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CHANNEL ESTIMATION BARRIER IN MASSIVE MIMO
COMMUNICATION VIA DEEP LEARNING

Zhenyu Liu, Lin Zhang, and Zhi Ding

ABSTRACT

A new wave of wireless services, including vir-
tual reality, autonomous driving and Internet of
Things, is driving the design of new generations
of wireless systems to deliver ultra-high data rates,
massive numbers of connections and ultra-low
latency. Massive multiple-input multiple-output
(MIMO) is one of the critical underlying technol-
ogies that allow future wireless networks to meet
these service needs. This article discusses the appli-
cation of deep learning (DL) for massive MIMO
channel estimation in wireless networks by inte-
grating the underlying characteristics of channels in
future high-speed cellular deployment. We develop
important insights derived from the physical radio
frequency (RF) channel properties and present a
comprehensive overview on the application of DL
for accurately estimating channel state information
(CSD with low overhead. We provide examples of
successful DL application in CSI estimation for mas-
sive MIMO wireless systems and highlight several
promising directions for future research.

INTRODUCTION

Current and future generations of wireless net-
works must cope with the continuous and rapid
growth of applications and data traffic to deliver
ultra-high data rate over a wide coverage area
for a massive number of connected devices and
to support low-latency applications. One of the
most important technical advances at the radio
frequency (RF) physical layer is the emergence
of massive multiple-input multiple-output (MIMO)
transceivers. By exploiting spatial diversity and
multiplexing gains, massive MIMO can help
improve spectrum efficiency and robustness of
wireless communication systems under limited
bandwidth and channel fading. To fully utilize
their potential gains, massive MIMO transmitters
require sufficiently accurate channel state informa-
tion (CSI) on the forward link.

However, the need for accurate CSI in massive
MIMO systems poses serious challenges to the
traditional channel estimation and feedback tech-
niques. On the one hand, owing to the large num-
ber of antennas and the wide bandwidth, channel
estimation in massive MIMO systems suffers from
high signal acquisition costs and large training
overhead. On the other hand, different uplink and

downlink frequency bands in frequency division
duplex (FDD) mode lead to weaker reciprocity
between the two channels. Consequently, gNB
(or gNodeB) transmitters in FDD networks would
require user equipment (UE) to provide downlink
CSl feedback frequently, which can consume a
staggering amount of uplink channel capacity in
massive MIMO communication.

Recently, deep learning (DL) has emerged as a
powerful tool for learning the underlying structures
from large measurement of data, and has achieved
notable success in areas including computer vision
and natural language processing. Although still
in a nascent stage, DL has recently found sever-
al interesting applications in the physical layer of
wireless communications, including low rate CSI
feedback, channel estimation and signal detection,
among others. However, how to effectively apply
DL techniques to enhance the estimation accuracy
and efficiency by exploiting RF channel properties
remains an open research issue, as many existing
works do not explicitly utilize the physical RF char-
acteristics and provide insufficient physical insights
despite apparent successes.

In wireless communications, there exists a
wealth of expert knowledge on various channel
models for designing and achieving fast and reli-
able data links. Specifically, MIMO channels exhib-
it a number of important physical characteristics
including spatial correlation, spectral correlation
and temporal correlation. Based on these special
characteristics of physical wireless channels, appro-
priately designed DL architectures and algorithms
can potentially help increase the accuracy and
robustness of CSI estimation in massive MIMO
links. Clearly, how to configure, adapt and improve
such tools for accurate CSI estimation by massive
MIMO gNB represents an important technical bar-
rier, as well as an exciting and promising research
issue.

In this article, we elaborate the insight of inte-
grating channel correlation with DL-based channel
estimation, present an overview of the integra-
tion of DL in massive MIMO systems, and outline
some future research directions. The rest of this
article is organized as follows. The next section
introduces the challenges in massive MIMO chan-
nel estimation using conventional methods. Then,
we introduce the important basis of DL and three
correlations in wireless channels for reducing the

Digital Object Identifier:
10.1109/MWC.001.1900413

Zhenyu Liu and Lin Zhang are with Beijing University of Posts and Telecommunications;
Zhi Ding (corresponding author) is with University of California, Davis.

104 1536-1284/20/$25.00 © 2020 IEEE IEEE Wireless Communications * October 2020



overhead required in channel estimation. Following
that, we present an overview of integrating channel
correlations with DL in massive MIMO CSI acqui-
sition. We then discuss open research issues in
DL-based channel estimation before this article is
concluded.

CHALLENGES IN CHANNEL ESTIMATION

In massive MIMO systems, an accurate acquisi-
tion of CSl is essential to achieve spectrum and
energy efficiency. One of the most widely used
approaches in massive MIMO channel estimation
is employing pilot signals to estimate the chan-
nel. With the received data and the knowledge of
training symbols, least square (LS) and minimum
mean square error (MMSE) can be used to infer
the CSI. Although the LS method is well known
for its low complexity, the estimation accuracy is
usually not satisfying. MMSE can achieve accurate
CSl estimation, but it requires channel correlation
matrix and noise variance as prior information, and
also suffers from high computation complexity.

