to be H; in delay
domain using

F'H,; = H,, (3)

where F and F denote the Ny x N unitary DFT matrix and
IDFT matrix, respectively. After IDFT of Hy, most elements

in the Ny x N, matrix H; are near zero except for the first 4
rows. Therefore, we truncate the channel matrix to the first R,
rows with distinct non-zero values. H; and H,, are utilized
to denote the first R, rows of matrices after IDFT of I:Id and
H,, respectively.

Once the CSI matrix H,; has been estimated, further
compression can start to reduce the redundancy in reporting
downlink CSI with the help of deep neural networks at the
UE. We consider two kinds of CSI feedback architectures
including the downlink-only CSI feedback architecture and
uplink-assisted downlink CSI feedback architecture.

Denote fId as the reconstructed downlink CSI matrix.
Define the encoding and decoding function as f.(-) and f4(-),
respectively. For downlink-only CSI feedback architecture,
the encoder network and decoder network can be denoted,
respectively, by

S; = fe,l(Hd)u (4)
: faa(s1). 5)

H, =
For uplink-assisted downlink CSI feedback architecture, the
encoder network and decoder network can be denoted, respec-
tively, by

so = fe2(Hyg), 6)
H; = fia2(s2,Hy). (7
III. SPHERICAL CSI FEEDBACK

As a powerful tool for exploring the underlying structures
from large data sets, deep learning (DL) has been widely
used in computer vision [10] and natural language processing
[11]. Recently, DL has also been successfully applied to
derive reliable downlink CSI in massive MIMO systems for
channel estimation [12] and low rate CSI feedback [6]-[8]
when traditional methods generate limited performance.

However, how to effectively apply DL techniques to exploit
channel data properties and optimization objects remains an
open research issue, as many existing DL based works mainly
utilize the deep learning architectures and optimization func-
tions from the computer vision area without customization for
the channel data characteristics, which can degrade the per-
formance of DL-based CSI feedback algorithms. In particular,
the training data processing methods and loss functions for
the computer vision may not be suitable for the training of
CSlI-related networks directly.

On the one hand, existing DL-based CSI feedback works
mainly regard the 2D channel matrix as an image and the
normalized feature scaling values of CSI matrix are utilized
as the input to DL networks. However, owing to the influence
of path loss, the distribution of CSI-related data is different
from the distribution of image data.

Images are comprised of matrices of pixel values. For color
images, they have a matrix of pixel values for each color
channel, such as red, green, and blue. Pixel values are unsigned
integers in the range between 0 and 255. By scaling pixel
values to the range [0, 1], there can be great benefit in preparing
the image pixel values prior to training of the DL model.
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However, different from images where all pixels are in same
order of magnitude, the range of CSI data can be much larger
than the image pixel values. Since the path loss decreases
exponentially relative to the distance between gNB and UE
[13], the CSIs of UE near the gNB and UE far from the gNB
can differ by several orders of magnitude. Consequently, the
DL network may not be as sensitive to the CSIs of UE far
from the gNB as the CSIs of UE near the gNB.

On the other hand, existing DL-based CSI feedback works
mainly used the loss function in image processing for the
training of DL networks, e.g., mean square error (MSE), which
can be defined as

1 — .
MSE = — K HE|?
= |IHG - H|P, ®)
k=1
where k and n are, respectively, the index and total number of

samples in the data set, and ||-|| is Frobenius norm. However,
Normalized MSE (NMSE), which is defined as

NMSE = LS HE - BEP/EGE, O
k=1
is the common metric utilized to evaluate the accuracy of
CSI estimation [12] and feedback [6]-[8]. By comparing the
definition of MSE and NMSE, we can find that using MSE as
the loss function can make DL networks pay more attention
to the CSI matrices with the large power.

