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Abstract
A new wave of wireless services, including vir-

tual reality, autonomous driving and Internet of 
Things, is driving the design of new generations 
of wireless systems to deliver ultra-high data rates, 
massive numbers of connections and ultra-low 
latency. Massive multiple-input multiple-output 
(MIMO) is one of the critical underlying technol-
ogies that allow future wireless networks to meet 
these service needs. This article discusses the appli-
cation of deep learning (DL) for massive MIMO 
channel estimation in wireless networks by inte-
grating the underlying characteristics of channels in 
future high-speed cellular deployment. We develop 
important insights derived from the physical radio 
frequency (RF) channel properties and present a 
comprehensive overview on the application of DL 
for accurately estimating channel state information 
(CSI) with low overhead. We provide examples of 
successful DL application in CSI estimation for mas-
sive MIMO wireless systems and highlight several 
promising directions for future research.

Introduction
Current and future generations of wireless net-
works must cope with the continuous and rapid 
growth of applications and data traffic to deliver 
ultra-high data rate over a wide coverage area 
for a massive number of connected devices and 
to support low-latency applications. One of the 
most important technical advances at the radio 
frequency (RF) physical layer is the emergence 
of massive multiple-input multiple-output (MIMO) 
transceivers. By exploiting spatial diversity and 
multiplexing gains, massive MIMO can help 
improve spectrum efficiency and robustness of 
wireless communication systems under limited 
bandwidth and channel fading. To fully utilize 
their potential gains, massive MIMO transmitters 
require sufficiently accurate channel state informa-
tion (CSI) on the forward link.

However, the need for accurate CSI in massive 
MIMO systems poses serious challenges to the 
traditional channel estimation and feedback tech-
niques. On the one hand, owing to the large num-
ber of antennas and the wide bandwidth, channel 
estimation in massive MIMO systems suffers from 
high signal acquisition costs and large training 
overhead. On the other hand, different uplink and 

downlink frequency bands in frequency division 
duplex (FDD) mode lead to weaker reciprocity 
between the two channels. Consequently, gNB 
(or gNodeB) transmitters in FDD networks would 
require user equipment (UE) to provide downlink 
CSI feedback frequently, which can consume a 
staggering amount of uplink channel capacity in 
massive MIMO communication.

Recently, deep learning (DL) has emerged as a 
powerful tool for learning the underlying structures 
from large measurement of data, and has achieved 
notable success in areas including computer vision 
and natural language processing. Although still 
in a nascent stage, DL has recently found sever-
al interesting applications in the physical layer of 
wireless communications, including low rate CSI 
feedback, channel estimation and signal detection, 
among others. However, how to effectively apply 
DL techniques to enhance the estimation accuracy 
and efficiency by exploiting RF channel properties 
remains an open research issue, as many existing 
works do not explicitly utilize the physical RF char-
acteristics and provide insufficient physical insights 
despite apparent successes. 

In wireless communications, there exists a 
wealth of expert knowledge on various channel 
models for designing and achieving fast and reli-
able data links. Specifically, MIMO channels exhib-
it a number of important physical characteristics 
including spatial correlation, spectral correlation 
and temporal correlation. Based on these special 
characteristics of physical wireless channels, appro-
priately designed DL architectures and algorithms 
can potentially help increase the accuracy and 
robustness of CSI estimation in massive MIMO 
links. Clearly, how to configure, adapt and improve 
such tools for accurate CSI estimation by massive 
MIMO gNB represents an important technical bar-
rier, as well as an exciting and promising research 
issue.

In this article, we elaborate the insight of inte-
grating channel correlation with DL-based channel 
estimation, present an overview of the integra-
tion of DL in massive MIMO systems, and outline 
some future research directions. The rest of this 
article is organized as follows. The next section 
introduces the challenges in massive MIMO chan-
nel estimation using conventional methods. Then, 
we introduce the important basis of DL and three 
correlations in wireless channels for reducing the 
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ACCEPTED FROM OPEN CALL overhead required in channel estimation. Following 
that, we present an overview of integrating channel 
correlations with DL in massive MIMO CSI acqui-
sition. We then discuss open research issues in 
DL-based channel estimation before this article is 
concluded.

