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Current distribution in a slit connecting two graphene half planes
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We investigate the joint effect of viscous and Ohmic dissipation on electric current flow through a slit in
a barrier dividing a graphene sheet in two. In the case of the no-slip boundary condition, we find that the
competition between the viscous and Ohmic types of the charge flow results in the evolution of the current
density profile from a concave to convex shape. We provide a detailed analysis of the evolution and identify
favorable conditions to observe it in experiment. In contrast, in the case of the no-stress boundary condition,
there is no qualitative difference between the current profiles in the Ohmic and viscous limits. The dichotomy
between the behavior corresponding to distinct boundary conditions could be tested experimentally.
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I. INTRODUCTION

Recent years have seen a revival of interest in the idea
[1] that charge transport in solids under some conditions is
best described by hydrodynamic flow of an electron liquid.
Graphene provides an ideal platform for observing hydrody-
namic effects due to the extremely long electron mean-free
path for impurity scattering [2–12]. In constrained geometries,
viscous electron flow differs from both the Ohmic and ballistic
transport regimes. The simplest manifestations of that differ-
ence are seen in the conductance: it exceeds the ballistic limit
for a slit connecting two conducting half-planes [8], and may
become negative for certain configurations of contacts along
the edge of a conducting stripe [3]. These manifestations are
fairly insensitive to the type of boundary condition for the
electron liquid flowing around obstacles. For example, the
conductance of a slit in the hydrodynamic regime exceeds
the ballistic limit, regardless the liquid “sticking” to the
boundary or “sliding” along it.

Sticking to or sliding along the boundary corresponds,
respectively, to the no-slip or no-stress boundary conditions
for the electron liquid. There is no consensus in the literature
(see Ref. [2] vs [8]) regarding which boundary condition is
appropriate for graphene. Theoretical work [13] discussed
the relation of the hydrodynamic boundary conditions to the
microscopic [14] conditions for electron scattering off the
boundary.

Recently, spatially resolved experimental techniques have
made it possible to investigate the velocity distribution in the
electron flow [15–17], giving direct information about the
boundary conditions for hydrodynamic charge carriers. That
motivates us to investigate theoretically the effect of boundary
conditions and of the Ohmic losses in the bulk on the on the
velocity distribution. We focus on the electron flow through a
slit [see Fig. 1(a)].

Our main finding is that the velocity profile may allow one
to unambiguously determine the type of boundary conditions
as well as to identify the viscous regime. We also elucidate

the domain for the sample parameters (the slit width, charge
carrier density, and temperature) favoring the hydrodynamic
regime.

We start with a brief review in Sec. II of the continuous-
medium (hydrodynamic) equations which account for the
electron viscosity and Ohmic losses. In the same section,
we identify the width of the boundary layer defined by the
competition between the viscous and Ohmic terms in the hy-
drodynamic equations. The comparison of the limiting cases
where either the viscous or Ohmic term dominates allows us to
conclude in Sec. III that in the case of no-stress boundary con-
dition it may be hard to distinguish in an experiment between
the Ohmic and viscous electronic flows. In contrast, for the no-
slip boundary condition, we notice a qualitative feature: the
current density profile is concave and convex in the Ohmic and
viscous limits, respectively. In practice, the viscous term in
the dynamic equation for the electron liquid coexists with the
Ohmic term. In Sec. IV, we study the crossover between the
two regimes controlled by a single dimensionless parameter,
the ratio of the slit width to the width of the boundary layer
introduced in Sec. II. We find the current density profile
numerically at any value of this control parameter and present
a simplified model allowing for an analytical solution, which
agrees well with the numerical results. The control parameter
may be varied in situ by changing the electron density and
temperature. We identify the domain of parameters favoring
the hydrodynamic regime of electron flow and map out the
crossover lines separating the Ohmic, viscous, and ballistic
regimes from each other in Sec. V. We conclude in Sec. VI.

II. HYDRODYNAMIC DESCRIPTION OF ELECTRONIC
FLOW IN GRAPHENE

In this section, we set up hydrodynamic equations and
briefly discuss their applicability. Following previous liter-
ature [2,5,7,8,10,11], the electronic flow in graphene may
be described, at low applied bias, by the linearized Stokes
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FIG. 1. (a) Schematic representation of the electric current flow
in graphene through a slit of finite width 2w. The scale of a graphene
lattice is artificially enlarged for visualization. The distribution of
current within the slit (i.e., at |x| < w and y = 0) may allow to
distinguish between the viscous/nonviscous regimes as well as clar-
ify the role of the boundary conditions. (b) The current distribution
within the slit in the Ohmic (9), viscous no-slip (18), and viscous
no-stress (17) cases. To plot them simultaneously, we set the common
normalization constant vc = I/πnew, which corresponds to fixed
total current I .

equation in two dimensions r = (x, y):

[η � − (ne)2ρ ] v(r) = ne∇φ(r). (1)

Here, φ(r) and n are the electric potential and electronic
density; η and ρ are the viscosity coefficient and the electric
resistivity, respectively. It is assumed that the velocity v(r) of
the electronic fluid is small, so the higher-order in v terms are
dropped (see discussion in Ref. [2]). In addition, the stationary
continuity equation for current density j = nev is used:

0 = ∇ · j(r) = ne∇ · v(r), (2)

where, in the last equality, we assumed that the electronic
liquid is incompressible at hydrodynamic length scales, i.e.,
n(r) = const.

We intend to solve Eqs. (1) and (2) for the “slit” geometry.
To be more specific, we assume that the graphene sheet is
divided by the opaque (for electrons) barrier with a slit of
finite width 2w as illustrated in Eq. 1(a). For the purposes of

analytical calculations, we assume that the barrier is infinitely
thin.

