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Spin-valley collective modes of the electron liquid in graphene
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We develop the theory of collective modes supported by a Fermi liquid of electrons in pristine graphene.
Under reasonable assumptions regarding the electron-electron interaction, all the modes but the plasmon are
overdamped. In addition to the SU (2)-symmetric spin mode, these include also the valley imbalance modes
obeying a U(1) symmetry, and a U (2)-symmetric valley spin imbalance mode. We derive the interactions and
diffusion constants characterizing the overdamped modes. The corresponding relaxation rates set fundamental
constraints on graphene valley- and spintronics applications.
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I. INTRODUCTION

An extremely long electron mean free path [1] combined
with a fairly strong electron-electron interaction [2] makes
graphene an interesting platform for investigating Fermi liq-
uid effects in solids. The strength of interaction may be tuned
by varying the electron density with respect to the neutrality
point in graphene and by changing the dielectric environment
encapsulating the graphene sheet. A hallmark of Fermi liquid
behavior is an emergence of the collective modes associated
with the symmetries of the system. The charge density mode,
the plasmon, is the easiest to couple to, and can be probed in
various spectroscopic experiments [3]. Plasmons are protected
from Landau damping by their high propagation velocity,
leading to fairly narrow spectroscopic lines. The spectra of
plasmons have been calculated for and measured in various
settings [3-5].

More recently, hydrodynamic electron flow has attracted
much attention, occurring in the regime where the electron-
electron mean free path is much smaller than other collision
scales, £,., < £. In the absence of disorder, a uniform electric
current is protected by charge conservation and translation
invariance, but a nonuniform electron flow is associated with
size effects which arise from the electron viscosity. To find it,
one needs to solve the two-dimensional Fermi liquid kinetic
equation [6,7] for the quasiparticle distribution function. A
variety of hydrodynamic size effects have been predicted and
addressed experimentally in electric DC transport [7-11].

A fairly weak spin-orbit interaction in carbon leaves elec-
tron spin in graphene approximately conserved. Furthermore,
the two Dirac points in graphene’s electron spectrum are
located far from each other in the Brillouin zone. As the
result, electron scattering between the valleys associated with
the Dirac points is suppressed. The approximate conservation
of the spin and valley indices of a quasiparticle raises the
question of the existence of sound modes in these channels. It
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has also given rise to a host of proposals for “spintronics” and
“valleytronics” graphene applications [12,13] exploiting in
various ways spin or valley currents. The valleytronics propos-
als are specific for multivalley materials, while the spintronics
ones are a part of a broader semiconductor physics literature
[14,15]. In the analysis of spin- and valley-current conserva-
tion, the majority of theory works consider the effect of static
disorder scattering noninteracting electrons at the Fermi level
(see, e.g., Refs. [15,16]). A notable exception is Ref. [17],
which evaluated in the Born approximation the spin relaxation
rate due to electron-electron collisions in a two-dimensional
electron gas, partially spin polarized by a magnetic field. Later
this theory was applied to analyze the measurement of spin
diffusion in the absence of polarizing magnetic field [18]. We
note in passing that the spin diffusion in the SU (2)-symmetric
neutral three-dimensional Fermi liquid was considered in the
context of the low-temperature He-3 properties [19,20], and
for ungapped graphene in two dimensions [21].

In this work, we study dynamics of the neutral modes
supported by the electron Fermi liquid in graphene. The
neutral modes include an SU (2)-symmetric spin mode, U (1)-
symmetric modes of the intervalley coherence and imbalance,
as well as U (2)-symmetric intervalley spin modes. We iden-
tify and estimate the relative strength of the microscopic
interactions which determine the values of parameters in a
phenomenological Fermi liquid theory for these modes. Under
reasonable assumptions, all of the neutral modes are over-
damped, and there is no neutral zero or first sound. The
spread and decay of the spin-polarization density and of the
intervalley coherence and imbalance densities are thus char-
acterized by their diffusion constants. To find the diffusion
constants, we evaluate the corresponding transport relaxation
rates from the linearized collision integral which accounts for
the electron-electron scattering and solve the linearized ki-
netic equations. The obtained rates depend on the temperature,
electron density, and gaps at the Dirac points. These gaps may
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appear due to deformation of the graphene lattice, for exam-
ple, in graphene encapsulated in hexagonal boron nitride [22],
and have a profound effect on electron backscattering due to
the Berry flux redistribution across the Brillouin zone. Indeed,
backscattering of electrons in graphene may only occur in the
presence of such gaps [23,24].

II. MODEL

A realistic level of the electron density induced by electro-
static gating corresponds to fairly small Fermi wave vectors
kr < |K]| (measured from the respective Dirac points). There-
fore, we adopt the description of the electron system in terms
of slowly-varying-in-space Fermi fields [25,26]:

U, (r) = uga(r) ugp(r) ugp(r) — uga(r) - l[ia r), @

where uyy (r) are the Bloch wavefunctions concentrated near
the ¥ = A, B sublattice sites, at the k = K, K’ points in the
Brillouin zone. For definiteness, we consider the Fermi level
above the Dirac point. We may then perform a projection onto
the conduction band ﬁka =3 ¢ Xk¢Ckeo where the sublattice
pseudospinors xj . are eigenvectors of the Dirac Hamiltonian,

(k- X+ A ) e = mm;, 2)

with v the Dirac velocity and X; the Pauli matrices in sub-
lattice space [27]. In terms of the upper-band operators, the
low-energy Hamiltonian is

A=Y [Vvk2 + A2 = (A + Ep)lc), s Ckeo + Hin, (3)
kéo

where ¢ and o are respectively the valley and spin indices,
Er is the Fermi level measured from the gap edge, and the
interaction Hamiltonian is

B, = Z Z UM] 36238, (K, k/ q)

0’]0’ 302,02
k k'.q ;lcl/cocz/
010,020,
¢} o K+ Q)cgo(K)el (K — @)ege(K): (4)

where : ---: denotes normal ordering with respect to the
electron operators c. The valley charge and spin symmetries
constrain the short-range interactions to be of the form (see
Appendix A)

Up.p.q) = ppq+Ul;p @0
_}_UUH/ .[ T”+UUZ; T3T3
m|| | Il m. 3 .
—i—Uppq -Tlo - a—i—UPlz,qt 0 -0, (5)

where 7/ and o/ are Pauli matrices in valley and spin space, re-
spectively, and all of the functions U* are short ranged except
for U¢ which includes the long-range part of the Coulomb in-
teraction, V (q). The six functions, Us" p.q> ¢ the inputs of our
theory. These, in turn, can be expressed in terms of the inter-
action constants g, g1, oo of an unprojected Hamiltonian
[26] and screened Coulomb potential V (g), combined with the
matrix elements of the projection operator constructed from
eigenspinors xi;. The latter contribute to the dependence of
U(p, p’, q) on the respective momenta (cf. Appendix A).

The space-group symmetry of the graphene lattice con-
strains the form of the interaction Hamiltonian. Allowing

for the presence of a long-range density-density interaction,
and neglecting the overlap of the Bloch functions on the A
and B sublattices, the interaction Hamiltonian in terms of the
unprojected operators v, in Eq. (1) takes the form [27] (cf.
Ref. [26])

ZV<r—r> A VAV ASIAOE

+ % Z g[gaﬁrw"'(r)E“rﬁw(r)w*(r’)z%ﬁw(r’):

+ &oo: ¥ (T Y ()Y T ()Y ()], ©6)

with only oo, gz:» and g1 1 = gxx = 8xy = gyx = &)y NONZETO
in the second term. Projecting onto the upper bands repro-
duces the U(2) x U(2) symmetric form of the interaction,
Eq. (5). The interaction functions in Eq. (5) can then be
expressed in terms of the interaction constants g.., g1 1, £00s
and the function V (g) combined with matrix elements of the
eigenspinors xi, (see Appendix A).