Challenges in Channel Estimation
In massive MIMO systems, an accurate acquisi-
tion of CSI is essential to achieve spectrum and 
energy efficiency. One of the most widely used 
approaches in massive MIMO channel estimation 
is employing pilot signals to estimate the chan-
nel. With the received data and the knowledge of 
training symbols, least square (LS) and minimum 
mean square error (MMSE) can be used to infer 
the CSI. Although the LS method is well known 
for its low complexity, the estimation accuracy is 
usually not satisfying. MMSE can achieve accurate 
CSI estimation, but it requires channel correlation 
matrix and noise variance as prior information, and 
also suffers from high computation complexity.

The complex channel conditions and low-cost 
hardware also raise the situations where the tra-
ditional methods generate limited performance. 
On the one hand, pilot contamination can signifi-
cantly degrade the system’s performance due to 
the noise and the limited number of orthogonal 
pilots, which hence have to be reused in adjacent 
cells. On the other hand, due to the fast time-vary-
ing and non-stationary characteristics, it is hard 
for massive MIMO systems to design an efficient 
channel estimation algorithm in high mobility envi-
ronments. In addition, the requirements of milli-
meter-wave (mmWave) massive MIMO also bring 
new challenges. Due to the limited physical space 
with closely placed antennas and prohibitive power 
consumption in mmWave massive MIMO systems, 
it is difficult to equip a dedicated RF chain for each 
antenna. Consequently, channel estimation under 
a limited number of RF chains and low-resolu-
tion analog-to-digital converters (ADCs) becomes 
essential.

Even if the UEs have succeeded in acquiring 
accurate downlink CSI, the feedback of CSI to the 
gNB is still challenging with affordable overhead 
in FDD massive MIMO systems. Due to massive 
antennas at the gNB, each UE has to feedback the 
CSI associated with hundreds of transmit antennas 
and large bandwidth, which results in prohibitive 
feedback overhead. While codebook-based CSI 
quantization is time-efficient, the resulting compres-
sion often consumes too much uplink bandwidth 
to be practical.

To overcome challenges in massive MIMO 
systems, compressive sensing (CS) has been stud-
ied for channel estimation and channel feedback. 
CS-based approaches exploit the spatial coherence 
and channel sparsity that stem from the limited 
scattering characteristics of signal propagation and 
strong spatial correlation inherent in the anten-
nas at the gNB, and can formulate a compressed 
representation of CSI matrices. However, there 
are also limitations. For example, most CS-based 
approaches impose strong channel sparsity in 
some domain which may not hold exactly. When 
the CSI matrix is not exactly sparse on the chan-
nel sampling grids, it may lead to degraded per-
formance due to the power leakage effect around 
the recovered discrete CSI samples. Furthermore, 

CS-based approaches are often iterative, which can 
cause additional delay. Consequently, new meth-
ods are required to enhance the CSI estimation 
performance in massive MIMO systems.

Deep Networks for Channel Estimation
As a powerful tool to extract the underlying fea-
tures from the measured data, DL is expected to 
provide improved solutions to the complicated 
problems in massive MIMO communications. In 
this section, we introduce the basics of several 
relevant neural networks for DL-based channel 
estimation.

Fully Connected Deep Neural Network 
(DNN): Fully connected DNNs can extract appro-
priate features for classification and regression, 
as shown in Fig. 1a. Starting by sending measure-
ment data to the input layer, each successive layer 
attempts feature extraction from the input data, 
gradually accentuating features that affect deci-
sion making while suppressing irrelevant features. 
Through the optimization of network parameters, 
DNN can be trained to capture underlying data 
structures and models despite outliers and noises.

Convolutional Neural Networks (CNNs): 
CNNs have been widely applied in problems such 
as image processing. As shown in Fig. 1b, CNNs 
specialize in processing data with grid-like struc-
tures and include special layers for functions such 
as convolution and pooling. By stacking the con-
volutional and pooling layers alternately, CNN 
can progressively learn complex models. Con-
sidering the correlation in spatial, temporal, or 
spectral domains, CSI matrices of massive MIMO 
systems can often be viewed as two-dimensional 
images. CNNs have strong potential for success in 
channel estimation. 

Recurrent Neural Network (RNN) and Long 
Short-Term Memory (LSTM): RNN is a class of 
neural networks that exploit sequential informa-
tion by using earlier outputs as part of inputs in 
the later time. Unlike the above two neural net-
works, RNNs use internal state to store the pre-
vious information that has been calculated. An 
RNN consisting of LSTM units is often known as 
an LSTM network. LSTM networks can handle 
exploding and vanishing gradients in traditional 
RNNs, and work well in prediction and classifica-
tion according to time series data. Exploiting the 
temporal correlation of CSI, RNN and LSTM can 
further improve the accuracy of CSI estimation.