The specifics of the boundary conditions imposed by the
barrier is crucial for determining the profile of the flow. In
the microscopic approach, the pioneering work by Fuchs [14]
discussed two types of boundary conditions for electrons: (i)
the diffuse and (ii) specular scattering. In the phenomeno-
logical hydrodynamic approach, the boundary conditions on
each side of the impenetrable barrier may be formulated in a
concise form

vy||x|>w, y→0 = 0,

vx||x|>w, y→0 = λ (∇yvx )||x|>w, y→0.
(3)

The first of these two equations states that the normal com-
ponent of the velocity vanishes at the barrier. The second
equation states that the tangential velocity at the boundary is
proportional to the viscous stress. The parameter λ allows to
interpolate between the no-slip (λ = 0) and no-stress (λ = ∞)
boundary conditions. There is no consensus in the literature
(see Ref. [2] vs [8]) regarding which boundary condition is
appropriate for graphene. Recent theoretical work [13] dis-
cussed a relation between the microscopic and hydrodynamic
boundary conditions.

By inspecting the left-hand side of Eq. (1), it is instructive
to define the parameter

l = 1

ne

√
η

ρ
, (4)

which has units of length. Comparison of l with the geometric
scale of the problem w allows us to define the two regimes
in which (i) the Ohmic term dominates (l � w), or (ii)
the viscous term dominates (l � w). We discuss the current
distribution in these limiting cases in the following section.
Then, in Sec. IV, we discuss the crossover between the two
limits.

III. CURRENT DISTRIBUTION IN THE LIMITING CASES

A. Current distribution in the Ohmic limit (l/w → 0)

As a warmup, we consider the Ohmic limit l/w → 0, in
which we may drop the viscous (∝η) term in Eq. (1). In order
to resolve the continuity equation (2), we introduce the stream
function v(r) = [ẑ × ∇ψ (r)]. Then, Eq. (1) reduces to

[ẑ × ∇ψ (r)] = − 1

neρ
∇φ(r). (5)

We seek a solution of Eq. (5) with the normal component
of velocity vanishing at the wall. That boundary condition
amounts to ψ being constant1 at the two sides of the barrier,
i.e.,ψ (r)|x>w,y→0 = 0 andψ (r)|x<−w,y→0 = ψ0. The constant
ψ0 is related to the total current I flowing through the slit,
ψ0 = −I/ne. Equation (5) may be interpreted [7,18] as the
Cauchy-Riemann condition for an analytical function of a

1Here we use that ψ is defined up to a constant, so we may
arbitrarily shift it for our convenience.
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complex variable z = x + iy:

f (z) = φ(r)
neρ

+ iψ (r). (6)

Then, it is practical to perform a conformal transformation2

to a new variable z1 = ln [(z + √
z2 − w2)/w], in which the

complicated slit geometry [see Fig. 1(a)] transforms into a
horizontal stripe, i.e., −∞ < x1 < ∞ and 0 < y1 < π . In
the latter geometry, the boundary conditions at the edges
of the stripe become Im f (z1)|z1→x1+iπ = ψ0 = −I/ne and
Im f (z1)|z1→x1+i0 = 0. It is straightforward to find the function
satisfying that boundary condition: f (z1) = −z1 I/neπ . So, in
the original variable z, we have

f (z) = − I

πne
ln

[
z + √

z2 − w2

w

]
. (7)

The functions φ and ψ may be read off from Eq. (7) using
Eq. (6). Few comments about the solution (7) are in order. (i)
The potential is logarithmically large φ(r) = neρ Re f (z) ∼
(Iρ/π ) ln r/w at r → ∞. Physically, it corresponds to a
logarithmically large resistance R ∼ (ρ/π ) ln L/w, where L
is the size of the system. (ii) Using that ψ (r) = Im f (z) and
definition of ψ (r), one may evaluate the velocity(

vx(r)
vy(r)

)
= I

πne

(
Re[1/

√
z2 − w2]

−Im[1/
√
z2 − w2]

)
. (8)

Within the slit, the flow has only the ŷ component,

vy|Ohmic
|x|<w, y→0 = vc√

1 − (x/w)2
, vc = I

πnew
. (9)

Although the velocity has a square-root divergence at the
edges, the total current flowing through the slit is finite,
and satisfies the current conservation law

∫ w

−w
dx nevy(x) =∫ w

−w
dx nevc

1−(x/w)2 = I .

B. Current distribution in the viscous limit (l/w → ∞)

It was realized [8] that the conductance in the viscous
limit, i.e., at l/w → ∞, with no-slip boundary conditions
may surpass the ballistic limit. In this section, we complement
the result of that study by considering the viscous limit with
no-stress boundary conditions. Although the conductance in
the no-stress and no-slip cases behaves similarly, the velocity
profiles differ significantly. The velocity vanishes at the edges
of the slit in the no-slip case [8]. In contrast, the velocity
profile in the no-stress case has a divergence similar to Eq. (9).

In the viscous limit, the Ohmic term (∝ρ) may be dropped,
and the Stokes equation (1) becomes

η � v(r) = ne∇φ(r). (10)

2It is instructive to view that conformal transformation as a se-
quence of two mappings z1 = g( f (z)). The first one, z̃ = f (z) =
(z + √

z2 − w2)/w, is the inverse to the Joukowsky transform, and
it maps the slit geometry onto the upper half-plane (i.e., z̃ = x̃ + iỹ
with ỹ > 0). The second one, z1 = g(z̃) = ln z̃, transforms the upper-
half plane into the horizontal stripe (i.e., z1 = x1 + iy1 with π > y1 >

0).

