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ABSTRACT

Lifting heavy weight is one of the main reasons for manual
material handling related injuries which can be mitigated by
determining the limiting lifting weight of a person. In this study,
a 40 degrees of freedom (DOFs) spatial skeletal model was
employed to predict the symmetric maximum weight lifting
motion. The lifting problem was formulated as a multi-objective
optimization (MOQO) problem to minimize the dynamic effort and
maximize the box weight. An inverse-dynamics-based
optimization approach was used to determine the optimal lifting
motion and the maximum lifting weight considering dynamic
joint strength. The predicted lifting motion, ground reaction
forces (GRFs), and maximum box weight were shown to match
well with the experimental results. It was found that for the three-
dimensional (3D) symmetric lifting the left and right GRF's were
not same.

Keywords: Lifting, Symmetric lifting, Maximum weight
lifting, Dynamic joint strength, Multi-objective optimization.

1. INTRODUCTION

Despite the advancement in robotics and automation fields,
manual material handling (MMH) related injuries like
hyperextension and occupational hazards are the most common
cause of disability [1]. Low back pain from hyperextension is the
leading cause for visits to orthopedic surgeons and
neurosurgeons and the second common cause for visits to
physicians [2, 3]. The direct costs of MMH related injuries are
over $13 billion in 2016 [4], whereas the indirect costs are more
than $100 billion per year [5]. Lifting is one of the most common
causes for Musculoskeletal Disorders (MSDs) like low back pain
[6, 7]. Therefore, it is necessary to identify the maximum lifting
weight for a person as well as the reasons behind lifting work-
related injuries. In practice, it is difficult to find the best lifting
motion and true maximum lifting weight through laboratory
experiment as it is risky for the participants [§]. An optimization-
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based biomechanical model can assist in finding the best lifting
motion as well as the maximum lifting weight.

Over the past decades, many researchers have been working
on human biomechanical modeling. However, only a few
researchers have worked on lifting motion prediction. Initially,
some researchers worked on the two-dimensional (2D) model.
For example, based on the NIOSH (National Institute of
Occupational Safety and Health) lifting equation, a static and 2D
biomechanical model was proposed to estimate the strength
needed for a specific MMH task [9]. In another study, a 5-link
sagittal model was used to predict the optimum lifting motion
using space-time optimization [10]. Another 5-link 2D model
was introduced to predict the lifting motion based on the static
joint strength [11].

But, dynamic joint strength is required to predict the
maximum lifting weight in the optimization formulation. The
dynamic joint strength is a function of joint angle and angular
velocity [12, 13, 14, 15]. In Gundogdu et al. [16], a 2D dynamic-
joint-strength-based model was presented to predict the optimal
lifting motion using generic algorithm. Another 2D human
model was proposed to predict the symmetric maximum weight
lifting motion based on the dynamic joint strength [17, 18]. In
Sreenivasa et al. [19], a 12-DOF 2D model was used to study the
influence of hip and lumber flexibility during lifting motion
considering the dynamic joint strength.

Optimization-based approach is an effective way to solve a
redundant system. As multi-link human model is a highly
redundant system, optimization-based approach is a preferred
tool to find the optimal lifting motion. However, for
optimization-based approaches, choosing the objective functions
play a vital role in predicting the lifting motion accurately. A 2D
model was developed based on the MOO to predict the lifting
motion [18]. The MOO approach results in an 18.9% reduction
in the overall root mean square (RMS) joint angle error when
compared to the single objective optimization based lifting
motion prediction [20]. However, 2D models do not give the
total scenario of a lifting motion, as they do not consider lifting
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weight differences on two sides of the sagittal plane of a human
body. A 3D model can give more insight into the lifting motion.
A 3D biomechanical model was proposed, where lumbar forces
were considered as the objective function to study the effect of
lumbar torque limit during lifting [21]. In another study, a 3D
skeletal model was used with four objective functions, which had
the functionality to analyze the lifting motion for each objective
function separately [22]. MOO was also incorporated in a 3D
model to predict the lifting motion more accurately [23, 24].

On the other hand, only a few studies were conducted to
predict the maximum lifting weight considering the dynamic
strength [17, 25]. In this study, a 40-DOF 3D model is used to
predict the symmetric lifting motion, lifting time and maximum
lifting weight using an inverse-dynamics-based MOO approach.
The predicted results are validated by comparing the predicted
kinematics and kinetics data with the experimental data.