One may estimate the interaction parameters here in terms
of the matrix elements of the screened Coulomb interaction
V(q). To the lowest order one finds

8zA
vr| K= K'|
(N
Like the Dirac gap A, the constant ggo is nonzero only if the
lattice Cg symmetry is broken. From the hierarchy of scales
qtr, kr < |K — K’|, we then have

g1L ~ V(K —=K']), gz~ V(bl), g~

V(g ~kr)>g11 > gz > 800 ()

(here grr and kr are respectively the Thomas-Fermi and Fermi
wave vectors).

III. LANDAU-FERMI LIQUID THEORY OF GRAPHENE
AWAY FROM THE CHARGE NEUTRALITY POINT

The form of the interaction Hamiltonian, Eq. (5), stipulates
an identical matrix form of the Landau functions f(p - p’) of
the phenomenological Fermi liquid theory. It also motivates
the introduction of collective coordinates

1
n(r,p) = G trp(r, p),
r .
s(r,p) = G trép(r, p),
Sl v (9)
Y(r,p) = trzp(r, p),
j | PP
M/ (r,p) = G trz;6;p(r, p),

s v

in terms of the Wigner transformed single particle density
matrix p(r, q), which may be interpreted as charge n, spin s,
valley pseudospin Y, and spin-triplet valley pseudospin M;;
G, and G, are spin and valley degeneracy, respectively. In
particular, as we will see below, the linear kinetic equation de-
couples in terms of these coordinates, such that each collective
mode obeys an equation depending only on that channel.
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For compactness, it is useful to define the arrays X*, oH,
and f* with multi-index u = (o, B):

Xotﬂ — .fozoA.,B7 ,000 =n, pOi
00 0i i=1,2;0

f Zfd’ flsz fl :fU”a
3.0 i=1,2;j __ 30

f —fvz’ fl / —fmllv f ' —fmz-

Here we have introduced the Landau functions f;(p - p’) for
each channel. This allows us to write the Landau quasiparticle
energy matrix as

e, 1) = EPX + " ()X~
+ YD XM - pHR (. ), (10)
"

>
where & (k) is the free particle excitation energy and ¢#(r) is a
generalized potential conjugate to p* (for the density channel
this includes the self-consistent Vlasov field).

We may obtain linearized equations of motion for each
of the collective coordinates from the Landau-Silin kinetic
equation

ap 1[0€é ap 1[0é 9p A .

o 2 {Bp 8r} {ar’ ap} +ile, p1 =121, (D)
where I[p] is the collision integral. We introduce the lin-
earized deviation p(K, r) = np(€(kK)) + dp(Kk, r), where we
have defined the self-consistently determined local equilib-
rium energy €(k) = €[np(€(k))] via Eq. (10). Expanding
Eq. (11) to linear order in §p, one may take traces of the
equation multiplied by the matrices X*, as in Eq. (9), to obtain

a8 pH (K, d ad
9op k. r) +v.-—8ptk,r)+ .
dt or de

=S plO:Yia IOU_MJ

é

! trX“1[8p] (12)
I ’
G p

s v

with generalized forces F* =
each channel,

spt(xr, p) = p"(r, p) — np(€(k))3y 00, (13)
and deviation from local equilibrium [28],
sp*(k,r) = dp"(k,r)
on
 de

—V ", linearized deviations in

GGy Zf“(k p)sp"(p.1). (14)

Note that while the Berry connection contributes to the full
kinetic equation [29], it does not enter the linearized equations
of motion as long as we are interested in long-wavelength
responses [30].

At low temperatures T < T the derivative of the Fermi
function is sharply peaked at the Fermi level, pinning en-
ergies to the Fermi surface. We therefore reparametrize the
linearized deviations and Fermi liquid functions

spt(p, 1) = —3—n Vi@, 1) 15)
€le
in terms of the angular coordinate ¢ [mod 2] of p on the
Fermi surface.

We may now consider the collisionless limit of the kinetic
equation, Eq. (12), to determine whether undamped zero-
sound modes exist. The charge channel in this case gives rise
to the usual zero-temperature two-dimensional (2D) plasmon

mode, which has been thoroughly studied [4,31-33], and thus
we will focus here solely on the charge-neutral modes. Us-
ing the parametrization along with the real-space and time
Fourier transforms in Eq. (12), we find for the collisionless
(I18p] — 0) limit:

V() — vrq cos
GU ! £L / ’
[w@) 4 DD ?§d¢ FA — W@ >]

= vp F* cos(¢p — x), (16)

where vy is the Fermi velocity, pg is the Fermi momentum,
and ¢ and yx are the angles which the vectors p and F*
respectively make with q.

We may estimate the Landau-Fermi liquid functions f*(p -
p’) within the Hartree-Fock approximation. Due to the sym-
metrization of the interaction Hamiltonian one finds

Fpp) R 2UL (o a7
Given the hierarchy of energy scales, Eq. (8), the leading

contribution to the Fermi-liquid interaction functions comes
from the long-ranged function V (g),

1 )
FR0) ~ —Ev[zkp sin 5}

L (6 A? , (6
|:cos ( >+—(A~I—Ep)2 sin <§):|, (18)

where 6 = ¢ — ¢’ is the angle between p and p’. We note that
f*(0) < 0 at all 8 for all neutral modes identified in Eqs. (9).
Accounting for the smaller interaction constants identified in
Eqgs. (7) does not change this conclusion. At 7#* = 0, we may
bring Eq. (16) to the form
p,
@) = 2 G - o) @ o)
Y3 ¢

with s = @/(vrqg) and V* = (s — cos ¢)v¥. Followmg the ar-
guments of Ref. [34], we do not expect real-valued solutions
with s > 1 for f* < 0 (one may show that for constant inter-
actions there are no solutions at all when —1/2 < FJ* < 0).
Therefore, we infer that all neutral modes are overdamped
[35], albeit this does not exclude the possibility of a nontrivial
response in the time domain [36].