To deal with the above two problems, we propose a spheri-
cal CSI feedback architecture as shown in Fig. 1. The spherical
CSI feedback architecture splits the downlink CSI matrix H’j
into a power value p, and a spherical downlink CSI matrix
H%, where p;, = ||HE| is the power of CSI matrix and
H’ = H%/|H%|| is the spherical downlink CSI matrix. Since
the power of CSI matrix is split from the original CSI matrix,
the rest CSI matrix is in a spherical surface. Then the power
and the spherical CSI matrix are fed back separately.

Spherical CSI feedback architecture can bring two advan-
tages. First, since “MSE” is one of the default loss functions
in the DL networks, the optimization of spherical downlink
CSI recovery method can be formulated as minimizing the
loss function, Lysg defined as

J x k
Lyse = - Z [HG — Hy|?
k=1

1< A
~ > IHG /G| — Hg /G, 10)
k=1

1 < "
- Z ]S — HS|1?/|[HE|1%,
k=1

which is equivalent to the NMSE defined in equation (9). As a
result, for CSI matrices in different orders of magnitude, they
are equally important in training of neural networks.

Second, by separating the power, we can make the CSI
matrices in approximately the same order of magnitude as the
input to the DL networks. By normalizing the different features
in similar ranges of values, gradient descents can converge

more quickly [14]. Besides, spherical space can also limit the
solution domain for the CSI recovery.
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Fig. 1: Architecture of Spherical CSI Feedback
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Fig. 2: Architecture of CsiNet and CsiNet Pro.

A DL-based CSI feedback framework named CsiNet was
proposed in [6] to reduce massive MIMO downlink CSI
feedback overhead. As shown in Fig. 2(a), CsiNet utilizes an
encoder network which acts as a compression module and
a corresponding decoder network which is responsible for
CSI reconstruction. Treating CSI matrix as a virtual image,
convolutional layer is used in both encoder and decoder to
exploit its spatial and spectral correlation. Each CSI matrix
is split into real and imaginary parts, rearranged into two
channels as the input to the encoder. The encoder network
consists of a 2-channel 3 x 3 convolutional layer and an M x 1
fully connected layer (FC) for dimension compression. The
decoder consists of a FC for dimension decompression and
two Residual blocks for CSI calibration. Although CsiNet
shows substantial performance gain over some compressive
sensing methods, the performance is still limited especially in
the outdoor scenario.
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To improve the performance of CsiNet, we propose an
enhanced version of CsiNet, named CsiNet Pro.

On the one hand, CsiNet Pro utilizes a deeper encoder,
which employs more convolutional layers to capture the fea-
tures of CSI matrix. Autoencoder is utilized to learn a low-
dimensional representation for a relatively high-dimensional
dataset. By training the neural network to find the important
features and ignore the noise details, an autoencoder can
achieve good performance for dimensionality reduction. Con-
sequently, the design of encoder for dimension compression
is important. However, the encoder in [6]-[8] all utilized a
simple encoder network, which consists of one convolutional
layer and one fully connected layer. Different from above
works, CsiNet Pro consists of 4 convolutional layers for
feature extraction and 1 fully connected layer for dimension
compression. Specifically, the 4 convolutional layers utilize
the 7 x 7 kernel size to generate 16, 8, 4 and 2 feature maps,
respectively (see Fig. 2(b)).

On the other hand, CsiNet Pro also enhances its decoder
from two perspective. First, CsiNet Pro uses a different
normalization range and output activation function. Different
from the pixel values of image which are non-negative, the
real part and imaginary part of CSI values can be positive or
negative. Consequently, normalizing the input data within the
range [0, 1] may ignore some features related to the negative
values. Different from previous works which normalize the
CSI values to the range [0, 1] and use “sigmoid” or “ReLU” as
the activation function of last layer, CsiNet Pro normalizes the
CSI values to the range [-1, 1], and use “tanh” as its activation
function of last layers. Second, CsiNet Pro does not utilize the
residual block to reduce the number of convolutional layers
in the decoder part. Residual blocks are proposed in [15] to
handle the vanishing gradient problem and were adopted in
[6]-[8]. However, since the neural networks for CSI feedback
are not as deep as ResNet [15], the vanishing gradient problem
hardly arises. As a result, we remove the residual blocks
and utilize 4 convolutional layers for codewords decoding as
shown in Fig. 2(b).