We follow Ref. [7] and introduce vorticity ω(r) =
[∇ × v(r)]z, so Eq. (10) reduces to

[ẑ × ∇ω(r)] = ne

η
∇φ(r). (11)

We find velocity v(r) in two steps: (i) first we solve Eq. (11),
and (ii) next we compute v(r) from the evaluated ω(r).

(i) We proceed to solving the linear partial differential
equation (11). We follow Ref. [7] and note that functions
ω(r) and φ(r) satisfy the Cauchy-Riemann conditions for the
analytical function of the complex variable z = x + iy:

f (z) = −ne

η
φ(r) + iω(r). (12)

We intend to compute the function f (z) in the upper half-
plane, i.e., for y > 0. For that, let us establish the boundary
condition satisfied by f (z) on the real axis, i.e., at z → x + i 0.
It is convenient to set the electric potential φ(r), such that
φ(r)|r→∞, π>ϕ>0 = 0 and φ(r)|r→∞, 2π>ϕ>π = V , where V is
the applied bias and ϕ is the polar angle of vector r. Then,
by invoking the symmetry of the problem, the electric po-
tential is constant within the slit, i.e., φ(r)||x|<w,y→+0 = V/2.
Further, the no-stress boundary condition, i.e., setting λ = ∞
in Eq. (3), renders the vorticity to vanish at the barrier, i.e.,
ω||x|>w, y→+0 = 0. We may collect these boundary conditions
in a concise way for the function f (z) defined in Eq. (12):

Re f (z)||x|<w, y→+0 = −neV

2η
,

Im f (z)||x|>w, y→+0 = 0,

f (reiϕ )|r→∞, 0<ϕ<π = 0.

(13)

This is a mixed boundary value problem [19]. To solve it, we
introduce an auxiliary complex function

f̃ (z) = i f (z)
√
z2 − w2, (14)

for which the boundary condition (13) transforms
into Re f̃ (z)|y→+0 = neV

2η

√
w2 − x2 θ (w − |x|). Now,

we may apply the Schwarz integral to the function
f̃ (z) = 1

π i

∫ ∞
−∞ dx Re f̃ (x)

x−z , evaluate that integral, and obtain
the function

f (z) = neV

2η

[
−1 + z√

z2 − w2

]
. (15)

(ii) Now, we may compute the velocity from the eval-
uated vorticity ω(r) = Im f (z). It is convenient to switch
to the independent variables z = x + iy and z̄ = x − iy. The
velocity satisfies the continuity equation ∇ · v = 0 and equa-
tion on vorticity (∇ × v)z = ω(r). The pair of these equa-
tions may be written in a compact form as ∂z̄(vy + ivx ) =
Im f (z). That equation may be integrated by writing Im f (z) =
1
2i [ f (z) − f (z̄)] and using the explicit expression for f (z):

vy + ivx = neV

8iη

[
zz̄√

z2 − w2
−

√
z̄2 − w2 +C(z)

]
, (16)

where the functionC(z) is some analytical function of z. In or-
der to determine C(z), note that the velocity field is restricted
by several constraints: (a) the component vx||x|<w,y→+0 = 0
vanishes within the slit, (b) the component vy||x|>w,y→+0 =
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0 vanishes outside of the slit, and (c) |v| ∝ 1
r at large r.

They prompt us to choose the following ansatz: C(z) =
A/

√
z2 − w2. The numerical constant A may be determined

by matching with the known behavior of the velocity field3 at
large r, producing A = −2w2. So, we may obtain the velocity
within the slit

vy|visc, no-st|x|<w, y→0 = vno-st
c

[√
1 − (x/w)2 + 1

2
√
1 − (x/w)2

]
,

(17)

where vno-st
c = newV /4η. Evaluating the total current through

the slit I = ne
∫ w

−w
dx vy, we find the conductance Gno-st =

I/V = π (new)2/4η. Let us contrast Eq. (17) with the velocity
distribution evaluated [8] for the no-slip boundary condition

vy|visc, no-sl|x|<w, y→0 = 2 vno-sl
c

√
1 − (x/w)2, (18)

where vno-sl
c = newV /8η. The conductance in the no-slip case

is twice smaller, Gno−sl = Gno−st/2.

C. Comparison between the Ohmic and viscous limits

We summarize the results of the current section by plotting
the velocity distributions in the Ohmic (9), viscous no-stress
(17), and viscous no-slip (18) limits in Fig. 1(b). Observe
that both the Ohmic (9) and viscous no-stress (17) distribu-
tions have an integrable vy ∝ 1/

√
x ± w singularity at the

edges of the slit. Physically, that divergence stems from
the requirement to accommodate the nonvanishing flow along
the impenetrable boundary. The profiles of velocity for the
Ohmic (9) and viscous no-stress (17) limits appear similar
qualitatively. Therefore, it would be challenging to experi-
mentally distinguish the two limits.

In contrast, the velocity profile (18) in the case of the
no-slip boundary conditions is a convex function with a max-
imum at the center of the interval (−w,w). It is significantly
different from the concave velocity profile in case of the
Ohmic flow. Once the Ohmic (∝ρ) and viscous (∝η) terms
become of comparable strength, i.e., l/w ∼ 1, the solutions
(9) and (18) corresponding to the limiting cases are not
applicable, and we expect a crossover between the concave
and convex velocity distributions across the slit (|x| � w). In
the next section, we develop a method of integral equation to
describe that crossover.