IV. RELAXATION OF SPIN-VALLEY COLLECTIVE
MODES

The absence of propagating neutral modes leads us to con-
clude that at a finite temperature T spreading of an initially
localized perturbation in these channels is ultimately con-
trolled by diffusion. In fact, as we will see, neutral first sound
modes are not supported and the finite-temperature behavior
in these channels is generically diffusive. Next, we evaluate
the corresponding diffusion coefficients. For that, we need to
find transport scattering times t/.. These are defined by the lin-
earized collision integral in Eq. (12). For temperatures below
the Bloch-Griineisen temperature 7 < Tpg, electron-phonon
scattering can be neglected as it will contribute at order T*
[24,37]. Thus in a clean system, at low temperatures, the
collision integral will be dominated by electron-electron col-
lisions which will be seen to contribute at order T2.
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The evaluation of the linearized collision integrals is
greatly simplified by a choice of basis for each channel in
which the linearized deviation of the density matrix is diag-
onal. Because of the SU (2) spin and U (1) valley symmetries
we need only consider the kinetic equations for s°, Y, MZ, and
for Y, MZ. We therefore consider the collision integral in o, T,
and o, 7, bases, respectively. In each of the two, the linearized
collision-integral matrix is diagonal and can be written in a
familiar form,

I(pi, o) =

4T ¥ anis(p)

By pipy |

x 278 <Z e,>ninj(1 —ni)(1 —nj)

X Waﬂ/ i [Ula + ‘_}]ﬂ - ‘_)i’y - ‘_"j/ts]a (20)

ijil'j
in terms of the reparametrization 3P (P, T) =
_(an/aé)f)ia(qb’ r) where pi, = potot(pi) is the a=o, ¢
component of the diagonal deviation, defined analogously to
Eq. (14), in the chosen basis. Here we have used the shorthand
Y h; to denote sums of the form h; +h; —hy — hj,
n; = np(p;) is the Fermi function at momentum p;, and W is
the square of the amplitude for two particles in states «, B to
scatter into states y§, which may be written in terms of the
two-particle ¢ matrix as WO”3 7 — | (i jBIRNIy; j'8) |2

The trace operation on the right-hand side of Eq. (12) is
then simply the weighted sum tr(X*/) = >y A, where A/
is the eigenvalue corresponding to eigenvector |o) of ma-
trix X*. Upon performing the trace the collision integral for
each channel can be separated into two parts: those involv-
ing scattering of particles with the same quantum number in
that channel and those involving scattering of particles with
different quantum numbers [e.g., same spin or opposite spin,
respectively, for the case of the spin mode; cf. Eq. (22)], which
we denote I, and I_, respectively. The former has the same
structure as the collision integral for the charge channel and is
known in two dimensions to give rise to a transport scattering
time which goes as T* for low temperatures [38]. The latter
term, on the other hand, will be seen to scale as 72In 7T and
comprises the dominant contribution to relaxation of currents
in each channel,

w (XD — I"(p) = —— Z (2’8 (Zm)

pp, Py

X 2m8 (Z ej>n,~n‘,~(1 —ny)(1 —nj)
J

x WH (Bl — D}L —
with scattering probabilities
D
W2 =2y + W),
z _ D
W2 = 2Wi _+ W),

v+ 0h), 21

wre=2Wl., _ + Wﬁ.++),

ol
W2 = 2W,T o + W),

m| __ xD
W = 2W T + Wi, (22)

where W2, .c¢ 18 the scattering probability for two distinguish-
able particles with spins o, o’ and valley indices ¢, ¢’ and the
superscript x indicates the choice of the t* eigenbasis in valley
space. These may in turn be written in terms of components
of the ¢+ matrix. In the first Born approximation, this can be

expressed in terms of the functions in Eq. (5) as

W,ﬁ;++ = 4|Ud - Us + Uvz - Umz|27
W = 4Us = Uy = Uz + U,
Wﬁ._,'__ = 4|Ud + Us - Uvz - Umz|2v

5 (23)
Wi =4Us — U+ Uy — Up I,

2
W'Ti"" —4|Ud _UY _UUH +Um”| ’

= 4|Uy + Uy — Uy — Uy |-

Wita-
To the lowest order in T /TF, the Fermi functions restrict
the summation over momenta in Eq. (21) to the states close
to the Fermi surface. One may then transform [28,39] the
summation to integration over the energies €, €’ of the incom-
ing particles, the energy transferred in a collision w, and the
scattering angle ;.. Due to the constraints on €, ¢’ and conser-
vation laws, the incoming particles collide almost head on, or
their momenta are almost collinear to each other. To evaluate
the transport relaxation times 7/, we use v*(¢) o cos ¢ [40]
to arrive at

1 4y T?
et ]
rtr

X (W7 ,collinear (950 ) + Wi‘ head-on (950 )) : (24)

— €0S Byc)
sin 9qc

The logarithmic divergence [41] at 6. = m is cut off by
6. ~ T /Er due to the kinematic constraints on scattering of
particles on the Fermi surface (see Appendix C 1 for details).
For compactness, we have defined the dimensionless energy
integration measure

1 /
dx = mdudu dwninj(1 —ny)(1 —nj) (25)

in terms of dimensionless variables u =¢€¢/T, w = w/T,
€,€r =€+ w/2, and €j,€; = €' F w/2. In the case where
qrr <K 2kp there is also a logarithmic contribution due to
collinear scattering by the Coulomb potential, which is
cut off by the Thomas-Fermi wavenumber grp [42—44]. In
graphene, unlike more conventional Fermi liquids, grr =
G;Gyavkr /vp can be greater than 2kr due to the degeneracy
factors and strong effective coupling o = ¢/« v. In this com-
plementary regime, the collinear scattering logarithm is absent
and the dominant matrix element for backscattering will be
screened. We present here explicit expressions for the former
case, gtr <K 2kp, but one may straightforwardly perform the
analogous calculations in the latter case and the qualitative
results remain the same. Which regime is realized experimen-
tally will depend on the background dielectric constant and
doping.
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Thus, performing the integration in Eq. (24), with g1 <
2kr, we find

2 2 4
1 4_n(EF+A)a2T_2<1+EF/A>{< A )
3 E}

T 1+ Ep/2A A+ Ep
VEFEr+2A VEFEr+2A
« In r(Er+ )—Hn r(EFr+2A) 26)
T V]TF

in the leading logarithmic approximation, applicable at T «
VErA. In the evaluation of the scattering probabilities en-
tering Eq. (24), we used the Born approximation and the
Thomas-Fermi screened Coulomb potential [cf. Egs. (8) and
(23)]. The first logarithmic contribution in Eq. (26) comes
from the backscattering amplitude (6, = ), as long as
it remains finite. Notably, backscattering is suppressed in
graphene at A < Er due to the presence of the Berry phase
in the electron eigenfunctions [23,24]. Therefore, in the rela-
tivistic limit A — 0, Eq. (26) is replaced by (see Appendix D)

1 4 T2 Er\> Ep
iy = as 7 | N 8 ) In—
. (T) 3mEg VF

E
+ Q2ra)’ErIn F
v

} 27)
TF

Here g, = g1 for p =vz,mz,v|,m|, and g, = g, for
i = s, and the numerical factor N, = 8 for u = vz, mz, N, =
10 for u =v||,m|, and N, =4 for u =s. We note that
the logarithmic terms associated with the backscattering in
Eq. (27) generically are smaller than those present at A ~ Ep
[cf. Egs. (7), (8), and (26)]. The diffusion constant for each
of the channels is D, = vzt /2 (consistent with the Born
approximation, here we dispensed with the Fermi liquid cor-
rection [28,34] to the Fermi velocity). The diffusion regime
settles in at times t 2 7 (T).

V. DISCUSSION

The relaxation rates for the neutral modes can be exper-
imentally probed through nonlocal resistance measurements
using the spin and valley Hall effects [29,45,46]. Currently
experimental measurements of spin and valley diffusion be-
low the Bloch-Griineisen temperature have obtained diffusion
constants corresponding to mean free paths of the order 0.1
pum [46-49]. Calculations performed in the limit g < kg
give significantly longer mean free paths, indicating either
that impurities play the dominant role, or the system is in
the regime kr < gtp. Nonetheless, experimental works on
electron hydrodynamics suggest that it could be possible to
reach the regime where electron-electron effects dominate the
response of the neutral modes [7-11], as considered here.
Thus, the predicted relaxation rates—and their temperature
dependence—should be measurable, either via the same types
of experiments as have been previously used to measure spin
and valley diffusion, or through other methods [50].

