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Box delivery is a complicated task and it is challenging to predict
the box delivery motion associated with the box weight, delivering
speed, and location. This paper presents a single task-based inverse
dynamics optimization method for determining the planar sym-
metric optimal box delivery motion (multi-task jobs). The design
variables are cubic B-spline control points of joint angle profiles.
The objective function is dynamic effort, i.e., the time integral of
the square of all normalized joint torques. The optimization
problem includes various constraints. Joint angle profiles are vali-
dated through experimental results using root-mean-square-error
(RMSE) and Pearson’s correlation coefficient. This research pro-
vides a practical guidance to prevent injury risks in joint torque
space for workers who lift and deliver heavy objects in their daily
jobs. [DOI: 10.1115/1.4049647]
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1 Introduction
Manual material handling tasks are still common in various

industries and production systems, and all will remain the same in
the near future although emerging assistive devices are on the
way. Although significant research efforts have been devoted to
reducing the number and severity of manual material handling inju-
ries it is still a burden on industries that the direct costs are over $13
billion in 2016 in the USA [1]. Many industrial work processes
include multi-task jobs (e.g., box delivery that involves box

lifting, carrying and lowering it). In multi-task case, workers
combine subtasks with transition phases, which affect workers’
pace, posture, motion, and joint load [2]. Digital human modeling
provides a useful tool for researchers to investigate the cause and
effect without worrying about injuries. However, simulation of a
human delivering task proves to be a challenging problem from
an analytical and computational point of view. The primary goal
of this study is to explore an inverse dynamic optimization formu-
lation to predict and analyze dynamic human delivering motion in
ergonomic applications. The simulation needs to be computation-
ally efficient in an effort to provide real-time implementation.
In digital human modeling simulation, the box delivery task

could be considered as one single task; therefore, it can be formu-
lated as one single inverse dynamic optimization problem. There
is extensive literature on the study of lifting and carrying
motions. In addition, the task decomposition method was used to
simulate gait motion with single support and double support
phases [3], but few studies have been conducted on the delivering
task (multi-task jobs). The optimization formulation for dynamic
human motion planning could be roughly divided into five catego-
ries: forward dynamic simulation [4–10], inverse dynamic simula-
tion [11–17], collocation method [18,19], control-based method
[20–24], and mixed formulation method [25–27]. Forward
dynamic simulation can accurately describe the law of physics
through integration of equations of motion (EOM) using small time-
step. However, it usually takes more computation time. In contrast,
inverse dynamic method only evaluates EOM at discretized time
nodal points, and collocation method only sets up equality con-
straints of EOM at time nodal points. For these two methods, the
law of physics is related to the number of time nodal points used
to discretize the problem. Furthermore, mixed formulations are pro-
posed in the literature to achieve better performance by taking
advantage of different simulation methods, such as computed
muscle control which uses forward dynamic simulation and feed-
back control [26,27].
In this study, the inverse dynamic optimization is adopted for

two-dimensional (2D) box delivery simulation. This method has
some advantages over forward dynamic simulation in terms of com-
putational efficiency, this is because EOM is directly evaluated
from inverse dynamics in each optimization iteration.
The objective of this study is to explore the method that can gen-

erate motion from start to finish of a delivery task by using single
task-based approach and experimental validation. The contributions
of this study are as follows: (1) This work is the first study of pre-
dictive object delivery formulation in the literature and it is the first
step to investigate the complete delivery motion formulation, which
sets up a solid foundation to understand the delivery task and to
investigate the formulation for future research using three-
dimensional musculoskeletal models and (2) the proposed predic-
tive delivery formulation does not depend on experimental data.
Previous works are mainly empirical studies based on experimental
data, i.e., data-drive approach [28].
The rest of this paper is organized as follows. The skeletal human

system is first described in Sec. 2, and EOM is also detailed.
Section 3 is motion capture experiment. Section 4 covers the
details of the single task-based optimization formulation for box
delivery problem and box delivery simulation results are presented
in Sec. 5. Finally, discussion and conclusion are given in Sec. 6.

