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Abstract  

 

We report theoretical derivations and experimental results on the volume averaging effect of 

nonlinear processes in focused laser fields. This effect is considered detrimental in revealing the 

intensity dependence of a nonlinear process, caused by the intensity variation across the sampled 

volume of a focused laser. Following the treatment in the literature, we prove that if the signal 

dependence can be expressed as a simple power function of the laser intensity and if the 

detection region encompasses effectively the whole volume, volume average does not affect the 

final conclusion on the derived exponent. However, to reveal the detailed saturation effect of a 

multi-photon process, intensity selective scans involving spatial filters and displacement of the 

laser focus (z-scan) are required. Moreover, to fully capture the dependence of the signal on the 

variation of the laser intensity, the degree of spatial discrimination and the corresponding range 

of z-scan need to be modeled carefully. Limitations in the dynamic range of the detector or the 

laser power, however, can thwart the desired scan range, resulting in erroneous fitting exponents. 

Using our nanosecond laser with a non-ideal Gaussian beam profile, based on multiphoton 

ionization of argon atoms from a collimated molecular beam and from ambient argon gas, we 

report experimental measurements of the beam waist and Rayleigh range, and compare the 

experimental intensity dependence of Ar+ with theoretical values. Agreements between theory 

and experiment are remarkable. 
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Introduction 

In nonlinear optical processes using focused laser beams, typically the sample volume is larger 

than the focal volume of the laser beam, as shown in Fig. 1. The detected responses from the 

interaction region, consequently, can encompass contributions from the entire sampled volume, 

including the volume that is outside the focal volume of the laser. The result is therefore considered 

an average within the volume of interaction. This volume average effect (VAE) is prevalent in 

both gas phase and condensed phase experiments, and it is considered detrimental for quantitative 

characterizations of the effect of the laser intensity.1-5 In pump-probe experiments,6 fortunately, 

this problem is irrelevant because the overlapping beams can typically select the volume of 

interaction, confining the experiment to a fixed volume. 

To circumvent VAE, methods of discrimination of either the sample volume or the sampled 

volume, i.e., spatial filters, have been implemented. In the first approach,5 a small tube is used to 

limit the spread of the molecular beam in the interaction region, with the tube diameter comparable 

to the Rayleigh range (𝑧𝑧0) of a Gaussian beam. In the second approach,1,2 a slit aperture is used to 

choose ions from only a small section – again comparable to the Rayleigh range – along the 

propagation direction of the laser (designated as the z direction). In both cases, the pulse energy of 

the laser beam is kept constant, but the focus of the laser beam is shifted along the z direction. The 

resulting signal is considered an average across the laser beam along the radial (r) direction, but 

with no average along the propagation direction. Further treatments of the results can then reveal 

the true intensity dependence function,2,7 i.e. the response function 𝑅𝑅(𝐼𝐼), where 𝐼𝐼 is the intensity 

of the laser beam. Both methods are collectively called z-scan, and the experiment is termed 

intensity selective scanning (ISS) in the literature.  
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The derivation of 𝑅𝑅(𝐼𝐼) from experiments of z-scan requires information on the properties of the 

laser beam along both the r and z directions. For ideal Gaussian beams, detailed mathematical 

treatments have been reported,2,3 and the method has been used in studies of Coulomb explosions 

in strong fields using femtosecond lasers.5,8 However, for non-ideal Gaussian beams, such as those 

from typical nanosecond lasers, a detailed characterization of the laser beam is necessary. Recently 

several groups including us have observed multiply charged atomic ions from interactions between 

a focused nanosecond laser beam and a cluster beam,9-11 and the need to solve the VAE for non-

ideal Gaussian beams becomes imperative. 

In this work, we present a few relatively straightforward solutions to the VAE problem for both 

ideal and non-ideal Gaussian beams. We will review the treatment of ideal Gaussian beams2 and 

introduce a few short-cuts in deriving the volume independent signal when the signal dependence 

can be simplified into a power function of the laser intensity. We have also characterized our 

nanosecond laser beam, and will report the experimental results on the beam waist and Rayleigh 

range. Using multiphoton ionization of Ar at 532 nm, we will demonstrate the effectiveness of the 

short-cuts in deriving the volume independent signal and thereby the dependence of the ionization 

yield on the laser intensity. We also present a caveat in performing ISS experiments with methods 

of spatial discrimination: when the width of the slot or the tube is comparable to the Rayleigh 

range, the scanning range needs to exceed 2𝑧𝑧0 to reveal the true exponent. 