Autoencoder: An autoencoder is a neural net-
work trained to efficiently regenerate its input. As 
shown in the structure of Fig. 1d, modern autoen-
coders have generalized the idea of an encoder 
and a decoder beyond deterministic functions to 
stochastic mappings. An autoencoder can acquire 
compressed but robust representations of its input 
and can be highly effective and efficient in dimen-
sion reduction or feature learning. From a DL 
perspective, CSI feedback within a wireless com-
munication system can be viewed as a particular 
type of autoencoder, which aims to recover the 
downlink CSI at the gNB based on its received 
CSI that was compressed and sent by the UE.

Exploiting Wireless Channel Correlations
Learning and exploiting channel correlations in 
massive MIMO can substantially benefit CSI esti-
mation and feedback for massive MIMO. In our 
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work [1], we have presented a DL-based CSI 
feedback solution for massive MIMO communi-
cations. We achieved high efficiency by exploiting 
the underlying spatial correlation and the correla-
tion between uplink and downlink. Stimulated by 
this and other preliminary successes, we investi-
gate the underlying CSI data structure in terms 
of spatial and spectral correlation, temporal cor-
relation, and bi-directional correlation of channels 
for channel estimation in massive MIMO systems. 
Note that, however, these physical characteristics 
also apply for conventional MIMO systems and 
can reduce the amount of necessary CSI feed-
back from UEs.

Spatial and Spectral Correlation
Spatial and spectral correlation of CSI has been 
commonly exploited in CS-based feedback and 
CSI estimation. Physical RF propagation elements 
such as multipaths and scatters provide the foun-
dation of spatial and spectral correlation. For a 
given gNB, channels are governed by cell-specific 
attributes such as the buildings, ground and vehi-
cles. Smaller antenna separation leads to higher 
spatial correlation in massive MIMO. Since the 
physical size of antenna arrays at gNB is small com-
pared to path distance, paths between different 
gNB-UE antenna pairs share some common prop-
erties [2]. On the other hand, spectral coherence 
measures channel similarity across frequency. For 
subcarriers within channel coherence bandwidth, 
their channels exhibit strong correlation. Influenced 
by the spatial and spectral correlation, massive 
MIMO channels exhibit some sparsity in the cor-
responding transform domains including virtual 
angular domain and delay domain, which can be 
leveraged in channel estimation and feedback to 
formulate a sparse signal recovery problem. Unlike 
the traditional approaches that often require rea-
sonably accurate correlation models, DL can learn 
and exploit these underlying channel correlation 
structures to reduce the CSI feedback overhead 
and increase the estimation accuracy.

Temporal Correlation
It is well known that even for the mobile environ-
ment under severe Doppler effect, RF channel 
responses are temporally correlated in typical 
massive MIMO configurations. For mobile users, 
coherence time can measure the temporal chan-
nel variations and describes the Doppler effect 
caused by mobility. Since gNB and UE can store 
their previous CSI estimates, temporal correlation 
of massive MIMO channels can be exploited to 
reduce the amount of pilots and UE feedback in 
downlink CSI estimation. With the help of tem-
poral correlation, UE can encode and feed back 
the CSI variations, instead of the full CSI. The gNB 
can combine the new feedback with its previously 
estimated CSI within coherence time for subse-
quent CSI reconstruction. The temporal correla-
tion feature is a good match with the capabilities 
of RNN and LSTM that are effective in sequential 
data processing.

Bi-Directional Correlation
Historically, the uplink-downlink channel reci-
procity has predominantly been utilized by time 
division duplex (TDD) gNB to infer downlink CSI 
from its own uplink CSI estimate. For FDD sys-
tems, however, RF components that positively 
superimpose in one frequency band may cancel 
each other in another. Hence, FDD uplink-down-
link channels do not exhibit direct reciprocity. 
Nevertheless, because of the shared propagation 
environment, correlation still exists between the 
two. For example, the angles of arrival of signals 
in the uplink transmission are almost the same as 
the angles of departure of signals in the downlink 
transmission. When the band gap between uplink 
and downlink channels is moderate, both links 
should share similar propagation characteristics 
including scattering effects. Such correlation can 
be exploited by gNB for CSI acquisition in mas-
sive MIMO systems.