The complex channel conditions and low-cost
hardware also raise the situations where the tra-
ditional methods generate limited performance.
On the one hand, pilot contamination can signifi-
cantly degrade the system’s performance due to
the noise and the limited number of orthogonal
pilots, which hence have to be reused in adjacent
cells. On the other hand, due to the fast time-vary-
ing and non-stationary characteristics, it is hard
for massive MIMO systems to design an efficient
channel estimation algorithm in high mobility envi-
ronments. In addition, the requirements of milli-
meter-wave (mmWave) massive MIMO also bring
new challenges. Due to the limited physical space
with closely placed antennas and prohibitive power
consumption in mmWave massive MIMO systems,
it is difficult to equip a dedicated RF chain for each
antenna. Consequently, channel estimation under
a limited number of RF chains and low-resolu-
tion analog-to-digital converters (ADCs) becomes
essential.

Even if the UEs have succeeded in acquiring
accurate downlink CSlI, the feedback of CSI to the
gNB is still challenging with affordable overhead
in FDD massive MIMO systems. Due to massive
antennas at the gNB, each UE has to feedback the
CSl associated with hundreds of transmit antennas
and large bandwidth, which results in prohibitive
feedback overhead. While codebook-based CSI
quantization is time-efficient, the resulting compres-
sion often consumes too much uplink bandwidth
to be practical.

To overcome challenges in massive MIMO
systems, compressive sensing (CS) has been stud-
ied for channel estimation and channel feedback.
CS-based approaches exploit the spatial coherence
and channel sparsity that stem from the limited
scattering characteristics of signal propagation and
strong spatial correlation inherent in the anten-
nas at the gNB, and can formulate a compressed
representation of CSI matrices. However, there
are also limitations. For example, most CS-based
approaches impose strong channel sparsity in
some domain which may not hold exactly. When
the CSI matrix is not exactly sparse on the chan-
nel sampling grids, it may lead to degraded per-
formance due to the power leakage effect around
the recovered discrete CSI samples. Furthermore,

CS-based approaches are often iterative, which can
cause additional delay. Consequently, new meth-
ods are required to enhance the CSI estimation
performance in massive MIMO systems.

DEEP NETWORKS FOR CHANNEL ESTIMATION

As a powerful tool to extract the underlying fea-
tures from the measured data, DL is expected to
provide improved solutions to the complicated
problems in massive MIMO communications. In
this section, we introduce the basics of several
relevant neural networks for DL-based channel
estimation.

Fully Connected Deep Neural Network
(DNN): Fully connected DNNs can extract appro-
priate features for classification and regression,
as shown in Fig. Ta. Starting by sending measure-
ment data to the input layer, each successive layer
attempts feature extraction from the input data,
gradually accentuating features that affect deci-
sion making while suppressing irrelevant features.
Through the optimization of network parameters,
DNN can be trained to capture underlying data
structures and models despite outliers and noises.

Convolutional Neural Networks (CNNs):
CNN'ss have been widely applied in problems such
as image processing. As shown in Fig. 1b, CNNs
specialize in processing data with grid-like struc-
tures and include special layers for functions such
as convolution and pooling. By stacking the con-
volutional and pooling layers alternately, CNN
can progressively learn complex models. Con-
sidering the correlation in spatial, temporal, or
spectral domains, CSI matrices of massive MIMO
systems can often be viewed as two-dimensional
images. CNNs have strong potential for success in
channel estimation.

Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM): RNN is a class of
neural networks that exploit sequential informa-
tion by using earlier outputs as part of inputs in
the later time. Unlike the above two neural net-
works, RNNs use internal state to store the pre-
vious information that has been calculated. An
RNN consisting of LSTM units is often known as
an LSTM network. LSTM networks can handle
exploding and vanishing gradients in traditional
RNNs, and work well in prediction and classifica-
tion according to time series data. Exploiting the
temporal correlation of CSI, RNN and LSTM can
further improve the accuracy of CSI estimation.

Autoencoder: An autoencoder is a neural net-
work trained to efficiently regenerate its input. As
shown in the structure of Fig. 1d, modern autoen-
coders have generalized the idea of an encoder
and a decoder beyond deterministic functions to
stochastic mappings. An autoencoder can acquire
compressed but robust representations of its input
and can be highly effective and efficient in dimen-
sion reduction or feature learning. From a DL
perspective, CSI feedback within a wireless com-
munication system can be viewed as a particular
type of autoencoder, which aims to recover the
downlink CSI at the gNB based on its received
CSI that was compressed and sent by the UE.

