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ABSTRACT 
Lifting heavy weight is one of the main reasons for manual 

material handling related injuries which can be mitigated by 
determining the limiting lifting weight of a person. In this study, 
a 40 degrees of freedom (DOFs) spatial skeletal model was 
employed to predict the symmetric maximum weight lifting 
motion. The lifting problem was formulated as a multi-objective 
optimization (MOO) problem to minimize the dynamic effort and 
maximize the box weight. An inverse-dynamics-based 
optimization approach was used to determine the optimal lifting 
motion and the maximum lifting weight considering dynamic 
joint strength. The predicted lifting motion, ground reaction 
forces (GRFs), and maximum box weight were shown to match 
well with the experimental results. It was found that for the three-
dimensional (3D) symmetric lifting the left and right GRFs were 
not same. 

Keywords: Lifting, Symmetric lifting, Maximum weight 
lifting, Dynamic joint strength, Multi-objective optimization. 

1. INTRODUCTION
Despite the advancement in robotics and automation fields,

manual material handling (MMH) related injuries like 
hyperextension and occupational hazards are the most common 
cause of disability [1]. Low back pain from hyperextension is the 
leading cause for visits to orthopedic surgeons and 
neurosurgeons and the second common cause for visits to 
physicians [2, 3]. The direct costs of MMH related injuries are 
over $13 billion in 2016 [4], whereas the indirect costs are more 
than $100 billion per year [5]. Lifting is one of the most common 
causes for Musculoskeletal Disorders (MSDs) like low back pain 
[6, 7]. Therefore, it is necessary to identify the maximum lifting 
weight for a person as well as the reasons behind lifting work-
related injuries. In practice, it is difficult to find the best lifting 
motion and true maximum lifting weight through laboratory 
experiment as it is risky for the participants [8]. An optimization-
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based biomechanical model can assist in finding the best lifting 
motion as well as the maximum lifting weight. 

Over the past decades, many researchers have been working 
on human biomechanical modeling. However, only a few 
researchers have worked on lifting motion prediction. Initially, 
some researchers worked on the two-dimensional (2D) model. 
For example, based on the NIOSH (National Institute of 
Occupational Safety and Health) lifting equation, a static and 2D 
biomechanical model was proposed to estimate the strength 
needed for a specific MMH task [9]. In another study, a 5-link 
sagittal model was used to predict the optimum lifting motion 
using space-time optimization [10].  Another 5-link 2D model 
was introduced to predict the lifting motion based on the static 
joint strength [11].  

But, dynamic joint strength is required to predict the 
maximum lifting weight in the optimization formulation. The 
dynamic joint strength is a function of joint angle and angular 
velocity [12, 13, 14, 15]. In Gundogdu et al. [16], a 2D dynamic-
joint-strength-based model was presented to predict the optimal 
lifting motion using generic algorithm. Another 2D human 
model was proposed to predict the symmetric maximum weight 
lifting motion based on the dynamic joint strength [17, 18]. In 
Sreenivasa et al. [19], a 12-DOF 2D model was used to study the 
influence of hip and lumber flexibility during lifting motion 
considering the dynamic joint strength. 

 Optimization-based approach is an effective way to solve a 
redundant system. As multi-link human model is a highly 
redundant system, optimization-based approach is a preferred 
tool to find the optimal lifting motion. However, for 
optimization-based approaches, choosing the objective functions 
play a vital role in predicting the lifting motion accurately. A 2D 
model was developed based on the MOO to predict the lifting 
motion [18]. The MOO approach results in an 18.9% reduction 
in the overall root mean square (RMS) joint angle error when 
compared to the single objective optimization based lifting 
motion prediction [20]. However, 2D models do not give the 
total scenario of a lifting motion, as they do not consider lifting 
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weight differences on two sides of the sagittal plane of a human 
body. A 3D model can give more insight into the lifting motion. 
A 3D biomechanical model was proposed, where lumbar forces 
were considered as the objective function to study the effect of 
lumbar torque limit during lifting [21]. In another study, a 3D 
skeletal model was used with four objective functions, which had 
the functionality to analyze the lifting motion for each objective 
function separately [22]. MOO was also incorporated in a 3D 
model to predict the lifting motion more accurately [23, 24]. 