2, 3D SKELETON MODEL AND PREDICTIVE

SIMULATION

The 3D skeletal model consists of 40 DOFs, which are
expressed as q = [z4 Z, Z3 ..... Z49], and the kinematic chains are
connected using well developed Denavit-Hartenberg (DH)
representations [26]. The model consists of one virtual branch
and five physical branches. The virtual branch contains three
rotational DOFs and three translational DOFs, which allows the
model to move in the global space. On the other hand, physical
branches are the spine, right arm, left arm, right leg and left leg.
There are six DOFs for the spine, seven DOFs for each arm, and
seven DOFs for each leg. Each arm consists of three segments:
upper arm, forearm and hand. Each leg consists of four segments:
thigh, shank, rear foot and forefoot.

The anthropometric data of the model are generated in
Visual 3D® (C-Motion, Inc., Germantown, MD, USA) software
using experimentally measured height, weight and stature data.
The dynamic joint strength of the model is retrieved from the
symmetric maximum weight lifting experiment [17].

The general equations of motion of this biomechanical
model are based on the recursive Lagrangian formulation, and
can be expressed in matrix form, which contains forward
recursive kinematics and backward recursive dynamics [27].

2.1 Forward Recursive Kinematics

A=A 4T, (1
. 6Ti .

B;=A;=B;_;T; + Ai—la_qiqis (2)

- aT; . 62Ti . aT; ..
C;=B;=CT; + 2Bi—1a_qiqi + Ai—1a—q_qu'2 + Ai—la_qiqi(3)

where q; is the joint angle variable, T; is the 4x4 DH link
transformation matrix from the (i — 1)th link frame to the ith
link frame, A;, B;, C; are the global recursive kinematics
position, velocity, and acceleration matrices, respectively, and
A, = [1], Bo = G = [0].
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FIGURE 1: THREE-DIMENSIONAL SKELETAL MODEL

2.2 Backward Recursive Dynamics

0A; aA; dA;
T =tr (f’_qi Dz) -8 5 Ei—fig Fi— GA;_1Zo, (4)
D; = L,C{ + T4 Dyy, (5)
E; =mr; + Ty 1By, (6)
F, =16y + T 1Fiyq, (7
G; = hdy + Gy g, )]

where tr(+) is the trace of a matrix, I; is the inertia matrix for link
i, D; is the recursive inertia and Coriolis matrix, E; is the
recursive vector for gravity torque calculation, F; is the recursive
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vector for external force torque calculation, G; is the recursive
vector for external moment torque calculation, g is the gravity
vector, m; is the mass of link i, r; is the center of mass of link i,
f, = [fix fiy fxz O]7 is the external force applied on link
k, 1, is the position of the external force in the local frame £,
h, = [hx hy h, 0]Tis the external moment applied on link
k, zo=[0 0 1 0]T is for a revolute joint, z, =
[0 0 0 0]"is for a prismatic joint, §;, is Kronecker delta,
and the starting conditions are D, ; = [0], E .1 = Fyq =
Gpyq = [0].

The 40-DOF spatial model is a highly redundant system.
The lifting task is formulated as a nonlinear programming
problem (NLP) and is solved by an inverse-dynamics-based
optimization method. The design variables (x) include control
points (¢) of cubic B-spline curves of joint angles, box weight
(W), and total lifting time (T) asx = [¢T w T]T. The MOO
is used to minimize the dynamic effort and maximize the lifting
weight. Finally, the combined objective function is defined as
[18].

2
J=w;N [foT yn (rl(:fz) dt] — w,N[log(W + 10)], ®

[
Ty i

where N[-] is the normalization function, n is the number of
DOFs, ¥ and 7! are the ith lower and upper dynamic joint
torque limits, respectively, w; and w, are weighting coefficients
for the two normalized objective functions where w; = 0.15 and
w, = 0.85 [18].

There are two types of constraints imposed on the lifting
motion: time-dependent constraints and time-independent
constraints.

2.3 Time-dependent Constraints
(1) Joint angle limits imposed in the formulation are from
experiments and can be expressed as:

q" <qxt) <q’, (10)

where q* and qV represent the lower and upper limits on the joint
angles respectively.