EXPLOMING WIRELESS CHANNEL CORRELATIONS

Learning and exploiting channel correlations in
massive MIMO can substantially benefit CSI esti-
mation and feedback for massive MIMO. In our

Due to massive anten-
nas at the gNB, each
UE has to feedback the
CSl associated with
hundreds of transmit
antennas and large
bandwidth, which
results in prohibitive
feedback overhead.
While codebook-based
CSI quantization is
time-efficient, the
resulting compression
often consumes too
much uplink bandwidth
to be practical.
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With the help of tem-
poral correlation, UE
can encode and feed
back the CSI variations,
instead of the full CSI.
The gNB can combine
the new feedback with
its previously estimated
CSI within coherence
time for subsequent
CSI reconstruction. The
temporal correlation
feature is a good match
with the capabilities of
RNN and LSTM that
are effective in sequen-
tial data processing.
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FIGURE 1. Commonly utilized deep learning architectures.
work [1], we have presented a DL-based CSI TEMPORAL CORRELATION

feedback solution for massive MIMO communi-
cations. We achieved high efficiency by exploiting
the underlying spatial correlation and the correla-
tion between uplink and downlink. Stimulated by
this and other preliminary successes, we investi-
gate the underlying CSI data structure in terms
of spatial and spectral correlation, temporal cor-
relation, and bi-directional correlation of channels
for channel estimation in massive MIMO systems.
Note that, however, these physical characteristics
also apply for conventional MIMO systems and
can reduce the amount of necessary CSI feed-
back from UEs.

SPATIAL AND SPECTRAL CORRELATION

Spatial and spectral correlation of CSI has been
commonly exploited in CS-based feedback and
CSl estimation. Physical RF propagation elements
such as multipaths and scatters provide the foun-
dation of spatial and spectral correlation. For a
given gNB, channels are governed by cell-specific
attributes such as the buildings, ground and vehi-
cles. Smaller antenna separation leads to higher
spatial correlation in massive MIMO. Since the
physical size of antenna arrays at gNB is small com-
pared to path distance, paths between different
gNB-UE antenna pairs share some common prop-
erties [2]. On the other hand, spectral coherence
measures channel similarity across frequency. For
subcarriers within channel coherence bandwidth,
their channels exhibit strong correlation. Influenced
by the spatial and spectral correlation, massive
MIMO channels exhibit some sparsity in the cor-
responding transform domains including virtual
angular domain and delay domain, which can be
leveraged in channel estimation and feedback to
formulate a sparse signal recovery problem. Unlike
the traditional approaches that often require rea-
sonably accurate correlation models, DL can learn
and exploit these underlying channel correlation
structures to reduce the CSI feedback overhead
and increase the estimation accuracy.

It is well known that even for the mobile environ-
ment under severe Doppler effect, RF channel
responses are temporally correlated in typical
massive MIMO configurations. For mobile users,
coherence time can measure the temporal chan-
nel variations and describes the Doppler effect
caused by mobility. Since gNB and UE can store
their previous CSI estimates, temporal correlation
of massive MIMO channels can be exploited to
reduce the amount of pilots and UE feedback in
downlink CSI estimation. With the help of tem-
poral correlation, UE can encode and feed back
the CSl variations, instead of the full CSI. The gNB
can combine the new feedback with its previously
estimated CSI within coherence time for subse-
quent CSI reconstruction. The temporal correla-
tion feature is a good match with the capabilities
of RNN and LSTM that are effective in sequential
data processing.

BI-DIRECTIONAL CORRELATION

Historically, the uplink-downlink channel reci-
procity has predominantly been utilized by time
division duplex (TDD) gNB to infer downlink CSlI
from its own uplink CSI estimate. For FDD sys-
tems, however, RF components that positively
superimpose in one frequency band may cancel
each other in another. Hence, FDD uplink-down-
link channels do not exhibit direct reciprocity.
Nevertheless, because of the shared propagation
environment, correlation still exists between the
two. For example, the angles of arrival of signals
in the uplink transmission are almost the same as
the angles of departure of signals in the downlink
transmission. When the band gap between uplink
and downlink channels is moderate, both links
should share similar propagation characteristics
including scattering effects. Such correlation can
be exploited by gNB for CSI acquisition in mas-
sive MIMO systems.

Existing works have demonstrated certain levels
of correlation between bi-directional channels for
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FDD systems. The directional properties of uplink
and downlink FDD channels have been shown as
correlated [3]. Downlink channel covariance esti-
mation can also benefit from the observed uplink
covariance. Similarly, although channel respons-
es could vary for different downlink and uplink
frequency bands, their multipath delays remain
physically the same. In [4], the multipath delay
reciprocity and angle reciprocity have been ver-
ified by the channel measurements. Thus, to uti-
lize the bi-directional channel correlation, channel
response matrix from the frequency domain should
be transformed to the delay domain using inverse
Fourier transform. Compared with the frequency
domain, the reciprocity in the delay domain is evi-
dent owing to the shared multipath delays.

To demonstrate the bi-directional correlation,
we illustrate the correlation coefficient between
uplink and downlink FDD channels obtained
through numerical tests in Fig. 2. The COST 2100
channel model [5] is utilized to generate the uplink
and downlink CSI matrices. The COST 2100 chan-
nel model is a geometry-based stochastic channel
model that can capture the stochastic properties
of MIMO channels over frequency, space and
time. Specifically, random scatterer positions are
generated according to a probability density func-
tion before generating the corresponding channel
response. In this way, this model can generate a
large set of random channels typically encoun-
tered by wireless networks in the real world [5].
5.1 GHz uplink and 5.3 GHz downlink channel
responses are generated with the bandwidths of
20 MHz. We place gNB at the center of a square
area with lengths of 20 meters for indoor coverage
and randomly place UEs within the coverage area.
The gNB uses uniform linear array (ULA) with 32
antennas and 1024 subcarriers. After transforming
the channel matrix into the delay domain, only the
first 32 rows are retained due to sparsity. 10,000
items are generated for the correlation evaluation.
As shown in Fig. 2, the correlation coefficients
between uplink CSI and downlink CSI using the
“original” (real/imaginary) format are quite erratic.
Since the CSl is complex-valued, their real part and
imaginary part correlations are evaluated. The test
results appear to show weak correlation between
corresponding downlink-uplink channel responses.