IV. CROSSOVER BETWEEN THE OHMIC AND NO-SLIP
VISCOUS LIMITS (l/w ∼ 1)

A. Integral equation

In the spirit of Refs. [5,7], we find the solution of the
“point-source” (ps) problem

ψps(x, y) =
∫ ∞

−∞

dkx
2π i kx

eikxx

q − |kx| [q e
−y |kx | − |kx| e−y q],

q =
√
k2x + l−2, (19)

3From Eq. (2) of Ref. [7], we extract the large-r behavior of
velocity v(r) = I r

πner2
(1 − 1

2 cos 2θ ). Here I is the total current, θ is
the polar angle.

where the parameter l , defined in Eq. (4), measures the relative
strength of the viscous and Ohmic terms. Equation (19) solves
Eqs. (1) and (2) for arbitrary η and ρ with no-slip boundary
condition and a “point-source” current at the boundary y = 0.
In other words, it satisfies vx|y→+0 = −∇yψps|y→+0 = 0 and
vy|y→+0 = ∇xψps|y→+0 = δ(x). One may view Eq. (19) as a
Green’s function allowing to relate ψ (x, y) in the plane to the
velocity v(x) within a finite-width slit:

ψ (x, y) =
∫ w

−w

dx′ ψps(x − x′, y) v(x′). (20)

For clarity, the components vx and vy stand for the velocity at
arbitrary r, whereas v(x) ≡ vy(x, y)|y→0 denotes the velocity
distribution within the slit. Naturally, ψ (x, y) satisfies the
correct boundary conditions at y = 0 as well as the condition
on the total current at r → ∞. In addition, the velocity distri-
bution must satisfy the symmetry condition that y = 0 is the
inflection point for vx, which amounts to ∇3

yψ ||x|<w,y→+0
= 0

in terms of the stream function ψ . Substituting Eq. (20) in the
latter symmetry condition4 and massaging it yields an integral
equation on the unknown velocity profile v(x):∫

−
w

−w

dx′ K (x − x′) v(x′) = 0, (21)

K (x) = lim
δ→+0

∫ ∞

0

dt e−t δ

l
sin

(
t
x

l

) √
t2 + 1√

t2 + 1 − t
. (22)

So, the problem reduces to finding a null vector of the integral
operator with kernel K (x). In addition, we impose a boundary
condition v(±w) = 0. To ensure convergence, the integrand
in Eq. (22) contains5 an exponentially decaying term e−t δ .
In the absence of that term, the integrand diverges at large
t , which represents the singularity of the kernel at x → 0.
In order to expose that singularity, we rewrite the rational
function of the integrand in Eq. (22) as

K (x) = lim
δ→0

∫ ∞

0

dt e−t δ

l
sin

(
t
x

l

)

×
[
2 t2 + 3

2
− 1

2(t + √
t2 + 1)2

]
.

We may explicitly evaluate the integrals corresponding to the
first two terms in the square brackets and retain the last term
in Kreg(x):

K (x) = −4 l2

x3
+ 3

2x
+ Kreg(x),

Kreg(x) = −
∫ ∞

0

dt

2 l

sin [t (x/l )]

(t + √
t2 + 1)2

. (23)

The first two terms in Eq. (23) are singular, and, corre-
spondingly, the integral (21) is understood in the sense of
Cauchy’s principal value. In contrast, the integral in Kreg(x)
converges well and, so, the regularizing exponent is dropped.

4To be accurate, we multiply by l2, i.e., −l2∇3
yψ ||x|<w,y→+0

= 0
corresponds to Eq. (22).
5The exponential term e−t δ in Eq. (22) is a remnant of the terms

e−|kx |y and e−qy in Eq. (19).
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It has the following asymptotes: Kreg(x) = (x/l2) ln(l/|x|)
and Kreg(x) = −1/2x + 2 l2/x3 + O(l4/x5) at x/l � 1 and
x/l � 1, respectively.

B. Limiting cases

Let us demonstrate that the limiting cases are consistent
with the integral equation approach. First, consider the Ohmic
limit l → 0, in which case the kernel (23) becomes K (x) = 1

x .
Then, it is straightforward to check that the Ohmic velocity
profile (9) satisfies the integral equation (21):∫

−
w

−w

dx′ 1

x − x′

[
vc√

1 − x′2

]
= 0. (24)

In the opposite strongly viscous case l → ∞, the kernel
behaves as K (x) = −4l2/x3. One may show that the velocity
profile (18) satisfies the corresponding integral equation (21):∫

−
w

−w

dx′ −4l2

(x − x′)3
[2vc

√
1 − x′2] = 0, (25)

and the boundary condition v(±w) = 0 at the edges of the slit.
The consideration above prompts the following interpretation
of the singular terms in kernel (23). The two terms ∝1/x
and ∝l2/x3 correspond to the Ohmic and viscous parts of the
kernel, respectively.

C. Numerical solution

Equation (23) is conveniently split in singular (∝1/x and
∝l2/x3) as well as nonsingular Kreg(x) terms. The strategy is
to simplify the singular terms by analytical methods, whereas
the nonsingular term may be treated numerically.

We proceed by substituting the kernel (23) in Eq. (21) and
recognize that the viscous term (∝l2/x3) may be written via a
second derivative:

− 2l2
d2

dx2

[∫
−

w

−w

dx′ v(x′)
x − x′

]
+ 3

2

[∫
−

w

−w

dx′ v(x′)
x − x′

]

+
∫ w

−w

dx′ Kreg(x − x′) v(x′) = 0. (26)

In order to tackle this integrodifferential equation, we employ
the Chebyshev polynomials of both first Tn(x) and second
Un(x) kinds.6 They are tailored for a problem on a finite
interval. We expand the velocity profile in series

v(x) = vc√
1 − (x/w)2

∞∑
n=0

cn T2n(x/w), (27)

where vc = I
πnew denotes the characteristic value of velocity.