(2) Dynamic joint torque is a function of joint angle (¢),
angular velocity (v), strength percentile (zsore) and time (£) [17].
The dynamic joint strength imposed in this formulation can be
expressed as:

L U
T; (qi'vitzscore' t) < Ti < T; (qi'vitzscore' t)a (11)

where T; is the simulated joint torque for the ith joint, T/ is the
upper torque value for the ith joint in positive g; direction and
Tl is the lower torque value for the ith joint in negative g;
direction. Details about dynamic joint torque constraint can be
found in Xiang et al. [18].

(3) Foot-contacting position constraint is imposed to keep

the skeleton model on the ground and can be expressed as:

pfeet(xﬂ t) = Ps, (12)

where Py, are the calculated feet positions, ps are specified
feet ground contacting positions.

(4) Dynamic balance constraint prevents the skeletal model
from falling and helps to keep the body stable. This constraint is
imposed by enforcing the location of zero-moment-point (ZMP),
Pzup (X, t), inside the foot support region (FSR) [28, 29] and is
expressed as:

Pzmp(X,t) € FSR. (13)

(5) Box-collision avoidance is imposed in this formulation
by filling up the model with spheres on the ankle, shank, knee,
thing, hip, lower spine and higher spine to avoid the penetration
of box into the body. The constraint is expressed as:

d(x, t) > r+d%, (14)

where r is the radius of a sphere to represent body thickness, dep
is the box depth and d is the distance between the centers of the
box and the sphere.

(6) For grasping the box, hand distance constraint is
imposed to keep the distance between the two wrists in 3D space
equal to box width and is expressed as:

”prightfhand (X' t) - pleft?hand (X' t)”2 = Wid, (15)

where Prignt nana @nd Pieft nana are the right and left hand
locations, respectively, and wid is the width of the box.

(7) Box-ground parallel constraint is necessary to keep the
box parallel to the ground and is imposed by keeping both hand
height at same level in 3D space.

hright?hand (Xr t) = hleft?hand (X' t)a (1 6)

where Arignt nana and Riepe pang are the right and left hand
heights, respectively.

(8) To distribute the load evenly on both hands, a constraint
is imposed to restrict the difference of weight on both hand
within 2 N.

(9) A symmetric lifting motion constraint is applied as the
experimental lifting motion was symmetric.

2.4 Time-independent constraints

(1) The initial and final hand (box) locations are given from
experiments,
Phrana (X: t) = plsyox (t)r t= Or T (17)

(2) The whole body will be at rest at the initial and final time
points.

qix,t) =0, t=0,T (18)
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(3) Initial, mid-time, and final key joint angles are given
from experimental data.

i) —gf@I<e,  t=02T (19)

where qf is the experimental joint angle for the ith joint
including right and left ankle flexion, right and left knee flexion,
right and left hip flexion, right and left elbow flexion, spine
flexion and rotation, € = 10 degree at boundaries and € = 5
degree at mid-time point [8].

(4) Initial, intermediate, and final vertical GRFs are given
from experimental data:

|GRFyepe(x,t) — GRFE;, ()| <40, t=0,
|GRF,igne (x,£) — GREE 31, ()| < 40, t =0,

where GRFE £t GRFrEight are the experimental vertical ground
reaction force for left foot and right foot, respectively.

The optimal lifting motion is solved using the sequential
quadratic programming (SQP) based optimizer SNOPT [30].

3. EXPERIMENTAL DATA COLLECTION

To ensure the accuracy of the proposed method, motion
capture data from a healthy young male adult were collected and
compared with the simulation data. The participant signed an
informed consent form, and the experimental protocol was
approved by the Texas Tech University Institutional Review
Board.

Motion data were collected from 42 reflective markers (9
mm, spherical) using a 5-camera Vicon® system (Vicon Motion
Systems, Ltd., Oxford, UK) at 100 Hz. Ground reaction forces
(GRFs) data were collected using two Kistler® force plates
(Kistler, Winterthur, Switzerland) at 2000 Hz.

The maximum lifting weight determined in the experiment
is the safe maximum lifting weight, rather than the true
maximum weight a subject can lift. To determine the maximum
lifting weight, each participant was instructed to lift a box (65
cm X 35 ¢cm X 15 ¢cm) up to 1 meter height. The load on the box
was incremented by 5 1bs. We stopped once the participant felt
that they were uncomfortable with more weight being added.
Once the weight was determined, the lifting study was initiated.