2 2D Skeletal Human Model
A 2D skeletal model with 14 degrees of freedom (DOFs) defined

in joint space is used to simulate symmetric delivery motion, as
shown in Fig. 1. Three DOFs are used for global translation (y, z)
and rotation (β), and 11 DOFs (q1, q2, …q11) are used for the
human body joints. The global DOFs are composed of two transla-
tional (prismatic) joints and one rotational (revolute) joint. The legs
and arms are assumed to be symmetric. There are three branches in
the body frame with respect to the global coordinate branch: one
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spine-arm branch and two leg branches. In the spine-arm branch,
two arms are represented as a single branch, since only 2D sym-
metric motion in sagittal plane is studied. The arm branch includes
upper arm and lower arm. Each leg consists of a thigh, a shin, a
hinder foot, and a forefoot. The 50th percentile anthropo-
metric data for the skeletal model is generated using GEBOD soft-
ware [29].
Figure 1 depicts how the DOFs are set up in the Denavit-

Hartenberg method [30]. The DOF is given in the local z-direction
in each joint. The global rotation joint (β), spine joint (q1), and two
hip joints (q4 and q8) coincide at the same location. The positive
directions for all the rotation joints (q1− q11) are clockwise in the
global Y–Z plane. A recursive Lagrangian dynamics formulation
is used for this model, and the ground reaction force is calculated
from an inverse procedure based on joint kinematics, gravity, and
external loads. The details are presented in Xiang et al. [31]. The
forward joint kinematics are calculated as

Ai = T1T2T3 · · ·Ti = Ai−1Ti (1)

Bi = Ȧi = Bi−1Ti + Ai−1
∂Ti

∂qi
q̇i (2)

Ci = Ḃi = Äi = Ci−1Ti + 2Bi−1
∂Ti

∂qi
q̇i + Ai−1

∂2Ti

∂q2i
q̇2i + Ai−1

∂Ti

∂qi
q̈i

(3)

where qi is the ith joint angle, Ti is the link transformation matrix
from the (i− 1)th link frame to the ith link frame, and A0 = [I],
B0 = C0 = [0].
The backward joint torque equations are defined as follows,

τi = tr
∂Ai

∂qi
Di

( )
− gT

∂Ai

∂qi
Ei − fTk

∂Ai

∂qi
Fi −GT

i Ai−1z0 (4)

Di = IiCT
i + Ti+1Di+1 (5)

Ei = miri + Ti+1Ei+1 (6)

Fi = rkδik + Ti+1Fi+1 (7)

Gi = hkδik +Gi+1 (8)

where tr(·) is the trace of a matrix, Ti is the transformation matrix,
Ai, Ci are global position and acceleration transformation matrices,
Ii is the inertia matrix for link i, Di is the recursive inertia and Cori-
olis matrix, Ei is the recursive vector for gravity torque calculation,
Fi is the recursive vector for external force torque calculation, Gi is
the recursive vector for external moment torque calculation, g is the
gravity vector,mi is the mass of link i, ri is the center of mass of link

i, fk = 0 fky fkz 0
[ ]T

is the external force applied on link k,

rk is the position of the external force in the local frame k, hk =

hx 0 0 0
[ ]T

is the external moment applied on link k, z0 =

0 0 1 0
[ ]T

is for a revolute joint, z0 = 0 0 0 0
[ ]T

is for a prismatic joint, δik is Kronecker delta, and the starting con-
ditions are Dn+1 = [0], En+1 = Fn+1 =Gn+1 = [0].

3 Motion Capture Experiments
Motion capture experiment was performed for validation and was

approved by the internal review board at Texas Tech University. 20
subjects were recruited for the study. Among them, two were dis-
carded because of incomplete capture data.

3.1 Participants. The subjects were chosen for the 50th per-
centile stature and body mass. Participants were all male (age:
23.07± 1.64 years; height: 175.46± 4.93 cm; body mass: 71.77±
5.42 kg, where±means standard deviation). All subjects were
physically and mentally sound and signed informed consent form.