On the other hand, only a few studies were conducted to 
predict the maximum lifting weight considering the dynamic 
strength [17, 25]. In this study, a 40-DOF 3D model is used to 
predict the symmetric lifting motion, lifting time and maximum 
lifting weight using an inverse-dynamics-based MOO approach. 
The predicted results are validated by comparing the predicted 
kinematics and kinetics data with the experimental data.   

 
2. 3D SKELETON MODEL AND PREDICTIVE 

SIMULATION 
The 3D skeletal model consists of 40 DOFs, which are 

expressed as 𝐪𝐪 = [𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 … . . 𝑧𝑧40], and the kinematic chains are 
connected using well developed Denavit-Hartenberg (DH) 
representations [26]. The model consists of one virtual branch 
and five physical branches. The virtual branch contains three 
rotational DOFs and three translational DOFs, which allows the 
model to move in the global space. On the other hand, physical 
branches are the spine, right arm, left arm, right leg and left leg. 
There are six DOFs for the spine, seven DOFs for each arm, and 
seven DOFs for each leg. Each arm consists of three segments: 
upper arm, forearm and hand. Each leg consists of four segments: 
thigh, shank, rear foot and forefoot.  

The anthropometric data of the model are generated in 
Visual 3D® (C-Motion, Inc., Germantown, MD, USA) software 
using experimentally measured height, weight and stature data. 
The dynamic joint strength of the model is retrieved from the 
symmetric maximum weight lifting experiment [17].  

The general equations of motion of this biomechanical 
model are based on the recursive Lagrangian formulation, and 
can be expressed in matrix form, which contains forward 
recursive kinematics and backward recursive dynamics [27]. 
 
2.1 Forward Recursive Kinematics 

 
𝐀𝐀𝑖𝑖 = 𝐀𝐀𝑖𝑖−1𝐓𝐓𝑖𝑖, (1) 
 
𝐁𝐁𝑖𝑖 = 𝐀̇𝐀𝑖𝑖 = 𝐁𝐁𝑖𝑖−1𝐓𝐓𝑖𝑖 + 𝐀𝐀𝑖𝑖−1

∂𝐓𝐓𝑖𝑖
∂𝑞𝑞𝑖𝑖

𝑞̇𝑞𝑖𝑖, (2) 
 
𝐂𝐂𝑖𝑖 = 𝐁̇𝐁𝑖𝑖 = 𝐂𝐂𝑖𝑖−1𝐓𝐓𝑖𝑖 + 2𝐁𝐁𝑖𝑖−1

∂𝐓𝐓𝑖𝑖
∂𝑞𝑞𝑖𝑖

𝑞̇𝑞𝑖𝑖 + 𝐀𝐀𝑖𝑖−1
∂2𝐓𝐓𝑖𝑖
∂𝑞𝑞𝑖𝑖

2 𝑞̇𝑞𝑖𝑖2 + 𝐀𝐀𝑖𝑖−1
∂𝐓𝐓𝑖𝑖
∂𝑞𝑞𝑖𝑖

𝑞̈𝑞𝑖𝑖 (3) 

 
where 𝑞𝑞𝑖𝑖 is the joint angle variable, 𝐓𝐓𝑖𝑖 is the 4×4 DH link 
transformation matrix from the (𝑖𝑖 − 1)th link frame to the 𝑖𝑖th 
link frame, 𝐀𝐀𝑖𝑖 , 𝐁𝐁𝑖𝑖, 𝐂𝐂𝑖𝑖 are the global recursive kinematics 
position, velocity, and acceleration matrices, respectively, and 
𝐀𝐀0 = [𝐈𝐈], 𝐁𝐁0 = 𝐂𝐂0 = [𝟎𝟎]. 

 
 

 
FIGURE 1: THREE-DIMENSIONAL SKELETAL MODEL 

 
2.2 Backward Recursive Dynamics 

 
𝜏𝜏𝑖𝑖 = tr �∂𝐀𝐀i

∂qi
𝐃𝐃𝑖𝑖� − 𝐠𝐠T 𝜕𝜕𝐀𝐀𝑖𝑖

𝜕𝜕𝑞𝑞𝑖𝑖
𝐄𝐄𝑖𝑖 − 𝐟𝐟𝑘𝑘T

𝜕𝜕𝐀𝐀𝑖𝑖
𝜕𝜕𝑞𝑞𝑖𝑖

𝐅𝐅𝑖𝑖 − 𝐆𝐆𝑖𝑖T𝐀𝐀𝑖𝑖−1𝐳𝐳0, (4) 
 