We further integrate the CsiNet Pro into the spherical CSI
feedback framework shown in Fig. 1 to enhance the CSI
recovery accuracy, and name this network as SphNet.

V. ENHANCED DUALNET-MAG

DualNet-MAG utilizes the magnitude correlation between
the uplink and downlink to improve the efficiency of CSI
feedback [7]. Although DualNet-MAG can achieve good
performance with the help of channel correlation, the CSI
reconstruction accuracy is still limited due to the influence of
the signal strength attenuation especially in the outdoor case.

In this paper, we propose an enhanced DualNet-MAG
named as DualNet-Sph. DualNet-Sph uses the spherical CSI
feedback architecture, and optimizes encoder and decoder
networks for further performance improvement.

As shown in Fig. 3, the power of CSI matrix is separated
from downlink CSI matrix and fed back individually to reduce
the impact of signal strength attenuation on the training of
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Fig. 3: Architecture of DualNet-Sph.

autoencoder. To exploit the uplink and downlink correlation
in the magnitude, magnitudes and phases of CSI are then
separately encoded and fed back.

After phase separation, the CSI magnitudes are fed into the
encoder network for dimension compression, while the uplink
CSI magnitudes is utilized in the decoder network to help
recover downlink CSI from the encoded codewords. Similar
to the CsiNet Pro, the encoder of DualNet-Sph consists of
4 convolutional layers for feature extraction and 1 fully con-
nected layer for dimension compression. The 4 convolutional
layers exploit the 7 x 7 kernel size to generate 16, 8, 4 and
1 feature maps, respectively. In the decoder network, uplink
CSIs are utilized to help recover downlink CSI from the
received codewords. Specifically, the received codewords are
first mapped into the original length using a fully connected
layer. The uplink CSI matrices are reshaped to a vector
and concatenated with the decompressed codewords. After
concatenation, the output is reshaped into 2 feature maps as
an input to 4 convolutional layers for downlink CSI magnitude
recovery.

DualNet-Sph employs the same phase feedback method as
DualNet-MAG. Owing to the poor correlation in phase, it is
difficult to apply a similar DL structure to improve phase
recovery accuracy. Thus, to avoid wasting feedback bandwidth,
the downlink CSI phase is quantized and encoded for feed-
back. To limit the quantization error given limited bandwidth,
a magnitude dependent phase quantization (MDPQ) is applied,
where CSI coefficients with larger magnitude adopt finer phase
quantization and vice versa. The details can be found in [7].

Finally, the magnitudes are combined with their correspond-
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Fig. 4: NMSE (lower is better) comparison in different compression ratios for downlink-based CSI feedback. CsiNet is the
previously proposed CNN-based autoencoder [6], CsiNet-Pro is the optimized network based on Fig. 2, and SphNet is the

network which uses spherical normalization (see Fig. 1).

ing phases, and then recovered spherical CSIs are combined
with their powers as fully recovered CSI coefficients.

VI. EXPERIMENTAL EVALUATION

We assess the CSI feedback performance evaluation for
two different massive MIMO scenarios using the COST 2100
model [16]:

1) An indoor environment using downlink 5.3GHz and
uplink 5.1GHz, 0.1 m/s UE mobility, gNB at center of
square area of length 20m

2) An outdoor environment using downlink 930MHz and
uplink 850MHz, 1 m/s UE mobility, gNB at center of
square area of length 400m

For all experiments, we utilize N, = 32 antennas at the
gNB and a single antenna at the UE. The gNB uses antennas
arranged in a uniform linear array (ULA) with half-wavelength
spacing. We use Ny = 1024 subcarriers and truncate the
delay-domain CSI matrix to include the first Ry = 32 rows.
For each environment, we generate a large dataset of 10°
samples and split the dataset into 7-10* and 3-10* samples for
training and testing sets, respectively. For training, we utilize
Adam with a learning rate of 1072 and a batch size of 200.
Each network was trained for 1000 epochs using MSE (as
Eq. (10)) as the loss function, and the figure of merit used to
compare all networks was NMSE (as Eq. (9)).