The summation is carried over the polynomials of even order,
which are even functions of x, thus corresponding to the
symmetry of the problem. The value of the first coefficient
c0 = 1 is fixed by the constraint

∫ w

−w
dx v(x) = I/ne, whereas

cn are unknown for n � 1.

6The Chebyshev polynomials of the first and second kinds are de-
fined as Tn(cos θ ) = cos(n θ ) and Un(cos θ ) = sin[(n + 1)θ ]/ sin θ ,
respectively.

FIG. 2. Normalized velocity profile through the slit evaluated
for the no-slip boundary condition. We present results ranging from
the strongly viscous l/w � 1 to strongly Ohmic l/w � 1 regimes.
The crossover between the two regimes occurs at the intermediate
l/w � 0.5. The numerical and (approximate) analytical (32) curves
are shown with solid and dashed lines, respectively.

The expansion (27) enables to rewrite Eq. (26) as a system
of linear equations, which may be solved numerically. Let
us briefly sketch that procedure; the details are given in
Appendix. Substituting the expansion (27) in the principal
value integral appearing in Eq. (26) yields

∫
−

w

−w

dx′ v(x′)
x − x′ = −vc

∞∑
n=1

cn π U2n−1(x/w), (28)

where we used Eq. (18.17.42) of Ref. [20]. The last term in
Eq. (26) may also be presented as a linear combination of
Un(x) [see Eq. (A6)]. Therefore, by relying on the orthogo-
nality of the polynomialsUn(x), Eq. (26) reduces to an infinite
system of linear equations on the coefficients (c1, c2, c3, . . .)
[see Eq. (A9)]. In addition, given Eq. (27) and the property
T2n(±1) = 1, the boundary condition v(±w) = 0 leads to the
condition

∑
n�1 cn = −c0 = −1 [see Eq. (A10)]. Truncating

the matrix of that linear system, i.e., setting cn = 0 for n > N ,
renders a finite system of linear equations amenable to a
numerical solution. The elements of that matrix depend on
the parameter l/w, allowing us to investigate the crossover
between the Ohmic and viscous flows. The evaluated coeffi-
cients cn are then substituted in Eq. (27) thereby producing the
velocity profile.

In Fig. 2, we present the result of the numerical procedure
outlined above for the parameters ranging from the strongly
viscous l/w � 1 to strongly Ohmic l/w � 1 regimes. In
the latter regime l/w � 1, the velocity profile is a convex
function with a single maximum at x = 0. With decrease of
l/w (i.e., with the decrease of η), the profile further flattens
at the center until the second derivative of velocity vanishes
at x = 0 for some critical value of parameter l/w � 0.5. The
two shallow maxima appear in the vicinity of x = 0 for l/w <

0.5. With further decrease of l/w, the two maxima sharpen
and drift toward the edges of the slit as the velocity profile
approaches Eq. (9) evaluated in the Ohmic limit.
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D. Analytical interpolation between the viscous and Ohmic
limits

We recall that the distribution of the velocity v(x) in the
two limits can be obtained from an integral equation with
the kernel truncated to the corresponding singular term [see
Eqs. (24) and (25)]. Next, we note that the boundary values
v(−w) = v(w) = 0 would be enforced by the stronger singu-
larity of the viscous −4l2/x3 part of the kernel (23) at any
l , even if l � w and the Ohmic term dominates everywhere
except the vicinity of the ends of the slit. Therefore, it is clear
that the qualitative behavior of v(y) should be captured by a
solution of the integral equation (26) with an omitted part Kreg.
The resulting equation

−2l2
d2

dx2

[∫
−

w

−w

dx′ v(x′)
x − x′

]
+ 3

2

[∫
−

w

−w

dx′ v(x′)
x − x′

]
= 0 (29)

can be solved analytically. Remarkably, this solution provides
one with an excellent fit to the numerical results in a broad
range of the ratios w/l which includes the crossover between
the concave and convex profiles of v(x).

We view Eq. (29) as a second-order differential equation.
When solving it, we pick the odd in x solution∫

−
w

−w

dx′ v(x′)
x − x′ = C sinh

(
x
√
3

2l

)
, (30)

where the constant C will be determined below. In order to
invert Eq. (30), we expand both the left- and right-hand sides
of Eq. (30) in Chebyshev polynomialsUn(x). For the left-hand
side, we use Eq. (28). For the right-hand side, we evaluate an
expansion

sinh

(√
3 x

2 l

)
= 8 l√

3w

∞∑
n=1

n I2n

(√
3w

2 l

)
U2n−1

( x

w

)
, (31)

where In(x) are the modified Bessel functions. Thereby, the
left- and right-hand sides of Eq. (30) are presented as series
in orthogonal U2n−1(x) polynomials. So, the expansion coef-
ficients cn may be read off: cn = −C n I2n(

√
3w
2 l ) for n > 0.

Recall that the coefficient c0 = 1 is determined by fixing
the total current. So, we obtain the analytical expression for
velocity

v(x) = vc√
1 − (x/w)2

[
1 −C

∞∑
n=1

n I2n

(√
3w

2 l

)
T2n

( x

w

)]
.