Existing works have demonstrated certain levels 
of correlation between bi-directional channels for 

FIGURE 1. Commonly utilized deep learning architectures.
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FDD systems. The directional properties of uplink 
and downlink FDD channels have been shown as 
correlated [3]. Downlink channel covariance esti-
mation can also benefit from the observed uplink 
covariance. Similarly, although channel respons-
es could vary for different downlink and uplink 
frequency bands, their multipath delays remain 
physically the same. In [4], the multipath delay 
reciprocity and angle reciprocity have been ver-
ified by the channel measurements. Thus, to uti-
lize the bi-directional channel correlation, channel 
response matrix from the frequency domain should 
be transformed to the delay domain using inverse 
Fourier transform. Compared with the frequency 
domain, the reciprocity in the delay domain is evi-
dent owing to the shared multipath delays.

To demonstrate the bi-directional correlation, 
we illustrate the correlation coefficient between 
uplink and downlink FDD channels obtained 
through numerical tests in Fig. 2. The COST 2100 
channel model [5] is utilized to generate the uplink 
and downlink CSI matrices. The COST 2100 chan-
nel model is a geometry-based stochastic channel 
model that can capture the stochastic properties 
of MIMO channels over frequency, space and 
time. Specifically, random scatterer positions are 
generated according to a probability density func-
tion before generating the corresponding channel 
response. In this way, this model can generate a 
large set of random channels typically encoun-
tered by wireless networks in the real world [5]. 
5.1 GHz uplink and 5.3 GHz downlink channel 
responses are generated with the bandwidths of 
20 MHz. We place gNB at the center of a square 
area with lengths of 20 meters for indoor coverage 
and randomly place UEs within the coverage area. 
The gNB uses uniform linear array (ULA) with 32 
antennas and 1024 subcarriers. After transforming 
the channel matrix into the delay domain, only the 
first 32 rows are retained due to sparsity. 10,000 
items are generated for the correlation evaluation. 
As shown in Fig. 2, the correlation coefficients 
between uplink CSI and downlink CSI using the 
“original” (real/imaginary) format are quite erratic. 
Since the CSI is complex-valued, their real part and 
imaginary part correlations are evaluated. The test 
results appear to show weak correlation between 
corresponding downlink-uplink channel responses.

A closer examination of the physics reveals 
that in FDD, CSIs of two carriers in different fre-
quencies may have uncorrelated phases. How-
ever, based on FDD multipath channel models, 
the CSI magnitudes in the delay domain should 
exhibit much stronger correlation. To confirm, 
we transform the  CSI elements into polar coor-
dinates to separately consider their magnitude 
and phase correlations. Figure 2 shows that the 
corresponding magnitudes of uplink and down-
link CSIs exhibit strong correlation whereas their 
corresponding phases show very weak correla-
tion. In fact, even by removing the signs from the 
CSI’s real and imaginary parts, Fig. 2 shows that 
the absolute values (ABS) of uplink and down-
link CSI coefficients are also strongly correlat-
ed. However, their signs show little correlation. 
These results demonstrate some shared charac-
teristics between uplink and downlink channels 
in the delay domain. This observation provides 
the basic principle for utilizing magnitude correla-
tion between uplink and downlink channels in 

the delay domain for estimating CSI of massive 
MIMO systems.

DL-Based CSI Estimation
To present a clearer perspective and context, in 
this section we introduce the applications of deep 
networks and underlying channel characteristics 
in designing and improving channel estimation 
and feedback systems.

Channel Estimation
Massive MIMO has been viewed as an important 
technique for 5G and beyond, while there are still 
some channel estimation barriers to be overcome.

Orthogonal frequency division multiplexing 
(OFDM), as a technology used in 5G, exploits the 
received pilots in some sparsely and evenly placed 
grids to infer the CSIs in the overall grids. How-
ever, the performances of LS and MMSE estima-
tors are not satisfying due to the accuracy and the 
requirement for prior information, respectively. To 
conduct a capable estimator, channel estimation 
using the CSIs in the pilot locations can be mod-
eled as a low-resolution image processing problem 
in DL. With the help of channel correlations, DL 
networks can be used to interpolate the CSIs in 
the missing locations and reconstruct a high-res-
olution CSI matrix. In [6], a spatial pilot-reduced 
CNN (SPR-CNN) is designed to save spatial pilot 
overhead for massive MIMO-OFDM channel esti-
mation. Specifically, CNN is utilized to exploit the 
spatial and spectral correlation to enhance the 
channel estimation accuracy, while a channel esti-
mation unit with memory is utilized to group and 
cache channels in successive coherence intervals 
and incorporate the temporal correlation. Numer-
ical results demonstrate that the SPR-CNN based 
approach can save two thirds of spatial pilot over-
head with minor performance loss. Also, DL can be 
used to reduce the influence of quantization distor-
tion from the low-resolution ADCs by mapping the 
signals from high-resolution ADC antennas to those 
of low-resolution ADC antennas with the help of 
spatial correlation [7].