A closer examination of the physics reveals
that in FDD, CSls of two carriers in different fre-
quencies may have uncorrelated phases. How-
ever, based on FDD multipath channel models,
the CSI magnitudes in the delay domain should
exhibit much stronger correlation. To confirm,
we transform the CSI elements into polar coor-
dinates to separately consider their magnitude
and phase correlations. Figure 2 shows that the
corresponding magnitudes of uplink and down-
link CSlIs exhibit strong correlation whereas their
corresponding phases show very weak correla-
tion. In fact, even by removing the signs from the
CSl’s real and imaginary parts, Fig. 2 shows that
the absolute values (ABS) of uplink and down-
link CSI coefficients are also strongly correlat-
ed. However, their signs show little correlation.
These results demonstrate some shared charac-
teristics between uplink and downlink channels
in the delay domain. This observation provides
the basic principle for utilizing magnitude correla-
tion between uplink and downlink channels in

1r Median
E O Mean
———175% Cl
E E : " @ ........ 95% Cl
£ 05F | — £
2
L
=
©
3
c Or IS =
§el
ks
g
S o
O -05r - T et
_1 1 1 1 1 1
Original Magnitude  Phase ABS Sign

FIGURE 2. Distribution of correlation coefficient between uplink and downlink

CSl at various levels of Confidence Interval (Cl) [1].

the delay domain for estimating CSI of massive
MIMO systems.

DL-BASED CSI ESTIMATION

To present a clearer perspective and context, in
this section we introduce the applications of deep
networks and underlying channel characteristics
in designing and improving channel estimation
and feedback systems.

CHANNEL ESTIMATION

Massive MIMO has been viewed as an important
technique for 5G and beyond, while there are still
some channel estimation barriers to be overcome.

Orthogonal frequency division multiplexing
(OFDM), as a technology used in 5G, exploits the
received pilots in some sparsely and evenly placed
grids to infer the CSls in the overall grids. How-
ever, the performances of LS and MMSE estima-
tors are not satisfying due to the accuracy and the
requirement for prior information, respectively. To
conduct a capable estimator, channel estimation
using the CSls in the pilot locations can be mod-
eled as a low-resolution image processing problem
in DL. With the help of channel correlations, DL
networks can be used to interpolate the CSls in
the missing locations and reconstruct a high-res-
olution CSI matrix. In [6], a spatial pilot-reduced
CNN (SPR-CNN) is designed to save spatial pilot
overhead for massive MIMO-OFDM channel esti-
mation. Specifically, CNN is utilized to exploit the
spatial and spectral correlation to enhance the
channel estimation accuracy, while a channel esti-
mation unit with memory is utilized to group and
cache channels in successive coherence intervals
and incorporate the temporal correlation. Numer-
ical results demonstrate that the SPR-CNN based
approach can save two thirds of spatial pilot over-
head with minor performance loss. Also, DL can be
used to reduce the influence of quantization distor-
tion from the low-resolution ADCs by mapping the
signals from high-resolution ADC antennas to those
of low-resolution ADC antennas with the help of
spatial correlation [7].

CSI estimation in massive MIMO is more diffi-
cult in high mobility environments due to the fast
time-varying and non-stationary channel character-
istics. To adapt the characteristics of fast time-vary-
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FIGURE 3. CSI feedback architectures: a) architecture of CsiNet in [12]; b) architecture of CsiNet-LSTM in [13]; ¢) architecture of

DualNet-MAG in [1].

ing channels, LSTM networks, which have inherent
memory cells to keep the previously extracted
information, can be used to learn the temporal cor-
relation and make the CSI prediction. In [8], a DL
network has been proposed to handle the massive
MIMO channel estimation problem in high-speed
mobile scenarios by exploiting the temporal cor-
relation as well as the spatial and spectral correla-
tion. Specifically, the CSI data between all pairs
of antennas in the frequency domain and time
domain are treated as a 4-dimensional tensor as
the input to the DL network. Then, CNN is used
to mimic the interpolation processes for the CSI
in no-pilot locations in the spatial and frequency
domains, and LSTM units are used to learn the
temporal channel variation for CSI prediction. Sim-
ulation results show that this DL-based method is
superior to LS and linear minimum mean squared
error (LMMSE) method in high-speed mobile sce-
narios.