Ideal Gaussian beams 

For an ideal focused Gaussian beam, the beam intensity is represented by:2 

𝐼𝐼(𝑧𝑧, 𝑟𝑟) = 𝐼𝐼0
1+( 𝑧𝑧𝑧𝑧0

)2
𝑒𝑒−

𝑟𝑟2

𝑤𝑤(𝑧𝑧)2 ,         (1) 

where 
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𝑤𝑤(𝑧𝑧)2 = 𝑤𝑤0
2 �1 + � 𝑧𝑧

𝑧𝑧0
�
2
�,         (2) 

and 

 𝑧𝑧0 = 𝜋𝜋𝑤𝑤02

𝜆𝜆
.           (3) 

In these equations, 𝜆𝜆 is the wavelength of the laser, 𝑤𝑤0 is the smallest beam waist at the focal 

position, 𝐼𝐼0 is the intensity at the focal spot, 𝑟𝑟 is the radial displacement from the center of the 

beam, and 𝑧𝑧 is the distance from the focal position.  

In an ionization experiment, the detected signal should be directly proportional to the response 

function 𝑅𝑅(𝐼𝐼), where 𝐼𝐼 is dependent on the position (𝑧𝑧, 𝑟𝑟). Following the notation of ref. 2, without 

spatial discrimination in the detection scheme, the signal 𝑆𝑆𝐹𝐹𝐹𝐹 is considered from the full-view, 

while the signal from ISS experiments is designated as 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼. After introducing an integration kernel 

in each case, the detected signal can be expressed as: 

 𝑆𝑆𝐹𝐹𝐹𝐹(𝑧𝑧) = 1
3
𝜌𝜌𝜌𝜌𝑤𝑤0

2𝑧𝑧0 ∫
2𝐼𝐼+𝐼𝐼0
𝐼𝐼2

�𝐼𝐼0−𝐼𝐼
𝐼𝐼
�
1/2

𝑅𝑅(𝐼𝐼)𝑑𝑑𝑑𝑑𝐼𝐼0
0 ,      (4) 

 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼(𝑧𝑧) = 1
2
𝜌𝜌𝜌𝜌𝑤𝑤0

2∆𝑧𝑧 𝐼𝐼0
𝐼𝐼0𝐿𝐿(𝑧𝑧)∫

𝑅𝑅(𝐼𝐼)
𝐼𝐼
𝑑𝑑𝑑𝑑𝐼𝐼0𝐿𝐿(𝑧𝑧)

0 ,       (5) 

Where 𝜌𝜌 is the particle density – considered uniform across the interaction volume, 𝐼𝐼0𝐿𝐿(𝑧𝑧) is the 

axial intensity of the laser beam, i.e. intensity along the optical axis with  𝑟𝑟 = 0 according to Eq. 

1, and ∆𝑧𝑧 is the width of the collection slot or diameter of the tube (Fig. 1). The goal of any 

experiment on intensity effects is to reveal the functional form of 𝑅𝑅(𝐼𝐼) from the experimental 

values of 𝑆𝑆𝐹𝐹𝐹𝐹 or 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 without the interference of VAE.  

In the case of ISS, the derivation of 𝑅𝑅(𝐼𝐼) from Eq. (5) can be obtained from:2  
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𝑅𝑅(𝐼𝐼) ∝ ( 𝐼𝐼0𝐿𝐿(𝑧𝑧)
𝑑𝑑𝐼𝐼0𝐿𝐿(𝑧𝑧)/𝑑𝑑𝑑𝑑

) 𝑑𝑑[𝐼𝐼0𝐿𝐿(𝑧𝑧)𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼(𝑧𝑧)]
𝑑𝑑𝑑𝑑

 ,        (6) 

which involves differentiation of the experimental signal with respect to 𝑧𝑧, achievable using small 

uniform steps in the z-scan experiment. In the case of full-volume experiments, however, there is 

no analytical method to derive 𝑅𝑅(𝐼𝐼). For this reason, even though ISS experiments are challenging 

in alignment because of the spatial filter, they are necessary to reveal the true response function.  