𝐃𝐃𝑖𝑖 = 𝐈𝐈𝑖𝑖𝐂𝐂𝑖𝑖T + 𝐓𝐓𝑖𝑖+1𝐃𝐃𝑖𝑖+1, (5) 
 
𝐄𝐄𝑖𝑖 = 𝑚𝑚𝑖𝑖𝐫𝐫𝑖𝑖 + 𝐓𝐓𝑖𝑖+1𝐄𝐄𝑖𝑖+1, (6) 
 
𝐅𝐅𝑖𝑖 = 𝐫𝐫𝑘𝑘δ𝑖𝑖𝑖𝑖 + 𝐓𝐓𝑖𝑖+1𝐅𝐅𝑖𝑖+1, (7) 
 
𝐆𝐆𝑖𝑖 = 𝐡𝐡𝑘𝑘δ𝑖𝑖𝑖𝑖 + 𝐆𝐆𝑖𝑖+1, (8) 
 
where tr(∙) is the trace of a matrix, 𝐈𝐈𝑖𝑖 is the inertia matrix for link 
i, 𝐃𝐃𝑖𝑖 is the recursive inertia and Coriolis matrix, 𝐄𝐄𝑖𝑖 is the 
recursive vector for gravity torque calculation, 𝐅𝐅𝑖𝑖 is the recursive 
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vector for external force torque calculation, 𝐆𝐆𝑖𝑖 is the recursive 
vector for external moment torque calculation, 𝐠𝐠 is the gravity 
vector, 𝑚𝑚𝑖𝑖 is the mass of link i, 𝐫𝐫𝑖𝑖 is the center of mass of link i, 
𝐟𝐟𝑘𝑘 = [𝑓𝑓𝑘𝑘𝑘𝑘 𝑓𝑓𝑘𝑘𝑘𝑘 𝑓𝑓𝑘𝑘𝑘𝑘 0]T is the external force applied on link 
k, 𝐫𝐫𝑘𝑘 is the position of the external force in the local frame k, 
𝐡𝐡𝑘𝑘 = [ℎ𝑥𝑥 ℎ𝑦𝑦 ℎ𝑧𝑧 0]T is the external moment applied on link 
k, 𝐳𝐳0 = [0 0 1 0]T is for a revolute joint, 𝐳𝐳0 =
[0 0 0 0]T is for a prismatic joint, δ𝑖𝑖𝑖𝑖 is Kronecker delta, 
and the starting conditions are 𝐃𝐃𝑛𝑛+1 = [𝟎𝟎], 𝐄𝐄𝑛𝑛+1 = 𝐅𝐅𝑛𝑛+1 =
𝐆𝐆𝑛𝑛+1 = [𝟎𝟎].  

The 40-DOF spatial model is a highly redundant system. 
The lifting task is formulated as a nonlinear programming 
problem (NLP) and is solved by an inverse-dynamics-based 
optimization method. The design variables (𝐱𝐱) include control 
points (c) of cubic B-spline curves of joint angles, box weight 
(W), and total lifting time (T) as 𝐱𝐱 = [𝐜𝐜T 𝑊𝑊 𝑇𝑇]T. The MOO 
is used to minimize the dynamic effort and maximize the lifting 
weight. Finally, the combined objective function is defined as 
[18]. 

 

𝐽𝐽 = 𝑤𝑤1N �∫ ∑ �𝜏𝜏𝑖𝑖(𝐱𝐱,𝑡𝑡)
𝜏𝜏𝑖𝑖
𝑈𝑈−𝜏𝜏𝑖𝑖

𝐿𝐿�
2

𝑛𝑛
𝑖𝑖=7 𝑑𝑑𝑑𝑑𝑇𝑇

0 � − 𝑤𝑤2N[log(𝑊𝑊 + 10)], (9) 

 
where N[∙] is the normalization function, n is the number of 
DOFs, 𝜏𝜏𝑖𝑖𝐿𝐿 and 𝜏𝜏𝑖𝑖𝑈𝑈 are the ith lower and upper dynamic joint 
torque limits, respectively, 𝑤𝑤1 and 𝑤𝑤2 are weighting coefficients 
for the two normalized objective functions where 𝑤𝑤1 = 0.15 and 
𝑤𝑤2 = 0.85 [18].  