(32)

The remaining constant C is determined from the boundary
condition v(±w) = 0, producing

C−1 =
∞∑
n=1

n I2n

(
w

√
3

2 l

)
. (33)

For comparison, we superpose the numerical curves with
analytical result (32) in Fig. 2. As expected, the analytical
and numerical curves agree perfectly at l/w � 1, where the
viscous term in the kernel is dominant in the entire range |x| �
w. It is remarkable that at l/w � 1 and even at l/w � 1, the
analytical curves give a very good approximation to the nu-
merical results in that entire range. Our rationalization of such

a good agreement that it is the competition between the singu-
lar terms in the kernel (∝l2/x3 and ∝1/x) that determines the
velocity profile v(x) through the slit. The regular term Kreg(x)
is subdominant and may only slightly renormalize the relative
strength of the singular terms. Therefore, the extrapolation by
means of Eqs. (32) and (33) provides a convenient way for
a quantitative comparison of experimental results with theory
predictions.

V. CONDITIONS FOR EXPERIMENTAL OBSERVATION OF
THE OHMIC-TO-VISCOUS FLOW CROSSOVER

In experimental setting, the slit width 2w is fixed within a
specific device. One may examine the effect of temperature
T and electron density n variation on the current density
distribution within a slit. In this section, we address two
questions which arise in that context: (i) what is the optimal
width 2w for the observation of crossover, and (ii) what are
the temperature and electron density at which the crossover is
likely to occur. Apart from technological constraints limiting
the long-scale homogeneity of a sample, additional consider-
ations for choosing w come from a remarkably long electron
transport mean-free path ltr at low temperatures [21]. The tem-
perature dependence ltr (T ) comes from the electron scattering
off phonons. Upon lowering the temperature, the increase of
ltr saturates at some value ltr (0) ∼ 10 μm due to the residual
scattering off impurities [21].

The sample homogeneity requirement favors smaller val-
ues of w, so in the following we assume w � ltr (0) and
account only for the phonon contribution to ltr . Furthermore,
considering the temperature dependence of ltr , we focus on T
above the Bloch-Grüneisen temperature [22]

ltr (T ) = 4h̄2v2
Fv2

ph ρM√
πD2

1

T
√
n

. (34)

Here, ρM , vph, and D are, respectively, the mass density,
phonon velocity, and deformation potential in graphene, and
vF is the Fermi velocity of the charge carriers; hereinafter, T
is measured in units of energy. The viscosity is proportional
to the electron mean-free path lee with respect to the electron-
electron scattering [8]: η = νnm = (1/4)vF leenm; here, n is
the charge carrier density, andm = pF/vF is the mass conven-
tionally related to the Fermi momentum pF and velocity vF
(for reference, we also introduced here the kinematic viscosity
ν used instead of η in some works [3]). The mean-free path
lee = αh̄v2

F pF/T 2 is also temperature dependent. We may
rewrite lee in terms of n instead of pF ,

lee(T ) = √
παh̄2

v2
F

T 2

√
n ; (35)

the interaction constant α = e2/(h̄vFε) depends on the di-
electric constant ε of the environment (in rewriting, we ac-
counted for the valley and spin degeneracy). It is convenient to
parametrize ltr (T ) and lee(T ) by temperature Tee-tr (n) at which
the two lengths equal each other, ltr (Tee-tr ) = lee(Tee-tr ) ≡
lee-tr (n), and by that length (lee-tr):

Tee-tr (n) = πα

4

D2

ρmv2
ph

n ; lee-tr (n) =
√

παh̄2v2
F

T 2
ee−tr (n)

√
n. (36)
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FIG. 3. Diagram of different transport regimes in the (T, l )
plane. The lengths and temperature are normalized by values given in
Eq. (36). The lines corresponding to the transport mean-free path ltr
(red) and the mean-free path for the electron-electron scattering lee
(blue), have distinct scaling with temperature [see Eq. (37)]. Their
geometric mean, shown in green, determines the Ohmic-to-viscous
crossover line [see Eqs. (38) and (39)]. Lowering of a temperature at
fixed electron density corresponds to a motion along some horizontal
(dashed) line with vertical coordinate representing the fixed slit
width 2w. Its intersection with the three curves determines three
temperatures: T1, T2, and T3. At T > T1, the flow through the slit
is in the Ohmic regime. At T = T1, the crossover to the viscous
regime, discussed in this work, occurs. At T < T2, the notion of
local conductivity becomes inapplicable, but the viscous flow regime
persists; at point T3, the viscous-to-ballistic crossover occurs [8].

With these notations, we find

ltr (T ) = lee-tr
Tee-tr
T

; lee(T ) = lee-tr

(
Tee-tr
T

)2

. (37)

The temperature-dependent scattering lengths ltr (T ) and
lee(T ) are plotted in Fig. 3 in units defined by Eq. (36).

As shown in Sec. IV, the competition between the viscous
and Ohmic terms defines the width l of the boundary layer
for the spatial distribution of the current density [see Eq. (4)].
Using the Drude formula for resistivity, ρ = mvF/(ne2ltr ),
and the expression for viscosity, η = (1/4)vF leenm, we may
conveniently express l in terms of ltr (T ) and lee(T ):

l = 1

2

√
ltr (T )lee(T ) = 1

2
lee−tr

(
Tee−tr

T

)3/2

. (38)

For the current flow through a slit, the applicability of the
hydrodynamic description requires that the width of the slit
exceeds the electron-electron scattering length, i.e., 2w � lee,
while using the notion of resistivity relies on 2w � ltr . Under
these conditions, we found the Ohmic-to-viscous crossover to
occur at w ≈ 2l . We rewrite this condition using Eq. (38) as

2w = 2 lee-tr

(
Tee-tr
T

)3/2

. (39)

Here, we multiply by 2 the left- and right-hand sides of
Eq. (39) in order to display it on par with lee and ltr in Fig. 3.