On the other hand, in many strong field experiments, we simplify the expression of 𝑅𝑅(𝐼𝐼) as a power 

function 

 𝑅𝑅(𝐼𝐼) = 𝑐𝑐𝐼𝐼𝑛𝑛 ,           (7) 

Where 𝑐𝑐 is a proportionality constant, and 𝑛𝑛 is the order of the reaction, typically considered to be 

related to the number of photons involved in the process. Eq. (7) is applicable when the optical 

process is either far away from saturation or completely saturated in some steps of a multistep 

process. In other words, the experimentally derived value n can be considered an indicator for the 

presence of saturation. When the laser intensity 𝐼𝐼 is comparable to the saturation intensity 𝐼𝐼𝑠𝑠, a 

denominator involving (1 + 𝐼𝐼
𝐼𝐼𝑠𝑠

) for Eq. (7) will complicate the situation immensely. 

With this prior knowledge of the functional form of 𝑅𝑅(𝐼𝐼) from Eq. (7), Eq. (5) can be further 

derived into: 

 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼(𝑧𝑧) = 1
2
𝜌𝜌𝜌𝜌𝑤𝑤0

2∆𝑧𝑧𝐼𝐼0
𝑐𝑐
𝑛𝑛
𝐼𝐼0𝐿𝐿(𝑧𝑧)𝑛𝑛−1 .       (8) 

Eq. (8) indicates that from a direct fitting of 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 as a function of 𝐼𝐼0𝐿𝐿, the resulting exponent should 

be consistently lower than the true exponent by 1. Hence there is no need to perform the 

differentiation of Eq. (6) in data treatment. Although not a significant reduction in work load, this 
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simplification is a welcoming relief because the differentiation of Eq. (6) can significantly magnify 

the experimental uncertainty and result in non-physical values.2,7  

Instead of z-scan, we also consider another method of obtaining 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼(𝐼𝐼), i. e. a power-scan:12,13 

with the spatial discrimination tube or slot in place to confine the detection volume to the Rayleigh 

range along the z direction, one can simply scan the power of the laser while monitoring the ion 

yield. For an ideal Gaussian beam, the beam waist and Rayleigh range are independent of laser 

intensity. Direct fitting of the signal as a function of the laser intensity should yield the exact 

exponent of Eq. (7).  

Both power scan and z-scan rely on the knowledge of the laser beam. Power scan is only applicable 

when the beam parameters are independent of pulse energy. In comparison, z-scan uses the same 

pulse energy, hence its results should not be affected by the variation of beam parameters at 

different pulse energies. However, z-scan requires the knowledge of the Rayleigh range, a 

parameter that requires experimental characterization, as will become clear in the following section.  

Substituting Eq. (7) into Eq. (4) in the full-view experiment, the integration is not easily solvable. 

However, if we remain in the cylindrical coordinate (r, z), the signal from a full-view experiment 

can be derived analytically. We first substitute Eq. (1) into Eq. (7) and integrate over the radial 

direction to obtain the z dependence of the signal 𝑆𝑆𝑟𝑟(𝑧𝑧; 𝐼𝐼0): 

 𝑆𝑆𝑟𝑟(𝑧𝑧;  𝐼𝐼0) = 𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌02𝐼𝐼0
𝑛𝑛

𝐼𝐼0𝐿𝐿(𝑧𝑧)𝑛𝑛−1  .        (9) 

This result is in agreement with Eq. (8) from the ISS experiment, corresponding to the signal 

recorded from 0 to ∞ in the r direction for the same z value, i. e. ions from a slice with an infinitely 

large area. The integration of 𝑆𝑆𝑟𝑟(𝑧𝑧; 𝐼𝐼0) over z results in 𝑆𝑆𝑟𝑟𝑟𝑟(𝑧𝑧; 𝐼𝐼0) : 
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𝑆𝑆𝑟𝑟𝑟𝑟(𝑧𝑧; 𝐼𝐼0) = 𝑐𝑐𝑐𝑐𝜌𝜌𝜌𝜌02𝐼𝐼0𝑛𝑛

𝑛𝑛
{
𝑃𝑃�12,   𝑛𝑛−2�

(𝑛𝑛−2)!
𝑡𝑡𝑡𝑡𝑡𝑡−1 � 𝑧𝑧

𝑧𝑧0
�+ 𝑧𝑧 ∑

𝑃𝑃�12,   𝑛𝑛−2�(𝑘𝑘−1)!