There are two types of constraints imposed on the lifting 
motion: time-dependent constraints and time-independent 
constraints. 
 
2.3 Time-dependent Constraints 

(1) Joint angle limits imposed in the formulation are from 
experiments and can be expressed as: 
 
𝐪𝐪𝐿𝐿 ≤ 𝐪𝐪(𝐱𝐱, 𝑡𝑡) ≤ 𝐪𝐪𝑈𝑈,                                                                (10)  
 
where 𝐪𝐪𝐿𝐿 and 𝐪𝐪𝑈𝑈 represent the lower and upper limits on the joint 
angles respectively.  

(2) Dynamic joint torque is a function of joint angle (q), 
angular velocity (v), strength percentile (zscore) and time (t) [17]. 
The dynamic joint strength imposed in this formulation can be 
expressed as: 
 
𝜏𝜏𝑖𝑖𝐿𝐿(𝑞𝑞𝑖𝑖 ,𝑣𝑣𝑖𝑖 , 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑡𝑡) ≤ 𝜏𝜏𝑖𝑖 ≤ 𝜏𝜏𝑖𝑖𝑈𝑈(𝑞𝑞𝑖𝑖 , 𝑣𝑣𝑖𝑖 , 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑡𝑡),        (11) 
 
where 𝜏𝜏𝑖𝑖 is the simulated joint torque for the 𝑖𝑖th joint, 𝜏𝜏𝑖𝑖𝑈𝑈 is the 
upper torque value for the 𝑖𝑖th joint in positive 𝑞𝑞𝑖𝑖 direction and  
𝜏𝜏𝑖𝑖𝐿𝐿 is the lower torque value for the 𝑖𝑖th joint in negative 𝑞𝑞𝑖𝑖 
direction. Details about dynamic joint torque constraint can be 
found in Xiang et al. [18]. 

(3) Foot-contacting position constraint is imposed to keep 
the skeleton model on the ground and can be expressed as: 
 

𝐩𝐩𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐱𝐱, 𝑡𝑡) = 𝐩𝐩𝑠𝑠,              (12) 
 
where 𝐩𝐩𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 are the calculated feet positions, 𝐩𝐩s are specified 
feet ground contacting positions. 

(4) Dynamic balance constraint prevents the skeletal model 
from falling and helps to keep the body stable. This constraint is 
imposed by enforcing the location of zero-moment-point (ZMP), 
𝐩𝐩𝑍𝑍𝑍𝑍𝑍𝑍(𝐱𝐱, 𝑡𝑡), inside the foot support region (FSR) [28, 29] and is 
expressed as: 

 
𝐩𝐩𝑍𝑍𝑍𝑍𝑍𝑍(𝐱𝐱, 𝑡𝑡) ∈ 𝐹𝐹𝐹𝐹𝐹𝐹.             (13) 
 

(5) Box-collision avoidance is imposed in this formulation 
by filling up the model with spheres on the ankle, shank, knee, 
thing, hip, lower spine and higher spine to avoid the penetration 
of box into the body. The constraint is expressed as: 

 
𝑑𝑑(𝐱𝐱, 𝑡𝑡) ≥ 𝑟𝑟 + 𝑑𝑑𝑑𝑑𝑑𝑑

2
, (14) 

 
where r is the radius of a sphere to represent body thickness, dep 
is the box depth and d is the distance between the centers of the 
box and the sphere. 

(6) For grasping the box, hand distance constraint is 
imposed to keep the distance between the two wrists in 3D space 
equal to box width and is expressed as: 
 
�𝐩𝐩𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡_ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐱𝐱, 𝑡𝑡) − 𝐩𝐩𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐱𝐱, 𝑡𝑡)�

2
= 𝑤𝑤𝑤𝑤𝑤𝑤,          (15) 

 
where 𝐩𝐩𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡_ℎ𝑎𝑎𝑎𝑎𝑎𝑎 and 𝐩𝐩𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_ℎ𝑎𝑎𝑎𝑎𝑎𝑎 are the right and left hand 
locations, respectively, and wid is the width of the box. 

(7) Box-ground parallel constraint is necessary to keep the 
box parallel to the ground and is imposed by keeping both hand 
height at same level in 3D space. 
 
ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡_ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐱𝐱, 𝑡𝑡) = ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (𝐱𝐱, 𝑡𝑡), (16) 
 
where ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡_ℎ𝑎𝑎𝑎𝑎𝑎𝑎  and ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_ℎ𝑎𝑎𝑎𝑎𝑎𝑎  are the right and left hand 
heights, respectively. 

(8) To distribute the load evenly on both hands, a constraint 
is imposed to restrict the difference of weight on both hand 
within 2 N.  

(9) A symmetric lifting motion constraint is applied as the 
experimental lifting motion was symmetric. 
 
2.4 Time-independent constraints  

(1) The initial and final hand (box) locations are given from 
experiments,  
 
𝐩𝐩ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐱𝐱, 𝑡𝑡) = 𝐩𝐩𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠 (𝑡𝑡),             𝑡𝑡 = 0,𝑇𝑇           (17) 
 

(2) The whole body will be at rest at the initial and final time 
points. 
 
𝐪̇𝐪(𝐱𝐱, 𝑡𝑡) = 𝟎𝟎,             𝑡𝑡 = 0,𝑇𝑇 (18) 
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(3) Initial, mid-time, and final key joint angles are given 

from experimental data. 
 
|𝑞𝑞𝑖𝑖(𝐱𝐱, 𝑡𝑡) − 𝑞𝑞𝑖𝑖𝐸𝐸(𝑡𝑡)| ≤ 𝜀𝜀,             𝑡𝑡 = 0, 𝑇𝑇

2
,𝑇𝑇 (19) 

 
where 𝑞𝑞𝑖𝑖𝐸𝐸 is the experimental joint angle for the 𝑖𝑖th joint 
including right and left ankle flexion, right and left knee flexion, 
right and left hip flexion, right and left elbow flexion, spine 
flexion and rotation, 𝜀𝜀 = 10 degree at boundaries and 𝜀𝜀 = 5 
degree at mid-time point [8]. 

(4) Initial, intermediate, and final vertical GRFs are given 
from experimental data: 
 
�𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐱𝐱, 𝑡𝑡) − 𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐸𝐸 (𝑡𝑡)� ≤ 40,    𝑡𝑡 = 0, 𝑇𝑇

3
, 𝑇𝑇
2

, 2𝑇𝑇
3

,𝑇𝑇 (20a) 
 
�𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝐱𝐱, 𝑡𝑡) − 𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝐸𝐸 (𝑡𝑡)� ≤ 40,    𝑡𝑡 = 0, 𝑇𝑇

3
, 𝑇𝑇
2

, 2𝑇𝑇
3

,𝑇𝑇  (20b) 
 
where 𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐸𝐸 ,  𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝐸𝐸  are the experimental vertical ground 
reaction force for left foot and right foot, respectively.  

The optimal lifting motion is solved using the sequential 
quadratic programming (SQP) based optimizer SNOPT [30].   

 
3. EXPERIMENTAL DATA COLLECTION 

To ensure the accuracy of the proposed method, motion 
capture data from a healthy young male adult were collected and 
compared with the simulation data. The participant signed an 
informed consent form, and the experimental protocol was 
approved by the Texas Tech University Institutional Review 
Board.  

Motion data were collected from 42 reflective markers (9 
mm, spherical) using a 5-camera Vicon® system (Vicon Motion 
Systems, Ltd., Oxford, UK) at 100 Hz.  Ground reaction forces 
(GRFs) data were collected using two Kistler® force plates 
(Kistler, Winterthur, Switzerland) at 2000 Hz.  

The maximum lifting weight determined in the experiment 
is the safe maximum lifting weight, rather than the true 
maximum weight a subject can lift. To determine the maximum 
lifting weight, each participant was instructed to lift a box (65 
cm × 35 cm × 15 cm) up to 1 meter height. The load on the box 
was incremented by 5 lbs. We stopped once the participant felt 
that they were uncomfortable with more weight being added. 
Once the weight was determined, the lifting study was initiated.  

The motion capture data and GRFs data were smoothed in 
Vicon® software using a Butterworth filter with cutoff 
frequencies of 6 Hz and 25 Hz, respectively.  
 