Another major issue of CSI estimation in mas-
sive MIMO systems is the estimation error caused
by channel noise and pilot contamination (i.e.,
interference among pilot symbols transmitted by
users in neighboring cells). As DL techniques have
benefited from image denoising, a CNN-based
denoising network can mitigate noise and interfer-
ence effects. With the help of features extracted
from spatial, spectral and temporal correlations,
denoising can substantially improve the perfor-
mance of conventional and DL-based solutions.
In [9], taking the received signal in the spatial,
frequency, and time domains as a 3-dimensional
input data, a CNN-based deep image prior net-
work designed to denoise can extract the received
signal before channel estimation for multi-cell inter-
ference-limited massive MIMO systems. Next, by
applying denoised data with LS, this estimator can
approach the MMSE estimator performance for
high-dimensional signals. In [10], a denoising CNN
has been designed to enhance the performance

of the approximate message passing (AMP) algo-
rithm, which can recover the high-dimensional
beamspace massive MIMO channel that exhibits
sparsity with low computational complexity. The
results show that this learning-based denoising
AMP scheme can outperform the AMP schemes
using conventional denoisers.

By exploiting channel correlations, DL can
be exploited to develop new channel estimation
methods and to enhance the performance of con-
ventional ones. The integration of DL and channel
correlations in CSI estimation can be summarized
as follows. First, owing to the physical correlations
in the spatial, frequency and time domains, CNN-
based techniques that have been successful in
high-resolution image restoration can be helpful in
pilot reduction and CSI interpolation. Also, RNN
can improve the estimation and prediction accu-
racy for fast time-varying channels. Second, using
CNN to exploit the inherent CSI correlations, CSI
estimates can be more robust against channel noise
and quantization error effects. Furthermore, based
on many successful applications of DL network
in capturing nonlinear functional relationships, DL
can better incorporate bi-directional correlation to
further improve TDD channel calibration accuracy
in massive MIMO systems [11]. We note, however,
that the optimization on the allocation and place-
ment of pilots for DL-based channel estimation in
a specific environment remains an open problem
under investigation, particularly since CSI correla-
tions vary with the environment.

CHANNEL FEEDBACK
By integrating the DL with channel properties,
there are research works showing substantial per-
formance improvement for downlink CSI acqui-
sition (Table 1) in FDD massive MIMO systems

with limited feedback resources.
The authors of [12] proposed a DL-based Csi-
Net, as illustrated in Fig. 3a, to reduce UE feed-
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Spatial and spectral correlation

Temporal correlation Bi-directional correlation

Channel estimation Accuracy enhancement [6], denoising [9, 10],
pilot reduction [6], mixed-resolution ADCs [7]

Channel feedback Low-overhead feedback [12]

TABLE 1. Works in DL-based CSI acquisition.

back overhead in massive MIMO systems. Under
the structure of autoencoder, CsiNet uses the
encoder for CSI compression and decoder for CSI
reconstruction. CNN is used in both encoder and
decoder to exploit the spatial and spectral correla-
tion, in a similar way to image processing. Owing
to the path delay range limitation among multiple
paths and spectral correlation, CSI matrix can be
transformed into the delay domain and truncated
to slots that are with distinct non-zero values first,
which can reduce the model size and complex-
ity. The CSI matrix is then separated to real and
imaginary parts, which correspond to the two sets
of input in this neural network. CsiNet shows sub-
stantial performance gain and efficiency over some
compressive sensing methods.

To further improve the feedback efficiency,
temporal correlation can be utilized by decreasing
the redundancy in the adjacent feedback code-
words. In [13], a DL network named CsiNet-LSTM
has been designed for time-varying massive MIMO
channels. To exploit temporal channel correlation,
as shown in Fig. 3b, the codewords at t1 are uti-
lized as an auxiliary input of the decoder networks
for the later moments to eliminate the correspond-
ing information in the new codewords, and LSTM
networks are adopted to process sequential CSI
matrices for extracting the temporal relationship
therein. Using these two ways, the redundancy
in codewords owing to the temporal correlation
can be degraded. For CsiNet-LSTM, only the first
MIMO CSI matrix of the time sequence is com-
pressed under a moderate compression ratio (CR)
and reconstructed by CsiNet. The ensuing CSI
matrices are encoded at a high compression ratio
owing to the information saving from previous
correlated CSls. Consequently, CsiNet-LSTM can
achieve a better compression ratio and reduced
average feedback payload.

Similar to the temporal correlation, the cor-
related uplink CSI due to the bi-directional correla-
tion can also be used to enhance the downlink
CSI feedback efficiency. In [1], we proposed a
DL-based CSI feedback framework to exploit bi-di-
rectional channel correlation characteristics. Unlike
CsiNet and CsiNet-LSTM, DualNet in [1] exploits
the available uplink CSI at gNB as an auxiliary
input for the decoder network to help estimate the
downlink CSI from UE feedback in massive MIMO
systems. We designed two DL architectures, Dual-
Net-MAG and DualNet-ABS, to improve the UE
feedback accuracy. DualNet-MAG and Dual-
Net-ABS can utilize the bi-directional channel cor-
relation of the magnitude and the absolute value of
the CSI coefficients, respectively. As shown in Fig.
3¢, the decoder in DualNet-MAG reconstructs the
downlink CSI magnitudes based on the uplink CSI
magnitudes and its received UE feedback code-
words. We further developed a magnitude-depen-
dent phase quantization method to reduce the UE
phase feedback overhead. Our work in [1] shows

Pilot reduction [6],

T Bl Channel calibration [11]

Channel prediction [14, 15],

Low-overhead feedback [13] e

better performance by DualNet than the DL archi-
tecture CsiNet relying only on UE feedback.