A. Spherical CSI Feedback and Network Architecture Opti-
mization on CsiNet

We compare the performance of CsiNet, CsiNet Pro, and
SphNet under three different compression ratios, i, %, and
%6. In [6], the authors demonstrate superior performance of
CsiNet over three compressed sensing (CS) methods, namely
LASSO ¢; solver [17], TVAL3 [18], and BM3D-AMP [19], so
it is reasonable to assume that any gains over CsiNet subsume
gains made over these CS-based methods.

Fig. 4(a) shows the performance of the different networks
for the indoor environment. In all cases, CsiNet Pro yields
lower NMSE than vanilla CsiNet, and SphNet outperforms
both networks. At a compression ratio of 1, SphNet and
CsiNet Pro outperform CsiNet by nearly 10 dB. In particular,
we can notice that SphNet can achieve a more obvious
performance improvement than CsiNet Pro in the outdoor
environments (see Fig. 4(b)). The reason is that outdoor
environment has a larger coverage range, which can make the
power of CSI matrices span more orders of magnitude than
the indoor case and degrade the CSI feedback performance.
Consequently, by separating the power and using the spherical
CSI feedback, SphNet can achieve noticeable performance
gains.

B. Spherical CSI Feedback for Bi-directional Correlated Du-
alNet

We also perform the previously described experiments using
DualNet-Sph (see Fig. 3), the only discrepancy being that we
vary use compression ratios %, é, and 1—12 Fig. 5 shows the
NMSE performance for DualNet-Sph, DualNet-MAG [7], and
SphNet. For both the indoor and outdoor environments, the
magnitude-based feedback networks have improving perfor-
mance relative to SphNet as compression increases, except the
case that the compression ratio is i in the indoor scenarios.
SphNet can achieve better performance than DualNet-MAG
since phase quantization can result in the additional recovery
error, especially since only 4 bits/phase are utilized for phase
quantization on average. When the accuracy of magnitude
recovery is relatively low, error from phase quantization can
be neglected compared with the error from the magnitude.
However, SphNet and the magnitude of DualNet can achieve
higher accuracy compared with phase quantization when the
L in the indoor scenarios, which make

compression ratio is
the performance of DualNet relatively worse.
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Fig. 5: NMSE (lower is better) comparison in different compression ratios for bi-directional correlation-based CSI feedback.
SphNet incorporates spherical normalization, DualNet-MAG incorporates bidirectional reciprocity [7], and DualNet-Sph

incorporates both techniques.

Similar to the observations in Section VI-A, for the outdoor
network, the influence of spherical CSI feedback is appar-
ent. The improvement in NMSE for DualNet-Sph relative to
DualNet-MAG is substantial, exceeding -20 dB at a compres-
sion ratio of i.

VII. DISCUSSION

Based on the results highlighted in Sections VI-A and VI-B,
the impact of power-based spherical normalization and net-
work architecture optimization on CSI recovery accuracy
is salient. The proposed enhancements yield improved CSI
recovery accuracy for all compression ratios. In this work,
we demonstrate enhancements for the training and structure
of CNN-based autoencoders for CSI estimation for a single
timeslot. Other efforts have utilized temporal correlation be-
tween timeslots to increase estimation accuracy [8]. Combin-
ing temporal feedback and the techniques outlined in this work
could yield further performance gains.
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