(𝑛𝑛−2)!𝑃𝑃(32,   𝑘𝑘−1)
𝑛𝑛−2
𝑘𝑘=1

1

�1+� 𝑧𝑧𝑧𝑧0
�
2
�
𝑘𝑘} , (10) 

for 𝑛𝑛 ≥ 3, where 𝑃𝑃(𝑎𝑎,   𝑏𝑏) is the rising factorial, i.e. the Pochhammer polynomial: 

𝑃𝑃(𝑎𝑎,   𝑏𝑏) = 𝑎𝑎 ∙ (𝑎𝑎 + 1)⋯ (𝑎𝑎 + 𝑏𝑏 − 1) .       (11) 

Eq. (10) represents the signal recorded from a slab with an infinitely large area but with a thickness 

of z including the origin or the focal position. When 𝑆𝑆𝑟𝑟𝑟𝑟(𝑧𝑧; 𝐼𝐼0) is recorded as a function of  𝐼𝐼0, the 

result corresponds to a power scan with a slot width z in Fig. 1. Taking the limit of 𝑆𝑆𝑟𝑟𝑟𝑟(𝑧𝑧; 𝐼𝐼0) to z 

→ ∞ should result in the signal from a full-view experiment: 

𝑆𝑆𝐹𝐹𝐹𝐹(𝐼𝐼0) = lim
𝑧𝑧→∞

𝑆𝑆𝑟𝑟𝑟𝑟(𝑧𝑧) = 𝑐𝑐𝑐𝑐𝜋𝜋2𝑤𝑤02𝐼𝐼0𝑛𝑛

2𝑛𝑛

𝑃𝑃�12,   𝑛𝑛−2�

(𝑛𝑛−2)!
∝ 𝐼𝐼0𝑛𝑛 ,     (12) 

The above result suggests that for nonlinear processes when the response function can be expressed 

as a power function of the laser intensity, full-view measurements are not affected by VAE. In 

hindsight, this conclusion should be expected since the spread of the laser field is throughout the 

full volume at all intensities, as implied by Eq. (1). Regardless of the laser intensity, the interaction 

volume never changes, and the sample in the full volume is always in the laser field and contributes 

to the observation.  

These derivations suggest that as long as the response function can be expressed as a power 

function of the laser intensity, full-view experiments can faithfully reproduce the intensity 

dependence of a nonlinear process, hence there is no need for spatial filters in the experiment. In 

other words, the volumetric weighting effect1-5 due to increased volume at lower intensities is not 

a concern when the signal from the full interaction volume can be recorded. Although the condition 

for Eq. (7) is rarely satisfied, for a qualitative characterization, many experiments still seek the 
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equivalent value of n within a limited intensity range. Hence this conclusion reassures the 

measurements of many experiments in the literature on nonlinear processes.10,14-16  

Fig. 2 shows the sampled volume,2 the integration kernel, and the response function with n = 6 as 

a function of the relative intensity 𝐼𝐼
𝐼𝐼0

 and 𝑧𝑧
𝑧𝑧0

 in a focused laser field with properties defined by Eq. 

(1). In addition, the percent of ions collected for the corresponding region from  - 𝑧𝑧
𝑧𝑧0

 to 𝑧𝑧
𝑧𝑧0

 is also 

labeled on the top axis. The response function is scaled by a factor of 20 for visualization. For this 

highly nonlinear process, most of the signal (94.1%) is produced from the volume defined by 𝑧𝑧
𝑧𝑧0

<

1, but the sampled volume only rises substantially when  𝑧𝑧
𝑧𝑧0

> 1. This significant volumetric 

weighting factor favoring the low intensity region is the reason of concern in revealing the true 

form of the response function. However, for all practical purposes, we can assume that the signal 

generated in the region with 𝑧𝑧
𝑧𝑧0

> 2 (less than 0.2%) can be ignored, meaning that when the 

intensity is below the corresponding 𝐼𝐼𝑡𝑡ℎ = 0.2𝐼𝐼0 , no ionization event can be detected. At an  

increased intensity 𝐼𝐼2 = 10𝐼𝐼0, the volume encompassed by the region with 𝐼𝐼 > 𝐼𝐼𝑡𝑡ℎ would increase 

by 15 folds,2 extending to 𝑧𝑧
𝑧𝑧0

= 7 and 𝑟𝑟
𝑤𝑤0

= 2 based on Eq. (1). If the Rayleigh range is 1 mm, a 

full-view experiment at 𝐼𝐼0 corresponds to a z range of 2 mm, while a full-view experiment at 𝐼𝐼2 =

10𝐼𝐼0 corresponds to a z range of 7 mm.  