We can further investigate the influence of
bi-directional channel band gap and RF chan-
nel bandwidth on the performance of DL-based
CSI feedback in FDD systems. We test the per-
formance of CsiNet, DualNet-MAG, and Dual-
Net-ABS in different bandwidths and band gaps.
The central downlink frequencies are set to 5.3
GHz and 930 MHz for indoor and outdoor scenar-
ios, respectively.

For the indoor scenario, the band gap of 180
MHz and bandwidth of 20 MHz are selected as
the baselines for comparison. For the outdoor sce-
nario, the band gap of 75 MHz and bandwidth
of 5 MHz are set as the baseline. We compare
the downlink CSI estimates under feedback com-
pression ratios of 1/8, 1/12, and 1/16. A smaller
ratio implies higher compression in CSI feedback
and is more efficient. To test the bandwidth effect,
we double the channel bandwidth by maintain-
ing the same band gap and test the CSI perfor-
mance. To test the band gap effect, we reduce the
band gap to 0 without changing the bandwidth. As
shown in Fig. 4, DualNet-ABS and DualNet-MAG
can improve the downlink CSI recovery accuracy
by reducing the band gap and/or increasing the
bandwidth.

In addition to compressing the CSI feedback
payload on uplink, an alternative is to estimate
the downlink channel without downlink pilots
and uplink feedback by utilizing the reciprocity
between uplink and downlink channels (mostly
for TDD links). To exploit this bi-directional cor-
relation in FDD, DL networks can be trained to
approximate an uplink-to-downlink channel map-
ping function, which attempts to extract propaga-
tion information from uplink CSI to a latent domain
before transferring the derived information from
the latent domain to estimate the downlink chan-
nel. The authors of [14] trained such CNN to esti-
mate downlink CSI based on the CSI from multiple
adjacent uplink subcarriers in a single-antenna FDD
system. Additionally, [14] also utilized temporal
correlation to predict downlink CSl in future time
slots. Another work [15] trained a fully connect-
ed DNN to predict FDD downlink CSI based on
uplink CSI in single-carrier massive MIMO systems.

Exploiting physical CSI correlations with
DL-based CSI feedback can substantially reduce
the feedback payload. On the one hand, the result-
ing channel sparsity can be utilized in training and
data preprocessing to lower model complexity and
increase feedback efficiency. For example, CSI
matrices can be transformed from the frequency
domain to the delay domain to reduce the size of
the input and corresponding DL model [12]. On
the other hand, temporal and bi-directional CSI esti-
mates can serve as an auxiliary input to reduce the
amount of CSI feedback [1, 13]. In fact, bi-direc-
tional CSI correlation allows on the gNB transmitter

For CsiNet-LSTM,
only the first MIMO
CSI matrix of the

time sequence is
compressed under a
moderate compression
ratio (CR) and recon-
structed by CsiNet.
The ensuing CSI matri-
ces are encoded at a
high compression ratio
owing to the informa-
tion saving from pre-
vious correlated CSls.
Consequently, Csi-
Net-LSTM can achieve
a better compression
ratio and reduced aver-
age feedback payload.
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Despite a number of
preliminary successes,
the high complexity

of DL models and the
diverse characteristics
of practical wireless
channels make massive
MIMO downlink CSI
estimation and predic-
tion highly challenging.
The design of appropri-
ate DL architecture of
sufficiently low com-
plexity for wideband
CSI estimation in mas-
sive MIMO remains

an exciting and open
problem.

1 Details and related codes
are provided on: https://
ieee-collabratec.ieee.org/app/
workspaces/6247/activities.

[l 5aseline
I BG OMHz

Compression ratio

FIGURE 4. CSI feedback performance under the
influence of band gap (BG) and bandwidth
(BW): a) indoor; b) outdoor.

to learn the mapping function between the natu-
rally available uplink CSI to directly estimate the
downlink CSI'in both FDD and TDD links. Despite
a number of preliminary successes, the high com-
plexity of DL models and the diverse characteristics
of practical wireless channels make massive MIMO
downlink CSI estimation and prediction highly chal-
lenging. The design of appropriate DL architecture
of sufficiently low complexity for wideband CSI
estimation in massive MIMO remains an exciting
and open problem.

OPEN ISSUES

We have demonstrated the benefits of integrating
DL to exploit inherent channel correlations for
downlink CSI estimation in massive MIMO com-
munications. We now discuss several research
directions to further improve DL-based CSI esti-
mation for future wireless networks.

DL Under Different System Settings: In wire-
less communications, various system parameters
including antenna settings and spectral settings
can potentially affect the efficacy of DL-based CSlI
methods. As DL techniques are poised to play
a more prominent role in future wireless sys-
tems, one crucial work is to assess how effective
DL-based architectures can be under different sys-
tem settings. Investigating the impact of system
parameters on DL-based solutions can provide
better design insights for future development.