Figure 3 sets the stage for determining the range of the
slit widths 2w most favorable for observing the viscous flow,
and the temperature of the Ohmic-to-viscous crossover at a
given value of 2w. At 2w > (1/4)lee−tr (n), the crossover from

Ohmic regime to viscous flow occurs when the slit width
2w exceeds the mean-free paths ltr and lee, justifying the
hydrodynamic description of electron liquid. This type of
crossover is considered in detail in this work. One may see
from Fig. 3 that a slit of width 2w � lee-tr (n) is the most favor-
able for observing this type of crossover. Further reduction of
temperature makes scattering off phonons irrelevant, once ltr
exceeds the slit width. At even lower temperatures, the viscous
flow gives way to ballistic electron propagation [8].

The temperature of the Ohmic-to-viscous crossover in-
creases with the decrease of 2w. At 2w = (1/4) lee-tr (n) the
crossover temperature is 4Tee-tr [see Eq. (39)]. (The corre-
sponding point is slightly off the plot in Fig. 3.) At 2w <

(1/4) lee-tr (n) the crossover to viscous flow occurs upon low-
ering the temperature, once ltr (T ) exceeds the slit width. This
type of crossover is not considered in this work; however,
it is clear that the concave-to-convex transition would occur
in the case of no-slip boundary conditions, while the current
flow profile would remain concave in the case of no-stress
boundary condition [cf. Eqs. (17) and (18)].

The temperature domain for the viscous flow is also con-
strained from below (see Fig. 3): the charge carrier transport
enters the ballistic regime once both lee(T ) and ltr (T ) exceed
2w. Neglecting the electron diffraction, which occurs on the
length scale of the Fermi wavelength 2π h̄/pF , one finds a flat
distribution (vy||x|<w, y→0 independent of x) for the ballistic
flow. We note here that our numerical solution for the velocity
profile in the vicinity to the Ohmic-to-viscous crossover also
shows quite flat distribution (see the profile for l/w = 0.5 in
Fig. 2). One needs a resolution better than 0.1w to see the
rounding of the profile near the slit ends, indicative of the
viscous flow.

Using the parameters for graphene [15] (vF = 106

m/s, vph = 2.1 × 104 m/s, D = 25 eV, α ≈ 1), we esti-
mate Tee-tr = 27 (n/n0) K and lee-tr = 13 (n0/n)3/2 μm. Here,
n0 = 1012 cm−2 is a typical density achieved in experiments
[3,15]. We note that Tee-tr = 27K at n = 1012 cm−2 falls in
the middle between the high-temperature (∝1/T ) and low-
temperature (∝1/T 4) asymptotes for ltr which is limited by
electron-phonon scattering [22]; in this case, Tee-tr should be
viewed merely as a scale for measuring T [this is why we
use a dashed line for a part of the ltr (T ) curve in Fig. 3].
Equations (34)–(39) assume that the electron thermal energy
is small compared to the Fermi energy EF ; this condition
is easily satisfied, as EF = 116meV at n = 1012 cm−2. The
corresponding Fermi wavelength, which defines the scale for
the electron diffraction at the slit edges, is fairly small at
approximately 3.5 × 10−6 cm. According to our estimates,
the lowest temperature T = 128K in the experiment [15] at
density n = 1012 cm−2 and slit width of 4 μm was fairly close
to the point of crossover between the Ohmic and viscous
flows.

VI. CONCLUSION

The goal of this work is to identify the favorable conditions
for observing the viscous electron flow in graphene and to
facilitate an accurate measurement of the density profile of
the current constrained by the device geometry. We find the
slit geometry promising as it creates large gradients of electric

125404-7



PERSHOGUBA, YOUNG, AND GLAZMAN PHYSICAL REVIEW B 102, 125404 (2020)

potential and rapid spatial variations of electron velocity near
the edges of the wall cut by the slit. It may help gaining
information about the boundary conditions for the electron
flow from the local-probe measurements [15–17].

In the case of Ohmic flow, the divergent electric field
causes 1/

√
x singularities of the current density at the edges

of the slit [see Eq. (9)]. We establish that the velocity in the
viscous flow with no-stress boundary condition also results in
1/

√
x divergence at the edges [see Eq. (17)]. It qualitatively

resembles the velocity profile in the Ohmic limit, making it
difficult to distinguish between the two types of flow in an
experiment. In contrast, the velocity profile in a viscous flow
with the no-slip boundary condition is significantly different
from the Ohmic limit: it is convex in the former and concave
in the latter case.

At a fixed electron density n, the electron transport mean-
free path ltr depends on temperature due to the electron
scattering off phonons; resistivity ρ is inversely proportional
to ltr . The viscosity η of electron liquid is controlled by the
electron-electron scattering and is a function of temperature
as well. The competition between the viscous and Ohmic
flows determines the width l of the boundary layer in the
electron liquid moving around an obstacle [see Eq. (4)]; l is
proportional to

√
η/ρ and also is a function of temperature.

The crossover from Ohmic to viscous flow upon lowering the
temperature occurs once ltr or l exceeds the width 2w of the
slit. The former case was alluded to in Ref. [8]. Our work
investigates the details of Ohmic-to-viscous crossover in the
latter case (interplay between l and w). We develop a method
based on a solution of the integral equation (21), which
depends on the parameter l and describes the crossover. We
find an efficient numerical scheme to solve that equation and
establish that the crossover occurs at l/w � 0.5. In addition,
by dropping a certain term in the kernel K (x) of the integral
equation and solving it analytically, we produce a convenient
extrapolation formula [see Eq. (32)]. The crossover is marked
by the change in the current profile from concave to a convex
one.