These numbers define the conditions of a full-view experiment: to qualify as a full-view 

experiment at intensities ranging from 𝐼𝐼0 to 10𝐼𝐼0, the sample and ion collector need to cover an 

area with a diameter of 14 mm and a depth of 4𝑤𝑤0  in the setup of Fig. 1. This dimension 

requirement for the spectrometer is easily achievable in almost all experimental setups. The spread 

of the sample, based on the dimensions labeled in Fig. 1, is also reasonable, although it might be 
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questionable for highly collimated molecular beams. On the other hand, most detectors have a 

dynamic range less than 6 orders of magnitude, corresponding to an intensity variation of less than 

one order of magnitude for n = 6. Hence the above assumption of 𝐼𝐼2 = 10𝐼𝐼0 actually exceeds the 

range of most realistic experiments, and therefore the real requirement for the dimension of the 

electrode and beam spread should be smaller. 

These conditions for obtaining the correct exponent from a full-view experiment without any 

spatial discrimination are applicable to highly nonlinear processes away from saturation conditions. 

With decreasing n, the necessary range of  𝑧𝑧
𝑧𝑧0

 expands, so does the corresponding size requirement 

for the electrodes and beam spread. Moreover, to uncover the saturation conditions of a 

multiphoton process, i.e. to find the true functional form of 𝑅𝑅(𝐼𝐼), a detailed z-scan experiment and 

the treatment of Eq. (6) are still necessary.  

Non-ideal Gaussian beams 

The mode structure of many pulsed lasers, particularly high power Q-switched Nd:YAG lasers, is 

not well defined, and the beam profile can deviate from Eq. (1), particularly after passing through 

several non-ideal optical surfaces. We tried to measure the beam properties along both 𝑟𝑟 and 𝑧𝑧 

directions using the setup shown in Fig. 3. The laser is a Q-switched Nd:YAG (GCR 230, Spectra 

Physics) with an oscillator and an amplifier, equipped with a frequency doubling unit to obtain 

radiation at 532 nm. The maximum pulse energy is 25 mJ with only the oscillator, and 125 mJ 

with the additional amplification. To obtain pulse energies between 25 and 125 mJ, we can adjust 

the discharge voltage on the amplifier, or adjust the waveplate on the frequency doubling unit for 

polarization mismatch. The focal length of the glass lens is 18 cm. 
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To perform the desired measurements at different pulse energies, however, we need an effective 

method of reducing the laser power below 1 mJ. This was achieved by reflecting the laser beam 

from a transparent optical surface, for example, the slanted face of a right angle turning prism. The 

reflection of < 10% from one surface can reduce the pulse energy from over 100 mJ to a few mJ, 

and further reflection by another surface results in an energy of ~1 mJ, in the range of easy reading 

by a standard power meter (SOLO2 (R2), Gentec-EC). To measure the beam width, we initially 

used a sharp edge made of SiC to cut into the laser beam. During the experiment, however, even 

with a pulse energy of 1 mJ, the sharp edge was still burnt by the focused laser beam, resulting in 

large uncertainties. We then changed the sharp edge into a rod of 6 mm in diameter. Although this 

method is not ideal, the results are consistent over several repeated measurements under the same 

pulse energies.  

The measurement procedure is illustrated in the supplementary document. The transmitted energy 

is sigmoidal in shape as the rod traverses along the 𝑟𝑟 direction, and differentiation results in a 

Gaussian function with an equivalent width 𝑤𝑤(𝑧𝑧). Taking these widths as a function of 𝑧𝑧, we fitted 

for the equivalent beam waist 𝑤𝑤0 and the Rayleigh range 𝑧𝑧0 according to Eq. (1). 