The generalization of Eq. (24) to higher angular harmonics
(m > 2) of the distribution function v(¢) is presented in Ap-
pendix C. The relaxation rate 1/7,(T) of the m = 2 harmonic
is similar to 1/7(T) of Egs. (26) and (27) and is likely lower
than 1/7,(T) in the respective limits, as 1/7,(T") lacks the
logarithmic enhancement of the backscattering contribution.

The hierarchy 1, < 1, for all of the graphene Fermi liquid
neutral modes excludes the possibility of a hydrodynamic
sound mode, contrary to the case of the density mode in
a conventional neutral Fermi liquid (for the density mode,
1/t = 0 by translation invariance). Combined with the dis-
cussion below Eq. (19), we thus find that both zero and first
sound are absent in all neutral channels.

Relaxation of the higher-m moments of the distribution
function can be measured in magnetic focusing experiments
[51]. With the increase of m, the role of the forward-scattering
contribution [which gave rise to the second term in Egs. (26)
and (27)] strengthens. At m > 2kr /q1r and sufficiently low
temperatures the small-angle scattering involving the screened
Coulomb potential V(0) = 1/(G;G,[1 + Fod]) dominates the
relaxation rate 1/7,, ~ (T?/vkr)Inm. The asymptotic large-
m relaxation of spin modes can then be accessed in focusing
experiments utilizing spin-polarized leads in a setup similar to
that of Ref. [51].

In the above we have assumed SU(2) spin invariance,
leading to diffusion of the conserved spin density as described
by Eqgs. (26) and (27). Spin-orbit coupling destroys the SU (2)
symmetry and leads to the interaction-induced relaxation of
a net spin polarization. An expression for the associated re-
laxation rate was obtained by Glazov and Ivchenko [52] in
terms of the spin-orbit coupling strength and electron-electron
collision rates [53]. We neglect such a combined effect here
as intrinsic spin-orbit coupling in graphene is weak [12], but
in the presence of extrinsic spin-orbit coupling [54] similar
relaxation effects would be expected for the spin-valley chan-
nels studied in this work.

Throughout this work we disregarded the trigonal warp-
ing of the electron spectrum in graphene. Warping does not
destroy the used U(2) x U(2) spin-valley symmetries. The
modification of the spectrum, however, cuts off the logarith-
mic singularity of backscattering in Eq. (24) and introduces
anisotropy of the diffusion coefficient due to the dependence
of the Fermi velocity on the direction of the electron wave
vector. For similar reasons, the calculations presented herein
may be extended to twisted bilayer graphene, which also pos-
sesses an internal U (2) x U(2) symmetry [55,56], and thus at
a generic filling we also expect similar qualitative behavior
such as the absence of neutral zero or first sound, and a
transport scattering time for the neutral modes which scales
as (W/T)*InW/T where W is the bandwidth of the nearly
flat bands. As the flat-band limit is approached one must
consider both the valence and conduction bands together and
modes associated with the interband transitions will appear
which could exhibit different behaviors given the enlarged
symmetry U(4) [U(4) x U (4) for the chiral case] [55,56] of
the flat-band limit.
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TABLE I. Transformation properties of short-range interaction
vertices, grouped by whether they are even or odd under time reversal
6 and mirror plane oy .

6 even 6 odd
o, even 2Ty, BTy, LTy, 2Ty, 22T, DN &
o, odd )Ty, BT, Ti Ty, 2T, Y 2oy T, T,

APPENDIX A: SYMMETRY-IMPOSED FORM OF THE
INTERACTION FUNCTIONS

In this section we derive the short-ranged interaction
terms which are consistent with the symmetry of the gapped
graphene lattice and relate them to the interaction functions in
the spin-valley channels introduced in Eq. (5).

1. Symmetry analysis of short-ranged interactions

Ignoring out-of-plane behavior, the point group of gapped
graphene is Cs,. In the absence of spin-orbit coupling, which
is generally weak in graphene, the local symmetry is enlarged
to Csy @ SU(2). In the valley-sublattice basis with spinor

Via(k)
—Yra(k)
we can define the representative symmetry operators
Cs:e5%, oy :$hty, ©O:ovK, T:e3%, (A2)

describing, respectively, C; rotation, mirror plane, time rever-
sal, and lattice translation. Here X, o, and t denote sublattice,
spin, and valley Pauli matrices, respectively. Doing so we clas-
sify the bilinears of matrices which form invariants under the
symmetry group. We note that s, s, and ., 7, form doublets
under C; and T, respectively. We may now tabulate which
matrices are even or odd under oy and € in Table I. Com-
bining all this we find that the symmetry-allowed short-range
interactions are

1'1°. % - 5,711, 2120 T

T - Xt T, X - X Z,r“ LTk 22 (A3)
2.2 1 2
2:z zzz T X sz'Jl’

where we use the superscripts 1 and 2 to indicate that the
vertex is for particle 1 or 2, respectively. We can estimate the
interaction constants for these channels by inserting the Dirac

J

cone ansatz for the creation operator,

W = uga¥xa + uxkp¥xp

+ug ¥k + uka¥ra, (A4)
into the Coulomb interaction. Because of the relations
UKA = Ugry, UKB = Ugp, (AS)

the vertices which are odd under time reversal vanish. The
remaining vertices are

1 2 1 21 2 1 212

1'-12, 3} 2e) -7}, 2] - 2Rl )
2 22 2

- gxle? sld 222 =l 12,

to which we assign, respectively, the coupling constants

800, 11, 871, &1z> 8z» 800- (AT)

Neglecting the overlap of the A and B sublattice Bloch wave-
functions we can further discard the g, , g, terms and we
arrive at

1
Hiy= 3 2 V=) ey @y ) :

+ % 3> lgapv Ty oy )z Py ):

r aff
+Zo0 O Y )y )y ()], (A8)
2. Interaction functions in terms of short-ranged
interaction constants
Writing the fermionic annihilation operator
W, (1) = uga(r) ugs(v) ugp(t) — upa(r) - Yo (r),  (A9)

the upper band projected operator has the form ko =
Z; Xk¢ Ckeo» Where

i+ ) e T 2)
S A T 1 A
e f3(1- %) s+ )

(A10)

By plugging the upper band operator into Eq. (6), the inter-
action functions in Eq. (5) can then be expressed in terms of
the interaction constants g.., g1 1, 800 and the function V(q)
combined with matrix elements of the eigenspinors . Using
the shorthand
Fjiy = F(pi,pj;pi,Pj)
=F(p+4q/2,p
—q/2;p —q/2,p' +4/2), (A1)

we can write

d ! 1 i 11
Udya=3VaLiLjy — $Vo-pLijLjr + g:(NiNjy — 1NiyNjir) 3800(Q0; 7 — 1955-0) — 58110551)
Usoa=—13Vo-wLisLji + 58:NiyNji + 3800007 ;i + 81105551 )

U;L/’q = _%(%Vp—p’Lij’Lji’ + %gzz]vij’Nji’ + §§00Q29;ji/ - ngQi;ijf)v
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vz/mz . 1(1 N S} N, 4Lz 900
Uppg = _Z(EVP*P’LU'LJV + 382NijNji + 4g00Qij’;Jt

p.p.q

Umll[ = _%(Vp p’LI]/L/l’ +gZZ1Vl]/N]1 + ngOQU ]z)

P.p.q

where

Q” i thL /+]V”/N ’7Q /—Lu’ij +N L]]/,

Lk, K) = xy, xi+, N&K) = 50 w3

it _]_]

LK) = % xios N K) = 0l maxi - (A13)
Of~particu~lar note are the limits of the coherence factors L,
L,and N,

Lk, k) =Nk, —k) =1, Lk, —k) = N(k,k) = —

k
(A14)

where the latter relation is responsible for the suppression of
backscattering in the relativistic, A — 0 limit.