4. RESULTS AND DISCUSSION 

The simulation and experimental data are compared in this 
study. It took 7.8 minutes for an Intel (R) Xeon (R) E-218G CPU 
@ 3.80GHz to solve the nonlinear optimization problem using 
SNOPT. The strength (zscore) of the predictive model is 1.05 [21]. 
The predicted maximum lifting weight on right and left hand are 

134.65 N and 132.99 N and the optimal lifting time is 1.3 
seconds. 

 
FIGURE 2: THE PREDICTED SYMMETRIC LIFTING 

MOTION 
 

Figure 2 shows the simulated symmetric lifting motion. 
Figure 3 shows the joint angle comparisons between the 
simulation and experimental data. Finally, Figure 4 shows the 
comparison of GRFs during lifting. The dotted line represents 
the experimental data and the straight line represents the 
simulated data. 

 

 



 5 © 2020 by ASME 

 

 

 

 

 

 



 6 © 2020 by ASME 

  

FIGURE 3: JOINT ANGLE PROFILES OF MAXIMUM WEIGHT 
LIFTING 

 

 

 
FIGURE 4: GRF PROFILES OF MAXIMUM WEIGHT LIFTING 

 

We predicted nine important joints angles which play a vital 
role during symmetric lifting. The predicted joint angles agree 
well with the experimental data. The pattern and timing of phase 
changes of the predicted joint angle profiles are consistent with 
the experimental data. There are some minor discrepancies for 
the ankle joints (Figure 3a, b) and elbow joints (Figure 3g, h), 
but the differences are within 10 degrees. As the box weight was 
very heavy, the subject needed to transmit a significant amount 
of force through the elbow joints. The elbow (ulnohumeral joint) 
is mainly a hinge joint (ginglymus) and the hand side of the 
forearm is unsupported. Because all of these factors, it was 
difficult for the subject to maintain the stability during lifting 
heavy weight which resulted the jerking. This also made it 
difficult for the model to predict the elbow joints accurately.   

The pattern of the predicted right vertical GRF is consistent 
with the experimental vertical GRF on the right side (Figure 4a). 
However, there are some deviations for the left GRF, particularly 
near 20% of the task where the difference between the GRF is 
more than 10% (Figure 4b). The reason of this discrepancy might 
be because of small initial jerks from the experimental right and 
left elbow angles (Figure 3a, b). The load on both hands were 
high above and far from the center of gravity. The small 
deviation of elbow angle, at the beginning of lifting, can create a 
significant amount of torque, which might be the reason for high 
peak near 20% of the task on left GRF profile. Initial jerks from 
the ankles (Figure 3g, h) and spine (Figure 3i) might also have 
contributions to such a peak in the left GRF profile. On the other 
hand, the predicted kinematics and kinetics curves are all smooth 
curves. 

Note that 40 N is used as the limits for the GRF constraint 
Equation (20). This limit is determined based on numerical trial 
and error considering the convergence capability of the 
optimizer and robustness of the predictive model. The peak value 
of GRF is 650 N, so the relative error for GRF limit is 6.2%. 
Considering the differences between the mechanical skeletal 
model and real human model, this relative error for GRF limit is 
acceptable. Another important finding from this study is that the 
predicted kinetics (GRFs) are very different between left and 
right feet for a symmetric lifting task. 

The predicted total lifting weight is 267.64 N, which is 
13.5% higher than the experimental lifting weight. The reason is 
that the maximum lifting weight determined during the 
experiment is not the true maximum lifting weight. Instead, it is 
the maximum weight a person felt safe to lift, as mentioned in 
Section 3. 

 
5. CONCLUSION 

In this study, we presented a 3D skeletal model and an 
optimization formulation that shows good capability to 
accurately predict the symmetric lifting motion as well as the 
maximum lifting weight for a person. The lifting problem is 
formulated as a MOO problem by minimizing the dynamic effort 
and maximizing the box weight considering the dynamic joint 
strength. The predicted joint angle profiles and GRFs agree well 
with the experimental data except for some minor discrepancies 
for the GRF on the left foot. 
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One limitation of our predictive model is that, it needs some 
intermediate constraints to predict the lifting motion and GRFs 
accurately, but this is necessary for an optimization-based 
method to predict the joint angle profiles and GRFs accurately 
[18, 31, 32].  

Our future work is to develop a hybrid model by combining 
this 3D skeletal model with OpenSim musculoskeletal model to 
predict and analyze muscle forces for the lifting motion [33]. 
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