Table I. Characteristics of the laser beam 

 Experiment Theory 

𝑤𝑤0 (𝜇𝜇𝜇𝜇) 14.7 ± 6.9  6.0 

𝑧𝑧0 (𝑚𝑚𝑚𝑚) 0.7 ± 0.4 0.2 
 

Table I shows the resulting beam waist and Rayleigh range at 25 mJ, together with the theoretical 

values obtained from the diffraction limit: 

 𝑤𝑤0 = 2𝑓𝑓𝑓𝑓
𝜋𝜋𝑊𝑊𝑔𝑔

  ,           (13)  
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where 𝑊𝑊𝑔𝑔 is the diameter of the laser beam on the focal lens, and 𝑓𝑓 is the focal length of the lens. 

We also tried the measurements for pulse energies between 25 and 125 mJ, and the resulting values 

are consistent with those listed in Table I within the uncertainties. However, these values need to 

be considered in the following context. The micrometer that controls the motion of the cutter has 

a smallest division of 10 μm, hence we almost have no means to determine a waist with a 

theoretical value of 6 μm. The theoretical Rayleigh range is 0.2 mm, which is a more reasonable 

physical distance for the micrometer. Extrapolation from the experimental Rayleigh range of 𝑧𝑧0 =

0.7 𝑚𝑚𝑚𝑚 results in 𝑤𝑤0 = 11.2 𝜇𝜇𝜇𝜇. This value is within the experimental error of 𝑤𝑤0, and it is also 

consistent with our repeated measurements at 25 mJ using either a thin blade or a rod as a beam 

block. We also found that adjusting the pulse energy by the discharge voltage on the flashlamp of 

the amplifier, or by the orientation of the waveplate in the harmonic generation unit, does not affect 

the beam parameters, a result not surprising considering the large uncertainty of the reported values. 

All results reported in this work using different pulse energies were obtained by adjusting the 

discharge voltage. We acknowledge that every optical surface along the beam propagation 

direction affects the beam profile, hence the experimental results are only representative of the 

laser beam after passing through the set of optical surfaces in our experiment, not necessarily 

representative of the beam directly from the laser. 

Multiphoton ionization of Ar 

To test the theoretical derivations presented in the above sections, we use multiphoton ionization 

of Ar as an example. The experimental setup is a standard differentially pumped molecular beam 

machine as illustrated in Fig. 1, lower right corner, with a pulse valve (General Valve, Series 9, 

Parker Hannifin, nozzle diameter: 1 mm), and a home-made skimmer of 2 mm in diameter. The 

stagnation pressure is kept at 1 atm, and no clusters should form when the nozzle is at room 
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temperature.17 The time-of-flight mass spectrometer is Wiley-McLaren type,18 inline with the 

molecular beam, and the ionization region is sandwiched between the two electrodes of 4.6 cm in 

diameter. A small tube of 1 mm in diameter and 3 mm in length is mounted upstream from the 

first electrode, limiting the spread of the molecular beam to ~1 mm in the interaction region, on 

par with the experimental Rayleigh range of the laser beam. The laser operates at a 10 Hz 

repetition rate but the sample pulse valve operates at 5 Hz, and the difference in the Ar+ signal 

when the pulse valve is on and off is considered the net signal from the molecular beam. When 

the laser is fired 0.6 ms after the trigger to the pulse valve, it captures the leading edge of the 

molecular beam. The resulting measurements, either from z-scan or power-scan, should 

correspond to ISS experiments. The signal recorded when the pulse valve is off, i.e. the 

background signal, corresponding to the laser firing 100 ms after the gas pulse, should be from 

ionization of the residue gas (average vacuum level: 1 × 10-6 torr during operation), essentially 

unrelated to the molecular beam. This statement has been confirmed by the independence of the 

background signal on the position of the focal lens along the z-direction: the background signal 

shows no dependence on the lens position within 2 mm of lens movement. Hence the 

dependence of the background signal, small as is expected, on the laser power, should 

correspond to a full-view experiment with no spatial discrimination.  

Fig. 4 shows the results of z-scan (labeled “z scan”) and power-scan (labeled “P scan”) from ISS 

experiments and from the full-view experiment (labeled “FV”) on a log-log plot. The simulation 

result based on the experimental conditions assuming n = 6 using Eq. (10) is also shown with an 

extended intensity range (Simu. 2). The traces are shifted in the vertical direction for 

visualization since only the slope is concerned in this discussion. The numbers in the parentheses 

are the corresponding slopes from fittings of the data points. In particular, linear regression of the 
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simulated data in the range of z = 0 to 1 mm (Simu. 1) results in a slope of 3.0 ± 0.2, while 

regression in the range of z = 0 to 2 mm results in a slope of 4.5 ± 0.2. The first ionization 

threshold of Ar is at 15.8 eV,19 requiring 7 photons at 532 nm for ionization, hence we expect 