APPENDIX B: LOW-ENERGY INTERACTIONS FROM THE
COULOMB INTERACTION

In this section, we estimate the strength of short-range
interactions in the various spin-valley channels.

‘We can obtain estimates for the interaction strengths occur-
ring in Egs. (6) and (A12) by looking at the matrix elements
of the Coulomb interaction. In particular we aim to obtain the
lowest harmonic of the Coulomb interaction contributing to
each interaction strength above.

We begin by writing the interaction Hamiltonian for the
physical electrons in the bands nearest the Fermi surface:

Hiy = = Z /dl‘dl'/V(h' r'|)

MJ oo’

x ¢ (Mo m)el, (Neon ), (Bl
where o denotes spin, A = £1 denotes the sublattice A and
B states, respectively, : ---: denotes normal ordering, and
V(|R]) is the Coulomb interaction. The operators may be
expanded in terms of Bloch states,

dp
Con(r) = /BZ 7 Vap(X)Con (D), (B2)

with wavefunction

Yap(r) = P uyp(r). (B3)

(27)*882(p1 — P

— q)(27)*8pz(p2 — P5 + q),

81L10)s

(A12)

(

Using the Bloch basis and the Fourier transform of the
Coulomb interaction we can rewrite Eq. (B1):

5 _l dp; dq
Hmt - ) )‘)%:o,/ |:1_[ (27_[)2} \/]Rz (27.[)2

xV(q) : b, (P1)Cor(P))el, (P2)corn (Ph) :

X drdr ¢ 4T=)
RZ

X Wi, @Y (DY, (X)) P, (). (B4)
We can rewrite the integral of q as an integral over the Bril-
louin zone and a sum over all reciprocal lattice vectors,

dq / q
—_— = + G), B5
fR ol @ %j ol @t ® (BS)
where we have introduced the shorthand
Y FG) =) fubi +mby) (B6)

G ni,ny

with b; the primitive reciprocal lattice vectors. Similarly we
can rewrite the integration over all space in terms of integra-
tion over the unit cell,

/ drf(r) = Z/ drf(r+R), (B7)
R2 R Juc
where we have analogously defined the shorthand
D FRY=Y fmar + may) (BS)
R ny,ny

with a; the primitive translation vectors of the lattice. Using
both these relations, the interaction Hamiltonian becomes

Z'ZZ/[ (hﬁ}/

M, o0

dq o N
X m . CO-}L(pl)CUA(pl)CU;)\/(pZ)Cark/(pz) :
< Vila+GD) Z £/ R-R) ,=i(p1 =P R p—i(p2—py) R’

R,R/

X / drdr’ ¢@+6)x—r) w;ﬁpl (r)%p; )

uc
X Y, (F)p, (), (B9)

where we have used exp(iG - R) =1, and the periodicity
properties of the Bloch wavefunctions. The sums over R, R’
can be performed to obtain

(B10)
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where dgz is to be resolved modulo the Brillouin zone, as the integrand is periodic in all p;. We then obtain

2 dp dp, 4 ol T o (0 -
Im o0’ Z /Z (27T )2 (27[)2 /];Z (27'[ )2 ’ cg}h(p + q)ca)‘(p)ctf’k’(p q)co A (P ) .

xV(lq+G|) / drdr’ e Oy OOV ()W (), (B11)

and in terms of the Bloch factors

dp dp d ,
A = = Z Z / p D / L e+ Do, (0 — Qo (P)

2. Bz 27)° 27)* Jpz 27
xV(lq+G|) / drdr' @S (O (0 _ (g (). (B12)
uc
We may thus write the interaction as
5 1 / dp dp / dq , + P ,
Hin = = U@, P, @) : ¢, (P + Qor(P)y (P — Qo (P) ¢, (B13)
"2 AZ bz (21)* (21)* Joz (27 )? g ’

where we have defined

U (P, P, Q) = ZV(|q+G|) / drdr' e’ ST (O (0l ()t (1), (B14)

Now we make the Dirac cone approximation. We restrict the momenta of each of the electron operators to be in the vicinity
of the K or K’ point. Each of the Bloch factors will be evaluated at the corresponding point. Introducing the notation

d
/ _p2 (B15)
A (2m)
for integration over momenta p < |K — K'| and the operators
Cor (P) = €52 (K +p) (B16)
with ¢ = %1 indexing the valley degree of freedom, we may approximate the interaction Hamiltonian as
A~ 5 = dp//qu (@ ¢ €y, (0 + D DI, (B — Dy (@) (B17)
it N = e (q) e Core!(P)CLs —qQ)Corarz! :
t oz I (271)2 (271’)2 N (271)2 i (d oA P T Q)Cor¢ /(P o'\ p q vg (P
with
Ut (@ = Y _V(Ia+ G+ (& — IDKDS, .44, / drdr' eSS (O (0, (F )ity (). (B18)
G
There are two types of terms, £} = ¢ = ¢, ¢ = ¢, = ¢ and §; = —¢{ = {5 = —{ = ¢. We therefore write
~ 1 dp dp/ / dq intra + + ’
Hy ~ — Us™(q):c +q)c ¢ (P — Qe () :
xS M/;{{//A TP @ ? ) G P U@ 5 o (P s ()G (B = e (B)
1 dp dp / aq i
+ = U™ (q): c! + q)Con—c ()., " — q)coe (P) B19
2,\,\2/;/1\ 7 P ), G U @ a0 s )G (0~ D)coriec (P (B19)
with
U™ (q) = Z V(q+Gl) / drdr' €S | ()P |up 1 (0, (B20)
uc

where we have used that fact that u_ = u* = |uy|* = [u_|* and
U@ =) V(q+ G+ 2K|) f drdr' e ™uwr (0w e (O (g o (). (B21)
G uc

We then see that U™ corresponds to goo, 800, &2z and U inter to ¢, . From this we can immediately deduce that the smallest
harmonic of the potential contributing to g, is V(JK — K'|). For U™™ we rewrite

1 A
|up | = 5(|uA|2 + lusl®) + 5(|uA|2 — lug|®), (B22)
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giving

. 1 i
Un(q) = ZZV("”G')H / drr' €S (lupy (O + g (1))
G uc

+ A0

/ dreS T (ua, (OF — ugs (0

2

2

+A / drdr’ e ) (Jug (0 = lupy (01 (uas () + Jups ()]
uc

+2 / drdr’' e ) (Juy (0) + lupy (01 (Juas ()1 — |u3+<r’>|2)}.

(B23)

The first and second terms can be identified with g and g.., respectively, while the third and fourth are g(o. It is clear that in the
presence of sublattice symmetry the third and fourth terms must vanish as they are odd under the exchange of A and B. Using
the fact that the Bloch factors are normalized to 1 we see that the lowest-order contribution to g is

goo = V(g) + higher harmonics,

while the G = 0 contributions for the other terms all vanish since

/ dr(luas (0)* — lups (1)) =1 —1=0.