3.2 Data Collection. Optical sensor based motion capture
system was used. The system included 7 Eagle-4 camera system
(Motion Analysis Corporation, CA). Each camera has 4-megapixel
resolution with maximum 500 fps (frames per second). A 3.04 ×
3.04 m2 area was selected for the delivery task with cameras sur-
rounding at a height of around 2.74 m. 52 retroreflective markers
were placed on subjects’ body. The markers were placed such
that the markers move as little as possible on the body followed
the protocol developed by Cloutier et al. [32]. Stature and body
mass were recorded for each participant before experiment.
Before experiment started, participants were asked to walk five

steps ahead from the initial position. Depending on the step length,
the table was set to be in an appropriate distance to the subject’s
final step. Each participant was requested to finish the following
tasks in order: (1) Stand in parallel feet behind box; (2) pick the
box up to a comfortable waist height; (3) walk five steps starting
from the left leg including initial transition step, three intermediate
carrying steps, and final transition step; (4) stand in front of a
0.5 m height table; and (5) unload the box on the table as seen
in Fig. 2. The same procedure was repeated 3 times for each
subject.

3.3 Data Processing. GEBOD, a regression-based interactive
utility [29], was used to generate each subject’s body segment
lengths, centers of mass, and inertial properties.
All markers were labeled and smoothed in Cortex (Motion Anal-

ysis Corporation, CA). Three-dimensional coordinates of the
markers were converted to two dimension and the marker positions
were used to calculate intended joint angles. Spine, right shoulder,
right elbow, right hip, and right knee joint angles were calculated

Fig. 1 The 2D skeletal model

024501-2 / Vol. 13, APRIL 2021 Transactions of the ASME



from motion capture data for each subject. Average and standard
deviation were then calculated for all 18 subjects.

4 Single Task-Based Optimization Formulation
Awhole delivery task in this study includes lifting, an initial tran-

sition, three carrying steps, a final transition, and an unloading
subtask. In the single task-based formulation one single optimiza-
tion is formulated for the whole task. The initial and final lifting
postures, initial and final unloading postures, foot step lengths,
time durations are all given from experiments. The design variables

are cubic B-spline control points (P) of joint angle profiles. The
objective function J is defined by the time integral of the square
of all normalized joint torques:

J(P) =
∑n
i=4

∫T
t=0

τi(P)
τUi − τLi

[ ]2
dt (9)

where n is the number of DOF, T is the total time of the whole deliv-
ery task, τUi is the upper torque limit for ith joint, and τLi is the lower
torque limit.

Fig. 2 Experimental setup: (a) marker placement protocol front view; (b) marker
placement protocol back view; (c) box dimension and weight, without external
load: 2.36 kg, with external load: 10.16 kg; and (d ) experiment environment,
where the average distance between initial and final position is 2.4 m and the
table height of the final position from ground is 0.5 m

Fig. 3 Predicted optimal delivery motion snapshots for a 10.16 kg box
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The single task-based optimization for the box delivery is subject
to the following constraints:
Joint angle limits

qL ≤ q(t) ≤ qU (10)

where q is the joint angle profile, qL and qU are the lower and upper
bounds, respectively. The joint angle limits are obtained from liter-
ature [33].
Joint torque limits

τL ≤ τ(t) ≤ τU (11)

where τL and τU are the lower and upper joint torque bounds,
respectively. The torque limits are obtained from literature [34].
In addition, the feet contacting positions are given from experi-

ments

p foot(q, t) = pEfoot(t) (12)

where pfoot is the calculated foot position from the 2D skeletal
model, and pEfoot is the measured foot position based on the mean
experimental step lengths.
While the foot is in contact with the ground, the height of the con-

tacting points is zero. The other points should be above the ground
and the height greater than zero

yi(t) = 0; i ∈ contact
yj(t) ≥ 0; j ∉ contact

(13)

where i is the point index on foot which is contacting the ground [33].
Balance must be considered during the box delivering process.