CSI estimation in massive MIMO is more diffi-
cult in high mobility environments due to the fast 
time-varying and non-stationary channel character-
istics. To adapt the characteristics of fast time-vary-

FIGURE 2. Distribution of correlation coefficient between uplink and downlink 
CSI at various levels of Confidence Interval (CI) [1].
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ing channels, LSTM networks, which have inherent 
memory cells to keep the previously extracted 
information, can be used to learn the temporal cor-
relation and make the CSI prediction. In [8], a DL 
network has been proposed to handle the massive 
MIMO channel estimation problem in high-speed 
mobile scenarios by exploiting the temporal cor-
relation as well as the spatial and spectral correla-
tion. Specifically, the CSI data between all pairs 
of antennas in the frequency domain and time 
domain are treated as a 4-dimensional tensor as 
the input to the DL network. Then, CNN is used 
to mimic the interpolation processes for the CSI 
in no-pilot locations in the spatial and frequency 
domains, and LSTM units are used to learn the 
temporal channel variation for CSI prediction. Sim-
ulation results show that this DL-based method is 
superior to LS and linear minimum mean squared 
error (LMMSE) method in high-speed mobile sce-
narios.

Another major issue of CSI estimation in mas-
sive MIMO systems is the estimation error caused 
by channel noise and pilot contamination (i.e., 
interference among pilot symbols transmitted by 
users in neighboring cells). As DL techniques have 
benefited from image denoising, a CNN-based 
denoising network can mitigate noise and interfer-
ence effects. With the help of features extracted 
from spatial, spectral and temporal correlations, 
denoising can substantially improve the perfor-
mance of conventional and DL-based solutions. 
In [9], taking the received signal in the spatial, 
frequency, and time domains as a 3-dimensional 
input data, a CNN-based deep image prior net-
work designed to denoise can extract the received 
signal before channel estimation for multi-cell inter-
ference-limited massive MIMO systems. Next, by 
applying denoised data with LS, this estimator can 
approach the MMSE estimator performance for 
high-dimensional signals. In [10], a denoising CNN 
has been designed to enhance the performance 

of the approximate message passing (AMP) algo-
rithm, which can recover the high-dimensional 
beamspace massive MIMO channel that exhibits 
sparsity with low computational complexity. The 
results show that this learning-based denoising 
AMP scheme can outperform the AMP schemes 
using conventional denoisers.

By exploiting channel correlations, DL can 
be exploited to develop new channel estimation 
methods and to enhance the performance of con-
ventional ones. The integration of DL and channel 
correlations in CSI estimation can be summarized 
as follows. First, owing to the physical correlations 
in the spatial, frequency and time domains, CNN-
based techniques that have been successful in 
high-resolution image restoration can be helpful in 
pilot reduction and CSI interpolation. Also, RNN 
can improve the estimation and prediction accu-
racy for fast time-varying channels. Second, using 
CNN to exploit the inherent CSI correlations, CSI 
estimates can be more robust against channel noise 
and quantization error eff ects. Furthermore, based 
on many successful applications of DL network 
in capturing nonlinear functional relationships, DL 
can better incorporate bi-directional correlation to 
further improve TDD channel calibration accuracy 
in massive MIMO systems [11]. We note, however, 
that the optimization on the allocation and place-
ment of pilots for DL-based channel estimation in 
a specifi c environment remains an open problem 
under investigation, particularly since CSI correla-
tions vary with the environment.

chAnnel feedbAck
By integrating the DL with channel properties, 
there are research works showing substantial per-
formance improvement for downlink CSI acqui-
sition (Table 1) in FDD massive MIMO systems 
with limited feedback resources.

The authors of [12] proposed a DL-based Csi-
Net, as illustrated in Fig. 3a, to reduce UE feed-

FIGURE 3. CSI feedback architectures: a) architecture of CsiNet in [12]; b) architecture of CsiNet-LSTM in [13]; c) architecture of 
DualNet-MAG in [1]. 
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back overhead in massive MIMO systems. Under 
the structure of autoencoder, CsiNet uses the 
encoder for CSI compression and decoder for CSI 
reconstruction. CNN is used in both encoder and 
decoder to exploit the spatial and spectral correla-
tion, in a similar way to image processing. Owing 
to the path delay range limitation among multiple 
paths and spectral correlation, CSI matrix can be 
transformed into the delay domain and truncated 
to slots that are with distinct non-zero values first, 
which can reduce the model size and complex-
ity. The CSI matrix is then separated to real and 
imaginary parts, which correspond to the two sets 
of input in this neural network. CsiNet shows sub-
stantial performance gain and efficiency over some 
compressive sensing methods.