The lowest contributing harmonics are

goo ~V(g), 811

<5 (%) (

oo
th
R

- 47 / / 2 N2 2 N2
8oo ~ V( )/ drdr cos(b; - (r — r'))(|uay (v)|"|ua (r)|” — |upy (X)]7 |upy (X)),
Y3 uc

V3a

i=1,2

where b;, are the primitive reciprocal lattice vectors and
b; = b; + b,. In what follows we therefore set g, |, g;., 800
to constants and replace goy with the long-range part of the
Coulomb interaction. Note that as a consequence of the mono-
tonicity of the Coulomb potential, for the hierarchy of scales
qt1F, kr < |K — K’| we then have

V(g ~kr)>g11 > gz > &oo- (B27)

APPENDIX C: RELAXATION RATES FOR ARBITRARY
ANGULAR HARMONIC

With illustrate here the evaluation of Eq. (21). At low
temperatures, the particles are restricted to the Fermi surface

J

[ dr cos(b; - r)([14A+(r)]2 + [u3+(l‘)]2)

(B24)

(B25)

2
+

)

/ drsin(b; - r)([uas (1) + [ugs (1)1%)

2 2
~ %V<%> ,-:12,2,3 ([ / ) drcos(b; - r)(|uay (r)|* — |u3+(r>|2>] + [ / C drsin(b; - 1)(|uas (r)|* — |u3+(r>|2>} )

(B26)

(

and we can write the scattering rates as W* (¢ — ¢', 6), where
we have defined ¢, ¢’ as the angles of p; + p; and p; +p;,
respectively, and where @ = sin~!(g/2ky ) is the scattering an-
gle. We also reparametrize the linearized deviations in terms
of angular harmonics on the Fermi surface:

on -
59" (pin 1) = — - D el ). (C1)
é

m

Plugging this form into Eq. (21) allows us to straightforwardly
obtain the angular harmonics of the collision integral,

i1 =vp' 3 e ™ pl = ——
F
p

1 [ d*pid®p;d®pid®py [ /
f (2jn)5 ) Zp, 8 Ze, nin;(1 —ny)(1 = nj)
J J

X D e IWLG = ¢ ) (0t O = ). (€2)

+,m’

The probabilities Wy entering the collision integral are defined respectively as the probabilities due to scattering of particles
with the same quantum number in the associated channel, which are important only for the even modes and the charge channel,
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and the scattering of particles with different quantum number in the associated channel. For example, for the spin mode, W,
describes scattering of particles with the same spin, while W_ describes scattering of particles with opposite spin.
Explicitly,

W= Wi +2Wh+2W L +2W0 . W =Wy +2W5
W—sl-)z = Wit + ZWTD¢;++, sz = Wit + 2W¢D¢;+—v W—:” =Wht + 2W§ﬁ++’ Wﬁr-nH =Wrrips + Zfof;-#—’ (€3)
and
W2 =2Wl +Wh ), WrE=2W0, + W), W =2Wh, + W),
W —owid_+wil ), Wi =W+ W), (C4)

where Wﬁr,; ¢ 1s the scattering probability for two distinguishable particles [28,57] with spins o, o' and valley indices ¢, ¢/,
Wit.4+ 1s the scattering probability for two indistinguishable particles in the same spin and valley states, and the superscript x
indicates the choice of the " eigenbasis in valley space.

We follow here the methodology of Ref. [38], wherein the integral is evaluated for the + terms (consequently we do not
repeat the derivation of the + terms here). First we rewrite the § functions

S(ei+e;j—€r —€p) = /da)S(e,- —€ —w)i(e; — €y +w) (C5)
and
§(pi+pj —pPr —p;) = / d’g8(pi — pr — D3P, — Pj + Q) (C6)
Changing variables to

1 T
pivpi'=p+ 57 p]vp]/zp _E’ (C7)

we can resolve the § functions to find 1 =1’ = q. We rewrite the momentum integrals in polar coordinates:

/dzp:/dppyﬁdqs. (C8)

7 Z Ny /dppdp/p/dw / dqq%d¢d¢)’d¢q8(e,- —€ —w)3(e; — € + )

This transforms the collision integral to
1

I 1 — —
', — 1] orT o

x nnj(1 — n)(1 = njp)e ™ W (p — ¢/, 0)(e™? — ™9 — ™9 4 ™M), (C9)
The difference of energies appearing in the § functions can be written as

€ —€ =€e(pt+q/2)—e(p—q/2)

v2q? V22
=,/ vp? + e + v2gpcos(p — ¢g) + A2 — [v2p? + 2 v2gpcos(¢p — ¢,) + A?
vigp vlgp
=€|4/1 +—zcos(¢—¢>q)— 1- > cos(¢p — ¢,) | = de, (C10)
€ €
where we have defined
2,2
ez\/vzpz—{—Az—i—qu. (C11)
The § function may then be written §(§¢ — w). Projected to the Fermi surface, the convexity of the square root implies that
de(¢p) =0 = cos(¢p — ¢y) =0. (C12)
This allows us to approximate the § functions:
i bid
8(de —w) = 8(cos(p — ¢g)) ~ . P —bg— x5 )
|08€ /0 cos(p — )] ! ; v2gplsin(¢ — ¢,)| ( ! 2)
1 " T
88’ —w) ~ 8(cos(@’ — ¢y)) ~ - 8 — by — x5 (C13)
|08€’/0 cos(9” — ¢g)l ! )2: vigp|sin(¢’ — ¢,)| ! 2
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The Fermi surface value of p can be obtained from
2 2 _ . 2d 2
— A2 2L
) _ MK 7} 2 q
== 1——). Cl14
P U2 Pr ( 4[7%: ) ( )
Note that we use u for chemical potential for compactness of notation here, which is related to Fermi level in the main text by

u = Er + A. This along with vp = vzlfF allows us to simplify Egs. (C13) to

5(8e — w) ~

1
=
X;Evm 1 —(q/2pr) e vrgy/ 1 — (q/2pF)°
Putting this back in,
1 1 dq
Ly '] = ——————= n,‘ﬁ//dppdpp/dw/ —
’ vrvpT 2m)’ ; q(1 = (q/2pr)*)

x 2 % dgninj(1 — ny)(1 —ny)e” "W <<x - xU%, 9><€"’”’¢f — " Mg ). (C16)
xx

(

We now change integration variables to with the sign determined by the relative direction of p and q.
Since ¢ = ¢, + x 7,

e

= [2p2 4 2

€ =4/vp*+ 1 + A=, sgn(¢; — ¢y) = —x, (C24)
3 .. . ;_ T

o /vzp’z—l—%—i-Az, C17) and similarly since ¢' = ¢, + x'7,

sgn(ep; —p) = x'. C25
rescale the energy variables by the temperature, en(e; = ¢i) = x (€25)
€ =pu+ul, € =u+uT, w=wT, (C18) Thus,
. $i— ¢ ¢ —9;y
and change variables for g to — =" X0, - = x'0. (C26)
ino q N dq df|cosb| Now for th ¢ anel
sinf = — = :
2r 20— @/2pr)}) _ sinbcos6 cio ow for the sums of angles
4o ( ) sin ¢; + sin ¢y ¢ + ¢i
_ tan ¢ = = tan
" sinfcosf’ cos ¢; + cos ¢y 2
Then to leading order this renders the collision integral, =¢= ¢i + ¢ ’ (C27)
IM [ M] Z 0 VFT2/~d2/*7[/2 d@ Sini~—l—sin¢-/ ¢+¢,
m,— n = - Um/_ - [ J J — J J
P v o sinfcosf tan ¢ e ——— tan 5
d¢q —ime; b g ¢+¢,
im@iyy — =6 [ S C28
X%?g—me 2 (x x)2 = ¢ 3 (C28)