𝑛𝑛 = 7 if there is no saturation effect. The z-scan uses the same laser intensity 𝐼𝐼0 = 1.2 ×

1012W/cm2, and the values of 𝐼𝐼0𝐿𝐿(𝑧𝑧) are calculated using the experimental value for 𝑧𝑧0 from 

Table I. The power scan spans a range of pulse energies, and the values of 𝐼𝐼0 are also calculated 

based on the experimental beam waist from Table I.  

The resulting slopes from the power scan at 6.0 ± 0.3 and from the full-view experiment at 6.3 ± 

0.1 are similar within the experimental uncertainty. The experimental results from z-scan, 

however, show deviations from a linear relation, although a linear fit still results in a very 

reasonable quality (coefficient of determination R2 = 0.98) with a slope of 2.8 ± 0.1. This 

significant difference in the resulting slope is surprising, but it is faithfully reproduced from the 

simulation within the same range of z values. Moreover, by extending the dynamic range of z in 

the simulation, the slope increases and eventually converges to 5.2 when z > 4 mm. 

Unfortunately, the detection sensitivity of the experiment is limited to less than 2𝑧𝑧0 in our case, 

and no Ar+ was detectable when z > 1 mm.  

The slopes from the full-view experiment and the power scan are close to the theoretical upper 

limit of 7, and the value of 6.3 or 6.0 could also be a result of partial saturation, since the last two 

steps of ionization at 532 nm involve transitions among high Rydberg states of Ar, and some 

degree of resonant enhancement is possible. The slope from the power scan of the collimated 

molecular beam is within the error limit of the full-view experiment, but is on the lower side. 

This trend has proven robust throughout several months of experimental time, and a steady 

increase in the slope has been observed with increasing delays of the laser. The origin of this 
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behavior could be attributed to the finite radial range of data collection because of the tube, since 

Eq. (9) assumes the complete range of r in detection.  

The above results confirm the assessment that the conditions for full-view experiments are met in 

our experiment with the background argon gas even under the highest achievable laser intensities 

of 1.2 × 1012W/cm2. The sample is distributed almost uniformly in the ionization region, hence 

the condition for sample spread is automatically satisfied. The range of intensities is only a factor 

of 2 (between 𝐼𝐼0 and 2𝐼𝐼0), and the dynamic range of the signal is less than 2 orders of magnitude, 

hence the effective range of 𝑧𝑧
𝑧𝑧0

 is below 3. For this type of highly nonlinear processes, the signal 

is primarily generated from the volume near the focal position, hence most mass spectrometers 

have sufficient collection volume to be considered full-view measurements.  

The smaller slope near the focal position from the ISS experiment (Fig. 4) is a result of the 

highly nonlinear dependence of the response signal and the finite diameter of the tube. Fig. 5 

shows the effect of tube diameter on the resulting signal and fitting slope. If a smaller tube is 

used, for example, 0.3 mm in diameter, even within 𝑧𝑧
𝑧𝑧0

= 0 − 1.25, the resulting slope is 4.7, 

almost identical to the slope (5.0) from 𝑧𝑧
𝑧𝑧0

= 0 −  8. On the contrary, if the tube is 3 mm in 

diameter, a flat region between 𝑧𝑧
𝑧𝑧0

= 0 and 1.25 is obtained. Linear regression of the region 

between 𝑧𝑧
𝑧𝑧0

= 2.5 and 8 results in a slope of 7.3, a clear deviation from the expected value of 5.0.  

This effect of the tube diameter can be understood from the following consideration. In a z-scan 

experiment, the initial position of the lens aligns the focal point of the laser with the center of the 

tube. For a large diameter tube, as the lens is shifted, only the outer region near the edge of the 

tube is affected, but the Rayleigh range is still largely within the tube opening. Since most ions 
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are generated within the Rayleigh range, the overall signal should not change much at all, until 

the shift is large enough to cut into the Rayleigh range.  