To further improve the feedback efficiency, 
temporal correlation can be utilized by decreasing 
the redundancy in the adjacent feedback code-
words. In [13], a DL network named CsiNet-LSTM 
has been designed for time-varying massive MIMO 
channels. To exploit temporal channel correlation, 
as shown in Fig. 3b, the codewords at t1 are uti-
lized as an auxiliary input of the decoder networks 
for the later moments to eliminate the correspond-
ing information in the new codewords, and LSTM 
networks are adopted to process sequential CSI 
matrices for extracting the temporal relationship 
therein. Using these two ways, the redundancy 
in codewords owing to the temporal correlation 
can be degraded. For CsiNet-LSTM, only the first 
MIMO CSI matrix of the time sequence is com-
pressed under a moderate compression ratio (CR) 
and reconstructed by CsiNet. The ensuing CSI 
matrices are encoded at a high compression ratio 
owing to the information saving from previous 
correlated CSIs. Consequently, CsiNet-LSTM can 
achieve a better compression ratio and reduced 
average feedback payload.

Similar to the temporal correlation, the cor-
related uplink CSI due to the bi-directional correla-
tion can also be used to enhance the downlink 
CSI feedback efficiency. In [1], we proposed a 
DL-based CSI feedback framework to exploit bi-di-
rectional channel correlation characteristics. Unlike 
CsiNet and CsiNet-LSTM, DualNet in [1] exploits 
the available uplink CSI at gNB as an auxiliary  
input for the decoder network to help estimate the 
downlink CSI from UE feedback in massive MIMO 
systems. We designed two DL architectures, Dual-
Net-MAG and DualNet-ABS, to improve the UE 
feedback accuracy. DualNet-MAG and Dual-
Net-ABS can utilize the bi-directional channel cor-
relation of the magnitude and the absolute value of 
the CSI coefficients, respectively. As shown in Fig. 
3c, the decoder in DualNet-MAG reconstructs the 
downlink CSI magnitudes based on the uplink CSI 
magnitudes and its received UE feedback code-
words. We further developed a magnitude-depen-
dent phase quantization method to reduce the UE 
phase feedback overhead. Our work in [1] shows 

better performance by DualNet than the DL archi-
tecture CsiNet relying only on UE feedback.

We can further investigate the influence of 
bi-directional channel band gap and RF chan-
nel bandwidth on the performance of DL-based 
CSI feedback in FDD systems. We test the per-
formance of CsiNet, DualNet-MAG, and Dual-
Net-ABS in different bandwidths and band gaps. 
The central downlink frequencies are set to 5.3 
GHz and 930 MHz for indoor and outdoor scenar-
ios, respectively.

For the indoor scenario, the band gap of 180 
MHz and bandwidth of 20 MHz are selected as 
the baselines for comparison. For the outdoor sce-
nario, the band gap of 75 MHz and bandwidth 
of 5 MHz are set as the baseline. We compare 
the downlink CSI estimates under feedback com-
pression ratios of 1/8, 1/12, and 1/16. A smaller 
ratio implies higher compression in CSI feedback 
and is more efficient. To test the bandwidth effect, 
we double the channel bandwidth by maintain-
ing the same band gap and test the CSI perfor-
mance. To test the band gap effect, we reduce the 
band gap to 0 without changing the bandwidth. As 
shown in Fig. 4, DualNet-ABS and DualNet-MAG 
can improve the downlink CSI recovery accuracy 
by reducing the band gap and/or increasing the 
bandwidth.

In addition to compressing the CSI feedback 
payload on uplink, an alternative is to estimate 
the downlink channel without downlink pilots 
and uplink feedback by utilizing the reciprocity 
between uplink and downlink channels (mostly 
for TDD links). To exploit this bi-directional cor-
relation in FDD, DL networks can be trained to 
approximate an uplink-to-downlink channel map-
ping function, which attempts to extract propaga-
tion information from uplink CSI to a latent domain 
before transferring the derived information from 
the latent domain to estimate the downlink chan-
nel. The authors of [14] trained such CNN to esti-
mate downlink CSI based on the CSI from multiple 
adjacent uplink subcarriers in a single-antenna FDD 
system. Additionally, [14] also utilized temporal 
correlation to predict downlink CSI in future time 
slots. Another work [15] trained a fully connect-
ed DNN to predict FDD downlink CSI based on 
uplink CSI in single-carrier massive MIMO systems.