X (I _ 't _ gin'd; | gniery (C20) Combining Egs. (C26) and (C28) we have

where for compactness we have defined the integration mea- pi=¢—x0=0¢,+x (E — 9>,
sure 2
1 b4
d¥ = —dudu'dwninj(1 — ny)(1 —nj). (C21) oy =@+ x0 =¢q+x(—+9>,
472 2
We now turn to reexpressing the angles ¢, in terms of ¢, Ve
and . In general, we have ¢ =0"+x'0=0,+x (E +0 ),
pi —Pr =q=DPpj —P;j. (C22) ., Ve
L ¢j/=¢—x6=¢q+x<——e). (C29)
So 2
sin bi—¢r|_ 94 _ sinf = sin P — i We consider the two cases, x = x’ and x = —x/, corre-
2 T 2kp - sponding to the left- and right-hand diagrams in Fig. 1. When
€23) =y
:>‘¢i_¢i’ _|%i=%r|_, ’
2 2 ’ ¢=9¢"=d¢,+x7/2 (C30)
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FIG. 1. Position of scattered particles on the Fermi surface and
associated angles, for collinear (left) and head-on (right) scattering
processes. Note that the momenta p and p’ do not lie on the Fermi
surface.

J

wiFor.y_u M UFT2
I = =23 oy —s— | 4%
m F

x e—im(¢q+x7r/2—x9)(eim’(¢q+xﬂ/2—x9)

vrT? z
= -2t~ /dZ/
UF 0

and we have collinear scattering:

=y = (5-0) ¢5=0r= Z 4o
¢z—¢j’—¢q+x E_ , ¢/—¢u—¢q+x<§+ )
(C31)
In the other case,
¢ = ¢q+X =¢q— X trn=¢"+m, (C32)
which describes head-on scattering:
b= +7 =0, +x(5-0),
J q 2
i
¢ =y +7 =9+ x(5 +0)- (C33)

The corresponding contributions to the collision integral are

/’5 deo
—W
o sinfcosf

d
0,60)) fzi:
X

_ eizn’(¢q+xrr/2+x0))

do )
———W"(0,0)) (1 -
sinfcosf ( )XX:( ¢ )

vpT? T do B
= —4n,—— | dZ ——W5(0, 0)(1 — cos2mb) (C34)
Vg o sin6cos@
and
: T2  de .
JEHO oy = 9 uYF /dE/ Wk, 0 —im(¢pg+x7/2—x0)
m,— [T) ] ; M U%— 0 sin 6 cos 6 ; — (7T )6
% (eim’(¢>q+x71/2—x9) — M Gt /2HXE) _ pim (ytym/2=x0+m) | eim/(¢(,+xn/2+x9+ﬂ))
vpT? / /'5 do 1 ; 2imy6
= -2 w_z dz —Wﬂ ’9 (1 — imm 1— imy
i V2 o sinécosf - );2( e —e )
T2 > db 1 ‘
= —4n,’;1)F—2de/2 ——W"(r,0)=(1 — ™ )(1 — cos2mb). (C35)
Vg o sinfcos6 2
Combining the above two expressions, we can identify the contributions to the scattering rate at order T
1 8upT? T de 1 —emm
=2 /dE/ ,—(W_“(O,G)—i— gw_ﬂm,m) sin mf. (C36)
T Vg o sinfcosf 2
Separating into even and odd m terms,
1 8vpT? > do
= :2 de/ ey sin” mo(W*(0,0) + W/ (r,0)) ~ T* logm (C37)
m,even F 0
and
1 8vpT? : de
= v /dE/ — i mO(W(0,0) + W (r, 0)), (C38)
Tp0dd o sinfcosf

where we have restored the usual contribution [38] from the 4 channel for the even modes. Note that Eq. (C40) is logarithmically

s

divergent at & — 7, corresponding to ¢ = 2py, if W(0, 7 /2) + W (s, w /2) is finite. From Fig. 1, one can see then that the

divergence is due to backscattering, p; — —p; and p; — —p;.

These can be put into a more conventional form by writing in terms of the scattering angle 6, = 26

4\)}7 T2

‘[m even

- / dx / (1 — CO0s mQSC)( Col]mear(QSC) +W + Head On(QSC))
sin G,

(C39)
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and

1 4 T? do
VF / / > —— (1 — cos mby.)

rm odd sin 6, s¢
”w
X (Wf,Collinea.r(QSC) + W2 tead on(Fse)),

where the subscript “sc” on the rates W is just to show that we
are now considering them as functions of 6.

The structure of the rates, as a sum of head-on and collinear
terms, is a general feature of relaxation in two dimensions, as
these are the only collision channels allowed by momentum
and energy conservation for fermions on a circular Fermi
surface (see, e.g., Ref. [58] or the supplement to Ref. [44]).
In the charge channel, the collinear term does not contribute
to relaxation [38,39,58] due to the indistinguishability of the
scattering particles, but in general any collinear collision of
particles with different values of a quantum number con-
tributes to the angular relaxation of the associated channel;
e.g., the collinear collision of opposite-spin fermions con-
tributes to the relaxation of the spin channel. Similarly, the
head-on collision term vanishes at order 72 for the charge
channel [38], but in general contributes for collisions with
differing values of quantum number in the channel of interest.

There are two leading contributions to these integrands.
For odd terms, there is a logarithmic divergence at 6, — 7.
For all terms there is also, potentially, a logarithmic contribu-
tion from forward scattering due to the long-range Coulomb
interaction. Thus to leading logarithmic order the transport
lifetimes can be approximated:

(C40)

1 1 1 1 4l
P + T (4
tr 1 1,Backscatter 1,Forward

We evaluate these two contributions separately below.

1. Backscattering contribution

To leading logarithmic order we can resolve the backscat-
tering divergence by taking into account the cutoff on the
integration region due to kinematic constraints on particle
scattering. To do so, we recall that the energy conservation &
functions Egs. (CS5), (C10), and (C11) imposed the constraint

V= Ty =2 =y - JT+y =2, ()

where we have defined
2

v
y= "2 cos¢ — ) (C43)
and as before
zqz
=P+ A%+ - (C44)

Expanding to lowest order in w = w/T,
= [(1/2
Vity=yi-y= Z( k )(y" — (=)
1/2 yArl wTl

w T
=—T/u~ w—. (C45)
1+uT/n 1%

Substituting back in Eq. (C43) we have, to order T/,

U2PF q*
e q,/1— = cos(¢p — ¢y)

u?— A2 T
= ———sin Osc cos(¢p — ¢py) = w—. (C46)
0 2
Since | cos | < 1 we must then have
. T
sin Oy, > W——>5, (C47)
w*r — A2

which acts as a constraint on the integration region. From this
we define the cutoff angle

T

sinf, ~ 6, ~ w———.
’u2_ A2

(C48)

Noting that the dominant region for the measure d ¥ will come
from

w1+0(T/n), (C49)
we then approximate this as
T
6o~ . (C50)
us—A

The leading-logarithmic backscattering contribution to the
transport time may then be obtained with the change of vari-
ables x = cos(fs./2) in Eq. (C40):