Specialized DL Models Combined with Chan-
nel Features: More specialized DL architectures
for wireless communications are still under study
and should be developed to incorporate wireless
channel features and other domain knowledges.
Most existing DL networks in the physical layer of
wireless communications directly adopt known DL

architectures or algorithms. Application-specific
architectures for wireless networks would depend
on channel models, signal features, redundancy,
and other domain-specific knowledge.

As an example of combining bi-directional CSI
correlation to infer the downlink CSI using uplink
CSI, three architectures are tested.’ CSI matrices
are transformed to the delay domain from the
frequency domain first, and then the small frac-
tion of large components are kept to reduce the
model complexity. Unlike DualNet-ABS and Dual-
Net-MAG, U2D-ABS and U2D-MAG respective-
ly recover the absolute values and magnitudes of
downlink CSI from the corresponding uplink CSI
directly without feedback. U2D-ORG divides the
downlink CSI into real and imaginary parts with-
out separating their signs as the DL network input.
Using the data set from above, we consider perfect
knowledge of phases and signs of downlink CSI at
gNB. The performance of Fig. 5 shows improved
downlink CSI accuracy from U2D-ABS and
U2D-MAG for reduced band gap and increased
bandwidth. U2D-MAG is superior in all cases. By
reducing the feedback payload, U2D-ABS and
U2D-MAG show more considerable promise for
better downlink CSI estimation efficiency.

Low Complexity Channel Estimation: Existing
works and designs have demonstrated the power
of integrating channel correlations with DL in mas-
sive MIMO channel estimation of FDD systems by
reducing the cost in terms of training and UE side
feedback payload. These results and new findings
are expected to impact the future development
of massive wireless communications. On the one
hand, exploiting channel correlations requires
more inputs and parameters in the underlying DL
architecture, particularly with respect to time-vary-
ing channels. Consequently, there is a price to pay
in terms of the DL model complexity and training
time. To limit model complexity without sacrific-
ing CSI estimation accuracy, experienced engi-
neers should explore other physical insights and
investigate effective DL methods by leveraging
domain knowledge. We also note that individual
UE node, with limited battery capacity and com-
putation power, should only be with lower com-
plexity DL tasks. Specifically, the encoder module
at UE for the CSI feedback must be kept simple.

Transfer Learning-Based Channel Estimation:
Existing works related to massive MIMO channel
estimation can achieve satisfactory performance
under a given environment, but it is hard to adapt
to channels in a new environment with different
correlations directly. By avoiding model learning
from scratch, transfer learning can often simplify
training in a new configuration and allows DL net-
works to achieve good CSI estimates even with-
out access or time to process large volumes of
training data. Practically, there are many active
UEs and gNBs in wireless networks. Therefore, by
leveraging prior knowledge, transfer learning is a
potentially valuable direction in practical imple-
mentation of DL in massive MIMO systems.

Unsupervised Learning-Based Channel Esti-
mation: Most DL-based channel estimation
methods require ground truth data to train the
mapping from measured pilot signals to CSI.
However, ground truth channel data is not always
available in the practical deployment of massive
MIMO networks. To eliminate the requirement of

110

IEEE Wireless Communications * October 2020



labeled CSI or ground truth CSI, deep unfolding
networks which can reconstruct the signal from
noisy measurements can be used for massive
MIMO channel estimation. Similar to the struc-
ture of RNN, the deep unfolding network takes
an iterative CS algorithm with limited iterations,
unfolds its structure, and introduces a number of
trainable parameters. Unlike the conventional CS
algorithms, deep unfolding networks experience
much less delay with the help of a graphics pro-
cessing unit (GPU) and higher recovery accuracy
by adjusting the trainable parameters.

CONCLUSION

DL has recently emerged as an exciting design
tool in developing future wireless communica-
tion systems. In this article, we introduce the basic
principles of applying DL for improving RF wire-
less network performance through the integration
of underlying physical channel characteristics in
practical massive MIMO deployment. We pro-
vide important insights into how DL benefits from
physical RF channel properties and present a com-
prehensive overview on the application of DL for
accurately estimating CSI in massive MIMO com-
munications. We provide examples of successful
DL application in CSI estimation and feedback
for massive MIMO wireless systems and outline
several promising directions for future research.

ACKNOWLEDGMENTS

The work of Z. Liu and L. Zhang was supported in
part by the State Major Science and Technology
Special Projects under Grant 2018ZX03001024;
and in part by the China Scholarship Council. The
work of Z. Ding was supported by the National
Science Foundation under Grant 2029027.

REFERENCES

[1] Z. Liu, L. Zhang, and Z. Ding, “Exploiting Bi-Directional
Channel Reciprocity in Deep Learning for Low Rate Massive
MIMO CSI Feedback,” IEEE Wireless Commun. Lett., vol. 8,
no. 3, June 2019, pp. 889-92.