Exploiting physical CSI correlations with 
DL-based CSI feedback can substantially reduce 
the feedback payload. On the one hand, the result-
ing channel sparsity can be utilized in training and 
data preprocessing to lower model complexity and 
increase feedback efficiency. For example, CSI 
matrices can be transformed from the frequency 
domain to the delay domain to reduce the size of 
the input and corresponding DL model [12]. On 
the other hand, temporal and bi-directional CSI esti-
mates can serve as an auxiliary input to reduce the 
amount of CSI feedback [1, 13]. In fact, bi-direc-
tional CSI correlation allows on the gNB transmitter 

TABLE 1.  Works in DL-based CSI acquisition.

Spatial and spectral correlation Temporal correlation Bi-directional correlation 

Channel estimation
Accuracy enhancement [6], denoising [9, 10], 
pilot reduction [6], mixed-resolution ADCs [7]

Pilot reduction [6], 
mobility environment [8]

Channel calibration [11]

Channel feedback Low-overhead feedback [12] Low-overhead feedback [13]
Channel prediction [14, 15], 
low-overhead feedback [1]

For CsiNet-LSTM, 
only the first MIMO 

CSI matrix of the 
time sequence is 

compressed under a 
moderate compression 

ratio (CR) and recon-
structed by CsiNet. 

The ensuing CSI matri-
ces are encoded at a 

high compression ratio 
owing to the informa-
tion saving from pre-

vious correlated CSIs. 
Consequently, Csi-

Net-LSTM can achieve 
a better compression 

ratio and reduced aver-
age feedback payload.
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to learn the mapping function between the natu-
rally available uplink CSI to directly estimate the 
downlink CSI in both FDD and TDD links. Despite 
a number of preliminary successes, the high com-
plexity of DL models and the diverse characteristics 
of practical wireless channels make massive MIMO 
downlink CSI estimation and prediction highly chal-
lenging. The design of appropriate DL architecture 
of sufficiently low complexity for wideband CSI 
estimation in massive MIMO remains an exciting 
and open problem. 

Open Issues
We have demonstrated the benefits of integrating 
DL to exploit inherent channel correlations for 
downlink CSI estimation in massive MIMO com-
munications. We now discuss several research 
directions to further improve DL-based CSI esti-
mation for future wireless networks.

DL Under Different System Settings: In wire-
less communications, various system parameters 
including antenna settings and spectral settings 
can potentially affect the efficacy of DL-based CSI 
methods. As DL techniques are poised to play 
a more prominent role in future wireless sys-
tems, one crucial work is to assess how effective 
DL-based architectures can be under different sys-
tem settings. Investigating the impact of system 
parameters on DL-based solutions can provide 
better design insights for future development.

Specialized DL Models Combined with Chan-
nel Features: More specialized DL architectures 
for wireless communications are still under study 
and should be developed to incorporate wireless 
channel features and other domain knowledges. 
Most existing DL networks in the physical layer of 
wireless communications directly adopt known DL 

architectures or algorithms. Application-specific 
architectures for wireless networks would depend 
on channel models, signal features, redundancy, 
and other domain-specific knowledge.

As an example of combining bi-directional CSI 
correlation to infer the downlink CSI using uplink 
CSI, three architectures are tested.1 CSI matrices 
are transformed to the delay domain from the 
frequency domain first, and then the small frac-
tion of large components are kept to reduce the 
model complexity. Unlike DualNet-ABS and Dual-
Net-MAG, U2D-ABS and U2D-MAG respective-
ly recover the absolute values and magnitudes of 
downlink CSI from the corresponding uplink CSI 
directly without feedback. U2D-ORG divides the 
downlink CSI into real and imaginary parts with-
out separating their signs as the DL network input. 
Using the data set from above, we consider perfect 
knowledge of phases and signs of downlink CSI at 
gNB. The performance of Fig. 5 shows improved 
downlink CSI accuracy from U2D-ABS and 
U2D-MAG for reduced band gap and increased 
bandwidth. U2D-MAG is superior in all cases. By 
reducing the feedback payload, U2D-ABS and 
U2D-MAG show more considerable promise for 
better downlink CSI estimation efficiency.