The profile evolves slowly with the ratio l/w and is
rather flat at l/w = 0.5 (see Fig. 2). On the other hand, at a
sufficiently low temperature, the electron transport becomes
ballistic, which also leads to a flat current profile. That raises
the question about the width of the temperature window
in which viscous flow dominates the transport allowing the
convex current profile to develop. This question is addressed
in Sec. V, which may help to optimize the choice of electron
densities and slit widths in future experiments.

We focused on the distribution of the current density in
the absence of a magnetic field. Applying it affects the spatial
profiles of the electric field and current density. The magnetic-
field-induced modifications to the electric potential landscape
and current density around an injection point were evaluated
in Ref. [23]. The results of the hydrodynamic theory in this
case weakly depend on the type of the boundary condition. A
channel geometry was investigated within a more microscopic
approach based on the kinetic equation [24]. That theory
informed the experiment [16] which, in turn, indicated that the
boundary condition falls in-between the no-slip and no-stress
limits. Theory [24] also indicated that the crossover between
the hydrodynamic and ballistic regimes is quite broad for

the channel geometry. In addition, for the ballistic regime
the kinetic approach predicted a robust spike of the Hall
field in the middle of the channel, if exactly two cyclotron
orbits fit into the channel’s width. This beautiful observation
is reminiscent of the physics of Gantmakher-Kaner effect
[25]. Works [16,24] provide a strong motivation to extend the
kinetic theory, with an account for the effect of magnetic field,
to a slit geometry.
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APPENDIX: DETAILS ON NUMERICAL SOLUTION
OF EQ. (26)

In this Appendix, we provide the details of a numerical
solution of the integral (21). We rely on the Chebyshev
polynomials of both first Tn and second Un kind, which are
well suited for solving (differential or integral) equations on a
finite interval.

(i) Let us treat the principal value integral appearing in
Eq. (26). We substitute the expansion (27) in that integral and,
using Eq. (18.17.42) of Ref. [20], obtain∫

−
w

−w

dx′ v(x′)
x − x′ = −vc

∞∑
n=1

cn π U2n−1(x/w), (A1)

where Um are the Chebyshev polynomials of second kind [?].
In addition, we express the second derivative of the Cheby-
shev polynomial U2m−1 using polynomials of lesser degrees
[26]

d2U2m−1(x/w)

dx2

=
{

8
w2

∑m−1
n=1 n (m2 − n2)U2n−1(x/w), m � 2

0, m = 1.
(A2)

(ii) Let us treat the last term in Eq. (21). The goal is
to expand that term in series of U2m−1(x/w). We recall the
definition of Kreg(x) in Eq. (23), and, using parity of v(x)
under x → −x, drop odd terms in the integrand∫ w

−w

dx′ Kreg(x − x′) v(x′)

= −
∫ w

−w

dx′ v(x′)
∫ ∞

0

dt

2 l

sin[t (x − x′)/l]

(t + √
t2 + 1)2

= −
∫ w

−w

dx′ v(x′)
∫ ∞

0

dt

2 l

sin (t x/l ) cos(t x′/l )

(t + √
t2 + 1)2

. (A3)

It allows to treat the x and x′ parts independently. We substi-
tute the expansion (27) and integrate over x′ using the identity∫ w

−w

dx′ cos(tx
′/l ) T2m(x′/w)√
w2 − x′2

= (−1)mJ2m(tw/l ). (A4)
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Further, we expand

sin(tx/l ) = 4 l

t w

∞∑
n=1

(−1)n+1 n J2n(tw/l )U2n−1(x/w). (A5)

Equations (A4) and (A5) allow to cast Eq. (A3) in a concise
form ∫ w

−w

dx′ Kreg(x − x′) v(x′)

= vc

∞∑
n = 1
m = 0

U2n−1

( x

w

)
Knm
reg cm,

Knm
reg = (−1)m+n 2πn

∫ ∞

0
dt

J2m(tw/l ) J2n(tw/l )

t (t + √
t2 + 1)2

. (A6)

The integrals in Knm
reg are evaluated numerically.

(iii) Equations (A1), (A2), and (A6) allow to write Eq. (26)
in the form

∞∑
n=1

U2n−1(x/w)

{
Kn0
reg +

∞∑
m=1

[
16π l2

w2
n(m2 − n2)θmn

− 3π

2
δnm + Knm

reg

]
cm

}
= 0, (A7)

where the notation

θmn =
{
1, m > n
0, m � n

(A8)

was introduced for simplicity. For reference, the three terms
in the square brackets of the latter equation correspond to the
three respective terms in Eq. (26). Using the orthogonality of
the Chebyshev polynomials U2n−1(x/w), the system of linear
equations is read off from Eq. (A7):

∞∑
m=1

[
16π l2

w2
n(m2 − n2)θmn − 3π

2
δnm + Knm

reg

]
cm

= −Kn0
reg, for n = 1, 2, . . . . (A9)

We supplement it with the boundary condition v(±w) = 0,
which, given expansion (27) and c0 = 1, translates into

∞∑
n=1

cn = −1. (A10)

Equations (A9) and (A10) comprise the infinite system of lin-
ear equations for the expansion coefficients C = (c1, c2, . . .).
We solve it numerically by truncating, i.e., by setting cn = 0
for n > N .
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