Figs. 4 and 5 reveal an important caveat in performing ISS type experiments: the degree of 

spatial discrimination and the dynamic range of the recorded data are crucial in revealing the true 

response function. When the tube diameter is comparable to the Rayleigh range as is the case 

with the tube of 1 mm in diameter, the dynamic range of z-scan needs to extend to over 2𝑧𝑧0 to 

capture the true exponent of the intensity dependence. The smaller the tube diameter, the more 

reliable the measurement is for the same scanning range. A bigger diameter will not only 

produce a plateau in z-dependence, but also yield a wrong exponent in the large z region. What is 

even more alarming is that this plateau could be mistakenly considered a sign of saturation, 

although it is purely an artifact of insufficient spatial discrimination. In practice, however, a 

smaller tube diameter results in a smaller signal, and ultimately the detection sensitivity limits 

the size of the tube. With a tube of 1 mm in diameter, the signal level from our detector has 

already severely limited the scanning range, leading to a seemingly wrong exponent.  

Given the above consideration, one way to alleviate the difficulty of the experiment is to increase 

the Rayleigh range of the laser beam, by using a lens with a longer focal length or a smaller 

beam (Eq. 13). However, the available total pulse energy will be the ultimate limiting factor in 

providing the necessary intensity for the nonlinear effect.  

The key for the agreement in Fig. 4 is the knowledge of the waist and Rayleigh range of the laser 

beam. Without these values, no quantitative agreement can be obtained. However, measurements 

of beam waists are tedious and time consuming, and require high precision translational stages. If 

the goal of the experiment is to qualitatively assess exponents of the response function, while the 

exact value of the exponent is not a major concern, this detailed information can be ignored. 
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Moreover, if detailed saturation information is deemed unnecessary at a certain stage of 

investigation, power scans of full-view experiments are sufficient, with no need to perform 

detailed ISS experiments. 

Conclusion 

In this report, we investigate the volume average effect in highly nonlinear processes, from 

simulation and experiment. Our basic conclusion is that when the signal dependence can be 

expressed as a power function, full-view experiments with sufficiently large collection volumes 

are adequate for revealing the exponent of the intensity dependence. However, if detailed 

information on the saturation intensity is desired, ISS experiments with spatial discrimination are 

needed. We also present a caveat in performing ISS experiments: the degree of spatial 

discrimination and the corresponding range of z-scan have to be taken into consideration when 

fitting for the exponent. Limited by the dynamic range of detection or the total available laser 

energy, however, this mission can be challenging. In addition, many nanosecond lasers have 

mode structures that result in deviations from ideal Gaussian beam profiles, and both values of 

beam waist and Rayleigh range need to be determined experimentally for quantitative results.   
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Figures  

 

Fig. 1 Experimental setup showing the volume average effect and the two implementations of 

intensity selective scanning. The top approach uses a slit to select ions with the same z 

(displacement from the focal position) value, and the bottom approach collimates the molecular 

beam so its spread is limited to a small range in z. Both methods are called z-scan in the literature. 
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Fig. 2. Dependence of the response function with n = 6, volume, and integration kernel on the 

relative local intensity of the laser and the displacement of the focal position. The response function 

is scaled by 20 for easy visualization. The “%” label on the top axis represents the percent of total 

ions within the corresponding values of − 𝑧𝑧
𝑧𝑧0

 to 𝑧𝑧
𝑧𝑧0
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Fig. 3. Experimental setup for measuring the beam waist and Rayleigh range. The cutter and the 

lens translates along the r and z direction, and the transmitted intensity maps out the beam profile.  
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Fig. 4. Experimental results from a full-volume experiment (FV), from z-scan of a collimated 

molecular beam with a tube of 1 mm in diameter (z scan), from power-scan of the collimated 

molecular beam (P scan), and from simulations of the experiment (Simu. 2). The numbers in the 

parentheses are slopes from linear regression fittings. The results from fittings of full-volume (FV 

fit) and from simulation with z = 0 to 1 mm (Simu. 1) are shown by solid lines. 
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Fig. 5. Effect of tube diameter (labeled in the legend) on the fitting results of the exponents. Open 

symbols are calculation results assuming n = 6, and continuous lines are results from linear 

regression, with the corresponding exponents labeled in parentheses. Fittings for tube diameters of 

1 and 0.3 mm included all data from 𝑧𝑧
𝑧𝑧0

= 0 −  8, but the fitting for the tube of 3 mm in diameter 

only included the data range between 𝑧𝑧
𝑧𝑧0

= 2.5 −  8. 
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