[2] Z. Gao et al., “Structured Compressive Sensing-Based Spa-

tio-Temporal Joint Channel Estimation for FDD Massive

MIMO,” IEEE Trans. Commun., vol. 64, no. 2, Feb. 2016,

pp. 601-17.

K. Hugl, K. Kimmo, and J. Laurila, “Spatial Reciprocity of

Uplink and Downlink Radio Channels in FDD Systems,”

COST 273 TD 066, Dec. 2002, pp. 1-6.

Z. Zhong, L. Fan, and S. Ge, “FDD Massive MIMO Uplink

and Downlink Channel Reciprocity Properties: Full or Partial

Reciprocity?” arXiv preprint arXiv:1912.11221, 2019.

[5] L. Liu et al., “The Cost 2100 MIMO Channel Model,” IEEE
Wireless Commun., vol. 19, no. 6, Dec. 2012, pp. 92-99.

[6] P. Dong et al., “Deep CNN-Based Channel Estimation for
mmWave Massive MIMO Systems,” IEEE J. Sel. Topics Signal
Process., vol. 13, no. 5, Sept. 2019, pp. 989-1000.

[71'S. Gao et al., “Deep Learning Based Channel Estimation for
Massive MIMO with Mixed-Resolution ADCs,” IEEE Com-
mun. Lett., vol. 23, no. 11, Nov. 2019, pp. 1989-93.

[8] Y. Liao, Y. Hua, and Y. Cai, “Deep Learning Based Channel

Estimation Algorithm for Fast Time-Varying MIMO-OFDM

Systems,” IEEE Commun. Lett., vol. 24, no. 3, Mar. 2020,

pp. 572-76.

E. Balevi, A. Doshi, and J. G. Andrews, “Massive MIMO

Channel Estimation with an Untrained Deep Neural Net-

work,” IEEE Trans. Wireless Commun., vol. 19, no. 3, Mar.

2020, pp. 2079-90.

[10] H. He et al., “Deep Learning-Based Channel Estimation for
Beamspace mmWave Massive MIMO Systems,” IEEE Wire-
less Commun. Lett., vol. 7, no. 5, Oct. 2018, pp. 852-55.

[3

[4

[9

'
o

T

I Baseline
I BG OMHz
[TIBW Double

U2D-ORG  U2D-ABS

(a)
0
2 ||

-6 (M Baseline
IBG OMHz
[1BW Double .
U2D-ORG U2D-ABS
(b)

NMSE(dB)

N
o

-15 I
U2D-MAG

NMSE(dB)
A

U2D-MAG

FIGURE 5. CSl recovery performance comparison
in different band gap (BG) and bandwidth
(BW): a) indoor; b) outdoor.

[11] C. Huang et al., “Deep Learning for UL/DL Channel Cali-
bration in Generic Massive MIMO Systems,” Proc. 2019 IEEE
ICC, May 2019, pp. 1-6.

[12] C. Wen, W. Shih, and S. Jin, “Deep Learning for Massive
MIMO CSI Feedback,” IEEE Wireless Commun. Lett., vol. 7,
no. 5, Oct. 2018, pp. 748-51.

[13] T. Wang et al., “Deep Learning-Based CSI Feedback
Approach for Time-Varying Massive MIMO Channels,”
IEEE Wireless Commun. Lett., vol. 8, no. 2, Apr. 2019, pp.
416-19.

[14] M. S. Safari, V. Pourahmadi, and S. Sodagari, “Deep
UL2DL: Datadriven Channel Knowledge Transfer from
Uplink to Downlink,” IEEE Open J. Veh. Technol., vol. 1,
2020, pp. 29-44.

[15] Y. Yang et al., “Deep Learning-Based Downlink Channel
Prediction for FDD Massive MIMO System,” IEEE Commun.
Lett., vol. 23, no. 11, Nov. 2019, pp. 1994-98.

BIOGRAPHIES

ZHENYU LU (Izyu@bupt.edu.cn) is working toward the Ph.D.
degree at Beijing University of Posts and Telecommunications.
From 2017 to 2019, he was a visiting Ph.D. student with the
Department of Electrical and Computer Engineering, University
of California, Davis. His research interests include deep learning
in wireless communications and vehicular communications.

LIN ZHANG (zhanglin@bupt.edu.cn) is a professor at Beijing Uni-
versity of Posts and Telecommunications. He has authored more
than 120 papers in referenced journals and international con-
ferences. His current research interests include ultra-wideband
bio-radar imaging and vital signal detection, Al driven informa-
tion processing and Internet of Vehicles.

ZHI DING (zding@ucdavis.edu) is a distinguished professor at the
University of California, Davis. He is a Fellow of IEEE and has
been an active member of IEEE, serving on technical programs
of several workshops and conferences. He has published over
400 refereed papers and book chapters. His current research
interests include signal processing and machine learning in wire-
less communications.

To limit model com-
plexity without sacri-
ficing CSI estimation
accuracy, experienced
engineers should
explore other physical
insights and investigate
effective DL methods
by leveraging domain
knowledge. We also
note that individual
UE node, with limited
battery capacity and
computation power,
should only be with
lower complexity

DL tasks.
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