Low Complexity Channel Estimation: Existing 
works and designs have demonstrated the power 
of integrating channel correlations with DL in mas-
sive MIMO channel estimation of FDD systems by 
reducing the cost in terms of training and UE side 
feedback payload. These results and new findings 
are expected to impact the future development 
of massive wireless communications. On the one 
hand, exploiting channel correlations requires 
more inputs and parameters in the underlying DL 
architecture, particularly with respect to time-vary-
ing channels. Consequently, there is a price to pay 
in terms of the DL model complexity and training 
time. To limit model complexity without sacrific-
ing CSI estimation accuracy, experienced engi-
neers should explore other physical insights and 
investigate effective DL methods by leveraging 
domain knowledge. We also note that individual 
UE node, with limited battery capacity and com-
putation power, should only be with lower com-
plexity DL tasks. Specifically, the encoder module 
at UE for the CSI feedback must be kept simple.

Transfer Learning-Based Channel Estimation: 
Existing works related to massive MIMO channel 
estimation can achieve satisfactory performance 
under a given environment, but it is hard to adapt 
to channels in a new environment with different 
correlations directly. By avoiding model learning 
from scratch, transfer learning can often simplify 
training in a new configuration and allows DL net-
works to achieve good CSI estimates even with-
out access or time to process large volumes of 
training data. Practically, there are many active 
UEs and gNBs in wireless networks. Therefore, by 
leveraging prior knowledge, transfer learning is a 
potentially valuable direction in practical imple-
mentation of DL in massive MIMO systems. 

Unsupervised Learning-Based Channel Esti-
mation: Most DL-based channel estimation 
methods require ground truth data to train the 
mapping from measured pilot signals to CSI. 
However, ground truth channel data is not always 
available in the practical deployment of massive 
MIMO networks. To eliminate the requirement of 

FIGURE 4. CSI feedback performance under the 
influence of band gap (BG) and bandwidth 
(BW): a) indoor; b) outdoor.

(a)

(b)

1 Details and related codes 
are provided on: https://
ieee-collabratec.ieee.org/app/
workspaces/6247/activities. 

Despite a number of 
preliminary successes, 
the high complexity 
of DL models and the 
diverse characteristics 
of practical wireless 
channels make massive 
MIMO downlink CSI 
estimation and predic-
tion highly challenging. 
The design of appropri-
ate DL architecture of 
sufficiently low com-
plexity for wideband 
CSI estimation in mas-
sive MIMO remains 
an exciting and open 
problem.
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labeled CSI or ground truth CSI, deep unfolding 
networks which can reconstruct the signal from 
noisy measurements can be used for massive 
MIMO channel estimation. Similar to the struc-
ture of RNN, the deep unfolding network takes 
an iterative CS algorithm with limited iterations, 
unfolds its structure, and introduces a number of 
trainable parameters. Unlike the conventional CS 
algorithms, deep unfolding networks experience 
much less delay with the help of a graphics pro-
cessing unit (GPU) and higher recovery accuracy 
by adjusting the trainable parameters.

Conclusion
DL has recently emerged as an exciting design 
tool in developing future wireless communica-
tion systems. In this article, we introduce the basic 
principles of applying DL for improving RF wire-
less network performance through the integration 
of underlying physical channel characteristics in 
practical massive MIMO deployment. We pro-
vide important insights into how DL benefits from 
physical RF channel properties and present a com-
prehensive overview on the application of DL for 
accurately estimating CSI in massive MIMO com-
munications. We provide examples of successful 
DL application in CSI estimation and feedback 
for massive MIMO wireless systems and outline 
several promising directions for future research.
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FIGURE 5. CSI recovery performance comparison 
in different band gap (BG) and bandwidth 
(BW): a) indoor; b) outdoor.

U2D-ORG U2D-ABS U2D-MAG
-15

-10

-5

0

N
M

S
E

(d
B

)

Baseline
BG 0MHz
BW Double

U2D-ORG U2D-ABS U2D-MAG
-8

-6

-4

-2

0

N
M

S
E

(d
B

)
Baseline
BG 0MHz
BW Double

(a)

(b)

To limit model com-
plexity without sacri-
ficing CSI estimation 

accuracy, experienced 
engineers should 

explore other physical 
insights and investigate 

effective DL methods 
by leveraging domain 

knowledge. We also 
note that individual 

UE node, with limited 
battery capacity and 
computation power, 
should only be with 

lower complexity  
DL tasks.
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