‘[1 Backscatter Oc /2 X

21)[: T
U2 (Wf,Collinear(T[) + WﬁHead On(n ))
F

2 T2 2 A2
= /dzln—“
UF Tu

X

X (W—,Collinear(n) + W_M,Head On(n )) (C51)

Using the fact that

/ 2—A2 / 2—A2
T<<\/M2—A2:>T<<M=>IHMT>> ln”T,

(C52)
we have
1 4 T2 2 _ Az
m = ‘)FZ dz In E
T1 Backscatter 2 T
x (Wf,Collinear(T[) + WﬁHead On (7 ))
(C53)

To evaluate the integral over d ¥ we rewrite it as

1
[az= o [ dwsia -

X /dujdu,-/dujrS(ui + Uj — uy — I/tjf)

ff](l Jid)d = fp),  (C54)

ﬁ(l f)
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where
1

= T expta

(C55)

Using the Appendix of Ref. [38] this can be simplified to

/dz—;fd--(l—»)u"z-’_m
= ony J Al = J07

= —ﬁ/duiz—ﬁ# = é (C56)
giving
1 o 20pT? n V2 —A?
T} Backscatter 3v; T

X (W cotinearT) + W bieag 0n (7))
(C57)

2. Forward-scattering contribution

In two dimensions, the phase space for collinear colli-
sions is logarithmically divergent [21,24,59,60]. This being
the case, the scattering rate for the unscreened Coulomb inter-
action gives a divergent contribution to the transport scattering
rate, despite the usual 1 — cos 6. suppression of forward-
scattering contributions. Physically this divergence is cut off
by the screening wave vector. In the case where grr > 2kr the
Coulomb interaction is short ranged and one need not con-
sider the forward-scattering contribution, as it is effectively
suppressed by the transport form factor. However, in the limit
gt < 2kr the region of the integral sin 6. ~ gr/2kr gives

1 1
(q + qtr)* .
q + gTF (m + sin 9)

WO — 0) x (C58)

2

leading to a logarithmic contribution proportional to
T?log ¢rp -

One may see that the Coulomb term enters all the distin-
guishable rates. Its leading logarithmic behavior then provides
the forward-scattering contribution

2
1 %26(27{62) vFTZ/dE

n 2 2
7"l ,Forward Kk

U

2
tan 6

5-4
X / de —.
& (gTF + 2kr sin6)

(C59)

where « is the background dielectric constant and the leading
prefactor 26 = 8 x 2 x 2 x 2 comes from the prefactor of the
relaxation rate, the factor of 2 for distinguishable particles, the
sum over forward and head-on collisions, and finally the two
different eigenvalue-changing channels. Defining the effective
fine-structure constant o = (&> /kv), we can rewrite

1 T2 2
L A2 ax?tt Y /dE

m
Tl ,Forward UF

7% tan 6
X do —.
3 (gtF + 2kp sin9)

(C60)

Letting x = sin#6,

1 vpT?v?
- ~ 20 x wla* L [ dx
rl,Forward UF

ok g
o
sin & l—x* (x+a)
where we have defined @ = gtp/2kr < 1. Extracting the log-
arithmic divergence due to the Coulomb potential, we have

1 T2 2
72’ VFZ 2v /dE
kv

1 X
x / dx—> .
£ (xta)

In principle, as this term is dominated by small angle scatter-
ing, dynamical screening effects may become relevant [44].
However, when 7' < vgrg the logarithmic divergence is cut
off by the Thomas-Fermi wave vector before dynamic screen-
ing becomes relevant and we are justified in using the static
screening approximation. We henceforth work in this limit
and subsequently neglect the cutoff angle 6, for forward scat-
tering as it does not contribute at leading logarithmic order.
Changing variables to y = x + a4,

1 v T2 ! —
- a2 nzaz‘z—z/dilf dy2—~
kg v a :

(C61)

~ 20 x

m
7:l ,Forward

(C62)

TllfForward y
T242 /2 — A2
=20 x n22 2 [az i Y20 (ce3)
kipvg VGTF
where we have used
V? — A = vkp. (C64)
Performing the integral over d ¥, we then have
1 N 26n2azv_4vFT2 N Vu?— A2 (C65)
th.Forward 6 vlzr U2k127 VGTF
Making use of
2
vokp u
= , = —, C66
UF V=53 (Co6)
we have
4 3 2
vr = Mzz_i 2M 2 (C67)
Vg 2rviky 2w put— A
and arrive at
1 247.[ 2 2T2 2_ A2
. L P L (C68)
T} Forward 3 (/1«2 - Az) VYTF

APPENDIX D: EVALUATION OF THE BACKSCATTERING
PROBABILITIES W* (i)

In this section we approximate the probability for backscat-
tering in each channel, appearing in Eq. (C57) for the
nonrelativistic case A 2 Ep and the relativistic case A < EF.

As noted in Egs. (22) and (23), the scattering probabilities
W* entering the collision integral can be expressed in terms
of the interaction functions U*, Eq. (5). Using Eq. (A12), we
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may estimate these rates in terms of the long-range part of
the Coulomb interaction V (¢) and the short-range interaction
constants goo, &1.1, &zz» §00-

As noted above, the backscattering contribution will con-
tain the collinear p = p’, q = —2p and head-onp = —p’, q =

A2?

A
Wgs = 8|8z + —8o0 + Var, —
BS 4 w Fluz

’

A A?
8zz+ —800 + Vo, — — 2811
I I

Was = W =4<

i =3
A =4(

A2\’
1+—>

u2
A )2
A )2

A A2
8zt —800 + Vo — —2811( 1+ —
i I 1

A A?
8zt —80w0 + Vo — —2811( 1+ —
I i I

2p terms, as depicted in Fig. 1. Looking at this figure, it is
clear that for & = m, the head-on and collinear terms should
be equal.

Combining Eqgs. (23), (A12), and (A13) we find the com-
bined collinear and head-on contributions in each channel
WEI»LS =W’ (7‘[) + Wf,l-lead On(n) are

—,Collinear

22

A
+ |82z + —8o0 + VZkF_2
2% n

)

A A? A\’
+ |8z + —8o0 + Var, — — g¢¢<1 + —2)
0 0 w

A AZ Az 2
+ |82z + —8&o0 + Vo, — +gJ_l<l + —2>
122 w M

). (D1)

1. Nonrelativistic limit

For the nonrelativistic limit V (2kg ) is the dominant energy scale due to Eq. (8), and we can approximate Eq. (D1) as simply

Wi ~ 8|V(2kF)|2F.

Plugging this into Eq. (C57) and combining with Eq. (C68) leads to Eq. (26) of the main text.

2. Relativistic limit

In the relativistic limit, the long-range Coulomb contribu-
tions are suppressed by the factor A?/u? and the short-range
interaction constants become important. From Egs. (7) and (8)
we see that the leading-order contribution to the scattering
rates will be due to g, for all channels except the spin
channel, where it is absent and g, is the leading term. We

A4
(D2)
[
may thus approximate Eq. (D1) as
Wi = 2 % |gz%, Wps = Wye =2 x 8|g11 |,
Wl = wil =2 x 101, 1. (D3)

Again, plugging this into Eq. (C57) and combining with
Eq. (C68) leads to Eq. (27) of the main text.
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