This is the zero moment point (ZMP) constraint

pZMP(q, t) ∈ FSR (14)

where pZMP is the ZMP location, and FSR represents the foot
support region.
Collision avoidance between box and body

d(q, t) ≥ r1 + r2 (15)

where d is the calculated distance between the hand and the circle
center on the body segment representing the body thickness, r1 is
half of the box width, and r2 is the radius of the circle of the
body segment.

Fig. 4 Joint angle profiles for deliver motion from the simulation
model and experiments: (a) spine, (b) shoulder, (c) elbow,
(d ) right hip, and (e) right knee

(a)

(b)

(c)

Fig. 5 Joint torque profiles for deliver motion from the simula-
tion model: (a) spine, (b) shoulder, and (c) right hip
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Knee flexion at mid-swing is around 60 deg to avoid foot drag
motion

|qknee(t) − 60 deg| ≤ 10 deg; t = tmidswing (16)

where tmidswing is the experimental mean value determined at 75% of
the gait cycle [33].
The joint angle differences between the skeletal model and the

experiment are constrained in a small range ɛ= 10 deg at initial
and final lifting/unloading postures, where qE is the experimental
joint angle

|q(t) − qE(t)| ≤ ε; t = 0, t finallifting, t
initial
unloading, T (17)

Finally, the upper body joint angles are constrained to the exper-
imental mean values during carrying motion

|qupper(t) − �qEupper(t)| ≤ ε; t ∈ tcarrying (18)

where �qEupper is the experimental mean and ɛ= 10 deg.

5 Simulation Results
The sequential quadratic programming algorithm in SNOPT [35]

is used to solve the optimization problem. Solving the single task-
based optimization problem based on the input data from experi-
ments (mean values from all subjects) yields simulation results.
Figure 3 shows the snapshots for the optimal delivery motion.
Figure 4 shows the joint angle profiles’ comparison with the experi-
mental results. The joint torque profiles are shown inFig. 5. This opti-
mization problem has 210 design variables, 2767 constraints, 15
control points for each DOF, and 54.49 s CPU time. Table 1 lists
the root-mean-square-error (RMSE) and Pearson’s correlation coef-
ficient (r) for comparing the predicted and experimental joint angle
profiles.
In Fig. 3, it shows the snapshots of the delivermotion. In Fig. 4, the

predicted joint angles (spine, shoulder, elbow, right knee) lie within
the standard deviation of themean for themajor portion of themotion
and also follow the similar trend as the experimentalmean, indicating
reasonable agreement with the experimental results. For the right hip
angle in Fig. 4(d ), the carrying motion has similar trend as the exper-
imental mean but is outside the standard deviation. The minimum
values are outside of the experimental standard deviation. This is
because we did not impose experimental boundary conditions for
carrying simulation. For lifting and unloading motions, although
the experimental boundary constraints are imposed, the spine and
shoulder joint angles are still partially outside the standard deviation
between the boundaries as seen in Figs. 4(a) and 4(b). The spine,
shoulder, right hip joint torque profiles in Fig. 5 show repeatable pat-
terns during carrying motion as expected.

6 Discussion and Conclusion
In this study, single task optimization-based method has been

presented to predict the box delivery motion. A motion capture
experiment is conducted to collect kinematic data for box delivery
validation. In addition, simulation results are compared with the

experimental data. Torque limits (joint strength [34]) are considered
as one of the constraints in the optimization formulation. If the opti-
mization successfully converges, i.e., the torque limit constraints are
not violated, the subject will not get injured in joint torque space.
Therefore, joint torque limits are important for predicting potential
injuries for workers. This has been demonstrated for the maximum
weight lifting prediction by considering dynamic joint strength [36].
It can be seen fromTable 1 that the simulationmethodmatcheswell

with the experimental results based on the RMSE and Pearson’s coef-
ficient. The major advantage of single task-based method is that the
boundary conditions between subtasks are avoided and the same
cost function is considered throughout the entire motion. In future,
we will investigate the subtask-based optimization approach, and
simulate more complicated three-dimensional motions.
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