The motion capture data and GRFs data were smoothed in
Vicon® software using a Butterworth filter with cutoff
frequencies of 6 Hz and 25 Hz, respectively.

4. RESULTS AND DISCUSSION

The simulation and experimental data are compared in this
study. It took 7.8 minutes for an Intel (R) Xeon (R) E-218G CPU
@ 3.80GHz to solve the nonlinear optimization problem using
SNOPT. The strength (Zscore) 0f the predictive model is 1.05 [21].
The predicted maximum lifting weight on right and left hand are

134.65 N and 132.99 N and the optimal lifting time is 1.3
seconds.
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FIGURE 2: THE PREDICTED SYMMETRIC LIFTING
MOTION

Figure 2 shows the simulated symmetric lifting motion.
Figure 3 shows the joint angle comparisons between the
simulation and experimental data. Finally, Figure 4 shows the
comparison of GRFs during lifting. The dotted line represents
the experimental data and the straight line represents the
simulated data.
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(i) Spine Flexion
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FIGURE 3: JOINT ANGLE PROFILES OF MAXIMUM WEIGHT
LIFTING
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FIGURE 4: GRF PROFILES OF MAXIMUM WEIGHT LIFTING

We predicted nine important joints angles which play a vital
role during symmetric lifting. The predicted joint angles agree
well with the experimental data. The pattern and timing of phase
changes of the predicted joint angle profiles are consistent with
the experimental data. There are some minor discrepancies for
the ankle joints (Figure 3a, b) and elbow joints (Figure 3g, h),
but the differences are within 10 degrees. As the box weight was
very heavy, the subject needed to transmit a significant amount
of force through the elbow joints. The elbow (ulnohumeral joint)
is mainly a hinge joint (ginglymus) and the hand side of the
forearm is unsupported. Because all of these factors, it was
difficult for the subject to maintain the stability during lifting
heavy weight which resulted the jerking. This also made it
difficult for the model to predict the elbow joints accurately.

The pattern of the predicted right vertical GRF is consistent
with the experimental vertical GRF on the right side (Figure 4a).
However, there are some deviations for the left GRF, particularly
near 20% of the task where the difference between the GRF is
more than 10% (Figure 4b). The reason of this discrepancy might
be because of small initial jerks from the experimental right and
left elbow angles (Figure 3a, b). The load on both hands were
high above and far from the center of gravity. The small
deviation of elbow angle, at the beginning of lifting, can create a
significant amount of torque, which might be the reason for high
peak near 20% of the task on left GRF profile. Initial jerks from
the ankles (Figure 3g, h) and spine (Figure 3i) might also have
contributions to such a peak in the left GRF profile. On the other
hand, the predicted kinematics and kinetics curves are all smooth
curves.

Note that 40 N is used as the limits for the GRF constraint
Equation (20). This limit is determined based on numerical trial
and error considering the convergence capability of the
optimizer and robustness of the predictive model. The peak value
of GRF is 650 N, so the relative error for GRF limit is 6.2%.
Considering the differences between the mechanical skeletal
model and real human model, this relative error for GRF limit is
acceptable. Another important finding from this study is that the
predicted kinetics (GRFs) are very different between left and
right feet for a symmetric lifting task.

The predicted total lifting weight is 267.64 N, which is
13.5% higher than the experimental lifting weight. The reason is
that the maximum lifting weight determined during the
experiment is not the true maximum lifting weight. Instead, it is
the maximum weight a person felt safe to lift, as mentioned in
Section 3.

5. CONCLUSION

In this study, we presented a 3D skeletal model and an
optimization formulation that shows good capability to
accurately predict the symmetric lifting motion as well as the
maximum lifting weight for a person. The lifting problem is
formulated as a MOO problem by minimizing the dynamic effort
and maximizing the box weight considering the dynamic joint
strength. The predicted joint angle profiles and GRFs agree well
with the experimental data except for some minor discrepancies
for the GRF on the left foot.
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One limitation of our predictive model is that, it needs some
intermediate constraints to predict the lifting motion and GRFs
accurately, but this is necessary for an optimization-based
method to predict the joint angle profiles and GRFs accurately
[18,31, 32].

Our future work is to develop a hybrid model by combining
this 3D skeletal model with OpenSim musculoskeletal model to
predict and analyze muscle forces for the lifting motion [33].
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